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An Alternative Analytical Approach
to Associative Processing

Soroosh Khoram ™, Yue Zha", and Jing Li

Abstract—Associative Processing (AP) is a promising alternative to the Von
Neumann model as it addresses the memory wall problem through its inherent
in-memory computations. However, because of the countless design parameter
choices, comparisons between implementations of two so radically different models
are challenging for simulation-based methods. To tackle these challenges, we
develop an alternative analytical approach based on a new concept called
architecturally-determined complexity. Using this method, we asymptotically evaluate
the runtime/storage/energy bounds of the two models, i.e., AP and Von Neumann. We
further apply the method to gain more insights into the performance bottlenecks of
traditional AP and develop a new machine model named Two Dimensional AP to
address these limitations. Finally, we experimentally validate our analytical method
and confirm that the simulation results match our theoretical projections.

Index Terms—Associative processors, analysis of algorithms and problem com-
plexity, modeling techniques, models of computation
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1 INTRODUCTION

ASSOCIATIVE Processing (AP) is a promising computational para-
digm that aims to tackle the Von Neumann bottleneck by virtue of
a radically different machine model that natively supports in-
memory computations. However, practical implementations of AP
using CMOS technology incurred prohibitive costs. These cost con-
straints have been recently alleviated with the advances in the
Non-Volatile Memory (NVM) technologies, reigniting interest in
associative processors [4], [5], [10].

Despite the advantages of AP, comparing implementations of
such an unconventional model with conventional Von Neumann
architectures remains challenging due to the lack of a standard
evaluation procedure. Existing approaches typically require
exhaustive simulations at different levels, that is, system, micro-
architecture, logic gate, and circuit. This process is tedious and
time consuming because of the numerous simulation parameters
that can be chosen from the large design space.

In this paper, we address this challenge by taking an alternative
analytic approach. In particular, we make three key contributions.
The first contribution is to develop an analytical method that serves
as a theoretical basis for evaluating different machine models. This
method focuses on the evaluation of the high-level machine model,
ignoring implementation details. With this approach, we gain fur-
ther insights into the performance bottlenecks of the traditional AP
machine model. Specifically, we show that the runtime of this
model (here also referred to as 1D AP) is bounded by the word-
size as it only supports one-dimensional inter-word parallelism.

Another contribution of this paper is to develop a new machine
model, namely Two Dimensional AP (2D AP), based on our theoreti-
cal analysis of the traditional AP. The 2D AP improves performance
by exploiting both intra-word and inter-word parallelisms. We further
apply the analytical method to better understand the design trade-
offs of 2D AP, which would be costly to obtain using simulations.

The third contribution is to validate our analytical method
through full system simulation using an in-house cycle-accurate
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AP simulator (for both 1D AP and 2D AP) integrated into the gem5
system simulator. We show that ignoring constants and low-level
implementation details in our theoretical projections does not lead
to a different conclusion from the experimental results, ascertain-
ing the accuracy of our analysis.

2 BACKGROUND

AP is a general-purpose parallel machine model that is inherently dif-
ferent from the traditional Von Neumann model. In the Von Neu-
mann model, the processor (CPU/GPU/FPGA/CGRA) reads the
input data from the memory and writes the computation results back
afterwards. Data movement occurs through the system bus and
memory hierarchies, all of which impose significant latency and
energy penalties. Conversely, AP operates concurrently on every
word where data is stored, eliminating the need for data movement.

The main building blocks of the AP model are depicted in Fig. 1a.
It consists of a Content Addressable Memory (CAM), a set of spe-
cial-purpose registers (key, mask, and tags) and a reduction tree.
The CAM comprises an array of bit cells organized in bit columns
and word rows. Key is used to store a value that can be written into
or compared against the CAM words. Mask defines the active fields
for these compare and write operations, enabling bit selectivity.
Tags are used to store compare results for words and are set to logic
“1” upon matches. The combination of key and mask can be used to
write to all tagged words in parallel. Finally, the reduction tree post-
processes the compare results stored in the tags.

Traditional AP performs computations in a bit-serial, word-paral-
lel manner. Fig. 1 illustrates this using an example of adding two
N-element vectors with m-bit elements, A and B, to produce a
result vector, R, and a single-bit carry, C. Each single-bit addition
required for an m-bit addition is carried out in a series of lookup
table (LUT) passes based on Table 1 (ID AP). In each pass, one
entry of the table (a 3-bit input pattern, A, B, (i in the table) is com-
pared against the contents of the corresponding bit columns of all
words (1-N) of the CAM, tagging the matches; the results (two-bit
output pattern, R and Co) are then written into all tagged rows.
The carry-out, Co, overwrites the carry-in (%, and thus both are
stored in column C in Fig. 1. Furthermore, assuming R to be ini-
tially zero, some patterns result in no changes (Table 1, 1D AP).
Therefore, only 5 patterns (marked as pass in Table 1) are looked
up. AP repeats these steps for all m bits of R for full additions.

In traditional AP, the runtime is independent of the dataset size.
That is due to the constant-time lookups of AP, which exploit its
abundant internal bandwidth for in situ computations. As long as
the data fits into one or multiple APs, lookup time remains con-
stant even as the dataset size grows.

3 ANALYTICAL METHOD

We develop a mathematical model that, without loss of generality,
can be applied to quantitatively evaluate the processing capabili-
ties of a diverse set of architectures (CPU, GPU, NP, and AP) by
abstracting the details of technology/micro-architecture imple-
mentations and the workloads into several high-level architectural
and algorithmic parameters. We further apply the model to derive
a new method for architecture evaluation based on a concept called
architecturally-determined complexity, which we define as the theoret-
ical bounds for the computation resources an architecture requires
to perform a task. Here, by architecture we are referring to the
high-level machine model. Specifically, the proposed method
asymptotically, evaluates the runtime, storage space, and energy of
performing computations on a specific architecture, ignoring con-
stants and low-level factors. In this sense, it is different from the
commonly used application-driven complexity, i.e., the Big O nota-
tion, which analyzes the asymptotic behavior of time and space
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Fig. 1. The machine model of a) 1D AP b) 2D AP. 1D AP performs operations bit-serially while 2D AP has intra-word parallelism.

complexity of running algorithms specifically on Von Neumann
architectures. In this section, we present the details of the model
and elaborate our method to find the architecturally-determined
complexity for both AP and CPU, and provide insights on the
architectural limitations of traditional AP.

3.1 Runtime Analysis

Our runtime model comprises two components: 1) computation
cycles that are spent on useful computations, and 2) hazard penal-
ties that are spent on resolving cash misses, branch mis-prediction,
etc. Each of these components further consists of two terms: 1) a
hardware dependent term, C},, representing the hardware cycles
spent on processing one input data word, and 2) a workload-
dependent term, Ny, representing the frequency of C{ . Thus, in a
vector addition for example, the key terms C.,,,, and N, are the
number of cycles spent on addition and the number of single addi-
tions (Iength of the vector), respectively. In addition, we consider
the number of active cores, N, for the computation component.
Calculating the runtime requires all these values including hard-
ware-dependent terms (C| ;). However, since C{)’s are generally
constant (O(1) complexity), they can be ignored for the asymptotic
analysis. We further argue that hazard frequencies are, in the worst
case, the same complexity as computation frequencies, and thus
can also be ignored. We next present the evaluations for CPU and
AP, focusing on the remaining terms in our asymptotic analysis.

_ C N:omp + Z OI‘,NL'

comp
N, core icH

Cl cles

H = {cache miss, branch miss — prediction, . . .}.

The single-core CPU has only one active core (V. = 1). This simpli-
fies the model to that of previous works [3], which can be used to
derive the required terms. Since the complexity of N, is determined
by the input data size, the architecturally-determined runtime com-
plexity derived from this model is the same as the Big O complexity.

AP, conversely, can reduce the complexity by an order com-
pared to CPU. This is due to the tremendous parallelism of AP,
allowing for very large values of N, with the same complexity as
the dataset size. We will explore the advantages and limitations of
AP with an example in Section 3.4.

3.2 Energy Analysis

Similar to the runtime analysis, the energy consumption can be
estimated by partitioning it into computation and hazard terms as
shown in Equation (2). Different from the runtime analysis, N,
does not appear in the equation as the energy is summed over all
cores. Similar to before, hardware-dependent terms, Ey,, are com-
puted through benchmarking and asymptotic analysis is applied
to the data-dependent term, Neg,-

Enm‘{]y = Ecomchomp + § Ez',Ni~
iceH

(2)

3.3 Storage Analysis

In the storage complexity analysis, we evaluate how the storage
space requirements grow with the input problem size. In the case
of CPU, this analysis is similar to the conventional asymptotic

storage studies. The storage complexity of AP can be estimated
based on the space required to store the input/output data and the
intermediate variables.

3.4 Key Insights on Traditional AP

We apply the proposed method to derive the architecturally-deter-
mined complexity of runtime, energy, and storage space of tradi-
tional AP, using a case study on vector addition. Since AP
performs all additions in parallel (Section 2), assuming two vectors
of size N' with m-bit words, we have O(N) values of Neym, and
Neore- This results in constant time operation with respect to A.
Neomp on AP further contains a word size-dependent component
since the addition is decomposed into a set of compares and writes
as defined in AP’s machine model. In this case, AP requires 5m
compare and write passes resulting in O(m) addition runtime
(since Neopp = O(mN')). The energy term, E,,,,, can be similarly
evaluated by decomposing addition into compares and writes. A
compare consumes energy in words upon a mismatch, while a write
consumes bit update energy in matching words. In the addition
example, we can estimate that each compare results in mismatches
in  of all words. The remaining { (matching words) will have 2 bit
writes (R and C) in the subsequent write operation. Thus, the AP
has an average energy consumption of (£+2)5m per word
(O(mN) overall). We note that this means, vector addition on AP
has O(m?N') Energy-Delay Product (EDP). Finally, this addition
needs to store the two operands (A and B), one output (R) and one
carry bit (C) which results in a space requirement of 3m + 1 per
word, with O(m) complexity. We see that the AP performance and
energy efficiency are bounded by the word size (m). This is because
traditional AP limits the parallelism to the inter-word dimension,
which is why we also call it 1D AP. We address this limitation by
introducing a new machine model.

4 Two DIMENSIONAL AP

To address the limitations of 1D AP, we propose 2D AP, which
exploits two dimensions of parallelism, inter-word and intra-word.
Here, we first describe the 2D AP model. Then, we explain how it
performs computations using the same vector addition example.
We will show that the 2D AP reduces the runtime and EDP com-
plexity compared to 1D AP.

Fig. 1b depicts the abstract machine model of the proposed 2D
AP. In 2D AP, a word entry is broken down into n subword entries,
each of which is associated with its own tag so that all subwords
can be simultaneously compared against the key. Because of this,
2D AP is capable of performing computations on each word multi-
ple bits at a time. Furthermore, all subword tags of each word are
logically ANDed together to create a word tag. This tag is used
when we need to compare words against a wide key that spans
across multiple subwords.

We will show how this extra dimension of parallelism enables
faster computations on 2D AP using the addition example. As Fig. 1b
shows, the m-bit operands, A and B, are divided into n subwords.
Each subword is responsible for calculating ™ bits of the result R,
which it performs in parallel with other subwords. However, the
carry chain can limit this parallel computation. To solve this issue,
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TABLE 1
Addition Lookup Table (LUT) for 1D AP and 2D AP

Ci B A] Co R | IDAP | 2D AP

0 0 0 0 0 | nochange | nochange
0 0 1 0 1| pass no change
0 1 0] 0 1] pass no change
0o 1 1 1 0 | pass pass

1 0 0 0 1| pass pass

1 0 1 1 0 | nochange | nochange
1 1 0 1 0 | nochange | nochange
1 1 1 1 1| pass no change

the 2D AP first speculatively calculates the carry-in for all subwords,
then it finds the valid carry-in for each subword, and finally performs
subword additions in parallel. This is done in three steps:

1. Speculative Carry Calculation. The carry-out for each sub-
word is calculated for both possible values of carry-in (0
and 1). This is done by applying a simplified version of the
LUT (Table 1, 2D AP). Since only the carry-out for each
subword needs to be calculated, this LUT has fewer
required passes, resulting in faster operations. This step
requires 4 cycles (2 LUT passes for each speculative
carry). After this step is finished, for each subword, two
speculative carry bits are available in each subword, but
only one of them is valid.

2. Valid Carry Selection. The valid carry-in for the first sub-
word (initially 0) is chosen. Based on that, the carry-in of
the next subword is chosen and so on. This step is per-
formed sequentially. However, its runtime depends on the
subword count n, instead of the word size m. This step
requires 2n cycles.

3. Result Generation. Finally, the real carry-in for each sub-
word has been calculated in step 2. Thus, the same LUT for
the operation as in 1D AP (as shown in Table 1) is again
applied to all subwords using real carry-ins to calculate the
final result in parallel. This step requires 3 cycles (5 LUT
passes per bit).

By adding the runtimes for these three steps, we get a total run-
time of 22 + 2. Optimizing this result for n givesus n = 3,/Zand a
total runtime of 6+/2m with O(y/m) complexity. Table 2 shows that
the 2D AP has a similarly lower complexity for other arithmetic
operations as well. This reduced complexity does incur extra space
for the speculative carry bits, but the overhead increases linearly
with n(O(y/m)) and thus does not affect the space complexity. This
implementation also consumes some extra energy for the first two
steps, which equals to 2m + 3n per word. Nonetheless, this increase
in energy does not change the energy complexity. In fact, since the
2D AP has an EDP complexity of O(m+/m) as opposed to the O(m?)
complexity of the 1D AP, it is more energy efficient.

5 INSIGHTS BASED ON THE ANALYSIS

In this section, we present the insights from our analysis on the 1D
AP, 2D AP, and CPU models. Specifically, we compare representa-
tive arithmetic operations and algorithm benchmarks for these
architectures. Our analysis indicates that applications with poor
data locality, simple computations, and high data-level parallelism
can greatly benefit from the AP architecture.

Arithmetic operation analysis. The results presented in Table 2
show that by following this method, we can improve performance
and energy efficiency complexity for various operations. We note
that the value of n is ultimately a design parameter that needs to be
determined by architects. However, our analysis shows that the the-
oretical optimal n varies across different arithmetic operations and
choosing the optimal value for one could lead to sub-optimal results
for others. Nevertheless, such a sub-optimal choice of n leads to the
same improvements in complexity as the optimal value. Thus,
based on our complexity analysis, 2D AP outperforms 1D AP in all
operations and, as the word size m increases, it exhibits further per-
formance and efficiency improvements over the 1D AP.

Algorithm analysis. We further apply the method to derive the
architecturally-determined complexity for four benchmarks run-
ning on 1D AP, 2D AP, and CPU. We choose BitCount [6], blow-
fish, gsort, and kNN [2] in our evaluation and summarize the
results in Table 2. From these results, we can see that 1) The CPU
performance has a higher complexity with respect to the total input
dataset size N resulting from the constant-time lookups of AP. Of
note also is the lower AP complexity of qsort which has irregular
memory accesses, implying that the AP is suitable for applications
with poor data locality. That is because AP significantly reduces
the latency of accessing the different memory locations using asso-
ciative lookups and in-memory processing. 2) With the exception
of the average case of qsort, the CPU energy efficiency drops faster
than both APs as the dataset size increases. 3) Compared to 1D AP,
2D AP achieves lower runtime and EDP complexities due to its
lower arithmetic operation complexities. Consequently, 2D AP
achieves the highest performance and efficiency for these algo-
rithms. These trends are likely to hold in similar data-intensive
algorithms that perform highly-parallel arithmetic operations.

6 EVALUATION AND VALIDATION

In this section, we validate our analysis using full system simula-
tions and experimentally verify the scaling trends of runtime, stor-
age, and EDP of key primitive operations and algorithm
benchmarks on CPU, 1D AP, and 2D AP.

Experimental Setup. For our full system simulations, we use
heavily modified gem5 [1] and DRAMSim?2 [9] simulators to obtain
cycle-accurate performance results for both AP architectures. We
extract the physical parameters of the AP array from 180nm 1DIR
cross-point cells [8], scaled to the 22nm technology node. The

TABLE 2
Comparison of CPU, 1D AP, and 2D AP for Arithmetic Operations and Algorithms, Using the Analytical Method
Arithmetic Operations Algorithms
Add Mult BitCount gsort (average/worst case)  blowfish kNN
g CPU o) ONlog N) / O(N?) O(N) o)
£ 1DAP 5m ~ O(m) 4m? ~ O(m?) O(m?) O(mN) O(m) O(m?)
2 2DAP 6v2m ~ O(y/m) 6myv/2m ~ O(m/m) O(my/m) O(ymN) O(ym) O(my/m)
° CPU ON) OW) OWN) OWN)
é 1DAP 3m+1~ O(m) 4m ~ O(m) ON) OW) OWN) OWN)
@' 2DAP 3m+9,/F ~ O(m) 4m +9,/F ~ O(m) OWN) ON) OWN) OWN)
CPU oN?) ON?log?N) / ON?) ON?) oN?)
& 1DAP 28m? ~ O(m?) 24m* ~ O(m*) O(m*N) O(m*N?) O(m*N) O(m*N)
HO2DAP  46mn2m +54m ~ O(my/m)  T6miy/m+12mP ~ O(mPym)  O(m2y/mN) o(mN?) Oo(mN)  O(m*y/mN)

N: dataset size, m: word size.
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Fig. 2. The runtime, space, and EDP for addition on 1D AP and 2D AP. Results
have been normalized to the first 1D AP result.

Runtime
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Fig. 3. The runtime, space, and EDP for multiplication on 1D AP and 2D AP
Results have been normalized to the first 1D AP result.

TABLE 3
Turning Points of A" when 1D/2D AP Outperform CPU
BitCount gsort blowfish kNN
1D AP 9.5 kB 3.3 MB 5.3 kB 25 MB
2D AP 3.6kB 1.2MB 4.1kB 12 MB

latency and energy numbers are obtained through Cadence and
HSPICE simulations with the 22nm PTM low-power model [7]. We
also use an 8-core CPU, used in previous works [4], as a baseline.

Validation on arithmetic operations. First, we evaluate runtime/
storage/EDP of running fixed-point additions and multiplications
on both APs for various word sizes (m). In Figs. 2 and 3, we con-
firm that the experimental results follow the same scaling trends as
our theoretical projections, summarized in Table 2. Furthermore,
we show that the performance and EDP gaps between 2D AP and
1D AP increase when increasing word size. These improvements
come at a small storage cost which increases at a slower, O(y/m)
rate, as was predicted.

Validation on benchmark algorithms. We validate the proposed
model and complexity analysis using simulation. We extract the
model constants for the CPU based on a previous work [3], which
calculates the CPU cycles for running the algorithm and handling
cache miss hazards. We perform cycle-accurate simulations to
extract the AP constants including Cey, and E,,, as well as C;
and E; to account for the bandwidth latency and energy consump-
tion of the memory lanes. Using these constants and the proposed
model, we calculate the turning point when APs outperform CPU,
as shown in Table 3. We then confirm these results through experi-
ments shown in Figs. 4, 5, and 6. In Figs. 4 and 5, we compare per-
formance, storage space, and EDP of running BitCount and KNN
on CPU, 1D AP, and 2D AP, for different dataset sizes (N). As
expected, with the increase in AV, the CPU runtime of BitCount and
KNN increases linearly, while the runtimes of both APs remain
constant. This results in the AP performances surpassing CPU. The
value of A corresponding to this point is consistent with our pre-
diction (Table 3). Moreover, both APs show lower EDPs than CPU
and the gap between the CPU and APs increases for larger data-
sets. Comparing the two APs, 2D AP has lower runtime and EDP
due to its faster and more efficient arithmetic operations. Finally,
in Fig. 6, as the word size of BitCount increases, the runtime and
EDP of 2D AP increase more slowly than 1D AP. Overall, these
experiments confirm that 2D AP achieves better performance and
energy efficiency than CPU and 1D AP.
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Fig. 4. The runtime, space, and EDP for CPU, 1D AP, and 2D AP running BitCount,
with respect to dataset size. Results have been normalized to the first CPU result.
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Fig. 5. The runtime, space, and EDP for CPU, 1D AR, and 2D AP running kNN, with
respect to dataset size. Results have been normalized to the first CPU result.
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Fig. 6. The runtime, space, and EDP for CPU, 1D AP and 2D AP running BitCount,
with respect to word size. Results have been normalized to the first CPU resullt.

7 CONCLUSION

In this paper, we developed an analytical method based on the con-
cept of architecturally-defined complexity, which effectively
addressed the limitations of simulation-based approaches for com-
paring radically different architectures. Using this method, we
gained better insights into the performance bottlenecks of the tradi-
tional AP. We then proposed a new machine model called 2D AP,
which alleviated these limitations. Finally, we experimentally vali-
dated the proposed method using simulation and confirmed that
the results match our theoretical projections.
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