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Abstract

Leveraging massive electronic health records (EHR)
brings tremendous promises to advance clinical and pre-
cision medicine informatics research. However, it is very
challenging to directly work with multifaceted patient
information encoded in their EHR data. Deriving ef-
fective representations of patient EHRs is a crucial step
to bridge raw EHR information and the endpoint ana-
lytical tasks, such as risk prediction or disease subtyp-
ing. In this paper, we propose Health-ATM, a novel and
integrated deep architecture to uncover patients’ com-
prehensive health information from their noisy, longitu-
dinal, heterogeneous and irregular EHR data. Health-
ATM extracts comprehensive multifaceted patient in-
formation patterns with attentive and time-aware mod-
ulars (ATM) and a hybrid network structure composed
of both Recurrent Neural Network (RNN) and Convolu-
tional Neural Network (CNN). The learned features are
finally fed into a prediction layer to conduct the risk pre-
diction task. We evaluated the Health-ATM on both ar-
tificial and real world EHR corpus and demonstrated its
promising utility and efficacy on representation learning
and disease onset predictions.

1 Introduction

The broad adoption of electronic health record (EHR)
systems has provided clinicians and researchers unprece-
dented resource and opportunity for conducting health
informatics research. However, there are many chal-
lenges of working directly with raw EHR, such as spar-
sity, longitudinality, irregularity, etc. Therefore, deriv-
ing effective and robust representations for EHR is a
critical step for bridging EHR and endpoint analytical
task, such as risk prediction or disease subtyping [18].
From the data mining perspective, EHR representa-
tion learning is essentially the feature engineering pro-
cess. Recently, there are quite a few different techniques
being proposed for conducting such process. To name a
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few, Wang et al. [30] proposed a convolutional matrix
factorization approach to detect temporal patterns from
patient EHR corpus. Zhou et al. [35] aggregated raw
EHR events into super features and used them to repre-
sent patients’ health records, so that the dimensionality
of feature space got reduced and the representations be-
came much denser. More recently, researchers have also
started to apply deep learning methods to extract more
abstract EHR representations. For example, Cheng et
al. [6] proposed to represent each patient’s record as a
temporal matrix with time on one dimension and clini-
cal events on the other dimension, and then build a four
layer convolutional neural network model for extracting
temporal patterns as well as performing risk prediction.
In [25], the authors presented a three-layer stack of de-
noising autoencoders to capture hierarchical regularities
and dependencies in the aggregated EHRs and used it to
facilitate predictive modeling. In addition, other deep
models were also proposed with particular challenges
being targeted, e.g. more attention on relevant clinical
events and better interpretability [10] or including more
focus on temporal challenges in modeling [4, 8].

Despite the initial success of these works, there are
still many challenges that the existing research has not
addressed. We list some of them as follows.

e Irregularity and heterogeneity: Due to the
complexity arising from the heterogeneous mani-
festation and progression of many diseases, even
for patients having the same disease, they might
have heterogeneous health conditions or comorbidi-
ties (i.e. co-occurring conditions), which are en-
coded in their health records. Such complexity and
heterogeneity is hard to represent and would affect
learning and prediction.

e Target-Awareness: Neural processes of
knowledge involve ”attention” on relevant
information[20, 13].  Although patients’ EHR

includes various types and huge amounts of clinical
events, a large part of them could be irrelevant.
Therefore, we follow the principle of neural pro-
cessing to focus more on the most pertinent sets
of clinical events, rather than using all available
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information. The attention has been introduced in
learning health record representation, e.g. the RE-
TAIN model [10]. However, the attention weights
in [10] are generated only from the hidden states of
the recurrent neural networks without considering
the target information. Such strategy consequently
weakens the interpretability and effectiveness of
the model. In fact the experimental results in
[10] also show that the RETAIN model did not
gain much performance boost from adopting the
attention mechanism.

e Temporality: Patients’ health conditions evolve
over time. The temporality encoded in time stamps
of the clinical events reveals important informa-
tion on impending patient health conditions [8]. In
most related deep models, time stamps are either
not accounted in the learned representation or not
accounted in disease prediction[4] or only used to
predict near-term subsequent events [8]. Ignoring
modeling time stamps may compromise the pre-
diction performance depending on the nature of
events, disease mechanism and other factors.

To address those challenges, we propose an integrated
deep architecture called Health-ATM (Attentive Time-
aware Model) for patient representation learning and
risk predictions. Building upon a novel time-aware
convolutional neural network as well as a task-specific
target-aware attention mechanism, the proposed model
could achieve multifaceted characterization of clinical
event patterns (e.g. contextual, temporal, time-aware,
structural, and relevant) that occur across multiple hi-
erarchies (single events of different categories, events
during the same visit, temporal events scatter over sev-
eral visits, etc). Consequently the Health-ATM could
explore patient health information in a comprehensive
way. It is worthwhile to highlight the following contri-
butions of the proposed model.

e Hybrid CRNN to capture global structure
and local features: To resolve irregularity and
heterogeneity requires better feature abstraction
from raw EHR. Therefore we propose a hybrid con-
volutional recurrent neural network for joint fea-
ture extraction and temporal summarization. In
the CRNN structure, a bidirectional GRU enables
the networks to capture global structure via model-
ing the nonconsecutive event interaction and infor-
mation decaying of patients’ clinical events. Joint
modeling of CNNs assumes these temporal inter-
actions are in different abstraction levels and can
be extracted by temporal convolution operators. A
pooling strategy on these local correlations also ex-
tracts invariant regularities.
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e Time-aware convolution: Time stamps are al-
ready demonstrated useful in predicting future
events [141]. For example, Choi et al. [3] integrated
time information into their RNN based models to
predict the occurrence and timing of near-term sub-
sequent events. Our work differentiates from pre-
vious works since task-wise we focus on prediction
of far-future events. While model-wise, we design a
new time-aware convolutional layer by integrating
time stamps into the original convolutional layer
and re-weight more abstract temporal interactions.
The weights in convolution would be adjusted ac-
cording to the event time-stamps, so that the as-
sumption that temporally close events would be
more relevant to the prediction target [34] could
be captured.

e Target-aware attention: Doctors make diag-
noses based on clinical evidences that are related
to the target diseases or conditions. We mimic
this heuristic using a target-aware attention design.
This component allows the model to pay more at-
tention on relevant tokens with respect to the dis-
ease of interest. Different from the use of attention
mechanism in [10], we embed the target events into
the same space as the observed events, and use not
only hidden vector representation of the observed
events but also the embedding vector of the tar-
get event to get the attention weights for each to-
ken, so that the learned model could benefit from
information of target events and become more in-
terpretable. As a result, our model can learn ef-
fective task-specific strategies for where to look on.
The experimental results also suggest that a target-
aware attention model could facilitate learning and
improve prediction .

2 Related Work

In this section we briefly review the existing works that
are closely related to patient representation learning.
The patient representation learning (i.e. patient pheno-
typing) is a key step to resolve the data challenges in
raw EHR and prepare them for downstream data-driven
tasks, e.g. predictive modeling [19]. Existing works on
EHR representation learning include traditional meth-
ods and deep learning approaches.

Traditional methods often take raw clinical events
or event groups as features and obtain EHR represen-
tation as combinations of clinical events via some opti-
mization procedure. They often focus more on demon-
strating that some chronic diseases and their corre-
sponding medication events are predictive, for exam-
ple, the vector based approach in [32],tensor based
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approach in [17], multilinear sparse logistic regression

model in [31], and convolutional matrix factorization ap-
proach [30] for modeling the temporalities among clini-
cal events.

Recent years, deep models become a preferred ap-
proach for EHR representation learning due to their
ability to learn complex patterns from data to character-
ize higher-level correlations among clinical events. Vari-
ous deep mechanism or embedding techniques have been
adopted to generate better EHR representations. For
example, word2vec embedding was used to learn low-
dimensional representations of medical concepts [12] to
generate dense and contextual-embedded features. [0]
proposed to represent each patient’s EHR as a tem-
poral matrix with time on one dimension and clinical
events on the other dimension, and then build a four
layer convolutional neural network (CNN) for extracting
phenotypes and perform prediction. In [25], the authors
presented a three-layer stack of denoising autoencoders
to capture hierarchical regularities and dependencies in
the aggregated EHRs and used it to facilitate clinical
predictive modeling.

To make EHR based disease prediction, sequential
prediction approaches such as recurrent neural networks
(RNN) or RNN-variants were often applied. For ex-
ample, [11] developed an RNN based model to pre-
dict early onset of heart failure. Later in [10], it has
been demonstrated reverse-order RNN performs better
at some clinical prediction tasks. In addition, the atten-
tion mechanism has been explored to allow the model
to focus on influential past visits or events, e.g. the RE-
TAIN model [10]. However, their attention strategy is
not target-aware since the attention weights in [10] are
generated from only the hidden states of the RNN for
the observed clinical events. This strategy weakens the
interpretability and effectiveness of the model. Other
than the attention mechanism, other deep models were
also proposed with particular challenges being targeted,
e.g. more focus on temporal challenges in modeling
[4, 8], or incorporating hierarchical information inher-
ent to medical ontologies [9]. However, there still lacks
an integrated model that can simultaneously and fully
represent multifaceted patient information to uncover
patients’ comprehensive health condition.

3 Method

We are now ready to present the Health-ATM, a deep
architecture that provides synergistic representation
learning to predict the occurrence of a disease e (or
multiple diseases) given initial input represented as
sequences of clinical events of Length T: ®;, xo,...,
xr. Each clinical event x; is represented by a medical
code and associated with a visiting time stamp t;;
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Figure 1: The proposed Health-ATM architecture.

and the target event is generally a diagnosis event
which indicates a disease. A visit may contain multiple
codes at the same time, but here we regard each
code as a single clinical event, because we want to
get finer-grained and interpretable attention weights
between target and observed event in the following
layers. Taking embedded clinical events as input, we
extend an RNN model with adding a novel target-aware
attention mechanism to take advantage of the target
embedding information; and a CNN structure to a time-
aware ConvNet to capture the time stamp information.
The Health-ATM architecture is illustrated as in Figure.
1. In the following we describe the detailed design of the
Health-ATM architecture.

3.1 Basic Layers: Contextual Embedding and
RNN Learning distributed representations or word
embeddings has proved particularly useful in various
natural language processing tasks, and has also gained
initial success in medical concept embeddings [14, 12].

Similar to [I14], we processed the EHR training
dataset so that diagnosis codes, medication codes, pro-
cedure codes are laid out in a temporal order, and each
code represents a clinical event. Then using the context
window size of 15, and applying the CBOW model of
word2vec [24], we were able to project all these medi-
cal codes into the same lower dimensional space, where
similar or related codes are embedded close to one an-
other.

The output of the contextual embedding layer v
would be directly fed into the RNN layer to further
generate temporal patient representations. RNN is a
natural tool to model sequences and has received much
attention in this field already [11, 4, 8, 10]. Following
the procedures in [11], we adopt the GRU-based RNN
structure [7] in our model. In addition, we extend the
single-directional GRU to bi-directional GRU to capture
both previous and future context information.

3.2 Target-Aware Attention Mechanism for In-
terpretable Patient Representation Attentive neu-
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ral networks have been successfully applied to a wide
range of tasks, such as machine translation [3] and read-
ing comprehension [16]. In healthcare, there has also
been some works starting to study the benefit from the
attention mechanism, e.g. the RETAIN model [10].
However, their strategy of only generating attention
weights from the hidden states of the recurrent neural
networks weakens the interpretability and effectiveness
of the model, hence does not provide much performance
gain.

Here for Health-ATM, we introduce an alternative
attention mechanism to allow the model to pay more
attention on target-relevant clinical events, as well as
make the results more interpretable. Intuitively, not
all clinical events are relevant to the target disease.
When a doctor diagnoses a disease, the doctor may
only examine the possibly relevant historical events
based on their professional experiences. So ”attention”
should not be only decided by the historical events,
but also impacted by the target. In our problem, the
target disease is also represented by a medical code
(a diagnosis) which occurs in the EHR training data.
Hence after embedding all medical codes in Section 3.1,
the target is in the same embedding space as the input
events, and we can take advantage of the information
from target events.

Then we calculate the attention weights for each
position in the input sequence. Particular, given the
vector representation of the i'" event h; (i.e. the RNN
hidden state at position i), the vector representation of
the target disease v. (i.e. the embedding vector of the
target diagnosis event e), the attention weight between
v, and h; is computed by:

exp(gi,e)
3.1 Gie = =7~
() >, exp(g.)
(3.2) Jie = F(hz, ’Ue) = tanh(hi -W - ’Ue).

where W is the weight matrix parameter for g; .. The
attention weights could indicate the importance of the
corresponding clinical events when predicting a special
target disease. Then we reformulate the hidden states in
previous layers to get new context vectors and use them
as input for the next layer: ¢; = a; ch; for i =1,2...,T.

3.3 Time-Aware ConvNet for Temporal Infor-
mation Integration In the EHR data, each clinical
event is associated with a time stamp. We develop a
time-aware convolutional neural network above the re-
current layers in order to utilize higher-level features as
well as to integrate the time stamps to address the two
following considerations.

Firstly, to capture those higher-level temporal in-
teractions beyond what RNN can model, we design a
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hybrid CRNN structure for joint feature extraction and
temporal summarization. In the hybrid structure, the
previous bidirectional GRU layers enable the networks
to capture global structure via modeling the interac-
tions between nonconsecutive events as well as the infor-
mation decays of patients’ earlier clinical events. Joint
modeling of CNNs assumes these temporal interactions
occur in different abstraction levels and can be extracted
by temporal convolution operators.

Secondly, for the convolutional layer, we modify the
original CNN by integrating time stamps into the convo-
lution operation and re-weight more abstract temporal
interactions. Here the weights are adjusted according
to the event time-stamps, since we assume temporally
close events would be more likely to be relevant and
have more influence on each other.

Structurally speaking, the time-aware ConvNet
contains two layers: a multi-channel time-aware con-
volutional layer and a max-pooling layer. As for in-
puts, the time-aware ConvNet takes multiple channels,
including both the hidden states of forward/backward
GRUs and the two corresponding context vectors. This
allows the model to benefit from different features. For
each input channel ¢, different from a general convo-
lutional layer, the weights of the input variables are
re-weighted by their time stamps in each convolution
computation: f;(W) = f(W x(¢i:its—1Odjy s 1) +b)
where c¢;;4+s—1 is the input; s is the window size; W
is the parameter; * is the convolution operation, and
d; = ¢(t;) is a function of the time stamp t;, where ¢;
indicate the days to the end of the sequence. We use
a softmax function to normalize the time-aware weights
g(t;) = softmax(X - ¢;), where A is a parameter. For the
activation function f, we use rectification (ReLU). We
use multiple filters to generate n filter maps, and then
apply a max-pooling layer subsequently to aggregate the
representation.

3.4 Prediction Layer with Cross-Entropy Loss
The prediction layer takes the output of time-aware
ConvNet as input, and outputs a binary label based on
particular target disease specification. For the binary
classification task here, we adopt a fully connected layer
with a sigmoid function over the hidden vectors to
generate the outputs. We choose the cross-entropy loss
function as the objective function: Cy = %Z?zl(yz *
In(y;)+ (1 —y;) * (1 —In(y;))), where ¢ is the prediction
and y is the real label. We use the Adam algorithm [22]
for optimization.

3.5 Regularization To generalize well and avoid
overfitting, we employ the L2 regularization over all
parameters in the Cross-entropy loss function, including
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Ws, Us, bs in the GRU layers, W and b in the attention
layer and convolution layer. In addition, we use dropout
[27] for the hidden layers.

4 Experiments

4.1 Dataset Description We evaluate the quality
of representation learning based on the task of disease
prediction using two datasets, one is a congestive heart
failure (CHF) cohort extracted from a proprietary real
world EHR data (SNOW dataset), and the other is a
publicly available artificial dataset (EMRbots).

The real-world CHF data (SNOW) is extracted
from a warehouse including the records from 319,650
patients over 4 years. The CHF cohort includes pa-
tients and matching controls as defined by clinical ex-
perts. The criteria for being patients include 1) ICD-9
diagnosis of heart failure appeared in the EHR for two
outpatient encounters, indicating consistency in clinical
assessment, and 2) At least one medication was pre-
scribed with an associated ICD-9 diagnosis of heart fail-
ure. The diagnosis date was defined as its first appear-
ance in the record. These criteria have also been previ-
ously validated as part of Geisinger Clinical involvement
in a Centers for Medicare and Medicaid Services (CMS)
pay-for-performance pilot[26]. For matching controls, a
primary care patient was eligible as a control patient if
they are not in the case list, and had the same PCP as
the case patient. More details could be found in [33].
The artificial EMRbots data is downloaded from online
[1]. The data simulation criteria and procedure could
be found in [21].

Table 1: Basic statistics of datasets

domly select about 4 controls and we require all patients
and controls include as least 4 medical visits. The basic
statistics for the datasets are summarized in Table.1.

4.2 Experiment Setting Since the prediction tasks
are binary classification problems, we choose the area
under the receiver operating characteristic curve (AUC)
and the negative log-likelihood as two measures.

We evaluate the models with 5-fold cross-validation
strategy and report the average performance. For
each iteration we split 10% of the training set into
a development set (which is used to determine the
hyperparameters) and keep the remaining 90% as the
real training set.

The hyperparameters of our Health-ATM model
are finally set as follows: 1) we use window size of
15 for word2vec and train medical code vectors of 100
dimensions on each training data. 2) the hidden layer
size of GRU is 50. 3) number of filters for CNN is 64
and each filter window size is 5!. We use max-pooling
layer following the convolution with pooling size (3,1).
4) dropout rate is 0.5. Training is done through Adam
[22] at learning rate 0.0002 with shuffled mini-batches
(batch size 100).

4.3 Results of Model Performance We choose
the following models as our baselines. All models were
implemented using Theano 0.8.0[28]. The implementa-
tion details are described as follows.

¢ RNN: We implement RNN as a bi-directional
GRU. The word embedding sequences are used as
input, and a prediction layer via logistic regression
is applied over the hidden layer.

Dataset SNOW (12) | SNOW (6) | EMR |, CRINN: Before the last layer of logistic regression,
7+ patients 2268 2191 1443 we use a conventional CNN over the hidden layer
# controls 14526 13335 5287 of RNN (bi-directional GRU).

# visits per patient 19.7 11.4 4.6

# codes per patient 41.0 23.9 4.6 |e Attentive CRNN A degenerated version of
# unique codes 1865 1865 529 Health-ATM in terms of replacing the time-aware
# codes per visit 2.08 2.09 1 convolution with a standard convolution layer.

For the SNOW dataset, we evaluate the model per-
formance in the task of predicting whether a patient
could develop CHF within 1) 12-month observation win-
dow and 6-month prediction window, and 2) 6-month
observation window and 6-month prediction window.
For the first scenario, we select patients and controls
who have at least 4 events in the observation window.
For the second scenario, we select subjects who have at
least 3 events in the observation window. For artificial
data, we focus on the prediction of diabetes mellitus
(target event code: E08). For each patient, we ran-
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e Time-Aware CRNN Another degenerated ver-
sion of Health-ATM in terms of removing the at-
tention mechanism. The input to the ConvNet only
consists of two channels: the forward GRU outputs
and the backward GRU outputs.

In addition, we also compared our model with state-
of-the-art sequence prediction models for healthcare.

Ti.e. filter shape is (5,50). For artificial data we used a different
filter window: 3, and the other hyperparameters are the same as
the SNOW data.
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e Logistic Regression We use the same input as
our model, and add L2-regularization with a coef-
ficient 0.01 for logistic regression.

¢ RETAIN: To make fair comparison, we keep the
hyperparamters of RETAIN similar to our model:
100-dimension word embedding, 100-dimension
GRU layer, minibatch size of 100, dropout for the
hidden layer at rate 0.5, L2-regularization for all
the parameters. The original RETAIN did not uti-
lize the pre-trained word vectors, but used the one-
hot vectors as input and insert an embedding layer
instead. In this work, we use the same pre-trained
word vectors for RETAIN as the ones used in our
own model.

e CNN-SDM: Following the description in Cheng
et al 2016 [6], we split each patient sequence into
5 sub-frames, and use the Slow Fusion CNN model
(SF-CNN) with the following setting for the SNOW
data: the filter window is 3 with 105 feature maps;
the activation function of the convolutional layer is
rectify and the pooling function is mean instead of
max; the dropout rate is 0.5; the L2-regularization
coefficient is 0.001; and the mini-batch size is 50.
For EMRbots data, considering the sequences are
generally very short, we set the number of sub-
frames as 2 and only use the Late Fusion CNN
model (Slow Fusion cannot be applied to 2 sub-
frames); the filter window is also changed into 2.

e CNN-NIPS This model differentiates from a basic
CNN model by using a set of filters with different
widths. For comparison, we use our pre-trained
word vectors as input and do not fine tune the
embedding matrix. The filter shapes used for the
convolution layer are set as {2, 3, 4}; other hyper-
parameters are same as our Health-ATM model.
(The code is from https://github.com/ych133/
ConvNet_EHR_Risk_Prediction).

Table 2 and 3 compare the prediction performance
of Health-ATM against its reduced models and all
baseline methods.

From the results, Health-ATM outperforms all its
reduced models and state-of-the-art baselines in terms
of the generalization power of prediction tasks (e.g.
testing AUC). Among the reduced models of Health-
ATM, the RNN is the same as the model in [11]. CRNN
performs better than the RNN due to a convolution
layer that could capture the higher-level patterns. The
attentive CRNN further gains performance advantage
over the CRNN thanks to the additional attention
mechanism that allows the model to focus more on
target-related events. With time-aware design, the
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model gains more performance improvement compared
with the CRNN since the integration of time-stamp
emphasizes the temporally close events to be more
relevant. The proposed architecture, Health-ATM,
since having all the benefits mentioned above, achieves
the best testing AUC on all prediction tasks.

What’s worth noting is, among the state-of-the-art
baselines, RETAIN also employs attention mechanism
but does not show obvious improvement over the ba-
sic RNN model (sometimes even performs worse). This
could also be verified that RETAIN has similar per-
formance as a basic RNN in [10], demonstrating that
their strategy could not leverage the power of attention
possibly due to the loss of target information. For a
fair comparison, our reduced attention model (Attentive
CRNN) without time stamps not only performs better
than RETAIN, but also consistently outperforms our
own degenerated model without attentions. This shows
effectiveness of our new target-aware attention strategy.

5 Model Analysis for Congestive Heart Failure
Prediction

In this section, we demonstrate the utility of Health-
ATM with predicting the diagnosis of congestive heart
failure (CHF). The CHF is a disease that is hard
to detect or has heterogeneous manifestation. With
CHF, the heart is weakened and would cause heart
pump blood at an abnormal rate and thus induces low
cardiac output and causes problems of blood congestion
backing up into the lungs and tissues. Depending on the
progression stage that CHF is detected, on average 50%
of patients will have an average life expectancy of five
years. For those diagnosed at their advanced stages,
up to 90% will pass away within one year. Therefore,
an early and accurate risk warning would improve the
quality of care and prevention greatly.

Paying attention to patient-specific CHF-relevant
events is critical for accurate detection. In addition,
taking the inter-event time duration into consideration
could also improve the prediction. From the results dis-
cussed in Table 2, we already see the performance gain
in prediction due to introduce the target-aware atten-
tion and the time-sensitive design. In the following we
will demonstrate 1) the interpretability of attention and
2) the importance of time-awareness in the discrimina-
tion of CHF patients from controls.

5.1 Interpretability of Target-aware Attention
Fig. 2 is the visualization of the attention contributions
from various clinical events in a high-CHF-risk subject’s
record (risk = 0.5279, we use the sigmoid output of the
last layer as the risk value instead of a binary label).
We only highlight variables with top attention weights.
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Model AUC (SNOW 12-mo) | AUC (SNOW 6-mo) | AUC (EMRbots)
RNN (Choi et al 2016 [11]) 0.6702+0.0077 0.66636+0.0078 0.7769+0.0133
CRNN 0.6967+ 0.0136 0.6642 £+ 0.0035 0.7909 + 0.0144
Reduced | Attentive CRNN 0.70964 0.0134 0.6700 £ 0.0073 0.79134 0.0063
Time-Aware CRNN 0.72434+ 0.0261 0.6810+ 0.0172 0.9363+0.9363
Proposed | Health-ATM 0.7286+ 0.0181 0.6900+ 0.0042 0.9434+0.0149
Logistic Regression 0.6496+0.0150 0.6077£0.0047 0.7897+0.0097
Baselines RETAIN (Choi et al 2016 [10]) 0.6683£0.0084 0.6572 £ 0.0150 0.7671 £ 0.0125
CNN NIPS (Che et al 2016 [5] ) 0.672240.0135 0.6511 + 0.0130 0.77944-0.0092
CNN SDM (Cheng et al 2016 [0]) 0.6902 +0.0117 0.6576 +0.0069 0.7884 + 0.0113
Table 2: Comparison with baseline models in terms of AUC.
Model neglog (SNOW 12-mo) | neglog (SNOW 6-mo) | neglog (EMRbots)
RNN [11] 0.3799+0.0153 0.3950 £0.0144 0.3613 £0.4281
CRNN 0.3595+ 0.0161 0.3885+0.0115 0.3537 £ 0.0172
Reduced | Attentive CRNN 0.3546+0.0114 0.3846+0.0121 0.3465+ 0.0223
Time-aware CRNN 0.34744 0.0147 0.3762+0.0076 0.2092+0.0159
Proposed | Health-ATM 0.3464+ 0.0127 0.3768+0.0115 0.1979+ 0.0271
Logistic Regression 0.424740.0133 0.438140.0142 0.3976+0.0194
Baselines RETAIN [10] 0.3779+0.0106 0.3858+0.0165 0.3703 £+ 0.0259
CNN NIPS [5] 0.3715£0.1659 0.4023+0.0086 0.3576£0.0124
CNN SDM [6] 0.3661+0.0097 0.3924 + 0.0135 0.4025 £ 0.0129

Table 3: Comparison with baseline models in terms of negative log-likelihood.

035

, 03 AP: Affective Psychoses

CD: Cardiac Dysrhythmias
AP HH: Hydralazine Hydrochloride

Figure 2: Visualizing attention weights for a patient
with heart failure risk 0.5279

From the figure, we observe that the attention was
initially on the subject’s another condition: affective
psychoses, then more attention is shifted to cardiac
dysrhythmia, a CHF-related symptom of irregular heart
rhythm or abnormal heart pacing. For the rest of this
record, Hydralazine Hydrochloride, a CHF medication,
contributes most to the prediction.

As a contrast, Fig. 3 helps visualize the attention
weights for a lower-CHF-risk subject (risk = 0.1451). At
the beginning, the patient took Gemlfibrozil, a choles-
terol medication. Then the patient’s condition on skin
problems, benign neoplasm, and bacterial infection got
attention. Next, Ciprofloxacin hydrochloride, an antibi-
otic medication was used to treat bacterial infections.
And the patient refilled Gemfibrozil and did some gen-
eral medical exam. For some time later the patient ex-
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Figure 3: Visualizing attention weights for a patient
with heart failure risk 0.1451

perienced symptoms of cardiac dysrhythmia. However,
since cardiac dysrhythmia alone is not a discriminating
indicator of CHF, the patient is not predicted as high
CHF risk.

5.2 Analysis of Time-awareness Even with the
sophisticated attention mechanism, without consider-
ing time stamps of clinical events, we could still miss
predicting some patients’ impending CHF onset. The
big performance gain with time-aware component also
indicates the importance of temporal information. To
better understand these scenarios, we analyze 22 cases
whose impending CHF onset risk is predicted high but
would be predicted as low risk when time information
is removed from the full model. These patients were
actually diagnosed CHF within the 6 months beyond
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the observation period. This is to say, without model-
ing time stamps, these patients’ disease would not be
detected timely, and could miss their best timing for
treatment.

Examining the 22 cases indicates that the visit

time duration and the frequency change of some clin-
ical events may explain the performance difference in
prediction tasks. The discoveries are also backed by lit-
erature evidences. Here are two selected cases.
Case I: Increased frequency of hospital revisits
during the year-long consumption of Simvastatin
Simvastatin is a statin that treats high cholesterol to re-
duce risks of heart attack, stroke, and blood vessel prob-
lems [29]. One time-sensitive example in the dataset is:
a patient has been taking Simvastatin for nearly a year.
Over the year, the patient visited the clinics more and
more often and was diagnosed with all kinds of com-
plications including joint disorder, disorder of breast,
disorders of lipid metabolism, and hypertension.

Without modeling time-stamps, the sequence of
events is labeled with low CHF-risk probably due to
all the complications the patient suffered are consid-
ered normal reactions due to Simvastatin inhibit the
mevalonate pathway involved in CoQ-10 synthesis
and cause such disorders [23]. However, given the
increasing frequency in hospital revisits and diagnoses,
it may suggest patient has been suffering from a highly
suspected side effect of statins: they could in fact cause
cholesterol elevation, not reduction, thus contribute
to the severity of CHF [15], and eventually leads to
CHF onsets. The proposed model correctly catches this
pattern and makes correct prediction.

Case II: Long-term and frequent recurrence of
cardiac dysrhythmias Cardiac dysrhythmia is a con-
dition that the patient either has irregular heart rhythm
or abnormal heart rate or pacing. Without consider-
ing time information, cardiac dysrhythmias itself is not
a discriminating marker in detecting CHF. Some dys-
rhythmias (e.g. sinus arrhythmia) are considered nor-
mal conditions [2].

However, with considering time information, for ex-
ample, constant recurrence of cardiac dysrhythmias may
indicate impending or onset of CHF. From the results,
we observes some patient has simple patterns of re-
curring and frequent diagnosis of cardiac dysrhythmias
together with some occasional conditions such as hy-
pertension over a year. Imagine if these events occur
sparsely over a decade, we cannot tell whether they are
actually associated with CHF. However, with their fre-
quent occurrence over only a year, these patient would
have higher risk of CHF onsets. The proposed model
catches this pattern and makes correct prediction.
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6 Conclusion

In this work, we propose the Health-ATM, a novel
deep architecture that uncovers patients’ comprehensive
health conditions underlying their noisy, longitudinal,
heterogeneous and irregular sampled EHR data using an
integrated deep architecture that extracts multifaceted
patient patterns (e.g. contextual, temporal, time-
aware, structural, and relevant) with attentive and time-
aware modulars (ATM). We compared the performance
of Health-ATM with its reduced models and a few
state-of-the-art methods. Results of disease prediction
from both real world and artificial data demonstrate
the superior performance of Health-ATM against all
baselines. In addition, we analyzed the interpretability
of target-aware attentions, and importance of time
stamps. Results and case analysis demonstrate the
promising utility and efficacy for Health-ATM in EHR
representation learning and disease onset predictions.
Future directions include extending the architecture to
be able to take heterogeneous data types as input, or
consider general progression modeling as tasks.

Acknowledgements

The work of Fei Wang is supported by NSF IIS-1650723
and I1S-1716432.

References

[1] A simulated electronic medical record dataset., 2016.

[2] S. Atwood, C. Stanton, and J. Storey-Davenport. In-
troduction To Basic Cardiac Dysrhythmias 4th Edition.
Jones and Bartlett Learning, 2013.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. Neural machine translation by jointly learning
to align and translate. arXiv:1409.0473, 2014.

[4] C. Che, C. Xiao, J. Liang, B. Jin, JY. Zhou, and
F. Wang. An rnn architecture with dynamic temporal
matching for personalized predictions of parkinson’s
disease. In SIAM International Conference on Data
Mining, 2017.

[6] Z. Che, Y. Cheng, Z. Sun, and Y. Liu. Exploiting
convolutional neural network for risk prediction with
medical feature embedding. In NIPS 2016 Workshop
on Machine Learning for Health (NIPS ML4HC), 2016.

[6] Yu Cheng, Fei Wang, Ping Zhang, and Jianying Hu.
Risk prediction with electronic health records: A deep
learning approach. In Proceedings of the 2016 SIAM
International Conference on Data Mining, 2016.

[7] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical
machine translation. CoRR, 2014.

[8] Edward Choi, Mohammad Bahadori, Andy Schuetz,
Walter F Stewart, and Jimeng Sun. Doctor ai: Pre-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited



(9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

dicting clinical events via recurrent neural networks. In
Proceedings of Machine Learning for Healthcare, 2016.
Edward Choi, Mohammad Taha Bahadori, Le Song,
Walter F. Stewart, and Jimeng Sun. GRAM: graph-
based attention model for healthcare representation
learning. CoRR, abs/1611.07012, 2016.

Edward Choi, Mohammad Taha Bahadori, Jimeng
Sun, Joshua Kulas, Andy Schuetz, and Walter Stew-
art. Retain: An interpretable predictive model for
healthcare using reverse time attention mechanism. In
Advances in Neural Information Processing Systems,
pages 3504-3512, 2016.

Edward Choi, Andy Schuetz, Walter F Stewart, and
Jimeng Sun. Using recurrent neural network models
for early detection of heart failure onset. Journal of
the American Medical Informatics Association, 2016.
Y. Choi, CY. Chiu, and D. Sontag. Learning
low-dimensional representations of medical concepts.
AMIA CRI., 2016.

Robert Desimone and Duncan John. Neural mecha-
nisms of selective visual attention. Annual review of
neuroscience., 18(1):193-222, 1995.

Wael Farhan, Zhimu Wang, Yingxiang Huang, Shuang
Wang, Fei Wang, and Xiaoqgian Jiang. A predictive
model for medical events based on contextual embed-
ding of temporal sequences. JMIR Medical Informat-
ics, 4(4), 2016.

Duane Graveline and Malcolm Kendrick. The statin
damage crisis 3rd ed. edition, 2012.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1693-1701, 2015.

Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. Marble:
High-throughput phenotyping from electronic health
records via sparse nonnegative tensor factorization. In
Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 115-124, New York, NY, USA, 2014. ACM.

G. Hripcsak and DJ. Albers. Next-generation phe-
notyping of electronic health records. Journal of the
American Medical Informatics Association, 20(1):117—
121, 2013.

G. Hripcsak and DJ. Albers. Next-generation phe-
notyping of electronic health records. Journal of the
American Medical Informatics Association., 20:117—
121, 2013.

Laurent Itti, Christof Koch, and Ernst Niebur. A
model of saliency-based visual attention for rapid scene
analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
20(11):1254-1259, November 1998.

Uri Kartoun. A methodology to generate virtual
patient repositories. CoRR, abs/1608.00570, 2016.
Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Leo Marcoff and Paul D. Thompson. The role of

269

24]

[25]

[26]

27]

28]

29]

(30]

(31]

32]

(33]

34]

(35]

coenzyme {Q10} in statin-associated myopathy: A
systematic review. Journal of the American College
of Cardiology, 49(23):2231 — 2237, 2007.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. Distributed representations of
words and phrases and their compositionality. In Pro-
ceedings of the 26th International Conference on Neural
Information Processing Systems, NIPS’13, pages 3111—
3119, USA, 2013.

R. Miotto, L. Li, BA. Kidd, and JT. Dudley. Deep
patient: An unsupervised representation to predict the
future of patients from the electronic health records.
Scientific Reports., 6, 2016.

M. Pfisterer, P. Buser, H. Rickli, M. Gutmann, P. Erne,
and P. Rickenbacher. Bnp-guided vs symptom-guided
heart failure therapy. JAMA: the journal of the
American Medical Association., 301:383-392, 2009.
Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929—
1958, 2014.

Theano Development Team. Theano: A Python frame-
work for fast computation of mathematical expressions.
arXiv e-prints, abs/1605.02688, May 2016.

HP. Van der, AA. Voors, WH. van Gilst, Bohm M., and
DJ. van Veldhuisen. Statins in the treatment of chronic
heart failure: A systematic review. PLoS Medicine., 3,
2006.

Fei Wang, Noah Lee, Jianying Hu, Jimeng Sun, and
Shahram Ebadollahi. Towards heterogeneous tempo-
ral clinical event pattern discovery: A convolutional
approach. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 453-461. ACM, 2012.

Fei Wang, Ping Zhang, Buyue Qian, Xiang Wang, and
Tan Davidson. Clinical risk prediction with multilinear
sparse logistic regression. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 145-154, 2014.
X. Wang, F. Wang, J. Hu, and R. Sorrentino. Ex-
ploring joint disease risk prediction. In AMIA Annual
Symposium Proceedings., pages 1180-1187, 2014.

J. Wu, J. Roy, and WF. Stewart. Prediction modeling
using ehr data: challenges, strategies, and a compar-
ison of machine learning approaches. Medical Care.,
48:5106-113, 2010.

J. Zhao. Temporal weighting of clinical events in elec-
tronic health records for pharmacovigilance. In 2015
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 375-381, Nov 2015.

Jiayu Zhou, Fei Wang, Jianying Hu, and Jieping Ye.
From micro to macro: Data driven phenotyping by
densification of longitudinal electronic medical records.
In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 135-144, 2014.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited



	Search
	Print

