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[(CpoM),BgH44] (M = Zr or Hf): early transition metal
‘guarded’ heptaborane with strong covalent and
electrostatic bondingfi
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Among the series of stable closo-borate dianions, B HI2", the X-ray crystallographic structure of [B,H/12~
was determined only in 2011. To explore its chemistry and stability, we have isolated and structurally
characterized two new transition metal complexes of the heptaborane, [(Cp,M),BsHyl (Cp = n°-
CsHs; M = Zr or Hf). The structures of [(Cp,M),BgHi1] contain a pentagonal bipyramidal B, core,
coordinated by two {CppM} and two {BH,} units equatorially. Structural and spectroscopic
characterizations and DFT calculations show that [(Cp,M),BgH11] complexes are substantially more stable
than the parent dianion, in either [B;H-1%~ or ("BusN),[B;H5]. Our theoretical study and chemical bonding
analyses reveal that the surprising stability of the two new heptaborane metal complexes is due to multi-
center covalent bonds related to the two exo-{Cp,M} units, as well as electrostatic interactions between
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DOI: 10.1035/c75c05014c the {Cp,M} units and the B core. The facile syntheses of the heptaborane metal-complexes will allow
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1. Introduction

Since the early work of Alfred Stock on borane chemistry,'
syntheses and characterizations of polyhedral borane
compounds, especially with higher vertex closo geometries, have
attracted significant interest.>® As a result, the syntheses and
structural characterizations of closo-borate compounds with the
general formula [B,H,]*~ (n = 6-12) have been documented in
detail.*® After the first isolation of the closo-borate dianion
[B1oH10]”~ by Hawthorne in 1959, other members in the series
[B.H,]*” (n = 6-12) were discovered successively.® Interest in
the closo-polyhedral borane compounds was stimulated by the
first crystal structure report of icosahedral [K,(Bi,Hj,)] by
Lipscomb in 1960.” Interestingly, although extensive research
had been carried out, X-ray crystallographic study of the borate
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further exploration of their chemistry.

dianion [B;H,]>~ was still missing at that time, making the
[B,H,]>~ series incomplete. The only closo-heptaborate
compound, [B,Br,]*>~, was not known until the report of the
crystal structure of [(CsH;N),CH,][B;Br,].® It should be noted
that the parent [B,H,]*~ was partially characterized in Cs,[B,H]
using "B NMR and it was found to be the least stable polyhedral
ion.” The reported yield of [B,H,]*~ synthesized from NaBH,
after several steps was only 0.008%. As a result, an improved
synthesis and complete structural characterization of [B;H,]*~
were of general interest. Although a number of theoretical
studies on the structure and bonding of [B,H,]>~ have been
reported,' its convenient synthesis and full structural charac-
terization were established only recently by Bernhardt in 2011."*
In an effort to synthesize the neutral hypercloso-heptaborane
analogue, Siebert reported [B,Cl;(PMe;),], which was mainly
characterized using ''B NMR."?

The continuous efforts into the development of group 4
metalloboranes, both by the authors and others,** allowed us to
isolate and structurally characterize [(Cp,Zr),BsH;] (I) from the
reaction of [Cp,Zr(BH,),] with [BH; THF] recently. The single
crystal X-ray structural analysis of I revealed an open geometry
with a planar B; ring. Structural and bonding analyses
demonstrated that I indeed is a neutral triborane analogue. In
addition, theoretical results revealed the intriguing role of early
transition metal fragments {Cp,Zr} in the stabilization of the
borane core. The synthesis of I paved the way for accessing
group 4 metalloboranes readily utilizing the well-known boro-
hydride complexes, [Cp,M(BH,),] (M = Ti, Zr or Hf)." These
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experimental results suggested that other boranes might also be
stabilized synthetically by the {Cp,M} fragments of group 4
metals. This hypothesis motivated us to explore the group 4
metalloboranes extensively in a quest to synthesize higher
boranes stabilized by the coordination sphere of early transition
metals. In the current article, we present an efficient approach
for the synthesis of the first neutral transition metal protected
heptaboranes 1 and 2 by a simple borane condensation method
utilizing group 4 metal borohydrides. In addition, theoretical
calculations have been carried out to elucidate the stability and
bonding of the two new metallo-borane clusters.

2. Experimental

The reaction of [Cp,Zr(BH,),]'>'® with a large excess of [BH;
THF] was explored under vigorous conditions, yielding [(Cp,-
Zr),BoH;4] (1) with a novel B, core (Fig. 1a and Scheme 1).
Compound I'was also isolated as a side product. The isolation of
1 tempted us to explore the Hf analogue, since structurally
characterized hafnium-boron compounds are mostly
unknown, except for one borohydride compound, [Hf(n>-
BH,),]."” Following this idea, we have investigated the reaction
of [Cp,Hf(BH,),]"* with [BH; THF] under similar conditions.
This indeed led to the formation of [(Cp,Hf),BoH,] (2) (Fig. 1b
and Scheme 1) and [(Cp,Hf),BsH;4] (II) as stable crystalline

~e

Fig. 1 The crystal structures of [(CpaM),BgHy] [(@) M = Zr (1) and
(b) M = Hf (2)] (some of the hydrogen atoms in 2 could not be located);
details can be found in the ESI

This journal is © The Royal Society of Chemistry 2018
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Scheme 1 Synthesis of compounds 1 and 2.

solids. Once compounds 1 and 2 were isolated as colourless
solids, they were characterized using mass spectrometry, NMR,
IR and single-crystal X-ray crystallography. Detailed syntheses
and characterizations can be found in the ESL.}

3. Results and discussion

3.1. Characterizations

The ESI mass spectrum of compound 1 in 100%
MeCN (Fig. S1f) shows the ion signal corresponding to the
[M — (Cp,Zr)-BH,] fragment (experimental m/z = 316.1341;
calculated m/z = 316.1566). The isotopic distribution of the
experimental data matches well with the calculated results.
Furthermore, collision-induced dissociation (MS/MS) experi-
ments show that the voltage threshold for the total fragmenta-
tion of [M — (Cp,Zr)-BH,] is 25-30 V (Fig. S21). When the
mobile phase in the ESI was changed to 95% MeCN + 5% H,O,
the [M + CII" adduct was observed (experimental m/z =
585.1156; calculated m/z = 585.1369) with a good match in the
isotopic distribution between the experiment and simulation
(Fig. S31). The MS/MS experiments indicate that the major
fragment is [M — (Cp,Zr)] ™, with the voltage threshold of total
fragmentation observed at 5-8 V (Fig. S41). Similarly, the mass
spectrum of compound 2 in 100% MeCN (Fig. S5}) shows the
ion peak of [M — (Cp,Hf)BH,]~ (experimental m/z = 404.1802;
calculated m/z = 404.1919) with the voltage threshold of total
fragmentation observed at 30-35 V (Fig. S61). When 95%
MeCN + 5% H,0 was used as the mobile phase, [M + Cl|™ of 2
was observed again (experimental m/z = 761.1978; calculated
mjz = 761.2076) (Fig. S7f), which totally fragments to
[M — (Cp,Hf)]” at 8-12 V (Fig. S8}). All of the experimental
isotopic distributions for compound 2 also match very well with
the calculated results. The mass spectrometric analyses clearly
show the structural similarity between 1 and 2. Both of them
contain building units of {Cp,M} and {BH,} that can fragment
easily. The only difference is the slightly higher voltage
thresholds for 2.

In order to confirm the spectroscopic assignments and
determine the structures of 1 and 2, we did X-ray structure
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analyses (Fig. 1). The crystal structures of 1 and 2 both corre-
spond to a 7-vertex pentagonal bipyramidal core consisting of
a planar pentagonal Bs; belt at the equatorial position (the
average non-planar deviation of the B; ring is 0.0006 A for 1 and
0.019 A for 2). The core geometries of 1 and 2 are virtually
identical to the B, structure in X,[B,H;| (X = PPh, or "Bu,N),"
NazB,, and [(CsH;N),CH,][B,Br;].>*® The sum of the internal
angles corroborates well with the ideal pentagon (540° for
a pentagon, whereas it is 540.01° for 1 and 539.79° for 2). As
expected, slight distortions are observed for individual internal
angles, due to the asymmetry of the exo-{Cp,M} and exo-{BH,}
moieties. The presence of the exo-{Cp,M} and exo-{BH,} moie-
ties also supports the fragmentation channels observed in mass
spectrometry.

Another interesting structural feature of compounds 1 and 2
is the presence of the {Cp,M} “wings”, which are anchored to
the B, core through M-B-B and M-H-B interactions. The crys-
tallographic data show that the average B-B bond lengths in the
B, core of 1 and 2 are slightly shorter compared to [*Bu,NJ,[-
B,H,] and [B;H,]*", indicating a more stable B, core. Counting
of the electrons becomes obvious when one realizes that the exo-
{BH,} unit adds only one electron, like hydrogen." The core
geometry turns out to be [B,H,]>~, which is protected by two 14
electron [(Cp,M)H]" units. Alternatively, both compounds 1 and
2 can be considered as a fused cluster. As shown in Scheme S1,}
cluster 1 or 2 may be described as a fusion® of two arachno-MB;
{2[(14 + 12) + 6] = 64} moieties and a closo-B, {(4 x 7 +2) = 30}
moiety through two B-B edges {2(6 x 2 + 2) = 28}. This
arrangement of 1 or 2 generates an electron count of 66e which
is equal to the total cluster valence electron (cve) number of 66
(the cve number of [(Cp,M),BoHy3] =2 x 14+9 x 3 +11 x 1 =
66). Although the isolation and structural characterization of 1
and 2 are closely connected to those of [(Cp*Re),(B;H)],”* the
latter is highly electron deficient and shows an oblate-closo
geometry that is inconsistent with prior theoretical findings.*
Furthermore, the metal atoms in both 1 and 2 are positioned in
the same plane of Bs. Interestingly, both the Zr and Hf atoms
are in pseudo-tetrahedral geometries, contradictory to the
theoretical finding which suggests that metal atoms with rela-
tively diffuse frontier orbitals tend to occupy the higher-degree
sites.”

The "H and "'B{"H} NMR spectra of both 1 and 2 apparently
suggest a lower symmetry than that in the solid-state structures.
The hydrogen atoms in the compounds have been assigned
using "H-"'B{'"H} HSQC spectroscopy. The "'B{'H} chemical
shift of 1 at 6 = —3.6 ppm can be assigned to the axial boron
atoms (B, and By in Fig. 1), because the integration is twice that
of the other boron signals and the HSQC result clearly indicates
the attachment of hydrogen atom(s). To examine the fluxion-
ality of 2, temperature-dependent "H NMR spectroscopy was
undertaken (Fig. S21%). The 'H chemical shifts appearing at 6 =
—0.64 and —1.14 ppm can be assigned to two Hf-H-B protons
and the broad peaks at 6 = —3.26 and —3.42 ppm are assigned
to the exo-{BH,} units. In addition, the experimental 'B{'H}
NMR chemical shifts of 1 and 2 show reasonable agreement
with the theoretical values (error range 3-7 ppm) (Table S1%).
The unusual negative "'B{*H} chemical shift for the axial boron
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atoms, both in 1 and 2, prompted us to apply the nucleus-
independent chemical shift (NICS)*® criterion to investigate
the magnetic shielding in 1 and 2. The value of the NICS(0.5)
(—21.5 ppm) at the pentagonal plane of 1 is slightly more than
that of the NICS(0) (—18.5 ppm). Interestingly, the NICS(3) of
—6.2 ppm still shows a ring current indicating the presence of
induced diatropic ring currents which is typical for a three-
dimensional aromatic system (Fig. S35}). Qualitatively, the
NICS values observed for 2 (—22.2, —19.1 and —6.3 ppmy;
Fig. S361) are similar to those of 1 with slightly upfield chemical
shifts. Therefore, the existence of the aromatic system plays
a key role in the stabilization of 1 and 2.

3.2. Bonding analyses

An alternative description of compounds 1 and 2 is that they are
metal-stabilized closo-compounds without the necessity of
having any counter ions. In order to reveal the role of the metals
in stabilizing the intriguing B, core, bonding analyses of 1 and
2, as well as the naked dianion [B,H,]*~, were performed.
However, due to the presence of highly delocalized electrons in
such molecules, the bonding pictures established from the
molecular orbital (MO) analysis (Fig. S30 and S31}) cannot
provide direct insight into the chemical bonding. Thus, adap-
tive natural density partitioning (AdNDP)** analysis was
employed to provide the intuitive bonding patterns. The
bonding pattern obtained from the AANDP analysis indicates
the existence of both localized and delocalized bonds in
compounds 1 and 2 (Fig. S32 and S33%). Since the AANDP
results are similar for both compounds 1 and 2, only the case of
Zr is discussed here for simplicity (Fig. 2). Seven 2c-2e B-H o
bonds (Fig. 2f) can be found in 1. Four of them are localized at
the two exo-{BH,} units as expected. The other three, which are
similar to the B-H & bonds in [B;H,]*~ (Fig. 2a), can be localized
at the only equatorial non-bridged hydrogen and the two axial
hydrogens. The remaining two equatorial bridged hydrogens
have different bonding patterns, which will be discussed below.
Although five 4c-2e o bonds (delocalized between two adjacent
equatorial boron atoms and two axial boron atoms) can be
found in [B,H,]*>~ (Fig. 2b), only three of them are maintained
in 1 (Fig. 2g). The other two are replaced by two 5c¢-2e ¢ bonds
between the exo-{Cp,M}, the two axial and two equatorial
borons (Fig. 2k). Such interactions provide strong stabilizing
effects for the B, core, which is also the main reason for the
slightly shortened equatorial B-B bond lengths (Fig. S34}) in
the B, core upon coordination by {Cp,Zr}. By forming 5c-2e o
bonds with the metal atoms, the high charge density in the
naked [B;H,]>~ can be lowered significantly. Therefore, the
strong coulomb repulsion between the equatorial boron atoms
is reduced, leading to shorter B-B bond lengths and the more
stable B, core.

Three delocalized 7 bonds (Fig. 2h-j) can be found in the B,
core of 1. Despite the similarity between them and the three
bonds in the naked [B,H,]*~ (Fig. 2c-¢), the 7 bonds in 1 have
less symmetry due to the presence of exo-{Cp,M} and exo-{BH,}
moieties. Besides the two 5c-2e ¢ bonds (Fig. 2k) discussed
above, there are six more 3c-2e o bonds (Fig. 21-n) that

This journal is © The Royal Society of Chemistry 2018
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Seven 2c-2e B-H bonds
ON: 1.97

Five 4c-2e bonds
ON: 1.96

Three 4c-2e bonds
ON: 1.87-1.90

Seven B-H 2c-2e bonds
ON: 1.95

Two 5¢-2e bonds
ON: 1.97

One 6¢-2e bond
ON: 2.00

ON: 1.97

Two B-H-Zr 3c-2e bonds
ON:1.97
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One 7c-2e bond
ON: 2.00

One 5c¢-2e bond
ON: 2.00

ON:1.99 ON: 1.91

Two B-H-Zr 3c-2e bonds
ON:1.97

Two 3c-2e bonds
ON: 1.94

Fig. 2 AdNDP analyses of [B;H,]>~ (a—e) and 1 (f—n). The four Cp rings of 1 are omitted for clarity.

contribute to the extra stability of 1. These bonds are absent
from [B,H,]*": (a) two 3c-2e o bonds (Fig. 2I) between the exo-
{Cp,M}, the exo boron and an exo bridged hydrogen; (b) two 3c-
2e o bonds (Fig. 2m) between the exo-{Cp,M}, the equatorial
boron and hydrogen in the B, unit; (c) two 3c-2e ¢ bonds
(Fig. 2n) between the exo-{Cp,M}, the exo boron and the equa-
torial boron in B,. All of these multi-center bonds are crucial for
keeping the integrity of compound 1, as also revealed by the
large magnitudes of the NICS(0) values for these delocalized
bonds (Fig. S35 and S361). The enhanced stability of the B, core
in 1 and 2 is also reflected in the large magnitudes of the
NICS(0) values (—18.5 to —39.5 for 1; —19.1 to —39.8 for 2) in
comparison to that of the bare [B,H,]*” (—21.3 in Fig. S37%).
To further illustrate the strong stabilizing effect of the exo-
{Cp.M} (M = Zr or Hf) units, we studied the binding energies of
the system using DFT calculations. The binding energies were
calculated as the energy difference between the parent
[(Cp,M),BoH; ;] molecule and the sum of two separate frag-
ments of this compound at the PBE1PBE/Def2-TZVP level of
theory. The single point energies of two schemes were calcu-
lated: (a) one of the exo-{Cp,M} units (charge state +2) was
removed from the molecule, leaving the other part, [(Cp,M)
BoHy,], to have a —2 charge; and (b) similar to (a), but both
fragments were kept neutral. The energies of these two frag-
ments in each scheme were calculated separately with fixed
geometries. The binding energies for these two schemes were
21.2 eV and 9.3 eV for compound 1, respectively. The difference
between them, 11.9 eV, can be attributed to the stabilizing effect
from electrostatic interaction or ionic bonding. The 9.3 eV value
can be attributed to the stabilizing effect from the four multiple
center ¢ bonds (three 3c-2e ¢ bonds and one 5c-2e ¢ bond)
related to the exo-{Cp,Zr} unit or covalent bonding. As for 2, the

This journal is © The Royal Society of Chemistry 2018

electrostatic interaction was calculated to be 11.9 eV, while the
effect of covalent bonding was 9.6 eV. The slightly higher
binding energies of 2 also agree well with the slightly higher
voltage thresholds observed in mass spectrometry. Therefore,
the AANDP analysis and binding energy calculations have
revealed the crucial role of the exo-{Cp,M} and exo-BH, moieties
for stabilizing the whole (Cp,M),BoH;; framework.

3.3. Characterization of the by-product

Compound II (Scheme 1) which was isolated along with the
formation of 2 was separated using preparative thin-layer
chromatography (TLC), allowing the characterization of the
pure material. It was isolated as colourless crystals and char-
acterized using 'H and 'B{’H} NMR and IR spectroscopy and
single-crystal X-ray crystallography.” In order to confirm the
spectroscopic assignments and to determine the solid-state
structure of II, X-ray structure analysis was also undertaken
(Fig. S29%). The crystal structure of II resembles that of [(Cp,-
Zr),BsH;4] (I)."* The core geometry can be described as arachno-
triborane.?® It is worth noting that all of the B-B bond distances
of the B; core in II are significantly shorter as compared to the
other [B;Hg]~ compounds, such as [Na(B3;Hg)], [Cs(Bs;Hs)],
[Cr(BsHg),] and 1.7

4. Conclusions

In summary, we have presented a facile synthetic method for
two early-transition-metal-protected heptaborane compounds 1
and 2. They were synthesized using the borane condensation
method utilizing group 4 metal borohydride compounds as the
starting materials. Single crystal X-ray crystallography revealed
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the ubiquitous presence of a pentagonal bipyramidal B, core.
Our synthetic route successfully overcomes challenges faced
previously in the continuing effort of isolating [B;H,]*~ and its
derivatives. The theoretical study revealed the intriguing role of
the early transition metals in stabilizing the borane fragments
via multicenter coordination bonding. The results described
here lead to a new path towards the search for higher borane
frameworks that go beyond the icosahedral topology in the
coordination sphere of early transition metals. The current
work may provide strategies for eventually synthesizing bor-
ospherenes and other novel boron clusters,?® for which CpM-
type ligands have been suggested as ideal protecting ligands.*
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