Efficient, Evolutionary Security Analysis of
Interacting Android Apps

Hamid Bagheri*, Jianghao Wang*, Jarod Aerts*, Sam Malek!
*Department of Computer Science and Engineering, University of Nebraska-Lincoln
bagheri @unl.edu,{jianghao,jarod.aerts } @huskers.unl.edu
TDepartment of Informatics, University of California, Irvine. malek@uci.edu

Abstract—In parallel with the increasing popularity of mobile
software, an alarming escalation in the number and sophistication
of security threats is observed on mobile platforms, remarkably
Android as the dominant platform. Such mobile software, further,
evolves incrementally, and especially so when being maintained
after it has been deployed. Yet, most security analysis techniques
lack the ability to efficiently respond to incremental system
changes. Instead, every time the system changes, the entire
security analysis has to be repeated from scratch, making it too
expensive for practical use, given the frequency with which apps
are updated, installed, and removed in such volatile environments
as the Android ecosystem. To address this limitation, we present
a novel technique, dubbed FLAIR, for efficient, yet formally pre-
cise, security analysis of Android apps in response to incremental
system changes. Leveraging the fact that the changes are likely
to impact only a small fraction of the prior analysis results,
FLAIR recomputes the analysis only where required, thereby
greatly improving analysis performance without sacrificing the
soundness and completeness thereof. Our experimental results
using numerous bundles of real-world apps corroborate that
FLAIR can provide an order of magnitude speedup over prior
techniques.

Index Terms—Android analysis, evolving software, relational
logic.

I. INTRODUCTION

Android, with well over a million apps, has become the
dominant operating system for mobile platforms [1]. The
exponential growth in the popularity of the Android OS can be
attributed in part to its flexible communication model, called
inter-component communication (ICC), that facilitates sharing
of data and services among applications. On the downside, the
Android ICC interaction mechanism has become a vulnerable
surface that causes serious security issues, such as privilege
escalation chaining and app collusion, shown to be quite
common in the Android apps on the market [2], [3], [4], [5],
[6], [7]. Such issues are primarily due to the fact that the
Android access control model is at the level of individual apps,
and there is no mechanism to check the security posture of
the entire system, allowing multiple malicious apps to collude
and combine their permissions or to trick vulnerable apps to
perform actions on their behalf that are beyond their individual
privileges.

Android security analysis, thus, has received a lot of atten-
tion in recent years to detect security issues that may occur
due to the interaction of apps components [8], [9], [10], [2],
[11], [12], [71, [13], [14], [15], [6], [16]. Pure program analysis

techniques, such as IccTA [2], tried to address this problem
through combining multiple apps, and treating all of the apps
as one large program; this in turn enables performing program
analysis on the entire system. Reliance on performing the
analysis directly on a massive combined program, however,
makes such techniques rather unscalable, as every time any of
the apps changes, the entire analysis has to be repeated. Some
hybrid approaches are more recently proposed that combine
program analysis with other reasoning techniques [6], [17].
Among others, COVERT [6] combines static program analysis
with bounded verification [18]. It shows that by decomposing
the problem into two parts—(a) extracting security-relevant
formal specifications from apps through program analysis,
and (b) checking whether the extracted specifications are
vulnerable or not through automated formal analysis—it is
possible to become more effective, since the program analysis
results do not need to be recomputed for the entire set of apps.

However, despite significant progress, all the prior ap-
proaches are subject to a common limitation: they lack a way to
respond to incremental system changes, and vulnerability anal-
ysis has to be repeated from scratch for each system change,
i.e., every time an app is added, removed or updated. Thus,
security analysis of Android systems composed of a reasonable
number of apps is still quite expensive to compute [2]. This
is especially problematic in such volatile environments as the
Android ecosystem, where apps are frequently being updated.
Security analysis techniques based on a full recomputation of
the analysis are often unscalable, and thereby, impractical in
this context.

To address the foregoing challenge, this paper presents
a novel technique, dubbed FLAIR for formally-precise
evolutionary analysis of interacting Android apps. It provides
a novel Android-specific formal analyzer that automatically
and efficiently updates ICC analysis results in response to in-
cremental system changes. The insight underlying our research
is that while apps comprising an Android system may evolve
independent of one another, each change by itself is not likely
to invalidate all the analyses that have been performed on an
earlier version of the system, since not all apps in a system are
capable of interacting with one another. Figure 1 presents a
schematic view of FLAIR. Unlike prior techniques that dispose
of all prior results in response to a system change, and redo
the analysis from scratch, FLAIR employs an incremental
technique for analyzing Android apps, where results of a prior

system analysis can be leveraged to optimize any subsequent
security analyses on revisions of the system without sacrificing
the soundness and completeness of the analysis.

We realize FLAIR on top of the open-source inter-
component security analysis framework COVERT [6], where
the Android system specifications are captured in Alloy re-
lational logic [18]. Such specifications are amenable to fully
automated, yet bounded, analysis. FLAIR replaces the standard
Alloy relational logic analyzer [18], leveraged by COVERT as
a backend analysis engine, with our new formal analyzer that
automatically copes with incremental system modifications,
without restricting the expressiveness and analyzability of
the initial framework. The incremental analyzer relies on a
set of algorithms that leverage the semantics of the change
operations, i.e., adding/removing apps—that can be performed
in the domain of the Android system—to narrow the search
space of the revised system specification, thereby greatly
reducing the required computational effort, further improving
performance and scalability of the analyzer.

We evaluate FLAIR in the context of hundreds of real-world
apps collected from a variety of repositories. Experimental
results show that FLAIR significantly improves analysis ef-
ficiency, and that it is able to produce the same results as
the state-of-the-art ICC analysis techniques based on a full
recomputation, in significantly less amount of time.

To summarize, this paper makes the following contributions:

o Incremental Android ICC analysis: We introduce a novel
approach to incremental analysis of Android ICC vulner-
abilities. We present a set of algorithms for efficiently
updating ICC analysis results based on the semantics
of the change operations that can be performed in the
domain of the Android system.

o Tool implementation: We implement FLAIR as an open-
source extension to the Alloy relational logic analyzer and
the COVERT inter-component analysis framework. We
extend the latest version of the Alloy Analyzer to realize
the incremental analysis algorithms, and incorporate it
into the COVERT framework as a substitute for its back-
end, non-incremental formal analysis engine. We make
FLAIR publicly available to the research and education
community [19].

o Experimental evaluation: We present our experiences
with thorough evaluation of this approach in the context
of real-world apps, the results of which corroborate that
FLAIR can provide an order of magnitude speedup over
conventional techniques.

The rest of this paper is organized as follows. Section II
provides the background knowledge required to understand
the contributions of our work. Section III presents the threat
model. Section IV presents the core of this paper, FLAIR’s
algorithms for incremental analysis. Section V presents the
evaluation of the research. Finally, the paper concludes with
an outline of the related research and our future work.

Formal

]
._fAnaIyzer -

Program\
Analyzer

A

/ Vulnerpbility
Instajnces
Specd
Revised Spec A Prior Results

Fig. 1: A schematic view of FLAIR’s incremental analysis
approach that combines program analysis with lightweight
formal analysis, where the formal analyzer recomputes the
ICC analysis results in response to incremental system changes
only where required.

II. BACKGROUND AND MOTIVATING EXAMPLE

This section provides a brief overview of the Android
framework and its security challenges to help the reader follow
the discussions that ensue, followed by an illustrative example
to further motivate our research.

An Android system consists of a set of apps running on a
device. Each app in Android consists of a set of software com-
ponents. The most commonly used style of communication in
Android is conducted by means of Intent messages [20]. An
Intent message is an event for an action to be performed along
with the data that supports that action. Component invocations
come in different flavors, e.g., explicit or implicit, intra- or
inter-apps, etc. Android’s ICC allows for late run-time binding
between components in the same or different apps, where the
calls are not explicit in the code, rather made possible through
event messaging, a key property of event-driven systems.

It has been shown that the Android ICC interaction mecha-
nism introduces several security issues [4]. For example, Intent
event messages exchanged among components can be inter-
cepted or even tampered, since no encryption or authentication
is typically applied upon them [21]. Moreover, no mechanism
exists for preventing an ICC callee from misrepresenting the
intentions of its caller to a third party [22]. In fact, the
Android access control model provides no mechanism to patrol
the security posture of the system as a whole. This causes
several compositional security issues, such as Intent spoofing,
unauthorized intent receipt, and privilege escalation, which are
shown to be quite common in the apps on the market [4], [23],
[24], [21], [25].

Figure 2 provides an example of such compositional security
issues that we take as a running example in the rest of this
paper. The first app is a Messenger app, where its Mes-
sageSender component uses system-level APl SmsManager,
resulting in a message to be sent to a phone number previously
retrieved from an input Intent message. Although this app has
the permission for SMS service, it fails to ensure that the
sender of the original Intent message also has the permission.
In fact, it defines a public interface, but fails to check if the
caller has the proper permission. This represents a common
practice, yet an anti-pattern, among Android developers [4].
The MessageSender component thus exposes the SMS service
capability without checking the caller permission. The other

Messenger App a

M M
essage g (R MalComponent
Sender T Composer

Fig. 2: A running example representing ICC vulnerabilities
among Android apps.

Malicious App g

app is a malicious app that sends an Intent message to
MessageSender belonging to the vulnerable app for accessing
the text message service, without the need for any permission.

Existing work on Android inter-component security analy-
sis [9], [10], [2], [12], [7], [15], [6] can detect, within minutes
to hours, that information from an Intent sent by a non-
privileged app can flow to the MessageSender component.
However, the current state-of-the-art lacks a way to respond
to incremental system changes. Once an expensive analysis
run of a system s has completed, whenever s changes, e.g.
by installing a new app or even updating an existing one, the
entire analysis will need to be recomputed thoroughly once
again. This is especially problematic with a vast number of
applications that nowadays are in use in a typical device. We
show how through an effective incremental analysis, FLAIR
can pragmatically address this challenge.

III. THREAT MODEL

At the outset of any security analysis is the identification of
a threat model that describes the capabilities of an attacker.
This work is centered around efficient detection of three
types of ICC-based security attacks in Android: (1) Intent
spoofing [4], (2) unauthorized intent receipt [4], and (3)
privilege escalation [23].

« Intent spoofing occurs when a malicious app forges an
Intent to mislead a receiver app; essentially, a malicious
app sends an Intent to an exported component of a victim
app that is not expecting Intents from the malicious app.

o Unauthorized Intent receipt occurs when a malicious
app intercepts an Intent meant for another legitimate app.
As a result, the malicious app procures access to the data
in the intercepted Intent, among other things.

o Privilege escalation occurs when an app with less
privilege is not deprived of accessing components of a
more privileged app. In fact, a malicious app is able
to indirectly perform a privileged task, without having
a permission to do so, by interacting with a component
that possesses the permission.

We consider both explicit and implicit Intents as well as
Intra- and Inter-apps communications. When the recipient
component is given explicitly, the Intent is called an explicit
Intent; otherwise, implicit Intent. We also consider the ICC-
based communication that involves more than two apps, i.e.,
FLAIR will be able to detect inter-app attacks concealed in a
transitive ICC path through multiple apps.

IV. APPROACH

This section first overviews the formal underpinnings of our
approach based on relational logic as well as the COVERT
framework, and then presents the details of our approach for
incremental ICC analysis

A. Formal Underpinnings

Prior research has used Alloy’s relational logic [18], and the
corresponding Alloy Analyzer, for analysis of ICC vulnerabili-
ties [6]. Our research builds on this work, but introduces novel
enhancements to make the analysis significantly faster. Alloy is
a declarative language based on the first-order relational logic
with transitive closure [26]. The inclusion of transitive closure
extends its expressiveness beyond first-order logic. Essential
data types, that collectively define the vocabulary of a system,
are specified in Alloy by their type signatures (Sig). Signatures
represent basic types of elements, and the relationships be-
tween them are captured by the the declarations of fields within
the definition of each signature. Consider the following Alloy
model. It defines two Alloy signatures: Architecture and
Component. The cmps relation is defined over these two
signatures.

sig Architecture{
cmps: Component

}
sig Component{}

Analysis of specifications written in Alloy is completely
automated, based on transformation of Alloy’s relational logic
into a satisfiability problem. Off-the-shelf SAT solvers are then
used to exhaustively search for either satisfying models or
counterexamples to assertions. To make the state space finite,
certain scopes need to be specified that limit the number of
instances of each type signature. The following specification
asks for instances that contain at least one Component, and
specifies a scope that bounds the search for instances with at
most two objects for each top-level type (Architecture

and Component in this example).

pred modellnstance{ some Component }
run modellnstance for 2

When executed, the Alloy Analyzer produces model in-
stances, two of which are shown in Fig. 3. The model instance
of Fig. 3a includes one architecture and two components, one
of them belonging to no architecture. Fig. 3b shows another
model instance with two architectures, each one having one
component.

The other essential constructs of the Alloy language include:
Facts and Assertions. A fact is a formula that takes no

@ i(b)
Architecture0

Architecture0 Architecturel

cmps cmps cmps

v

Component1 ‘ ‘ Component0 ‘ ‘ Component1 ‘ Component0 ‘

Fig. 3: Two model instances of the above Alloy specification.

arguments, and defines constraints that every instance of a
model must satisfy, thus restricting the instance space of the
model. An assertion (assert) is a formula required to be
proved. It can be used to check a certain property of a model.
The following fact paragraph, for example, states that each
Component should belong to exactly one Architecture.
Re-executing the Alloy Analyzer produces a new set of model
instances, where while Fig. 3b is still a valid instance, model

of Fig. 3a is eliminated.

fact {
all c: Component| one c. cmps

We will introduce additional details of the Alloy language as
necessary to present our incremental ICC analysis. For further
information about Alloy, we refer the interested reader to [18].

B. COVERT Overview

COVERT is a formal analysis framework for automated,
compositional analysis of Android apps [6]. It reduces the
ICC vulnerability analysis problem into an Alloy relational
logic problem. Through static analysis of application packages
comprising a system, it automatically extracts architectural
specifications annotated with security properties in the Alloy
language in a way suitable for automated analysis. The Alloy
Analyzer is then used to verify, albeit within a specific scope
derived automatically for each system, whether it is safe for
a combination of applications—holding certain permissions
and potentially interacting with each other—to be installed
simultaneously.

There are three main reasons that motivate our choice of
COVERT as a platform for realizing the incremental ICC anal-
ysis in this work. First, its effective module system distinctly
separates extraction of apps specifications from vulnerabil-
ity analysis thereof. Such a well-structured module system
that splits the overall, complicated system among tractable
modules is not only convenient, but is an important part of
our approach, as it enables effective compositional analysis
of both model extraction and vulnerability analysis. Second,
its reliance on a formal specification language, namely Alloy,
and its associated analyzer facilitates orchestrating a cohesive
implementation of the algorithms for updating Android inter-
component analysis within a formally-precise analysis engine.
Lastly, it is open-source and publicly available.

COVERT relies on two types of Alloy specifications: (1)
Android framework specification, and (2) architectural speci-
fications that it generates automatically for each Android app.
The Android framework specification is a reusable specifi-
cation, upon which all extracted architectural specifications
are realized. It can be considered as an abstract specification
that defines a set of rules to lay the foundation of Android
apps, how they behave, and how they interact with each other.
Listing 1 partially represents the androidDeclaration Alloy
module, where the essential Android element types, such as
Architecture, Component, etc., are defined as top-level Alloy
signatures. These signatures are all specified as abstract,
meaning that they cannot have an instance without explicitly
extending them.

// Android framework specification
module androidDeclaration

abstract sig Application{
usesPermissions: set Permission,
appPermissions: set Permission

// perms uses
// perms enforces

O 01N B W~

abstract sig Component{
10 app: one Application,

11 iFilters: set IntentFilter , // Component interfaces

12 permissions: set Permission,
13 paths: set Path // sensitive paths
14 }

16 abstract sig IntentFilter{

17 actions: some Action, //supported actions
18 data: set Data,

19 categories: set Category,

20 }

22 abstract sig Intent{

23 sender: one Component,

24 component: lone Component,
25 action: lone Action,

// recipient component

26 categories: set Category,
27 data: set Data,

28 }

29

30 abstract sig Path{

31 entry: one Resource,

32 destination: one Resource

34 abstract sig Permission{}

Listing 1: Excerpts from an Alloy specification of the
Android application framework adapted from [6].

The Application signature contains two fields of
usesPermissions and appPermissions that identify
two sets of permissions (lines 4-7). The former declares the
permissions to which the application needs to have access
to run properly. The latter specifies the permissions required
to access components of the application under consideration.
Components are basic building blocks of Android applica-
tions, and the app field within the Component signature (line
10) identifies the parent application (architecture) to which
a component belongs. Android applications can comprise
four types of components, namely Activity, Service,
Receiver and Provider. Signature declarations of four
core component types extend the Component signature,
omitted in the interest of space.

Component interfaces are specified as a set of
IntentFilters that represent the kinds of requests
a given component can respond to. A component may have
any number of filters, captured by the iFilters field
(line 11). The permissions field represents a set of
permissions required to access a component. The paths
then indicates information flows between sensitive resources,
such as an ICC call method and a method that can trigger a
permission-required operation (e.g., sendTextMessage in
our running example).

The IntentFilter signature contains three fields of
actions, data and categories (lines 16-20); the
actions relation contains at least one element (due to the
multiplicity keyword some), and data and categories
map each IntentFilter instance to zero or more Data
and Category objects, respectively.

1 // (a) Messenger app specification

2 module Messenger

3 open androidDeclaration

4 one sig Messenger extends Application{}{
5 usesPermissions = SEND_SMS

6 no appPermissions

7

8 one sig MessageSender extends Activity {}{
9 app in Messenger

10 iFilters = IntFilterl

11 no permissions

12 paths = pathl

14 one sig pathl extends Path{}{
15 entry = ICC

16 destination = SMS

17 }

1 // (b) Malicious app specification

2 module MalApp

3 open androidDeclaration

4 one sig MalApp extends Application{}{
5 no usesPermissions

6 no appPermissions

7
8
9

one sig MalComponent extends Activity{}{
app in MalApp
10 iFilters = IntFilter2
11 no permissions
12 no paths

14 one sig intentl extends Intent{}{

15 sender = MalComponent

16 component = MessageSender

17 action = SMS_SEND

18 no categories

19 data = Yes

20 }

Listing 2: Excerpts from automatically generated

specifications for two illustrative apps shown in Figure 2.

The Intent signature contains five fields of sender,
component, action, data and categories (lines 22—
28). The first one denotes the component sending the Intent.
The component field identifies the recipient component. As
the keyword lone indicates an Intent may have either one or
no declared recipient component, to capture whether the Intent
is explicit or implicit, respectively.

The Path signature (lines 30-33) defines a path
from each component’s ICC entry point to an invoca-
tion of a permission-required functionality that is either
inappropriately-guarded or unguarded, which may lead to ICC
vulnerabilities. The last top-level signature is Permission.
The COVERT framework captures both system-defined permis-
sions and application-defined permissions, which are declared
within the Android system’s and the application’s manifest
files, respectively.

Listings 2a and b partially delineate the generated specifica-
tions for our running example apps (cf. Section II). The specifi-
cations start by importing the androidDeclaration module (line
3). The specification of Messenger app (Listings 2a, lines 4-7)
then states that it has the permission for SMS service, yet does
not enforce any permission that the other apps must have in
order to interact with its components. The MessageSender
component also contains a path from its ICC entry point to
an invocation of the system-level SmsManager API, which
enables sending a message to a phone number retrieved from
the Intent.

The specification of Listings 2b shows that the
MalApp does not declare any permission neither
as required (usesPermissions) mnor as enforced

(appPermissions); yet has a Component of type
Activity (line 8-20), which sends an explicit Intent to
the MessageSender Component. This causes an inter-
component permission leakage vulnerability, also called
privilege escalation, where a component is able to make
another component, here MessageSender, perform an action
on its behalf, without having a proper permission.

To perform the compositional analysis on a set of formal
models, COVERT includes specific Alloy signatures that model
a set of security properties required to be checked. These
signatures express properties that are expected to hold in
the extracted specifications. The analysis is then conducted
by exhaustive enumeration over a bounded scope of model
instances to determine how the vulnerabilities and capabilities
in individual apps could affect one another when the corre-
sponding apps are installed together.

The combinatorial nature of the propositional formula to
which the systems specifications are translated suppresses
the size of systems for which an analysis can be performed
within a reasonable amount of time. We believe exploiting an
opportunity to take advantage of the problem domain, here
the Android application framework (i.e., rules and constraints
on the structure and behavior of its elements), to reduce the
state space within which the analyzer explores would enable
analyzing larger systems, that otherwise analysis of which is
not possible. The following Section details our approach to
incremental ICC vulnerability analysis.

C. Incremental ICC Analysis

Any change to a system, i.e., app addition/deletion, causes
changes to its corresponding specification, which in turn, can
render already analyzed vulnerability model instances stale.
The non-incremental approach to this problem is to dispose
of all the solutions, and recompute the analysis. The insight
guiding our research is that the vulnerability analysis can be
improved knowing that the changes in the particular domain of
Android inter-component analysis are incremental, and often
do not invalidate all of the solutions calculated in prior runs.

Specifically, each system change can be decomposed into
a sequence of two operations of adding an app and removing
an app. Note that an application update can be viewed as a
remove operation followed by an add operation. The set of
affected vulnerability instances caused by these two opera-
tions, however, is usually just a small fraction of all instances,
offering a high potential for an incremental approach such as
FLAIR. We start by demonstrating through Theorems 1 and 2
that the scope of changes being observed as a result of the
app addition/deletion operations is limited to a small fraction
of vulnerability instances computed in the prior analysis. We
then describe how these theorems can effectively be realized
in practice to enhance formal, yet incremental, analysis of ICC
vulnerabilities.

Algorithm 1: Compute bounds for Add operation

Input: S?", S"™Y //new and previous system specifications
I: SP™ instances //vul. instances for previous system spec.
Output: < alb, aub > //adjusted lower and upper bound sets

1 <Ilb,ub> <« SP"".bounds

2 < R5,U° > <« ComputeChanges(SP™, S™%)

3 for r € S"““.relations do

4 if r ¢ R° then

5 if I # (0 then

6 alb(r) <, t-val(r)

7 aub(r) < Eztract AddedTuples(ub(r),U®)
8 aub(r) « aub(r) 4+, i-val(r)

9 end

10 else

1 alb(r) « Ib(r)

12 aub(r) < Extract AddedTuples(ub(r),U°)
13 end

14 end

15 else

16 aub(r) < ub(r)

17 alb(r) < Ib(r)

18 end

19 end

]

0 return < alb,aub >

Theorem 1. Let a be an app not already installed on system
S. Adding a to S does not eliminate any already existent ICC
vulnerability, yet may cause new vulnerabilities.

Proof. The proof of Theorem 1 is by contradiction: let us as-
sume adding app a to system S eliminates an ICC vulnerability
v already existent in .S. Without loosing generality, we assume
that there is a collection C' of apps the interaction of which
causes v. Because all apps involved in C are already installed
on S before a is installed, vulnerability v is independent
of a, i.e., regardless of app a being installed or not v is a
valid vulnerability. This results in contradiction. Hence, our
assumption that adding app a to system S eliminates an
already existent ICC vulnerability v is false. O

Theorem 2. Let a be an app already installed on system S.
Removing a from S does not cause any new ICC vulnerability,
yet may eliminate existent vulnerabilities, e.g., those caused by
a.

The proof of Theorem 2 is similar, thus omitted in the
interest of space. Now, we can present FLAIR’s algorithms for
updating Android inter-component formal analysis in response
to incremental system changes caused by adding and removing
operations.

Specifications written in the Alloy language are first trans-
lated to bounded relational models in a language called Kod-
kod [27], which, in turn, are transformed into propositional
formulas to be solved by SAT solvers. Kodkod allows spec-
ifying a scope over each relational variable from both above
and below by two relational constants, called upper and lower
bounds, respectively. The upper bound (UB) represents the
whole set of tuples that a relational variable may contain, and
a lower bound (LB) represents a partial solution for a given

model. Every relation in a model instance, thus, must contain
all tuples in the lower bound, and no tuple that is not in the
upper bound.

The guiding principle in FLAIR is to adjust such bounds
in evolutionary analysis of interacting apps, thereby limiting
the scope of analysis that is examined in search of ICC
vulnerability model instances.

D. Addition of a New App

Algorithm 1 presents how FLAIR computes bounds in
response to Add operation. FLAIR first compares both system
specification versions, computing a structural diff (Alg. 1, line
2). This diff gives information about which relations and tuples
in the Kodkod’s low-level bounded relational models were
added or removed. Given the structural diff, one can express
the differences between two system specification versions
using two sets R° and U€, containing all changed relations
and universe of elements (also called atoms), respectively. It
then can infer from all changed tuples the set of affected
vulnerability model instances, i.e, instance solutions which
are outdated by the change and need to be updated. FLAIR
treats as affected all vulnerability model instances to which
the changed tuples contribute.

According to Theorem 1, the add operation does not elim-
inate any already existent ICC vulnerability instance, thus
the set of lower bounds is set to include all determined
vulnerability model instances; more specifically, for each
relation the intersection of its values appeared in the model
instances constitutes the lower bounds (Alg. 1, line 6). Note
that while adding a new app might change the way Intents
were previously delivered (e.g., the user may select the new
app to handle certain type of requests, which in turn may
prevent the MalApp from accessing the corresponding Intents),
it would not eliminate the potential risk of the vulnerabilities
already determined. Furthermore, given that the add operation
may produce new ICC vulnerabilities, caused by the newly
installed app, the set of upper bounds is set to include the union
of all determined vulnerability model instances along with the
tuples the new app introduced, allowing the analyzer to find
potentially new ICC vulnerabilities (Alg. 1, lines 7-8). In case
the vulnerability instance set, I, for the original specification
is empty, FLAIR keeps the lower bound as initially calculated
by the Alloy Analyzer; yet the upper bounds is set to include
all the tuples affected by the newly added app, again allowing
the analyzer to find potentially new ICC vulnerabilities. This
is important in practice, since users are expected to install
apps that are free of ICC vulnerabilities. Note that for the
newly added relations, i.e., r € R° FLAIR keeps the bounds
unchanged (Alg. 1, lines 16-17).

This is a sound pruning of the model space, since elements
of an added app, such as Intents and Components, etc., do not
contribute to any value of the already found solutions, and the
change has no effect on the present solutions for the evolving
system specification. They, thus, constitute a partial solution
for the updated system specification.

1 assert privEsc{

2 no disj src, dst: Component, i:Intent |

3 (src in i.sender) and

4 (dst in src.”transitivelCC) and

5 (some p: dst.app.usesPermissions |

6 not (p in src.app.usesPermissions) and
7 not ((p in dst.permissions) or

8 (p in dst.app.appPermissions)))
9

}

Listing 3: The assertion specification for privilege
escalation in Alloy adapted from [6].

To make the idea concrete, consider the assertion speci-
fication for privilege escalation (Listing 3), one of the most
prominent ICC vulnerabilities. The assertion, in essence, states
that the dst component (victim) has access to a permission
(usesPermission) that is missing in the src component
(malicious), and that permission is not being enforced by
the victim component. Thus, it can be accessed by the src
component through a chain of ICC calls. After analyzing the
specification against our running example (cf. Section II), the
following vulnerability model instance shown in Listing 4 is
generated.

Note that the values assigned to the other relational variables
in the vulnerability model instance are omitted in the interest
of space. Now imagine that the user installs a new app (App3)
that contains an Activity component (App3Activity). Let us
see how FLAIR leverages the results of the previous run
to set tighter bounds on relational variables. Among others,
consider privEsc.src relation. Listing 5 shows its lower and
upper bound sets, before (lines 1-3) and after (lines 5-7)
being adjusted by FLAIR, in the Kodkod representation of our
running example in its new setting.

Initially, the upper and lower bounds, calculated by the
original Alloy Analyzer, contain three and zero elements,
respectively. The upper bound, in fact, includes all component
elements defined in the system specification. Out of these
component elements, previous results show that MalCompo-
nent is actually a source of vulnerability, thus constitutes
a partial solution for the updated system specification, and
should be included in its lower bound (line 6). Also its union
with the component newly added to the system constitutes
the upper bound (line 7). As a result, for the particular
relational variable of privEsc.src, the state space reduces
from 2UVB—LB = 23 = 8 possible values to 2! = 2. This
bound adjustment along with the similar adjustments applied
to other relational variables would result in a considerable
space reduction, which in turn improves the analysis time from
355 ms to 95 ms, in our simple running example.

// omitted details of model instances
privEsc.src = [MalApp/MalComponent]
privEsc.dst = [Messenger/MessageSender]
privEsc.i= [intent]]
privEsc.p= [appDeclaration/SEND_SMS]

DA W -

Listing 4: An example vulnerability model instance for our
running example.

Algorithm 2: Compute bounds for Remove operation

Input: S?", S"Y //new and previous system specifications
I: SP™instances //vul. instances for previous system spec.
Output: < alb,aub > //adjusted lower and upper bound sets
1 I < SP™".instances
2 < R, U° > <« ComputeChanges(SP",
3 for r € S"““.relations do
4 aub(r) +
U, e, (4-val(r) — Extract RemovedTuples(i.val(r), U°))
5 alb(r) «
e, (¢-val(r)— Extract RemovedTuples(i.val(r), U?))

Snew)

6 end
7 return < alb, aub >

E. Removal of an Existent App

Algorithm 2 presents FLAIR’s bounds computing algorithm
in response to app removing operation. FLAIR again first com-
pares both system specifications to compute changed relations
and universe of elements in the Kodkod’s low-level bounded
relational models.

According to Theorem 2, the remove operation does not
cause any new ICC vulnerability instance, but some existent
vulnerabilities, and especially those caused by the removed
app, are eliminated. The sets of upper and lower bounds, thus,
are set to include all determined vulnerability model instances
except those to which the removed app contributes, i.e., model
instances in which values assigned to any of the relational
variables include atoms from the removed app. As specified
in Alg. 2 lines 4-5, for each relational variable the union and
intersection of its values in all tuples, that are appeared in
the vulnerability model instances but do not contain elements
from the removed app, constitutes the upper and lower bounds,
respectively.

As a concrete example, imagine that the user uninstalls the
app that has just been added (App3). This time, the upper
and lower bounds for privEsc.src, calculated by the original
Alloy Analyzer, contain two (MessageSender and MalCompo-
nent) and zero elements, respectively. Previous results show
that MalComponent is actually a source of vulnerability to
which elements from the removed app do not contribute
(cf. Listing 4). It, thus, constitutes a partial solution for the
updated system specification. As a result, the state space for
the privEsc.src variable is reduced from 22 = 4 possible
values to 1, making it a variable with exact bound (i.e., with
an already known value), that does not need to be translated
into a SAT formula, thus reducing the size of the generated
SAT problem.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of FLAIR.
We have implemented FLAIR as an open-source extension to
the COVERT inter-component analysis framework and its back-
end Alloy analysis engine. To implement the algorithms pre-
sented in the previous sections, FLAIR modifies both the Alloy
Analyzer and its underlying constraint solver, Kodkod [27].
Specifically, FLAIR’s analyzer modifies the way in which

Ib: 0 []
ub: 3 [[privEsc, MessageSender],

alb: 1 [[privEsc, MalComponent]]
aub: 2 [[privEsc, MalComponent],

NN RN =

[privEsc,

[privEsc, MalComponent],

/I The lower (Ib) and upper (ub) bound sets for the privEsc.src relation before being adjusted.

[privEsc, App3Activity]]

/I The adjusted lower (alb) and upper (aub) bound sets for the same relation.

App3Activity]]

Listing 5: The lower and upper bound sets for the privEsc.src relation in the Kodkod representation of our running example,

before and after being adjusted.

the Alloy Analyzer determines the scopes for each relational
variable of the updated specification given the vulnerability
model instances of the original system specification. The scope
adjustments are then realized in the transformation of high-
level Alloy specifications into low-level bounded relational
models. Note that we also enhance the model extractor module
of COVERT by leveraging two static analysis tools, namely
FlowDroid [28] and IC3 [29]. FLAIR’s tool and experimental
data are available at the project website [19].

We used the FLAIR apparatus for carrying out the exper-
iments. In our evaluation, we address the following research
questions:

o RQI1. Does the approach enable incremental analysis
of Android inter-component vulnerabilities in a manner
consistent with a full recomputation of the analysis?

e RQ2. How well does FLAIR perform? What is the per-
formance improvement achieved by FLAIR’s incremental
analysis compared to the state-of-the-art ICC analyzers?

+ RQ3. How effective is our incremental analysis approach
developed atop SAT solving technologies in reducing the
size of transformed propositional formula? What is the
overhead of FLAIR?

Experimental subjects. Our experimental subjects are a
set of Android apps drawn from four repositories of Google
Play [30], F-Droid [31], Bazaar [32] and MalGenome [33].
The Google Play store serves as the official Android app
store, from which we collected the top 100 popular free
apps. F-Droid is a software repository that contains free and
open source Android apps. The collection of subject systems
includes 300 apps from this repository. We also include 50
apps from Bazaar [32], a local app store, to cover the apps
available in third-party repositories. Finally, it contains a
collection of 50 malicious apps identified by the MalGenome
project [33], a malware repository that covers the majority of
existing Android malware families.

Experimental setup. To address the first research question,
we use a suite of specifications developed for the security
assessment of a set of Android apps in a prior work [6]. We
compare the results of a full recomputation on the experimen-
tal subjects with the results of an incremental change analyzed
using FLAIR.

To address the second research question, we measure and
compare the analysis time taken by FLAIR with that of the
state-of-the-art ICC analyzers, namely DidFail [9], DIAL-
DROID [17], COVERT [6], SEALANT [7] and IccTA [2]. To
perform the comparison experiments, we need to simulate
configurations of apps installed on a device. To that end, we

partition the set of apps under study into ten app bundles,
each containing 50 apps randomly selected from the repos-
itories. We choose this number of apps since it is higher
than the average number of apps on a smartphone in the
United States, which has shown to be approximately 41 [34].
These app bundles simulate collections of apps installed on
end-user devices, and we use them to perform ten sets of
independent experiments. We gradually increase the number
of apps concurrently analyzed within bundles until each app
bundle reaches to 50 apps. To show the performance of
FLAIR when apps are removed from the system, we repeat
the experiments while we gradually remove apps from each
app bundle. Such bundles with gradually increasing/decreasing
apps sizes provide us with a perfect suite of evolving systems
that can be used for our experiments.

To address the last research question, we collect the number
of variables and clauses in propositional formulas produced
by both incremental and non-incremental techniques, i.e.,
FLAIR and COVERT, across experimental subjects. We also
instrument FLAIR to measure its execution time while updating
ICC analysis results in response to system changes. We used
a PC with an Intel Core i7 2.4 GHz CPU processor and 16
GB of main memory, and leveraged Sat4J as the SAT solver
during the experiments.

A. Results for RQ1 (Consistency)

To validate the consistency of results produced by FLAIR’s
incremental analysis with those produced by performing a
full recomputation of the results, we applied FLAIR to the
exact test cases that the COVERT project has been evaluated
on, and the results of which are available online [35]. For
two consecutive versions v/ and v2 of each app bundle (i.e.,
a set of Android apps deployed together), we first ran the
COVERT analysis that uses the unmodified Alloy Analyzer on
version v2 and recorded the results. Afterwards, we ran FLAIR
on vl, incrementally updated the results to version v2, and
compared the results with that of the COVERT analyzer. Our
experiments confirm that FLAIR computes the same results as
a full recomputation in all cases, corroborating our theoretical
expectation.

B. Results for RQ2 (Scalability)

We compared scalability of FLAIR with the other tools
that support analysis of ICC vulnerabilities, namely Ic-
cTA [2], [5], DidFail [9], COVERT [6], DIALDROID [17], and
SEALANT [7].

IccTA employs Epicc [15] and APKCOMBINER [36] to
analyze multiple interacting apps [2]. It first merges all the

(a)

m Covert
I Flair

2500

2000 -

Seconds)

1500 -

[}
£ | |
=
@
‘@ 1000
=
©
(=
< H {

500 - H

0,__.:..D.J;|*u-f- = = = =
1 5 10 15 20 25 30 35 40 45 50
Bundle Size (#Apps)
(¢
2500 | ww pIALDroid
= Flair

)
Z 2000 .
8 !
o i
[i
(%3 - !
> 1500 - 1
£
3 | I
@
‘% 1000 H -
= u =
©
=
< D H H

500 D

1 5 10 15 20 25 30 35 40 45 50
Bundle Size (#Apps)

(b)

2500 | g DidFail
= Flai

r
2000
25
> 1500

1000

econds)

Analysis Tim

)
S
S

5 10 15 20 25 30 35 40 45 50
Bundle Size (#Apps)
(d)

m SEALANT
= Flair

2000 E H
Y 1500 - B 4

1000 H

2500

econds)

Analysis Tim

0 I - - - - L] - - - -

1 5 10 15 20 25 30 35 40 45 50
Bundle Size (#Apps)

Fig. 4: The analysis time taken from (a) COVERT, (b) DidFail, (c) DIALDROID, and (d) SEALANT vs. FLAIR over the increasing
size of the analyzed bundles as the number of apps under analysis increases. Note that analysis time taken by FLAIR tends to
exhibit significantly lower growth rate than the corresponding time taken by the other state-of-the-art techniques.

apps with potential inter-app communication connections into
a representation that resembles a single app, and then analyzes
the new combined app by means of existing program analysis
techniques to detect potential inter-app vulnerabilities. DidFail
is another ICC analyzer [9], that was introduced at about the
same time as IccTA and COVERT. It relies on FlowDroid [28]
for taint analysis and Epicc [15] for ICC detection. DidFail first
performs intra-app analyses on each single app and collects
its manifest file as well as Epicc and FlowDroid outputs.
Such intra-app analysis info captured from each individual
app are then collectively analyzed to uncover vulnerable inter-
app communications. DIALDROID is a program analysis tool
aimed at identifying ICC-based vulnerabilities within large
bundles of apps. Finally, SEALANT detects vulnerable ICC
paths between apps through an integration of a data-flow
analysis and a compositional ICC pattern matching.

The boxplots in Figure 4 show the analysis time taken by
each of the techniques vs. FLAIR over the varying size of
bundles, where the size of analyzed apps gradually increases.
The number of apps specified on the horizontal axis.

As illustrated in the diagram, the analysis time by DidFail
scales exponentially, and for a bundle of 30 apps it exceeds one
hour threshold. The analysis time by COVERT, DIALDROID
and SEALANT grow significantly faster than the corresponding
time for FLAIR. The effects of FLAIR’s optimization are
clearly visible when the size of app bundles increases. The
median analysis time taken by FLAIR for a bundle of size 50
apps is 77 seconds with the interquartile range (IQR) of 67
seconds, corroborating that FLAIR can efficiently vet a large
bundle of apps for ICC vulnerabilities.

Note that IccTA is not shown in the diagram because it was
not able to analyze more than 2 apps in all our experiments.
We noticed that the size of combined apps are indeed not

2500 H ~Didfail
g SEALANT
§ mglALaro\d
—_ N [Cove
.‘g” 2000 § mFar
3 i L 8
o] ~] .
@ 1500 §
Q N
£ X R
F 1000 § Hi
L S § R
2 S
S 500 > : E
c ul
< §
0 L L - - D - ,J S
50 40 30 20 10 1

Bundle Size (#Apps)
Fig. 5: The analysis time taken from each of the analysis
techniques vs. the decreasing size of the analyzed bundles as
the number of apps decreases.

increasing when the bundle size increases from 2 to 3. In fact,
in most of our experiments, IccTA was unable to analyze more
than one app at a time.

The boxplot in Figure 5 shows the analysis time taken
by each of the techniques over the decreasing size of the
analyzed bundles as the number of apps gradually decreases.
Each data point indicates the time it takes to reanalyze a
revised system. Note that we remove apps gradually one by
one, but for the sake of representation, the diagram shows
box plots just for bundles whose sizes are multiples of ten.
According to the diagram, the experimental data obtained
from applying the remove operation give similar results as of
the add operation. In summary, the results show that FLAIR
outperforms the other state-of-the-art techniques in terms of
scalability. FLAIR’s incremental approach is able to analyze
all bundles in a fraction of time that it takes from the others
to analyze the same app bundles, and the difference in analysis
time is more pronounced for the larger app bundles.

C. Results for RQ3 (Efficiency)

Table I shows the size of the propositional formulas gen-
erated by each of the two techniques, i.e., COVERT and
FLAIR, across 10 subject app bundles, given as the total
number of variables and clauses. Each bundle contains 50
apps. As shown, the number of variables and clauses in
formulas generated by FLAIR is significantly less than those
generated by COVERT. On average, FLAIR exhibits more
than 92% reduction in the size of the translated propositional
formulas, compared to those produced by COVERT that relies
on standard Alloy Analyzer. This result clearly shows the
effectiveness of our algorithm in reducing the exploration
space.

The last column of Table I shows the FLAIR’s adjustment
time that pertains to the overhead incurred due to updating ICC
analysis results in response to incremental system changes.
According to the experimental data, FLAIR only introduces
a small overhead (3.1% on average, and under 15% in all
cases), but greatly outperforms the other state-of-the-art ICC
analyzers, saving up to 94% of the analysis time without
sacrificing vulnerability-finding ability.

VI. RELATED WORK

The work related to this paper falls into ICC analysis and
incremental solving of constraints specified in first-order logic.

A large body of work focuses on Android ICC analysis [2],
[12], [9], [6], [37], [38], [10]. Among others, IccTA leverages
an intent resolution analysis to identify inter-component vul-
nerabilities [2]. IccTA’s approach for ICC analysis is based on
a pre-processing step connecting Android components through
code instrumentation, which causes scalability issues. The
main shortcoming of such purely program analysis techniques
is that every time any of the apps changes, the entire analysis
has to be repeated. This paper addresses this shortcoming by
separating model extraction from actual ICC analysis, and
by providing a novel Android-specific formal analyzer that
automatically and efficiently updates ICC analysis results in
response to incremental system changes.

The other relevant thrust of research has focused on incre-
mental solving of constraints specified in first-order logic [39],

TABLE I: The size of variables and clauses in propositional
formulas produced by COVERT and FLAIR for app bundles of
size 50 apps along with the analysis overhead.

COVERT FLAIR

Vars Clauses Vars Clauses | Adjustment

Time (Sec)

B.1 361,854 61,752,270 1,230 10,212 1.721
B.2 367,893 63,408,733 7,331 1,389,184 1.812
B.3 279,683 40,513,124 7,448 617,554 1.563
B.4 358,141 53,563,717 8,334 762,302 2.442
B.S 351,145 52,646,280 1,282 10,544 4.806
B.6 318,195 48,644,466 21,517 1,679,991 4.148
B.7 273,416 39,750,850 1,122 9,095 2.987
B.8 407,094 53,941,151 1,399 11,407 15.028
B.9 414,615 55,447,247 8,970 | 1,268,853 4.026
B.10 | 297,890 44,525,013 1,171 9,482 33.052
Avg. 342,993 51,419,285 5,980 576,862 7.15

[40], [41], [42]. Among others, Titanium extends the Alloy
Analyzer to support analysis of evolving specifications [42].
This research effort shares with ours the emphasis on improv-
ing the analysis performance. Our work differs fundamentally
in its emphasis on developing an incremental, relational logic
analyzer for the particular domain of Android ICC analysis.
FLAIR, thus, takes an efficient, domain-specific approach for
narrowing the state space of all relational variables, instead of
a general approach based on declarative slicing to identify a
number of relational variables whose bounds can be adjusted.

Along the same line, Uzuncaova and Khurshid partitioned
a model of constraints into a base and derived slices, where
solutions to the base model can be extended to generate a
solution for the entire model [40]. The problem that they
addressed is, however, different form ours. They tried to lever-
age model decomposition to improve scalability. Whereas,
given a system specification that is already analyzed, FLAIR
updates the analysis results in response to incremental changes.
Ranger [43] uses a divide and conquer method relying on a
linear ordering of the solution space to enable parallel analysis
of specifications written in first-order logic. While the linear
ordering allows for partitioning of the solution space into
ranges, there is no clear way in which it can be used for
incremental analysis of evolving systems.

VII. CONCLUSION

This paper presents FLAIR, a novel approach for efficient
and incremental security analysis of evolving Android sys-
tems. FLAIR’s update algorithm is based on reducing the
space of values to be explored by the SAT-solver underlying
the analysis engine. We have implemented FLAIR on top
of Alloy, its underlying relational logic analyzer, Kodkod,
and the COVERT inter-component analysis framework. The
experimental results of evaluating FLAIR in the context of
hundreds of real-world Android apps corroborates its ability
to provide an order of magnitude speedup over the state-of-
the-art, non-incremental analysis techniques.

While our focus in this paper was on ICC analysis, we
believe such an effective exploration space reduction for the
bounded analysis of relational logic can pave the way for
application of formal analyses in a wide range of problems in,
among others, software design [44], [45], [46], [47], [48], [49],
code analysis [50], [51], and test case generation [52], [53].
Our future work will explore the application of techniques
described in this paper (e.g., analysis bound adjustment) to
other software engineering problems.

ACKNOWLEDGEMENT

We thank Alireza Sadeghi for his help with the COVERT
framework and helpful feedback on an early draft of the
paper. This work was supported in part by an NSF EPSCoR
FIRST award, and awards CCF-1755890, CCF-1252644, CNS-
1629771 and CCF-1618132 from the National Science Founda-
tion, HSHQDC-14-C-B0040 from the Department of Homeland
Security, and FA95501610030 from the Air Force Office of
Scientific Research.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

R. Cozza, I. Durand, and A. Gupta, “Market Share: Ultramobiles by
Region, OS and Form Factor, 4Q13 and 2013,” Gartner Market Research
Report, February 2014.

L. Li, A. Bartel, T. Bissyande, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting inter-
component privacy leaks in android apps,” in Proceedings of the 37th
International Conference on Software Engineering, ser. ICSE 2015,
Florence, Italy, 2015.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security.
Raleigh, NC: ACM, 2012, pp. 229-240.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services.
Washington, DC: ACM, 2011, pp. 239-252.

L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “I know what leaked in
your pocket: uncovering privacy leaks on android apps with static
taint analysis,” arXiv:1404.7431 [cs], Apr. 2014, arXiv: 1404.7431.
[Online]. Available: http://arxiv.org/abs/1404.7431

H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on
Software Engineering (TSE), 2015.

Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and N. Med-
vidovic, “A SEALANT for inter-app security holes in android,” in Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 312—
323.

A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy
and qualitative comparison of program analysis techniques for
security assessment of android software,” IEEE Trans. Software
Eng., vol. 43, no. 6, pp. 492-530, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2615307

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis.
Edinburgh, UK: ACM, 2014, pp. 1-6.

F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS *14. Scottsdale,
AZ: ACM, 2014, pp. 1329-1341.

B. R. Schmerl, J. Gennari, A. Sadeghi, H. Bagheri, S. Malek, J. Cdmara,
and D. Garlan, “Architecture modeling and analysis of security in
android systems,” in Software Architecture - 10th European Conference,
ECSA 2016, Copenhagen, Denmark, November 28 - December 2, 2016,
Proceedings, ser. Lecture Notes in Computer Science, B. Tekinerdogan,
U. Zdun, and M. A. Babar, Eds., vol. 9839, 2016, pp. 274-290.
[Online]. Available: https://doi.org/10.1007/978-3-319-48992-6_21

T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott, and
L. Casburn, “Multi-app security analysis with FUSE: Statically detecting
android app collusion,” in Proceedings of the 4th Program Protection
and Reverse Engineering Workshop, ser. PPREW-4. New Orleans, LA:
ACM, 2014, pp. 4:1-4:10.

M. Hammad, H. Bagheri, and S. Malek, “Determination and
enforcement of least-privilege architecture in android,” in 2017
IEEE International Conference on Software Architecture, ICSA 2017,
Gothenburg, Sweden, April 3-7, 2017. 1IEEE, 2017, pp. 59-68.
[Online]. Available: https://doi.org/10.1109/ICSA.2017.18

A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek, “A
temporal permission analysis and enforcement framework for android,”
in Proceedings of the 40th International Conference on Software Engi-
neering, ser. ICSE’18, 2018, pp. 846-857.

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon, “Effective inter-component communication mapping in
android with epicc: An essential step towards holistic security analysis,”
in Proceedings of the 22Nd USENIX Conference on Security, ser.
SEC’13. USENIX Association, 2013, pp. 543-558.

D. Octeau, S. Jha, M. Dering, P. D. McDaniel, A. Bartel,
L. Li, J. Klein, and Y. L. Traon, “Combining static analysis with
probabilistic models to enable market-scale android inter-component

(17]

(18]

[19]
[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]
[31]
(32]
(33]
[34]

(35]

[36]

(371

analysis,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, R. Bodik and
R. Majumdar, Eds. ACM, 2016, pp. 469-484. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837661

A.Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak and more:
Large-scale threat analysis of inter-app communications,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6,
2017, 2017, pp. 71-85.

D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012.
Press, 2012.

“Flair web page,” https://sites.google.com/view/flairanalysis/, 2018.

H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic,
“Software architectural principles in contemporary mobile software:
from conception to practice,” Journal of Systems and Software, vol.
119, pp. 31-44, 2016. [Online]. Available: https://doi.org/10.1016/j.jss.
2016.05.039

L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in /3th International Conference, ser.
ISC’10, M. Burmester, G. Tsudik, S. Magliveras, and I. Ili, Eds. Boca
Raton, FL, USA: Springer Berlin Heidelberg, Oct. 2010, pp. 346-360.
M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “QUIRE:
Lightweight provenance for smart phone operating systems.” in USENIX
Security Symposium, San Francisco, CA, 2011.

S. Bugiel, L. David, Dmitrienko, T. A. Fischer, A. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android,”
in 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi,
“Xmandroid: A new android evolution to mitigate privilege escalation
attacks,” Technische Universitt Darmstadt, Technical Report TR-2011-
04, 2011.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS *11. Chicago,
IL: ACM, 2011, pp. 627-638.

D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 2, pp. 256-290, 2002.

E. Torlak, “A constraint solver for software engineering: Finding
models and cores of large relational specifications,” PhD Thesis, MIT,
Feb. 2009. [Online]. Available: http://alloy.mit.edu/kodkod/

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014, ser. PLDI'14. Edinburgh, UK: ACM, 2014, p. 29.

D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
constant propagation: Application to Android inter-component commu-
nication analysis,” in Int’l Conf. on Software Engineering. Florence,
Italy: IEEE, May 2015.

“Google play market,” http://play.google.com/store/apps/, 2017.
“F-droid,” https://f-droid.org/, 2017.

“Bazaar,” 2017. [Online]. Available: https://cafebazaar.ir//.
“Malgenome project,” http://www.malgenomeproject.org, 2017.

S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, ‘“Predict-
ing user traits from a snapshot of apps installed on a smartphone,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 18,
no. 2, pp. 1-8, 2014.

“Alloy models from the
http://www.sdalab.com/projects/covert, 2015.
L. Li, A. Bartel, T. F. Bissyand, J. Klein, and Y. L. Traon, “Ap-
kCombiner: Combining Multiple Android Apps to Support Inter-App
Analysis,” in ICT Systems Security and Privacy Protection - 30th
IFIP TC 11 International Conference, SEC 2015, Hamburg, Germany,
May 26-28, 2015, Proceedings, ser. ICT SEC’15, H. Federrath and
D. Gollmann, Eds., vol. 455. Springer, 2015, pp. 513-527.

H. Bagheri, A. Sadeghi, R. J. Behrouz, and S. Malek, “Practical, formal
synthesis and automatic enforcement of security policies for android,”
in 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2016, Toulouse, France, June 28 - July
1, 2016. 1IEEE Computer Society, 2016, pp. 514-525. [Online].
Available: https://doi.org/10.1109/DSN.2016.53

MIT

covert project,”

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of android inter-
app security vulnerabilities using COVERT,” in 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015,
Florence, Italy, May 16-24, 2015, Volume 2, A. Bertolino, G. Canfora,
and S. G. Elbaum, Eds. IEEE Computer Society, 2015, pp. 725-728.
[Online]. Available: https://doi.org/10.1109/ICSE.2015.233

S. Ganov, S. Khurshid, and D. E. Perry, “Annotations for alloy: Auto-
mated incremental analysis using domain specific solvers,” in Proc. of
ICFEM, 2012, pp. 414-429.

E. Uzuncaova and S. Khurshid, “Constraint prioritization for efficient
analysis of declarative models,” in Proc. of International Symposium on
Formal Methods, ser. FM’08, 2008.

, “Kato: A program slicing tool for declarative specifications,”
in Proc. of International Conference on Software Engineering, ser.
ICSE’07, 2007, pp. 767-770.

H. Bagheri and S. Malek, “Titanium: Efficient analysis of evolving
alloy specifications,” in Proceedings of the ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, ser. FSE’16,
2016.

N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias,
“Ranger: Parallel analysis of alloy models by range partitioning,” in
Proceeding of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2013, pp. 147-157.

H. Bagheri and K. J. Sullivan, “Model-driven synthesis of formally
precise, stylized software architectures,” Formal Asp. Comput.,
vol. 28, no. 3, pp. 441-467, 2016. [Online]. Available: https:
//doi.org/10.1007/s00165-016-0360-8

H. Bagheri, C. Tang, and K. J. Sullivan, “Trademaker: automated
dynamic analysis of synthesized tradespaces,” in 36th International
Conference on Software Engineering, ICSE ’'14, Hyderabad, India
- May 31 - June 07, 2014, P. Jalote, L. C. Briand, and
A. van der Hoek, Eds. ACM, 2014, pp. 106—116. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568291

“Automated synthesis and dynamic analysis of tradeoff
spaces for object-relational mapping,” IEEE Trans. Software Eng.,
vol. 43, no. 2, pp. 145-163, 2017. [Online]. Available: https:

[47]

(48]

[49]

[50]

(51]

[52]

(53]

//doi.org/10.1109/TSE.2016.2587646

H. Bagheri and K. J. Sullivan, “Bottom-up model-driven development,”
in 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 1221-1224.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606683

——, “Pol: specification-driven synthesis of architectural code frame-
works for platform-based applications,” in Generative Programming and
Component Engineering, GPCE’12, Dresden, Germany, September 26-
28, 2012, K. Ostermann and W. Binder, Eds. ACM, 2012, pp. 93-102.
[Online]. Available: http://doi.acm.org/10.1145/2371401.2371416

H. Bagheri, Y. Song, and K. J. Sullivan, “Architectural style as an
independent variable,” in ASE 2010, 25th IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium,
September 20-24, 2010, C. Pecheur, J. Andrews, and E. D.
Nitto, Eds. ACM, 2010, pp. 159-162. [Online]. Available: http:
/ldoi.acm.org/10.1145/1858996.1859026

J. P. Near and D. Jackson, “Derailer: Interactive security analysis for
web applications,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE '14. New
York, NY, USA: ACM, 2014, pp. 587-598. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2643012

M. Taghdiri, “Inferring specifications to detect errors in code,”
in Proceedings of the 19th IEEE International Conference on
Automated Software Engineering, ser. ASE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 144—153. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2004.42

N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in GUI testing of android applications,” in Proceedings
of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser,
and L. Williams, Eds. ACM, 2016, pp. 559-570. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884853

S. Khurshid and D. Marinov, “Testera: Specification-based testing of java
programs using SAT,” Autom. Softw. Eng., vol. 11, no. 4, pp. 403-434,
2004.

	Introduction
	Background and Motivating Example
	Threat Model
	Approach
	Formal Underpinnings
	Covert Overview
	Incremental ICC Analysis
	Addition of a New App
	Removal of an Existent App

	Experimental Evaluation
	Results for RQ1 (Consistency)
	Results for RQ2 (Scalability)
	Results for RQ3 (Efficiency)

	Related Work
	Conclusion
	References

