
Efficient, Evolutionary Security Analysis of

Interacting Android Apps

Hamid Bagheri∗, Jianghao Wang∗, Jarod Aerts∗, Sam Malek†

∗Department of Computer Science and Engineering, University of Nebraska-Lincoln

bagheri@unl.edu,{jianghao,jarod.aerts}@huskers.unl.edu
†Department of Informatics, University of California, Irvine. malek@uci.edu

Abstract—In parallel with the increasing popularity of mobile
software, an alarming escalation in the number and sophistication
of security threats is observed on mobile platforms, remarkably
Android as the dominant platform. Such mobile software, further,
evolves incrementally, and especially so when being maintained
after it has been deployed. Yet, most security analysis techniques
lack the ability to efficiently respond to incremental system
changes. Instead, every time the system changes, the entire
security analysis has to be repeated from scratch, making it too
expensive for practical use, given the frequency with which apps
are updated, installed, and removed in such volatile environments
as the Android ecosystem. To address this limitation, we present
a novel technique, dubbed FLAIR, for efficient, yet formally pre-
cise, security analysis of Android apps in response to incremental
system changes. Leveraging the fact that the changes are likely
to impact only a small fraction of the prior analysis results,
FLAIR recomputes the analysis only where required, thereby
greatly improving analysis performance without sacrificing the
soundness and completeness thereof. Our experimental results
using numerous bundles of real-world apps corroborate that
FLAIR can provide an order of magnitude speedup over prior
techniques.

Index Terms—Android analysis, evolving software, relational
logic.

I. INTRODUCTION

Android, with well over a million apps, has become the

dominant operating system for mobile platforms [1]. The

exponential growth in the popularity of the Android OS can be

attributed in part to its flexible communication model, called

inter-component communication (ICC), that facilitates sharing

of data and services among applications. On the downside, the

Android ICC interaction mechanism has become a vulnerable

surface that causes serious security issues, such as privilege

escalation chaining and app collusion, shown to be quite

common in the Android apps on the market [2], [3], [4], [5],

[6], [7]. Such issues are primarily due to the fact that the

Android access control model is at the level of individual apps,

and there is no mechanism to check the security posture of

the entire system, allowing multiple malicious apps to collude

and combine their permissions or to trick vulnerable apps to

perform actions on their behalf that are beyond their individual

privileges.

Android security analysis, thus, has received a lot of atten-

tion in recent years to detect security issues that may occur

due to the interaction of apps components [8], [9], [10], [2],

[11], [12], [7], [13], [14], [15], [6], [16]. Pure program analysis

techniques, such as IccTA [2], tried to address this problem

through combining multiple apps, and treating all of the apps

as one large program; this in turn enables performing program

analysis on the entire system. Reliance on performing the

analysis directly on a massive combined program, however,

makes such techniques rather unscalable, as every time any of

the apps changes, the entire analysis has to be repeated. Some

hybrid approaches are more recently proposed that combine

program analysis with other reasoning techniques [6], [17].

Among others, COVERT [6] combines static program analysis

with bounded verification [18]. It shows that by decomposing

the problem into two parts—(a) extracting security-relevant

formal specifications from apps through program analysis,

and (b) checking whether the extracted specifications are

vulnerable or not through automated formal analysis—it is

possible to become more effective, since the program analysis

results do not need to be recomputed for the entire set of apps.

However, despite significant progress, all the prior ap-

proaches are subject to a common limitation: they lack a way to

respond to incremental system changes, and vulnerability anal-

ysis has to be repeated from scratch for each system change,

i.e., every time an app is added, removed or updated. Thus,

security analysis of Android systems composed of a reasonable

number of apps is still quite expensive to compute [2]. This

is especially problematic in such volatile environments as the

Android ecosystem, where apps are frequently being updated.

Security analysis techniques based on a full recomputation of

the analysis are often unscalable, and thereby, impractical in

this context.

To address the foregoing challenge, this paper presents

a novel technique, dubbed FLAIR for formally-precise

evolutionary analysis of interacting Android apps. It provides

a novel Android-specific formal analyzer that automatically

and efficiently updates ICC analysis results in response to in-

cremental system changes. The insight underlying our research

is that while apps comprising an Android system may evolve

independent of one another, each change by itself is not likely

to invalidate all the analyses that have been performed on an

earlier version of the system, since not all apps in a system are

capable of interacting with one another. Figure 1 presents a

schematic view of FLAIR. Unlike prior techniques that dispose

of all prior results in response to a system change, and redo

the analysis from scratch, FLAIR employs an incremental

technique for analyzing Android apps, where results of a prior

Fig. 2: A running example representing ICC vulnerabilities

among Android apps.

app is a malicious app that sends an Intent message to

MessageSender belonging to the vulnerable app for accessing

the text message service, without the need for any permission.

Existing work on Android inter-component security analy-

sis [9], [10], [2], [12], [7], [15], [6] can detect, within minutes

to hours, that information from an Intent sent by a non-

privileged app can flow to the MessageSender component.

However, the current state-of-the-art lacks a way to respond

to incremental system changes. Once an expensive analysis

run of a system s has completed, whenever s changes, e.g.

by installing a new app or even updating an existing one, the

entire analysis will need to be recomputed thoroughly once

again. This is especially problematic with a vast number of

applications that nowadays are in use in a typical device. We

show how through an effective incremental analysis, FLAIR

can pragmatically address this challenge.

III. THREAT MODEL

At the outset of any security analysis is the identification of

a threat model that describes the capabilities of an attacker.

This work is centered around efficient detection of three

types of ICC-based security attacks in Android: (1) Intent

spoofing [4], (2) unauthorized intent receipt [4], and (3)

privilege escalation [23].

• Intent spoofing occurs when a malicious app forges an

Intent to mislead a receiver app; essentially, a malicious

app sends an Intent to an exported component of a victim

app that is not expecting Intents from the malicious app.

• Unauthorized Intent receipt occurs when a malicious

app intercepts an Intent meant for another legitimate app.

As a result, the malicious app procures access to the data

in the intercepted Intent, among other things.

• Privilege escalation occurs when an app with less

privilege is not deprived of accessing components of a

more privileged app. In fact, a malicious app is able

to indirectly perform a privileged task, without having

a permission to do so, by interacting with a component

that possesses the permission.

We consider both explicit and implicit Intents as well as

Intra- and Inter-apps communications. When the recipient

component is given explicitly, the Intent is called an explicit

Intent; otherwise, implicit Intent. We also consider the ICC-

based communication that involves more than two apps, i.e.,

FLAIR will be able to detect inter-app attacks concealed in a

transitive ICC path through multiple apps.

IV. APPROACH

This section first overviews the formal underpinnings of our

approach based on relational logic as well as the COVERT

framework, and then presents the details of our approach for

incremental ICC analysis

A. Formal Underpinnings

Prior research has used Alloy’s relational logic [18], and the

corresponding Alloy Analyzer, for analysis of ICC vulnerabili-

ties [6]. Our research builds on this work, but introduces novel

enhancements to make the analysis significantly faster. Alloy is

a declarative language based on the first-order relational logic

with transitive closure [26]. The inclusion of transitive closure

extends its expressiveness beyond first-order logic. Essential

data types, that collectively define the vocabulary of a system,

are specified in Alloy by their type signatures (sig). Signatures

represent basic types of elements, and the relationships be-

tween them are captured by the the declarations of fields within

the definition of each signature. Consider the following Alloy

model. It defines two Alloy signatures: Architecture and

Component. The cmps relation is defined over these two

signatures.

sig A r c h i t e c t u r e{
cmps : Component

}
sig Component{}

Analysis of specifications written in Alloy is completely

automated, based on transformation of Alloy’s relational logic

into a satisfiability problem. Off-the-shelf SAT solvers are then

used to exhaustively search for either satisfying models or

counterexamples to assertions. To make the state space finite,

certain scopes need to be specified that limit the number of

instances of each type signature. The following specification

asks for instances that contain at least one Component, and

specifies a scope that bounds the search for instances with at

most two objects for each top-level type (Architecture

and Component in this example).
pred modelInstance{ some Component }
run modelInstance f o r 2

When executed, the Alloy Analyzer produces model in-

stances, two of which are shown in Fig. 3. The model instance

of Fig. 3a includes one architecture and two components, one

of them belonging to no architecture. Fig. 3b shows another

model instance with two architectures, each one having one

component.

The other essential constructs of the Alloy language include:

Facts and Assertions. A fact is a formula that takes no

Fig. 3: Two model instances of the above Alloy specification.

arguments, and defines constraints that every instance of a

model must satisfy, thus restricting the instance space of the

model. An assertion (assert) is a formula required to be

proved. It can be used to check a certain property of a model.

The following fact paragraph, for example, states that each

Component should belong to exactly one Architecture.

Re-executing the Alloy Analyzer produces a new set of model

instances, where while Fig. 3b is still a valid instance, model

of Fig. 3a is eliminated.
fact {

a l l c : Component | one c . ˜ cmps
}

We will introduce additional details of the Alloy language as

necessary to present our incremental ICC analysis. For further

information about Alloy, we refer the interested reader to [18].

B. COVERT Overview

COVERT is a formal analysis framework for automated,

compositional analysis of Android apps [6]. It reduces the

ICC vulnerability analysis problem into an Alloy relational

logic problem. Through static analysis of application packages

comprising a system, it automatically extracts architectural

specifications annotated with security properties in the Alloy

language in a way suitable for automated analysis. The Alloy

Analyzer is then used to verify, albeit within a specific scope

derived automatically for each system, whether it is safe for

a combination of applications—holding certain permissions

and potentially interacting with each other—to be installed

simultaneously.

There are three main reasons that motivate our choice of

COVERT as a platform for realizing the incremental ICC anal-

ysis in this work. First, its effective module system distinctly

separates extraction of apps specifications from vulnerabil-

ity analysis thereof. Such a well-structured module system

that splits the overall, complicated system among tractable

modules is not only convenient, but is an important part of

our approach, as it enables effective compositional analysis

of both model extraction and vulnerability analysis. Second,

its reliance on a formal specification language, namely Alloy,

and its associated analyzer facilitates orchestrating a cohesive

implementation of the algorithms for updating Android inter-

component analysis within a formally-precise analysis engine.

Lastly, it is open-source and publicly available.

COVERT relies on two types of Alloy specifications: (1)

Android framework specification, and (2) architectural speci-

fications that it generates automatically for each Android app.

The Android framework specification is a reusable specifi-

cation, upon which all extracted architectural specifications

are realized. It can be considered as an abstract specification

that defines a set of rules to lay the foundation of Android

apps, how they behave, and how they interact with each other.

Listing 1 partially represents the androidDeclaration Alloy

module, where the essential Android element types, such as

Architecture, Component, etc., are defined as top-level Alloy

signatures. These signatures are all specified as abstract,

meaning that they cannot have an instance without explicitly

extending them.

1 / / Android framework s p e c i f i c a t i o n

2 module a n d r o i d D e c l a r a t i o n

3

4 a b s t r a c t s i g A p p l i c a t i o n{
5 u s e s P e r m i s s i o n s : s e t P e r m i s s i o n , / / perms uses

6 a p p P e r m i s s i o n s : s e t P e r m i s s i o n / / perms e n f o r c e s

7 }
8

9 a b s t r a c t s i g Component{
10 app : one A p p l i c a t i o n ,

11 i F i l t e r s : s e t I n t e n t F i l t e r , / / Component i n t e r f a c e s

12 p e r m i s s i o n s : s e t P e r m i s s i o n ,

13 p a t h s : s e t Pa th / / s e n s i t i v e paths

14 }
15

16 a b s t r a c t s i g I n t e n t F i l t e r {
17 a c t i o n s : some Act ion , / / supported a c t i o n s

18 d a t a : s e t Data ,

19 c a t e g o r i e s : s e t Category ,

20 }
21

22 a b s t r a c t s i g I n t e n t {
23 s e n d e r : one Component ,

24 component : l one Component , / / r e c i p i e n t component

25 a c t i o n : l one Act ion ,

26 c a t e g o r i e s : s e t Category ,

27 d a t a : s e t Data ,

28 }
29

30 a b s t r a c t s i g Pa th{
31 e n t r y : one Resource ,

32 d e s t i n a t i o n : one Resource

33 }
34 a b s t r a c t s i g P e r m i s s i o n{}

Listing 1: Excerpts from an Alloy specification of the

Android application framework adapted from [6].

The Application signature contains two fields of

usesPermissions and appPermissions that identify

two sets of permissions (lines 4–7). The former declares the

permissions to which the application needs to have access

to run properly. The latter specifies the permissions required

to access components of the application under consideration.

Components are basic building blocks of Android applica-

tions, and the app field within the Component signature (line

10) identifies the parent application (architecture) to which

a component belongs. Android applications can comprise

four types of components, namely Activity, Service,

Receiver and Provider. Signature declarations of four

core component types extend the Component signature,

omitted in the interest of space.

Component interfaces are specified as a set of

IntentFilters that represent the kinds of requests

a given component can respond to. A component may have

any number of filters, captured by the iFilters field

(line 11). The permissions field represents a set of

permissions required to access a component. The paths

then indicates information flows between sensitive resources,

such as an ICC call method and a method that can trigger a

permission-required operation (e.g., sendTextMessage in

our running example).

The IntentFilter signature contains three fields of

actions, data and categories (lines 16–20); the

actions relation contains at least one element (due to the

multiplicity keyword some), and data and categories

map each IntentFilter instance to zero or more Data

and Category objects, respectively.

1 / / (a) Messenger app s p e c i f i c a t i o n

2 module Messenger

3 open a n d r o i d D e c l a r a t i o n

4 one s i g Messenger ex tends A p p l i c a t i o n{}{
5 u s e s P e r m i s s i o n s = SEND SMS

6 no a p p P e r m i s s i o n s

7 }
8 one s i g MessageSender ex tends A c t i v i t y {}{
9 app in Messenger

10 i F i l t e r s = I n t F i l t e r 1

11 no p e r m i s s i o n s

12 p a t h s = p a t h 1

13 }
14 one s i g p a t h 1 ex tends Pa th{}{
15 e n t r y = ICC

16 d e s t i n a t i o n = SMS

17 }

1 / / (b) Mal i c ious app s p e c i f i c a t i o n

2 module MalApp

3 open a n d r o i d D e c l a r a t i o n

4 one s i g MalApp ex tends A p p l i c a t i o n{}{
5 no u s e s P e r m i s s i o n s

6 no a p p P e r m i s s i o n s

7 }
8 one s i g MalComponent ex tends A c t i v i t y {}{
9 app in MalApp

10 i F i l t e r s = I n t F i l t e r 2

11 no p e r m i s s i o n s

12 no p a t h s

13 }
14 one s i g i n t e n t 1 ex tends I n t e n t {}{
15 s e n d e r = MalComponent

16 component = MessageSender

17 a c t i o n = SMS SEND

18 no c a t e g o r i e s

19 d a t a = Yes

20 }

Listing 2: Excerpts from automatically generated

specifications for two illustrative apps shown in Figure 2.

The Intent signature contains five fields of sender,

component, action, data and categories (lines 22–

28). The first one denotes the component sending the Intent.

The component field identifies the recipient component. As

the keyword lone indicates an Intent may have either one or

no declared recipient component, to capture whether the Intent

is explicit or implicit, respectively.

The Path signature (lines 30–33) defines a path

from each component’s ICC entry point to an invoca-

tion of a permission-required functionality that is either

inappropriately-guarded or unguarded, which may lead to ICC

vulnerabilities. The last top-level signature is Permission.

The COVERT framework captures both system-defined permis-

sions and application-defined permissions, which are declared

within the Android system’s and the application’s manifest

files, respectively.

Listings 2a and b partially delineate the generated specifica-

tions for our running example apps (cf. Section II). The specifi-

cations start by importing the androidDeclaration module (line

3). The specification of Messenger app (Listings 2a, lines 4–7)

then states that it has the permission for SMS service, yet does

not enforce any permission that the other apps must have in

order to interact with its components. The MessageSender

component also contains a path from its ICC entry point to

an invocation of the system-level SmsManager API, which

enables sending a message to a phone number retrieved from

the Intent.

The specification of Listings 2b shows that the

MalApp does not declare any permission neither

as required (usesPermissions) nor as enforced

(appPermissions); yet has a Component of type

Activity (line 8–20), which sends an explicit Intent to

the MessageSender Component. This causes an inter-

component permission leakage vulnerability, also called

privilege escalation, where a component is able to make

another component, here MessageSender, perform an action

on its behalf, without having a proper permission.

To perform the compositional analysis on a set of formal

models, COVERT includes specific Alloy signatures that model

a set of security properties required to be checked. These

signatures express properties that are expected to hold in

the extracted specifications. The analysis is then conducted

by exhaustive enumeration over a bounded scope of model

instances to determine how the vulnerabilities and capabilities

in individual apps could affect one another when the corre-

sponding apps are installed together.

The combinatorial nature of the propositional formula to

which the systems specifications are translated suppresses

the size of systems for which an analysis can be performed

within a reasonable amount of time. We believe exploiting an

opportunity to take advantage of the problem domain, here

the Android application framework (i.e., rules and constraints

on the structure and behavior of its elements), to reduce the

state space within which the analyzer explores would enable

analyzing larger systems, that otherwise analysis of which is

not possible. The following Section details our approach to

incremental ICC vulnerability analysis.

C. Incremental ICC Analysis

Any change to a system, i.e., app addition/deletion, causes

changes to its corresponding specification, which in turn, can

render already analyzed vulnerability model instances stale.

The non-incremental approach to this problem is to dispose

of all the solutions, and recompute the analysis. The insight

guiding our research is that the vulnerability analysis can be

improved knowing that the changes in the particular domain of

Android inter-component analysis are incremental, and often

do not invalidate all of the solutions calculated in prior runs.

Specifically, each system change can be decomposed into

a sequence of two operations of adding an app and removing

an app. Note that an application update can be viewed as a

remove operation followed by an add operation. The set of

affected vulnerability instances caused by these two opera-

tions, however, is usually just a small fraction of all instances,

offering a high potential for an incremental approach such as

FLAIR. We start by demonstrating through Theorems 1 and 2

that the scope of changes being observed as a result of the

app addition/deletion operations is limited to a small fraction

of vulnerability instances computed in the prior analysis. We

then describe how these theorems can effectively be realized

in practice to enhance formal, yet incremental, analysis of ICC

vulnerabilities.

Algorithm 1: Compute bounds for Add operation

Input: Sprv, Snew //new and previous system specifications
I : Sprv.instances //vul. instances for previous system spec.
Output: < alb, aub > //adjusted lower and upper bound sets

1 < lb, ub > Sprv.bounds
2 < Rc, Uc > ComputeChanges(Sprv, Snew)
3 for r 2 Snew.relations do
4 if r /2 Rc then
5 if I 6= ; then

6 alb(r)
T

i∈I
i.val(r)

7 aub(r) ExtractAddedTuples(ub(r), Uc)
8 aub(r) aub(r) +

S
i∈I

i.val(r)
9 end

10 else
11 alb(r) lb(r)
12 aub(r) ExtractAddedTuples(ub(r), Uc)
13 end
14 end
15 else
16 aub(r) ub(r)
17 alb(r) lb(r)
18 end
19 end
20 return < alb, aub >

Theorem 1. Let a be an app not already installed on system

S. Adding a to S does not eliminate any already existent ICC

vulnerability, yet may cause new vulnerabilities.

Proof. The proof of Theorem 1 is by contradiction: let us as-

sume adding app a to system S eliminates an ICC vulnerability

v already existent in S. Without loosing generality, we assume

that there is a collection C of apps the interaction of which

causes v. Because all apps involved in C are already installed

on S before a is installed, vulnerability v is independent

of a, i.e., regardless of app a being installed or not v is a

valid vulnerability. This results in contradiction. Hence, our

assumption that adding app a to system S eliminates an

already existent ICC vulnerability v is false.

Theorem 2. Let a be an app already installed on system S.

Removing a from S does not cause any new ICC vulnerability,

yet may eliminate existent vulnerabilities, e.g., those caused by

a.

The proof of Theorem 2 is similar, thus omitted in the

interest of space. Now, we can present FLAIR’s algorithms for

updating Android inter-component formal analysis in response

to incremental system changes caused by adding and removing

operations.

Specifications written in the Alloy language are first trans-

lated to bounded relational models in a language called Kod-

kod [27], which, in turn, are transformed into propositional

formulas to be solved by SAT solvers. Kodkod allows spec-

ifying a scope over each relational variable from both above

and below by two relational constants, called upper and lower

bounds, respectively. The upper bound (UB) represents the

whole set of tuples that a relational variable may contain, and

a lower bound (LB) represents a partial solution for a given

model. Every relation in a model instance, thus, must contain

all tuples in the lower bound, and no tuple that is not in the

upper bound.

The guiding principle in FLAIR is to adjust such bounds

in evolutionary analysis of interacting apps, thereby limiting

the scope of analysis that is examined in search of ICC

vulnerability model instances.

D. Addition of a New App

Algorithm 1 presents how FLAIR computes bounds in

response to Add operation. FLAIR first compares both system

specification versions, computing a structural diff (Alg. 1, line

2). This diff gives information about which relations and tuples

in the Kodkod’s low-level bounded relational models were

added or removed. Given the structural diff, one can express

the differences between two system specification versions

using two sets Rc and U c, containing all changed relations

and universe of elements (also called atoms), respectively. It

then can infer from all changed tuples the set of affected

vulnerability model instances, i.e, instance solutions which

are outdated by the change and need to be updated. FLAIR

treats as affected all vulnerability model instances to which

the changed tuples contribute.

According to Theorem 1, the add operation does not elim-

inate any already existent ICC vulnerability instance, thus

the set of lower bounds is set to include all determined

vulnerability model instances; more specifically, for each

relation the intersection of its values appeared in the model

instances constitutes the lower bounds (Alg. 1, line 6). Note

that while adding a new app might change the way Intents

were previously delivered (e.g., the user may select the new

app to handle certain type of requests, which in turn may

prevent the MalApp from accessing the corresponding Intents),

it would not eliminate the potential risk of the vulnerabilities

already determined. Furthermore, given that the add operation

may produce new ICC vulnerabilities, caused by the newly

installed app, the set of upper bounds is set to include the union

of all determined vulnerability model instances along with the

tuples the new app introduced, allowing the analyzer to find

potentially new ICC vulnerabilities (Alg. 1, lines 7–8). In case

the vulnerability instance set, I , for the original specification

is empty, FLAIR keeps the lower bound as initially calculated

by the Alloy Analyzer; yet the upper bounds is set to include

all the tuples affected by the newly added app, again allowing

the analyzer to find potentially new ICC vulnerabilities. This

is important in practice, since users are expected to install

apps that are free of ICC vulnerabilities. Note that for the

newly added relations, i.e., r ∈ Rc, FLAIR keeps the bounds

unchanged (Alg. 1, lines 16–17).

This is a sound pruning of the model space, since elements

of an added app, such as Intents and Components, etc., do not

contribute to any value of the already found solutions, and the

change has no effect on the present solutions for the evolving

system specification. They, thus, constitute a partial solution

for the updated system specification.

1 a s s e r t p r i v E s c {
2 no d i s j s r c , d s t : Component , i : I n t e n t |
3 (s r c in i . s e n d e r) and

4 (d s t in s r c . ˆ t r a n s i t i v e I C C) and

5 (some p : d s t . app . u s e s P e r m i s s i o n s |
6 not (p in s r c . app . u s e s P e r m i s s i o n s) and

7 not ((p in d s t . p e r m i s s i o n s) or

8 (p in d s t . app . a p p P e r m i s s i o n s)))
9 }

Listing 3: The assertion specification for privilege

escalation in Alloy adapted from [6].

To make the idea concrete, consider the assertion speci-

fication for privilege escalation (Listing 3), one of the most

prominent ICC vulnerabilities. The assertion, in essence, states

that the dst component (victim) has access to a permission

(usesPermission) that is missing in the src component

(malicious), and that permission is not being enforced by

the victim component. Thus, it can be accessed by the src

component through a chain of ICC calls. After analyzing the

specification against our running example (cf. Section II), the

following vulnerability model instance shown in Listing 4 is

generated.

Note that the values assigned to the other relational variables

in the vulnerability model instance are omitted in the interest

of space. Now imagine that the user installs a new app (App3)

that contains an Activity component (App3Activity). Let us

see how FLAIR leverages the results of the previous run

to set tighter bounds on relational variables. Among others,

consider privEsc.src relation. Listing 5 shows its lower and

upper bound sets, before (lines 1–3) and after (lines 5–7)

being adjusted by FLAIR, in the Kodkod representation of our

running example in its new setting.

Initially, the upper and lower bounds, calculated by the

original Alloy Analyzer, contain three and zero elements,

respectively. The upper bound, in fact, includes all component

elements defined in the system specification. Out of these

component elements, previous results show that MalCompo-

nent is actually a source of vulnerability, thus constitutes

a partial solution for the updated system specification, and

should be included in its lower bound (line 6). Also its union

with the component newly added to the system constitutes

the upper bound (line 7). As a result, for the particular

relational variable of privEsc.src, the state space reduces

from 2
UB−LB

= 2
3
= 8 possible values to 2

1
= 2. This

bound adjustment along with the similar adjustments applied

to other relational variables would result in a considerable

space reduction, which in turn improves the analysis time from

355 ms to 95 ms, in our simple running example.

1 . . . / / o m i t t e d d e t a i l s o f model i n s t a n c e s

2 p r i v E s c . s r c = [MalApp / MalComponent]
3 p r i v E s c . d s t = [Messenger / MessageSender]
4 p r i v E s c . i = [i n t e n t 1]
5 p r i v E s c . p= [a p p D e c l a r a t i o n / SEND SMS]

Listing 4: An example vulnerability model instance for our

running example.

Algorithm 2: Compute bounds for Remove operation

Input: Sprv, Snew //new and previous system specifications
I : Sprv.instances //vul. instances for previous system spec.
Output: < alb, aub > //adjusted lower and upper bound sets

1 I Sprv.instances
2 < Rc, Uc > ComputeChanges(Sprv, Snew)
3 for r 2 Snew.relations do
4 aub(r) S

i∈I
(i.val(r)�ExtractRemovedTuples(i.val(r), Uc))

5 alb(r) T
i∈I

(i.val(r)�ExtractRemovedTuples(i.val(r), Uc))
6 end
7 return < alb, aub >

E. Removal of an Existent App

Algorithm 2 presents FLAIR’s bounds computing algorithm

in response to app removing operation. FLAIR again first com-

pares both system specifications to compute changed relations

and universe of elements in the Kodkod’s low-level bounded

relational models.

According to Theorem 2, the remove operation does not

cause any new ICC vulnerability instance, but some existent

vulnerabilities, and especially those caused by the removed

app, are eliminated. The sets of upper and lower bounds, thus,

are set to include all determined vulnerability model instances

except those to which the removed app contributes, i.e., model

instances in which values assigned to any of the relational

variables include atoms from the removed app. As specified

in Alg. 2 lines 4–5, for each relational variable the union and

intersection of its values in all tuples, that are appeared in

the vulnerability model instances but do not contain elements

from the removed app, constitutes the upper and lower bounds,

respectively.

As a concrete example, imagine that the user uninstalls the

app that has just been added (App3). This time, the upper

and lower bounds for privEsc.src, calculated by the original

Alloy Analyzer, contain two (MessageSender and MalCompo-

nent) and zero elements, respectively. Previous results show

that MalComponent is actually a source of vulnerability to

which elements from the removed app do not contribute

(cf. Listing 4). It, thus, constitutes a partial solution for the

updated system specification. As a result, the state space for

the privEsc.src variable is reduced from 2
2

= 4 possible

values to 1, making it a variable with exact bound (i.e., with

an already known value), that does not need to be translated

into a SAT formula, thus reducing the size of the generated

SAT problem.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of FLAIR.

We have implemented FLAIR as an open-source extension to

the COVERT inter-component analysis framework and its back-

end Alloy analysis engine. To implement the algorithms pre-

sented in the previous sections, FLAIR modifies both the Alloy

Analyzer and its underlying constraint solver, Kodkod [27].

Specifically, FLAIR’s analyzer modifies the way in which

1 // The lower (lb) and upper (ub) bound sets for the privEsc.src relation before being adjusted.
2 l b : 0 []
3 ub : 3 [[pr ivEsc , MessageSender] , [pr ivEsc , MalComponent] , [pr ivEsc , App3Ac t i v i t y]]
4

5 // The adjusted lower (alb) and upper (aub) bound sets for the same relation.
6 alb : 1 [[pr ivEsc , MalComponent]]
7 aub : 2 [[pr ivEsc , MalComponent] , [pr ivEsc , App3Ac t i v i t y]]

Listing 5: The lower and upper bound sets for the privEsc.src relation in the Kodkod representation of our running example,

before and after being adjusted.

the Alloy Analyzer determines the scopes for each relational

variable of the updated specification given the vulnerability

model instances of the original system specification. The scope

adjustments are then realized in the transformation of high-

level Alloy specifications into low-level bounded relational

models. Note that we also enhance the model extractor module

of COVERT by leveraging two static analysis tools, namely

FlowDroid [28] and IC3 [29]. FLAIR’s tool and experimental

data are available at the project website [19].

We used the FLAIR apparatus for carrying out the exper-

iments. In our evaluation, we address the following research

questions:

• RQ1. Does the approach enable incremental analysis

of Android inter-component vulnerabilities in a manner

consistent with a full recomputation of the analysis?

• RQ2. How well does FLAIR perform? What is the per-

formance improvement achieved by FLAIR’s incremental

analysis compared to the state-of-the-art ICC analyzers?

• RQ3. How effective is our incremental analysis approach

developed atop SAT solving technologies in reducing the

size of transformed propositional formula? What is the

overhead of FLAIR?

Experimental subjects. Our experimental subjects are a

set of Android apps drawn from four repositories of Google

Play [30], F-Droid [31], Bazaar [32] and MalGenome [33].

The Google Play store serves as the official Android app

store, from which we collected the top 100 popular free

apps. F-Droid is a software repository that contains free and

open source Android apps. The collection of subject systems

includes 300 apps from this repository. We also include 50

apps from Bazaar [32], a local app store, to cover the apps

available in third-party repositories. Finally, it contains a

collection of 50 malicious apps identified by the MalGenome

project [33], a malware repository that covers the majority of

existing Android malware families.

Experimental setup. To address the first research question,

we use a suite of specifications developed for the security

assessment of a set of Android apps in a prior work [6]. We

compare the results of a full recomputation on the experimen-

tal subjects with the results of an incremental change analyzed

using FLAIR.

To address the second research question, we measure and

compare the analysis time taken by FLAIR with that of the

state-of-the-art ICC analyzers, namely DidFail [9], DIAL-

DROID [17], COVERT [6], SEALANT [7] and IccTA [2]. To

perform the comparison experiments, we need to simulate

configurations of apps installed on a device. To that end, we

partition the set of apps under study into ten app bundles,

each containing 50 apps randomly selected from the repos-

itories. We choose this number of apps since it is higher

than the average number of apps on a smartphone in the

United States, which has shown to be approximately 41 [34].

These app bundles simulate collections of apps installed on

end-user devices, and we use them to perform ten sets of

independent experiments. We gradually increase the number

of apps concurrently analyzed within bundles until each app

bundle reaches to 50 apps. To show the performance of

FLAIR when apps are removed from the system, we repeat

the experiments while we gradually remove apps from each

app bundle. Such bundles with gradually increasing/decreasing

apps sizes provide us with a perfect suite of evolving systems

that can be used for our experiments.

To address the last research question, we collect the number

of variables and clauses in propositional formulas produced

by both incremental and non-incremental techniques, i.e.,

FLAIR and COVERT, across experimental subjects. We also

instrument FLAIR to measure its execution time while updating

ICC analysis results in response to system changes. We used

a PC with an Intel Core i7 2.4 GHz CPU processor and 16

GB of main memory, and leveraged Sat4J as the SAT solver

during the experiments.

A. Results for RQ1 (Consistency)

To validate the consistency of results produced by FLAIR’s

incremental analysis with those produced by performing a

full recomputation of the results, we applied FLAIR to the

exact test cases that the COVERT project has been evaluated

on, and the results of which are available online [35]. For

two consecutive versions v1 and v2 of each app bundle (i.e.,

a set of Android apps deployed together), we first ran the

COVERT analysis that uses the unmodified Alloy Analyzer on

version v2 and recorded the results. Afterwards, we ran FLAIR

on v1, incrementally updated the results to version v2, and

compared the results with that of the COVERT analyzer. Our

experiments confirm that FLAIR computes the same results as

a full recomputation in all cases, corroborating our theoretical

expectation.

B. Results for RQ2 (Scalability)

We compared scalability of FLAIR with the other tools

that support analysis of ICC vulnerabilities, namely Ic-

cTA [2], [5], DidFail [9], COVERT [6], DIALDROID [17], and

SEALANT [7].

IccTA employs Epicc [15] and APKCOMBINER [36] to

analyze multiple interacting apps [2]. It first merges all the

C. Results for RQ3 (Efficiency)

Table I shows the size of the propositional formulas gen-

erated by each of the two techniques, i.e., COVERT and

FLAIR, across 10 subject app bundles, given as the total

number of variables and clauses. Each bundle contains 50

apps. As shown, the number of variables and clauses in

formulas generated by FLAIR is significantly less than those

generated by COVERT. On average, FLAIR exhibits more

than 92% reduction in the size of the translated propositional

formulas, compared to those produced by COVERT that relies

on standard Alloy Analyzer. This result clearly shows the

effectiveness of our algorithm in reducing the exploration

space.

The last column of Table I shows the FLAIR’s adjustment

time that pertains to the overhead incurred due to updating ICC

analysis results in response to incremental system changes.

According to the experimental data, FLAIR only introduces

a small overhead (3.1% on average, and under 15% in all

cases), but greatly outperforms the other state-of-the-art ICC

analyzers, saving up to 94% of the analysis time without

sacrificing vulnerability-finding ability.

VI. RELATED WORK

The work related to this paper falls into ICC analysis and

incremental solving of constraints specified in first-order logic.

A large body of work focuses on Android ICC analysis [2],

[12], [9], [6], [37], [38], [10]. Among others, IccTA leverages

an intent resolution analysis to identify inter-component vul-

nerabilities [2]. IccTA’s approach for ICC analysis is based on

a pre-processing step connecting Android components through

code instrumentation, which causes scalability issues. The

main shortcoming of such purely program analysis techniques

is that every time any of the apps changes, the entire analysis

has to be repeated. This paper addresses this shortcoming by

separating model extraction from actual ICC analysis, and

by providing a novel Android-specific formal analyzer that

automatically and efficiently updates ICC analysis results in

response to incremental system changes.

The other relevant thrust of research has focused on incre-

mental solving of constraints specified in first-order logic [39],

TABLE I: The size of variables and clauses in propositional

formulas produced by COVERT and FLAIR for app bundles of

size 50 apps along with the analysis overhead.

COVERT FLAIR

Vars Clauses Vars Clauses Adjustment
Time (Sec)

B.1 361,854 61,752,270 1,230 10,212 1.721
B.2 367,893 63,408,733 7,331 1,389,184 1.812
B.3 279,683 40,513,124 7,448 617,554 1.563
B.4 358,141 53,563,717 8,334 762,302 2.442
B.5 351,145 52,646,280 1,282 10,544 4.806
B.6 318,195 48,644,466 21,517 1,679,991 4.148
B.7 273,416 39,750,850 1,122 9,095 2.987
B.8 407,094 53,941,151 1,399 11,407 15.028
B.9 414,615 55,447,247 8,970 1,268,853 4.026

B.10 297,890 44,525,013 1,171 9,482 33.052

Avg. 342,993 51,419,285 5,980 576,862 7.15

[40], [41], [42]. Among others, Titanium extends the Alloy

Analyzer to support analysis of evolving specifications [42].

This research effort shares with ours the emphasis on improv-

ing the analysis performance. Our work differs fundamentally

in its emphasis on developing an incremental, relational logic

analyzer for the particular domain of Android ICC analysis.

FLAIR, thus, takes an efficient, domain-specific approach for

narrowing the state space of all relational variables, instead of

a general approach based on declarative slicing to identify a

number of relational variables whose bounds can be adjusted.

Along the same line, Uzuncaova and Khurshid partitioned

a model of constraints into a base and derived slices, where

solutions to the base model can be extended to generate a

solution for the entire model [40]. The problem that they

addressed is, however, different form ours. They tried to lever-

age model decomposition to improve scalability. Whereas,

given a system specification that is already analyzed, FLAIR

updates the analysis results in response to incremental changes.

Ranger [43] uses a divide and conquer method relying on a

linear ordering of the solution space to enable parallel analysis

of specifications written in first-order logic. While the linear

ordering allows for partitioning of the solution space into

ranges, there is no clear way in which it can be used for

incremental analysis of evolving systems.

VII. CONCLUSION

This paper presents FLAIR, a novel approach for efficient

and incremental security analysis of evolving Android sys-

tems. FLAIR’s update algorithm is based on reducing the

space of values to be explored by the SAT-solver underlying

the analysis engine. We have implemented FLAIR on top

of Alloy, its underlying relational logic analyzer, Kodkod,

and the COVERT inter-component analysis framework. The

experimental results of evaluating FLAIR in the context of

hundreds of real-world Android apps corroborates its ability

to provide an order of magnitude speedup over the state-of-

the-art, non-incremental analysis techniques.

While our focus in this paper was on ICC analysis, we

believe such an effective exploration space reduction for the

bounded analysis of relational logic can pave the way for

application of formal analyses in a wide range of problems in,

among others, software design [44], [45], [46], [47], [48], [49],

code analysis [50], [51], and test case generation [52], [53].

Our future work will explore the application of techniques

described in this paper (e.g., analysis bound adjustment) to

other software engineering problems.

ACKNOWLEDGEMENT

We thank Alireza Sadeghi for his help with the COVERT

framework and helpful feedback on an early draft of the

paper. This work was supported in part by an NSF EPSCoR

FIRST award, and awards CCF-1755890, CCF-1252644, CNS-

1629771 and CCF-1618132 from the National Science Founda-

tion, HSHQDC-14-C-B0040 from the Department of Homeland

Security, and FA95501610030 from the Air Force Office of

Scientific Research.

REFERENCES

[1] R. Cozza, I. Durand, and A. Gupta, “Market Share: Ultramobiles by
Region, OS and Form Factor, 4Q13 and 2013,” Gartner Market Research

Report, February 2014.
[2] L. Li, A. Bartel, T. Bissyande, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,

E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting inter-
component privacy leaks in android apps,” in Proceedings of the 37th

International Conference on Software Engineering, ser. ICSE 2015,
Florence, Italy, 2015.

[3] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings

of the 2012 ACM conference on Computer and communications security.
Raleigh, NC: ACM, 2012, pp. 229–240.

[4] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th

international conference on Mobile systems, applications, and services.
Washington, DC: ACM, 2011, pp. 239–252.

[5] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “I know what leaked in
your pocket: uncovering privacy leaks on android apps with static
taint analysis,” arXiv:1404.7431 [cs], Apr. 2014, arXiv: 1404.7431.
[Online]. Available: http://arxiv.org/abs/1404.7431

[6] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on

Software Engineering (TSE), 2015.
[7] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao, and N. Med-

vidovic, “A SEALANT for inter-app security holes in android,” in Pro-

ceedings of the 39th International Conference on Software Engineering,

ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 312–
323.

[8] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy
and qualitative comparison of program analysis techniques for
security assessment of android software,” IEEE Trans. Software

Eng., vol. 43, no. 6, pp. 492–530, 2017. [Online]. Available:
https://doi.org/10.1109/TSE.2016.2615307

[9] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint
flow analysis for app sets,” in Proceedings of the 3rd ACM SIGPLAN

International Workshop on the State of the Art in Java Program Analysis.
Edinburgh, UK: ACM, 2014, pp. 1–6.

[10] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS ’14. Scottsdale,
AZ: ACM, 2014, pp. 1329–1341.

[11] B. R. Schmerl, J. Gennari, A. Sadeghi, H. Bagheri, S. Malek, J. Cámara,
and D. Garlan, “Architecture modeling and analysis of security in
android systems,” in Software Architecture - 10th European Conference,

ECSA 2016, Copenhagen, Denmark, November 28 - December 2, 2016,

Proceedings, ser. Lecture Notes in Computer Science, B. Tekinerdogan,
U. Zdun, and M. A. Babar, Eds., vol. 9839, 2016, pp. 274–290.
[Online]. Available: https://doi.org/10.1007/978-3-319-48992-6 21

[12] T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott, and
L. Casburn, “Multi-app security analysis with FUSE: Statically detecting
android app collusion,” in Proceedings of the 4th Program Protection

and Reverse Engineering Workshop, ser. PPREW-4. New Orleans, LA:
ACM, 2014, pp. 4:1–4:10.

[13] M. Hammad, H. Bagheri, and S. Malek, “Determination and
enforcement of least-privilege architecture in android,” in 2017

IEEE International Conference on Software Architecture, ICSA 2017,

Gothenburg, Sweden, April 3-7, 2017. IEEE, 2017, pp. 59–68.
[Online]. Available: https://doi.org/10.1109/ICSA.2017.18

[14] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek, “A
temporal permission analysis and enforcement framework for android,”
in Proceedings of the 40th International Conference on Software Engi-

neering, ser. ICSE’18, 2018, pp. 846–857.
[15] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and

Y. Le Traon, “Effective inter-component communication mapping in
android with epicc: An essential step towards holistic security analysis,”
in Proceedings of the 22Nd USENIX Conference on Security, ser.
SEC’13. USENIX Association, 2013, pp. 543–558.

[16] D. Octeau, S. Jha, M. Dering, P. D. McDaniel, A. Bartel,
L. Li, J. Klein, and Y. L. Traon, “Combining static analysis with
probabilistic models to enable market-scale android inter-component

analysis,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2016,

St. Petersburg, FL, USA, January 20 - 22, 2016, R. Bodı́k and
R. Majumdar, Eds. ACM, 2016, pp. 469–484. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837661

[17] A. Bosu, F. Liu, D. D. Yao, and G. Wang, “Collusive data leak and more:
Large-scale threat analysis of inter-app communications,” in Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications

Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6,

2017, 2017, pp. 71–85.
[18] D. Jackson, Software Abstractions, 2nd ed. MIT Press, 2012. MIT

Press, 2012.
[19] “Flair web page,” https://sites.google.com/view/flairanalysis/, 2018.
[20] H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic,

“Software architectural principles in contemporary mobile software:
from conception to practice,” Journal of Systems and Software, vol.
119, pp. 31–44, 2016. [Online]. Available: https://doi.org/10.1016/j.jss.
2016.05.039

[21] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in 13th International Conference, ser.
ISC’10, M. Burmester, G. Tsudik, S. Magliveras, and I. Ili, Eds. Boca
Raton, FL, USA: Springer Berlin Heidelberg, Oct. 2010, pp. 346–360.

[22] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “QUIRE:
Lightweight provenance for smart phone operating systems.” in USENIX

Security Symposium, San Francisco, CA, 2011.
[23] S. Bugiel, L. David, Dmitrienko, T. A. Fischer, A. Sadeghi, and

B. Shastry, “Towards taming privilege-escalation attacks on android,”
in 19th Annual Network and Distributed System Security Symposium,

NDSS 2012, San Diego, California, USA, February 5-8, 2012.

[24] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi,
“Xmandroid: A new android evolution to mitigate privilege escalation
attacks,” Technische Universitt Darmstadt, Technical Report TR-2011-

04, 2011.
[25] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android

permissions demystified,” in Proceedings of the 18th ACM Conference

on Computer and Communications Security, ser. CCS ’11. Chicago,
IL: ACM, 2011, pp. 627–638.

[26] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM

Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 2, pp. 256–290, 2002.

[27] E. Torlak, “A constraint solver for software engineering: Finding
models and cores of large relational specifications,” PhD Thesis, MIT,
Feb. 2009. [Online]. Available: http://alloy.mit.edu/kodkod/

[28] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09

- 11, 2014, ser. PLDI’14. Edinburgh, UK: ACM, 2014, p. 29.
[29] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite

constant propagation: Application to Android inter-component commu-
nication analysis,” in Int’l Conf. on Software Engineering. Florence,
Italy: IEEE, May 2015.

[30] “Google play market,” http://play.google.com/store/apps/, 2017.
[31] “F-droid,” https://f-droid.org/, 2017.
[32] “Bazaar,” 2017. [Online]. Available: https://cafebazaar.ir//.
[33] “Malgenome project,” http://www.malgenomeproject.org, 2017.
[34] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Predict-

ing user traits from a snapshot of apps installed on a smartphone,” ACM

SIGMOBILE Mobile Computing and Communications Review, vol. 18,
no. 2, pp. 1–8, 2014.

[35] “Alloy models from the covert project,”
http://www.sdalab.com/projects/covert, 2015.

[36] L. Li, A. Bartel, T. F. Bissyand, J. Klein, and Y. L. Traon, “Ap-
kCombiner: Combining Multiple Android Apps to Support Inter-App
Analysis,” in ICT Systems Security and Privacy Protection - 30th

IFIP TC 11 International Conference, SEC 2015, Hamburg, Germany,

May 26-28, 2015, Proceedings, ser. ICT SEC’15, H. Federrath and
D. Gollmann, Eds., vol. 455. Springer, 2015, pp. 513–527.

[37] H. Bagheri, A. Sadeghi, R. J. Behrouz, and S. Malek, “Practical, formal
synthesis and automatic enforcement of security policies for android,”
in 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2016, Toulouse, France, June 28 - July

1, 2016. IEEE Computer Society, 2016, pp. 514–525. [Online].
Available: https://doi.org/10.1109/DSN.2016.53

[38] A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of android inter-
app security vulnerabilities using COVERT,” in 37th IEEE/ACM

International Conference on Software Engineering, ICSE 2015,

Florence, Italy, May 16-24, 2015, Volume 2, A. Bertolino, G. Canfora,
and S. G. Elbaum, Eds. IEEE Computer Society, 2015, pp. 725–728.
[Online]. Available: https://doi.org/10.1109/ICSE.2015.233

[39] S. Ganov, S. Khurshid, and D. E. Perry, “Annotations for alloy: Auto-
mated incremental analysis using domain specific solvers,” in Proc. of

ICFEM, 2012, pp. 414–429.
[40] E. Uzuncaova and S. Khurshid, “Constraint prioritization for efficient

analysis of declarative models,” in Proc. of International Symposium on

Formal Methods, ser. FM’08, 2008.
[41] ——, “Kato: A program slicing tool for declarative specifications,”

in Proc. of International Conference on Software Engineering, ser.
ICSE’07, 2007, pp. 767–770.

[42] H. Bagheri and S. Malek, “Titanium: Efficient analysis of evolving
alloy specifications,” in Proceedings of the ACM SIGSOFT International

Symposium on the Foundations of Software Engineering, ser. FSE’16,
2016.

[43] N. Rosner, J. H. Siddiqui, N. Aguirre, S. Khurshid, and M. F. Frias,
“Ranger: Parallel analysis of alloy models by range partitioning,” in
Proceeding of the 28th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), 2013, pp. 147–157.
[44] H. Bagheri and K. J. Sullivan, “Model-driven synthesis of formally

precise, stylized software architectures,” Formal Asp. Comput.,
vol. 28, no. 3, pp. 441–467, 2016. [Online]. Available: https:
//doi.org/10.1007/s00165-016-0360-8

[45] H. Bagheri, C. Tang, and K. J. Sullivan, “Trademaker: automated
dynamic analysis of synthesized tradespaces,” in 36th International

Conference on Software Engineering, ICSE ’14, Hyderabad, India

- May 31 - June 07, 2014, P. Jalote, L. C. Briand, and
A. van der Hoek, Eds. ACM, 2014, pp. 106–116. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568291

[46] ——, “Automated synthesis and dynamic analysis of tradeoff
spaces for object-relational mapping,” IEEE Trans. Software Eng.,
vol. 43, no. 2, pp. 145–163, 2017. [Online]. Available: https:

//doi.org/10.1109/TSE.2016.2587646
[47] H. Bagheri and K. J. Sullivan, “Bottom-up model-driven development,”

in 35th International Conference on Software Engineering, ICSE ’13,

San Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 1221–1224.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606683

[48] ——, “Pol: specification-driven synthesis of architectural code frame-
works for platform-based applications,” in Generative Programming and

Component Engineering, GPCE’12, Dresden, Germany, September 26-

28, 2012, K. Ostermann and W. Binder, Eds. ACM, 2012, pp. 93–102.
[Online]. Available: http://doi.acm.org/10.1145/2371401.2371416

[49] H. Bagheri, Y. Song, and K. J. Sullivan, “Architectural style as an
independent variable,” in ASE 2010, 25th IEEE/ACM International

Conference on Automated Software Engineering, Antwerp, Belgium,

September 20-24, 2010, C. Pecheur, J. Andrews, and E. D.
Nitto, Eds. ACM, 2010, pp. 159–162. [Online]. Available: http:
//doi.acm.org/10.1145/1858996.1859026

[50] J. P. Near and D. Jackson, “Derailer: Interactive security analysis for
web applications,” in Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 587–598. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2643012

[51] M. Taghdiri, “Inferring specifications to detect errors in code,”
in Proceedings of the 19th IEEE International Conference on

Automated Software Engineering, ser. ASE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 144–153. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2004.42

[52] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in GUI testing of android applications,” in Proceedings

of the 38th International Conference on Software Engineering, ICSE

2016, Austin, TX, USA, May 14-22, 2016, L. K. Dillon, W. Visser,
and L. Williams, Eds. ACM, 2016, pp. 559–570. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884853

[53] S. Khurshid and D. Marinov, “Testera: Specification-based testing of java
programs using SAT,” Autom. Softw. Eng., vol. 11, no. 4, pp. 403–434,
2004.

	Introduction
	Background and Motivating Example
	Threat Model
	Approach
	Formal Underpinnings
	Covert Overview
	Incremental ICC Analysis
	Addition of a New App
	Removal of an Existent App

	Experimental Evaluation
	Results for RQ1 (Consistency)
	Results for RQ2 (Scalability)
	Results for RQ3 (Efficiency)

	Related Work
	Conclusion
	References

