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Abstract

Motivation: Hypertension is a heterogeneous syndrome in need of improved subtyping using
phenotypic and genetic measurements with the goal of identifying subtypes of patients who share
similar pathophysiologic mechanisms and may respond more uniformly to targeted treatments.
Existing machine learning approaches often face challenges in integrating phenotype and geno-
type information and presenting to clinicians an interpretable model. We aim to provide informed
patient stratification based on phenotype and genotype features.

Results: In this article, we present a hybrid non-negative matrix factorization (HNMF) method to in-
tegrate phenotype and genotype information for patient stratification. HNMF simultaneously
approximates the phenotypic and genetic feature matrices using different appropriate loss func-
tions, and generates patient subtypes, phenotypic groups and genetic groups. Unlike previous
methods, HNMF approximates phenotypic matrix under Frobenius loss, and genetic matrix under
Kullback-Leibler (KL) loss. We propose an alternating projected gradient method to solve the ap-
proximation problem. Simulation shows HNMF converges fast and accurately to the true factor
matrices. On a real-world clinical dataset, we used the patient factor matrix as features and
examined the association of these features with indices of cardiac mechanics. We compared
HNMF with six different models using phenotype or genotype features alone, with or without NMF,
or using joint NMF with only one type of loss We also compared HNMF with 3 recently published
methods for integrative clustering analysis, including iClusterBayes, Bayesian joint analysis and
JIVE. HNMF significantly outperforms all comparison models. HNMF also reveals intuitive pheno-
type—genotype interactions that characterize cardiac abnormalities.

Availability and implementation: Our code will be made publicly available on github upon
publication.

Contact: yuan.luo@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Precision medicine aims to utilize information from multiple modal-
ities—including phenotypic and genetic measurements—to develop
an individualized and comprehensive view of a patient’s pathophy-
siologic progression, to identify unique disease subtypes, and to ad-
minister personalized therapies (Kohane, 2015). Existing efforts are
often based on only a selected set of biomarkers. The rapid growth
of phenotypic and genetic data for many common diseases poses
technical challenges for subtyping them, due to the high dimension-
ality of data, diversity of data types, uncertainty and missing data.
However, the rapid growth of multiple data modalities, when linked
to the right patients, may provide a prismatic view of the underlying
pathophysiology of these diseases and offers a basis for meaningful
subtyping of these patients.

Hypertension is an example of a complex, heterogeneous clinical
syndrome characterized by elevated blood pressure. Although typic-
ally considered a single disease, primary hypertension (i.e., essential
hypertension) is in fact a heterogeneous group of subtypes with
varying etiologies and pathophysiology. This common form of
hypertension is highly prevalent and is polygenic in nature.
However, genetic studies of hypertension have focused primarily on
analyzing single variants at a time and then ranking them in terms of
significance, as has been done in several genome-wide association
studies [see Poulter et al. (2015) for a review]. However, it is more
likely that genetic variants interact with each other to increase sus-
ceptibility to disease. Furthermore, genetic variants interact with
phenotypic risk factors to further promote the development of dis-
eases such as hypertension. With the growing availability of high
throughput genotyping and phenotyping data (such as through
NIH/NHLBI TOPMed program), the need for integrating both data
modalities is becoming increasingly pressing. Thus, it is critical to
develop a methodology to combine phenotypic and genetic data
when clustering patients for the identification of novel subtypes of
the disease. Such work could help identify novel molecular and
pathophysiological pathways of disease and also may identify sub-
groups of patients who are more homogeneous in their response to
specific therapies.

Major contributions of this paper are: (i) Aiming to provide
informed patient stratification, we propose Hybrid Non-negative
Matrix Factorization (HNMF) that approximates phenotype and
genotype matrices using different appropriate loss functions, instead
of single loss function in previous joint NMF methods. (ii) We use
simulation to show HNMF converges fast and accurately to true fac-
tor matrices, and we use a real-world clinical dataset to show
HNMF-generated patient factor matrix is more effective in predict-
ing indices of cardiac mechanics compared to multiple non-NMF,
NMF and joint NMF based methods. (iii) We show that HNMF-
generated group matrices lead to insights on phenotype-genotype
interactions that characterize cardiac abnormalities.

From the clinical perspective, there have been only a few previ-
ous studies that have examined the clustering of hypertensive
patients. Katz et al. applied model-based clustering to a cohort of
1273 hypertensive individuals, using only phenotypic data as fea-
tures (Katz et al., 2017). Study participants were clustered into two
distinct groups that differed markedly in clinical characteristics, car-
diac structure/function, and indices of cardiac mechanics. Guo et al.
(2017) used K-means clustering of phenotypic data (clinical and
blood pressure characteristics) and found four groups of interest.
However, neither of these studies utilized genetic data, which could
have provided an additional important dimension to the clustering
of hypertension, particularly when combined with phenotypic data.

From the method perspective, non-negative matrix factorization
(NMEF) refers to the set of problems on approximating a non-
negative matrix as the product of several non-negative matrices. The
problem has become popular since Lee and Seung’s Nature paper
(Lee and Seung, 1999), where they form a nonnegative matrix by
concatenating the set of pixel intensity vectors stretched from
human facial images. After factorizing such matrix into the product
of two matrices, they found that one matrix can be interpreted as
the set of image basis with part based representation of human faces,
and the other matrix is the coefficients if we were to reconstruct the
face image from those bases. Because of the non-negativity con-
straints, NMF is not a convex problem and they developed a multi-
plicative update algorithm to obtain a stationary solution, with
provable convergence of the algorithm (Lee and Seung, 2001).

Since then researchers have been working on NMF from various
aspects. Ding et al. (2005) showed that there is some equivalence be-
tween NMF and Kmeans/spectral clustering and claim NMF can be
used for data clustering. Ding ez al. (2006) further developed a
t-NMF approach that can perform co-clustering on both matrix col-
umns and rows. They also discussed the various NMF variants (Ding
et al., 2010). Sra and Dhillon (2006) extended NMF to the case
when the matrix approximation loss is measured by Bregman diver-
gence, which is a much more general loss with both Frobenius norm
and KL divergence, which are discussed in (Lee and Seung, 2001)) as
its special cases. On the solution procedure aspect, multiplicative
updates have been recognized for its slow convergence and poor
quality. Lin (Lin, 2007) proposed a projected gradient approach for
NME. Kim and Park (2011) also proposed an active set type of
method called principal block pivoting to solve the NMF problem.

NMEF is a highly effective unsupervised method to cluster similar
patients (Hofree et al., 2013; Luo et al., 2016b) and sample cell lines
(Miiller ez al., 2008), and to identify subtypes of diseases (Collisson
et al., 2011). Conventional NMF can only model either phenotypic
measurements (e.g. using Frobenius loss) or genetic variants (e.g.,
using KL loss) but not both. Recent studies have investigated meth-
ods for joint matrix factorization, serving the purpose of meta-
analysis (Wang ez al., 2015), multi-view clustering (Liu ez al., 2013)
or imposing multiple characterization of documents (Kim et al.,
2015). However, these methods focus on using Frobenius loss to
measure approximation accuracy of multiple matrices, and cannot
readily integrate phenotypic measurements and genetic variants
where approximating the two matrices admit different types of loss
functions. Gunasekar et al. (2016) proposed collective matrix fac-
torization based on the Bregman divergence framework to integrate
multi-source EHR phenotyping data, implemented KL-divergence as
matrix approximation loss and experimented on discrete diagnosis
and medications data.

In theory, both KL divergence and Frobenius loss are special
cases of Bregman divergence, but care needs to be taken when mate-
rializing the theoretical framework to the concrete case of hybrid
genotypic and continuous phenotypic data. Challenges include how
to derive useful genetic variant information from terabytes of whole
exome sequencing data, how to filter deleterious variants, how to
properly implement HNMF with missing continuous data, etc. Our
paper is one such concrete materialization to integrate phenotypic
and genotypic information for patient subtyping. Addressing both
the clinical and methodological challenges, we propose the model of
HNMF which models the approximations of phenotypic and genetic
matrices under Frobenius loss and KL loss respectively. We develop
an alternating project gradient descent method for optimizing the
HNMF objective, and demonstrate its fast convergence and
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Fig. 1. Study workflow. HNMF stands for hybrid non-negative matrix factorization. LGD stands for likely gene disruptive

effectiveness in integrating both the phenotypic and genetic data
using both simulated and real-world studies.

2 Materials and methods

We develop a hybrid matrix factorization method to integrate both
phenotypic and genetic features. The model applies non-negative
matrix factorization to discover groups of phenotypic variables and
genetic variants simultaneously that collectively and interactively
characterize the groups of the patients. The approximation error is
measured using Frobenius loss for the phenotypic matrix, and KL
loss for the genetic matrix; hence we name our algorithm the
HNMF. We have made the following assumptions throughout the

paper:

1. The phenotype matrix and the genotype matrix share a common
set of subtypes;

2. The relationship between the variables and the groups are linear
and can be modeled with matrix multiplication.

2.1 Workflow of the study

We first outline the workflow of the study in Figure 1. This study
considers two types of patient data: phenotypic measurements and
genetic variants.

We first impute missing values in the phenotypic variables. For
genetic variants, we first annotate the variants and then keep those
variants that are likely gene disruptive (LGD). The pre-processed
phenotypic measurements and genetic variants are then used as in-
put to our HNMF algorithm. The patient factor matrix is then used
as the feature matrix to perform regression analysis to predict main
cardiac mechanistic outcomes. We next explain each step in detail.

2.2 Cohort construction and data collection
Our cohort comes from the Hypertension Genetic Epidemiology
Network (HyperGEN) study. HyperGEN, part of the NIH Family

Table 1. Outcome variables reflecting cardiac mechanics

Outcome Description
Septal €’ Left ventricular early diastolic relaxation velocity,
velocity measured at the septal mitral annulus in the apical

4-chamber view. Lower values reflect slower left ven-
tricular relaxation and worse diastolic function.
Longitudinal ~ Left ventricular longitudinal strain measured in the ap-
strain ical 4-chamber view, a marker of subendocardial lon-
gitudinal systolic function. Lower absolute values
reflect worse systolic function.

Blood Pressure Program, is a cross-sectional study consisting of
individuals with hypertension, their siblings and offspring, and a
random sample of normotensives, all recruited from 4 cities in the
United States (Williams ez al., 2000). We focus on the African
American participants (660 total), for whom we have both the
phenotypic data (e.g., vitals) and whole exome sequencing (WES)
data. We used two measurements from the echocardiograms that
are main reflectors of systolic (longitudinal strain) and diastolic
(septal e’ velocity) cardiac mechanics as outcome variables
(Table 1) (Mitter et al., 2017; Mor-Avi et al., 2011). As opposed to
conventional cardiac function measures such as ejection fraction,
indices of cardiac mechanics obtained by speckle-tracking echocar-
diography are more sensitive measures of intrinsic cardiomyocyte
function (Shah et al., 2014). Furthermore, indices of cardiac
mechanics are thought to be subclinical measures of myocardial
dysfunction that occur during the transition from risk factors (e.g.,
hypertension, obesity, diabetes, renal disease) to overt heart failure
(Selvaraj et al., 2016). WES identifies the variants found in the cod-
ing region of genes (exons). In order to accurately and consistently
call variants from across all datasets, we adopt the GATK frame-
work (DePristo et al., 2011) for a standardized processing of WES
data.
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2.3 Imputation on phenotypic variables

Biomedical, epidemiological and clinical data often contain missing
values for test results, some due to issues during data acquisition
and archiving, but others due to the fact that clinicians do not order
certain tests based on patient-specific diagnostic and treatment
course. The missing percentage of the phenotypic variables consid-
ered in our study ranges from 0% to 37%. We had our cardiologist
colleagues pick rather inclusively 129 phenotypic variables (see
Supplementary Material) that can characterize the hypertension risk
and cardiac physiology of the patients. We are rather tolerant on
missing rate in order to retain as many variables as possible.
Nevertheless, only 13/129 (10%) of the phenotypic variables had
missingness > 10%. Six of these variables with missingness > 10%
(including those with missingness > 30%) were phenotypes related
to mitral inflow, which characterize diastolic function. Given the
importance of diastolic dysfunction (i.e., abnormal cardiac relax-
ation and/or reduced cardiac compliance) in the setting of hyperten-
sion, we chose to retain these variables because of their clinical
importance. We use the Multivariate Imputation by Chained
Equations (MICE) algorithm to perform the imputation. This ap-
proach assumes a conditional model for each variable to be imputed,
with the other variables as possible predictors (van Buuren and
Groothuis-Oudshoorn, 2011). The term chained equation comes
from the adoption of a Gibbs sampler, which is an iterative Markov
Chain Monte Carlo (MCMC) algorithm. Previous studies e.g., Luo
et al. (2016a)) showed that even at the presence of high missing rate
(over 50%), MICE imputation may still render clinically useful in-
formation to predict patient outcome due to redundant information
in phenotypic variables.

2.4 Annotation-based variant filtration and LGD variant
detection

We next used the ANNOVAR toolkit (Wang et al., 2010) to com-
prehensively annotate called variants with a wide array of informa-
tion, including their hosting gene ;[using several gene models such as
RefSeq, UCSC Known Gene, Gencode (Harrow et al., 2012)]; the
variant function; its predicted pathogenicity according to PolyPhen2
(Adzhubei et al., 2013), SIFT (Kumar et al., 2009), CADD (Kircher
et al., 2014), and other meta predictors; its minor allele frequency
among the 1000 Genomes populations and ExAC (Lek ez al., 2016);
and its phenotype associations according to ClinVar, and HGMD
(Stenson et al., 2012).

To address issues of reference mis-annotation, we resort to the
recently released Exome Aggregation Consortium (ExAC) exome
dataset (Lek et al., 2016), which aims to aggregate exome sequenc-
ing data from a wide range of large-scale sequencing projects includ-
ing the cohorts of Myocardial Infarction Genetics Consortium,
Swedish Schizophrenia & Bipolar Studies and The Cancer Genome
Atlas (TCGA). We filter out those variants whose allele frequencies
are observed to be over 90% among the 60, 706 individuals aggre-
gated by ExAC. We also apply a similar 90% filtering threshold on
the alternate allele frequency in our cohort. We further focus on
likely gene disruptive (LGD) variants, which include frame-shift in-
sertion, frame-shift deletions, nonsense variants and splice site alter-
ations. We have 6430 gene features for our cohort, 660 subjects. We
follow the common practice and exclude the genes that have very
rare variants (<10 subjects) or very frequent variants (> 50% of the
subjects), resulting in 1481 genes. We then follow the common ap-
proach of gene prioritization (Moreau and Tranchevent, 2012) and
further select the genes that show significant difference between the
two hypertension groups (patient taking 1 vs. multiple anti-
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Fig. 2. Hybrid non-negative matrix factorization model. In the figure, X, is the
patient-by-phenotype-measurement matrix. Xj is the patient-by-genetic-vari-
ant matrix. F is the patient factor matrix specifying patient groups. G, is the
phenotype factor matrix specifying groups of phenotypic measurements. Gy
is the genetic factor matrix specifying groups of genetic measurements

Table 2. Notations

Variable Description

n Number of patients

my, Number of phenotypes

My Number of genotypes

k Number of patient groups

X, € R Patient by phenotype matrix, continuous value
X, € R Patient by genotype matrix, count value

F e R Patient group assignment matrix

G, € RExmp Phenotype group assignment matrix

Gg € Rbms Genotype group assignment matrix

hypertensive medications) by two-tailed binomial exact tests
(Howell, 2012). The gene selection is based on the entire patient co-
hort but uses a categorical label that is different from the final con-
tinuous outcomes of cardiac mechanics indexes. Eventually, 349
(110) genes (Supplementary Material) are selected for our cohort
with p-value of binomial test less than 0.1 (0.01). Each entry of our
genetic matrix specifies how many variants a patient has on that
gene.

2.5 Hybrid NMF
We propose the hybrid NMF (HNMF) model that integrates both
phenotypic and genetic measurements of patients. The phenotypic
measurements we consider are continuous values, hence we use
Gaussian distribution to model the approximation error. The genetic
measurements are counts of the genetic variants that happen to a
particular gene, thus we use Poisson distribution to model the vari-
ant count. A schematic view of our HNMF model is shown in
Figure 2.

Our goal is to maximize the joint likelihood of the two approxi-
mations. Let the variables be defined as in Table 2, we establish the
following constrained optimization problem

max Alog P(X,|F, G,) +log P(X,|F, G,)

st. F>0,G, >0,Gg >0 (1)

where 1 indicates the trade-off between the phenotypic approxima-
tion and genetic approximation (4 = 1 for our experiment), and the
log likelihood functions are defined as follows.
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1 2
logP (X, |F, Gy) = ’ﬁz (xp,, - ZFW-GPW> +C Q)
1] u

logP (X |F, G)

= Z <Xgnlog (Z F”’Ggm) - Z F”iGgur> + CZ (3)
7 w "

We require F, G, and G, to be nonnegative in order to achieve
better interpretability. Since the values of the entries in both X}, and
X, are nonnegative, with the nonnegativity constraints on F, G, and
G, we are essentially assuming an additive reconstruction of X, and
X, from the product of those factors under a hybrid loss. According
to the seminal paper from Lee and Seung in Nature (Lee and Seung,
1999), such additive reconstruction can result in better interpret-
ation of F, Gy and G,.

By minimizing the negative log likelihood, we arrive at the fol-
lowing objective function.

minl(F, Gy, Gg) =3 B (X - X,,if.)z + Xy, — Xg,,10g<>2gﬁ)]

if
st. F>0,G,>0,G, >0 (4)

where X, =3, FuiGy, and X, = 37, Fui Gy, Writing £ in the ma-
trix form, we have

L(F.GpGy) =Y BHXP — X2+ X, — Xglog<f(g)} (5)

ij
where X, = FTG,, and X, = FTG,. We can use the following alter-
nating projected gradient descent procedure to solve the objective
and establish the stopping criteria that the partial gradients should
be small enough or all factor matrix updates cannot produce a feas-
ible direction along which the objective function decreases (let P, (+)
denote the non-negative projector):

F = P [F =i VeL (F G} Gl )i (6)
G;“ =P, [G;7 - rL‘GPVGPE(F”l, Gy, Gi,) |G/7:G;] (7)

G =P (G g Vo £ (F G Gy)lo e ] (®)

These equations take turns in optimizing each factor matrix
while keeping the other two fixed. We next present the partial gra-
dients with respect to each of the three factor matrices. For pheno-
type group matrix G,, we have

Vo, L(F, Gy, Gy) = A(FFTG,, — Fx,,) 9)

Let Xg = FTG,, and Xg” = Xgi/‘/Xgi/’ for genotype group matrix
Gy, we have

V6, L(F, Gy, Gy) = F(Eg — X,) (10)

where Eg € R is an all-one matrix. For the patient group matrix
F, we have

ViL(F,Gp,Gy) = (=G X} + G,GLF) + Gy(Ep —~XT) (1)

With those gradients, we can adopt an alternating projected gra-
dient descent procedure to solve the hybrid matrix factorization
problem. This is an iterative procedure, at each iteration, the

algorithm optimizes the objective with one specific group of varia-
bles with all other variables fixed. The optimization procedure used
at each iteration will be projected gradient descent. In order to deter-
mine the step size at each gradient descent step, we use the Armijo
rule as a sub-procedure which looks for the largest 1 (step size) that
satisfies the following sufficient decrease condition. Let ®, ©" de-
note the parameters (e.g., F, G, and G,) before and after each iter-
ation respectively, and ¢ € (0, 1) be a predefined number. General
sufficient decrease condition can be written as

i5(07) - £(0) < str(Vor@)@™ - ©)")  (12)

If £ is a quadratic form of ®, we have a special fast-to-check suf-
ficient decrease condition as Formula (13) (Lin, 2007). The algo-
rithm for projected gradient descent with Armijo rule can be
outlined as Algorithm 1. Note that p in the algorithm is a step size
controlling parameter that is set to the common choice of 0.1 (Lin,
2007).

(1 - 9)rr(VorL(@)(@ —©)")

+%tr((®”m —ovice@“-0)) <0 (13

2.6 Feature group discovery using HNMF

In HNMF, the row vectors in the phenotype factor matrix G, and in
the genetic factor matrix G, specify the grouping of phenotypic
measurements and genetic variants respectively. Such groupings can
be viewed as mixtures of phenotypic (or genetic) features, as they
allow sharing of these features among different groups as specified
by its fractional weights across groups. The motivation is to identify
paired phenotypic group and genetic group that together character-
ize pathophysiologic underpinnings. The approximated phenotypic
matrix can be viewed as rank-one sum of outer-product of patient
group (e.g., [FT];, jth column of the patient group matrix) and
phenotypic group (e.g., [G,];., jth row of the phenotypic group ma-
trix). Similar argument holds for genetic group matrix. Thus the pa-
tient group (e.g., [F7],) bridges the corresponding phenotypic group
(e.g., [GPL._) and genetic group (e.g., [Gg]/._). We used the patient
group matrix FT as the instance-feature matrix in Ridge regression
and used the numeric values of the cardiac mechanic variables as
outcomes (listed in Table 1), and identify a column with maximum
coefficient (e.g., [FT];). We selected the corresponding phenotypic
and genetic groups (e.g., [G,]; and [G,]. ), which are paired through

the shared patient group (e.g., [F'];) and provide interpretation

Algorithm 1 Projected gradient descent with Armijo rule

1: Initialize ©. Set n =1
2:fori=1to k do
3: if n satisfies Eq. ( 13 ') (or ( 12) if quadratic) then

4: Repeatedly increase 1 as 1 < n/p until either 5 does
not satisfy Eq. (13)) (or (12)) if quadratic) or
O(n/p) = O

S: else

6: Repeatedly decrease 1 as 1 < py until 5 satisfy Eq.
(13) (or (12) if quadratic)

7: end if

8: Set @™ = max(0,0 —nVeL(O))

9: end for
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advantage. Using the trained regression model, we rank the patient
groups by their regression coefficients and focus on the top patient
groups (and associated phenotypic and genetic groups) that are asso-
ciated with large effect size.

2.7 Evaluating the groups discovered by HNMF

Because there is no innate way (except for simulation) to determine
whether the groupings of phenotypic measurements and genetic var-
iants discovered by HNMF are good or poor, we evaluate their utility
as features, abstracted from the base data, in a prediction model. We
assume that good features will improve prediction and will give us
some insights into which phenotypic and genetic patterns are indica-
tive of patient cardiac mechanic abnormality. We use the phenotypic
and genetic data for participants from the hypertension genetic epi-
demiology network (HyperGEN) study. We take a subset of the
African American patients who are hypertensive, and for whom we
have both phenotypic and genetic data available at large scale. We
predict the numeric values of the cardiac mechanic variables as out-
comes (listed in Table 1). For each outcome variable, we randomly
split these patients into a 7: 3 train and held-out test dataset, and re-
peat the random initializations of HNMF and other NMF based com-
parison models 50 times in order to improve the statistical robustness
of the results. We did not require that all the individuals from the
same family to be included in either the training or the test set, but
not both. This is out of the consideration that we want to minimize
the potential bias from family variant patterns during model training.
However, we did perform additional experiments requiring all the
individuals from the same family to be included in either the training
or the test set, but not both, which yielded similar numerical results,
please refer to the Supplementary Material for more details.

To evaluate the effectiveness of HNMF in abstracting raw data
into more predictive features, we use the patient factor matrix F to
train a Ridge regression model. We chose Ridge regression over
alternatives such as support vector regression or random forest re-
gression for its capability to generate deterministic weights for indi-
vidual features. We match the groups in the phenotypic factor
matrix and genetic factor matrix according to their row indices, and
link them to the corresponding row in the patient factor matrix F.
Linear regression then provides a convenient way to directly assess
phenotypic and genetic group contribution.

3 Results

In this section, we first evaluate the algorithmic performance using a
simulated dataset where the actual factor matrices are known. Then,
we evaluate the hybrid matrix factorization performance using the
HyperGEN dataset.

3.1 Simulation
We first analyze simulated data where the underlying factor matrices
are known. Specifically, we consider a 20 x 10 X, matrix and a
20 x 100 X, matrix with the true number of factors being 3. That
is, they are generated by a 3 x 20 F matrix, a 3 x 10 G, matrix,
and a 3 x 100 G, matrix. We first sample the F, G, and G, matri-
ces. We then generate the X, matrix by adding an error term ¢, on
top of FT G, where ¢, adopts standard normal distribution. Next we
generate the X, matrix by sampling according to Poisson distribu-
tion with the parameter set to FT G,.

In order to evaluate the similarity between the factorized matrix
and its true counterpart, we use the following similarity score:

(@) (b)
1.00 1200
—— Phenotype loss
0.98 1000 —— Genotype loss
0.96
800
2094 _
© e
E 092 5 600
o 0.90
: —— F 400
0881 —— Gp
200
0.86 —4— Gg -
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Iteration for sub-procedures Number of iterations

Fig. 3. Simulation results on a hybrid matrix factorization problem with rank
3. Ten random initializations are performed. (a) Similarity scores with error
bars as a function of number of iterations for sub-procedures (b) decreasing
trend of loss functions for phenotype (Frobenius loss) and genotype matrix
(KL loss) approximations during HNMF, shown are 10 runs. Error bars indi-
cate standard deviations

T
similarity(A, B) = % (14)
tr(ATA)\/tr(BTB)

where tr(-) is trace and tr(ATB) can be considered as matrix inner
product. This similarity score is essentially the cosine similarity,
which quantifies the closeness between the computed solution and
the actual factor matrix and provides a single number between 0 and
1 (Chi and Kolda, 2012). In order to test the sensitivity of estimates
to the initialization, we performed random initialization 10 times.
The simulation results are shown in Figure 3a where the similarity
score is plotted as a function of maximum number of iterations for
sub-procedures (optimizing F, G,, G, one at a time while fixing the
other two, using the Armijo rule), which represents the closeness to
the sub-problem optima. Figure 3 shows that as we have extra sub-
procedure iterations, the similarity scores first rise slightly and then
plateau quickly. We can also see that the similarity between the true
factor matrices and those recovered by HNMF quickly reaches to an
accurate level (>0.9). Figure 3b shows the convergence speed of the
proposed alternating projected gradient descent method with the
number of iterations for sub-procedures set to 100. We can see that
both loss functions (Frobenius loss for phenotype matrix and KL loss
for genotype matrix) quickly decrease within a few iterations. In fact,
for our simulation, the stopping criteria is usually met in less than 50
iterations. Regarding the sensitivity of estimates, Figure 3a shows
that the variation across runs with different initializations is relatively
low; Figure 3b shows that although the loss function curves may dif-
fer in the first few iterations across different initializations, they usu-
ally converge to the same levels quickly.

3.2 Application on cardiac mechanics

We then evaluate HNMEF on its effectiveness of abstracting raw data
into more predictive features. Using the 2 indices of cardiac mechan-
ics listed in Table 1 as the outcome and the patient factor matrix F
as the predictors, we train a Ridge regression model. We evaluate
the root-mean-square error (RMSE) of our model on the held-out
test set, and compare it against two baselines: (b1) Using only genet-
ic variants as regression features; (b2) Using only phenotypic meas-
urements as regression features. We also established five groups of
comparison models as follows: (c1) Using only the genetic groups as
regression features by applying NMF on the genetic variant matrix
only; (c2) In disease with polygenic risk factors, each variant may
contribute a small portion of risk, thus we added the total count of
risky variants as additional feature to the genetic groups (Liu et al.,

810Z JagquiaAoN g uo Jasn Aselqi Ausiaaiun [joulod Aq 0£S860S/408K1G/SO1BUWIOIUIOIG/EE0 | 0 | /I0P/10BIISqB-8[01B-80UBAPE/SOIIBULIOIUIOIG/WOD dNO"oIWapeo.//:sdny WoJj papeojumoq



Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization 7

(a) Longitudinal strain
3.40
3.35 1
w
)
=
& 3301
3.25 1
3.20 1 T T T T T T T T T T T T T T T T T T T
Group 2 5 10 15 20
— VE 8- pNMF - JNMF(KL)  —¥- gNMF+c jBayes

-®- gNMF -~ hNMF -3~ jNMF(Fro) —#— iCBayes

b Septal e' velocit
(b) p y
1144 & i -
o T e el g
Sh T
> ! L3 N
A X D . A T
113{ a\e T 3/ X F\I\( AKI¥x Ll
w L b \
& \ N
=
4
1124
111
1.10 T T T T T T T T T T T T T T T T T T T
Group 2 5 10 15 20
— JIVE -®- pNMF  —— JNMF(KL)  —¥— gNMF+c jBayes

-®- gNMF -8~ hNMF -~ ]NMF(Fro) —§— iCBayes

Fig. 4. RMSE with 95% confidence interval for HNMF and comparison meth-
ods. gNMF - using genotype factor matrix as features; pNMF —phenotype fac-
tor matrix as features; hNMF —hybrid factor matrix as features; jNMF(KL) —
joint matrix factorization using KL loss; jNMF(Fro) — joint matrix factorization
using Frobenius loss; gNMF+c — genotype factor matrix and the total count of
risky variants. Other recently published methods include: iCBayes: Bayesian
latent variable model for integrative clustering analysis (Mo et al., 2018);
jBayes - Bayesian joint analysis (Ray et al., 2014); JIVE — Joint and individual
variation explained (Lock et al., 2013)

2014); (c2) Using only the phenotypic groups as regression features
by applying NMF on the phenotypic measurement matrix only; (c3)
Using joint matrix factorization but use KL loss for both matrices;
(c4) Using joint NMF but use Frobenius loss for both matrices; (c5)
Using other recently published methods include: iCBayes—Bayesian
latent variable model for integrative clustering analysis (Mo et al.,
2018); jBayes—Bayesian joint analysis (Ray ef al., 2014); JIVE —
Joint and individual variation explained (Lock et al., 2013). For the
two suggested Bayesian sampling methods, we used the optimal set-
ting described in their respective papers regarding sampling itera-
tions (burn-in iterations and max iterations, e.g., 3000 and 4000
respectively for jBayes).

We follow Ho et al. (2014) on the evaluation procedure in that
we vary the group number k from the smallest 2 to where the evalu-
ation metric plateaus and show that across the spectrum HNMF
outperforms multiple separate and joint NMF comparison models.
The baseline RMSE performances are: 1.25 and 3.88 for geno-
baseline on septal e’ velocity and longitudinal strain respectively,
1.20 and 3.55 for pheno-baseline respectively. The RMSE perform-
ance results of HNMF and comparison models are shown in
Figure 4. Comparing all the factorization models and non-
factorization models, we can see that using factor matrices as fea-
tures results in significant improvement (smaller RMSE) over using
phenotypic measurements and genetic variants directly as features.

Phenotype-only factor matrices often show better regression accur-
acy than genotype-only factor matrices, likely due to the fact that
genetic raw matrix is much sparser than the phenotypic raw matrix.
The HNMF factor matrix for regression also significantly outper-
forms all comparison models including genotype-only or phenotype-
only factor matrix for regression, as well as the two joint NMF
model results using either KL loss or Frobenius loss for both matri-
ces. This suggests that HNMF can effectively integrate the pheno-
type and genotype features to predict cardiac mechanics outcomes.
HNMEF also outperformed recently published methods including
iCBayes, jBayes, and JIVE regarding both cardiac mechanics
indexes. Note that JIVE is a deterministic model (hence no confi-
dence intervals in the figure) whose performance varies little with
the rank of the matrix corresponding to joint variation (hence
appearing as a flat line in the figure). The joint Bayesian methods oc-
casionally may have large variations possibly due to the fact that our
study has a moderate number of subjects with both phenotype and
genetic data. Bayesian sampling based methods likely prefer more
subjects to achieve stable estimation while HNMF is more stable as
it directly optimizes the objective function. We also noted that
jBayes occasionally produced large RMSEs (e.g., k=13 for septal s’
velocity), when the corresponding matrices contain large negative
entries. This likely suggests overfitting; on the contrary, HNMF pro-
duced matrices with entries that have controlled magnitude due to
non-negative constraints, and likely reduced overfitting.

3.3 Sensitivity analysis

When performing annotation-based genetic variant filtration, we se-
lect the genes that show significant difference in number of LGD var-
iants between the two hypertension groups (patient taking 1 vs.
multiple anti-hypertensive medications) by two-tailed binomial exact
tests. Using a P-value threshold of being less than 0.01 produces 110
genes for our cohort. This is a relatively stringent threshold and in
this section we perform sensitivity analysis by varying the P-value
threshold and including 0.05 and 0.1. With these P-value thresholds,
we include considerably more genes into consideration: 239 genes for
0.05 as threshold and 349 genes for 0.1 as threshold. The genotype
baseline RMSEs are 4.87 (4.63) for longitudinal strain and 1.56
(1.50) for septal e’ velocity under P-value threshold 0.1 (0.05).
Supplementary Figure S1 (Supplementary materials) shows the results
of the sensitivity analysis in comparison with Figure 4. Comparing
these figures, it is easy to see that under all p-value thresholds,
HNMEF consistently outperforms all baselines and NMF comparison
models including pheno- and geno- separate NMF models and joint
NMF models with KL or Frobenius losses. On the other hand, as one
tightens the P-value threshold, the plateau region becomes wider, sug-
gesting that the regression performance is less sensitive as the group
number varies in the plateau region. Thus in the following phenotype
and genotype group analysis, we chose P-value threshold of 0.01.
Another reason is that with a stricter P-value threshold, we are more
confident that selected genes are likely implicated in the pathogenesis
of abnormal cardiac mechanics. We also note that with large enough
patient cohort size, techniques such as cross-validations can be used
to accurately determine the optimal group number. The larger the pa-
tient cohort size, the more effective cross-validation is, under more
relaxed filtering criteria that result in more genes to consider.

4 Discussion

Using the method in the feature group discovery section, we identi-
fied the top phenotypic and genetic groups that are associated with
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Table 3. Top phenotypic and genetic groups (and their representa-
tive components) associated with lower values of septal e’ velocity
and absolute longitudinal strain (worse cardiac mechanics)

Top phenotype group Top gene group
Septal e’velocity Sodium GPRC6A
Calcium MSMP
Albumin NPR2
Left ventricular ejection fraction IDI2
Relative wall thickness TPM2
Longitudinal strain ~ Sodium COX6B2
Calcium PAXS
Albumin BMP4
Waist/hip ratio TPM2
Sitting heart rate CLDNS

Note: Paired phenotypic group and genetic group are linked by patient group.

worse cardiac mechanics. Due to space limitation, we only show the
top phenotypic and genetics groups associated with lower values of
septal €’ velocity and longitudinal strain, as listed in Table 3. The
phenotypic groups can help us identify variables that are correlated
with abnormal cardiac mechanics. The associated genetic group
consists of genes that potentially mediate the corresponding multi-
variable phenotypic abnormality. They collectively indicate prob-
lematic multi-factor genotype and phenotype interaction and
attribute such interaction to a specific patient group (in F), thus can
more comprehensively and precisely characterize and stratify these
patients in an evidence-driven fashion.

More specifically, the echocardiographic septal €’ velocity is one
of several variables used during the assessment of diastolic dysfunc-
tion. In general lower septal e’ values are reflective of a higher de-
gree of diastolic dysfunction, which is associated with the
development of heart failure and/or adverse cardiovascular out-
comes (Mitter et al., 2017). In septal-e’ phenotype group, preserved
(higher) left ventricular ejection fraction is often present in patients
with diastolic dysfunction, other variables are associated with the
development of diastolic dysfunction, including abnormal sodium,
calcium, and albumin levels, and abnormal left ventricular wall
thickness during diastole. In the septal-e” gene group, TPM2 shows
strong susceptibility to variants that lead to cardiomyopathies and
IDI2 to chronic kidney disease (comorbidity and risk factor for car-
diovascular disease). NPR2 is linked to cardiac conduction.
GPRC6A is responsible for calcium sensing that affects L-type cal-
cium channel and is critical to cardiac cell function (Mackenzie
et al., 2005). MSMP is involved in resting heart rate modulation.
For longitudinal strain, lower values suggest worse longitudinal sys-
tolic function of the subendocardium (inner layer of the heart), thus
worse cardiac mechanics (Shah ez al., 2014). In longitudinal strain
phenotype group, besides abnormal sodium, calcium and albumin
levels, both higher waist/hip ratio and faster sitting heart rate have a
known association with the development of heart failure (Bui et al.,
2011). In the longitudinal strain gene group, COX6B2 is in the car-
diac muscle contraction pathway, CLDNS is expressed in heart
muscle, other genes also show strong susceptibility to variants that
lead to cardiomyopathies (TPM2), other cardiovascular diseases
(BMP4), and obesity as comorbidity (PAXS).

This study is subject to potential limitations. First, we only con-
sider the genetic variants that are in coding regions. Genetic varia-
tions in coding regions are thought to be the most clinically
significant because they often result in a change in the amino acid se-
quence of a protein. Thus, variations in coding regions of genes

typically are associated with more clinical sequelae than variants in
non-coding regions. However, variants in non-coding regions could
have clinical implications through gene regulation or epigenetic
modifications etc. The lack of non-coding variants is a limitation in
our study. Applying HNMF on both coding and non-coding variants
will be more computationally intensive. Thus in future work, we
will develop a more computationally efficient algorithm, and obtain
Whole Genome Sequencing (WGS) data to systematically capture
potential regulatory variants. Regarding the identified subgroups,
we only assessed and discussed their consistency to known know-
ledge. In the future, we also plan to provide more evidence, and in
particular, biological validation to confirm potential novel discov-
eries. The second limitation concerns the gene feature selection using
the entire patient cohort. This is out of consideration that genetic
features are sparse and we only have a moderate sized patient co-
hort. In addition, we use a categorical label that is different from the
final continuous outcomes of cardiac mechanics indexes to reduce
the impact on generalizability evaluation. Despite our best efforts,
we acknowledge that the impact on generalizability cannot be fully
eliminated, and we plan to sequence more subjects from external
sites to more strictly evaluate the generalizability of our algorithm
and how applicable the selected genes would be to future cohorts.
The third limitation concerns the fact that some individuals from the
same family may be split into the training set while others in the test
set. We did so in order to minimize the potential bias from family
variant patterns during model training. This may result in an overly
optimistic view of the generalizability. However, as neither HNMF
nor all the comparison methods explore the family structure, we ex-
pect that their relative performances are similar and models’ ranks
will hold in general. We also performed additional experiments by
assigning all individuals from the split families to the training set,
therefore guaranteeing family-preserving training-testing split. As
shown in Supplementary Figure S2, these experiments yielded simi-
lar numerical results and confirmed our expectation, please refer to
the Supplementary Material for more detail.

To sum, we proposed a novel HNMF algorithm that integrates
both phenotypic measurements and genetic variants as features in
order to subtype patients. HNMF models the approximation error
for the phenotypic matrix using Gaussian distribution, and models
the variant count for the genetic matrix using Poisson distribution.
The objective function is the negative log-likelihood of the data
given parameters. We developed an alternating projected gradient
descent method to solve the approximation problem. Using the
simulated dataset, we demonstrated that HNMF has fast conver-
gence and high accuracy when approximating the true factor matri-
ces. Using the real-world HyperGEN dataset, we demonstrated the
effectiveness of HNMF in integrating both the phenotypic and gen-
etic features to derive informative patient subgroupings. We used
the patient factor matrix as features to predict the cardiac mechanics
outcome variables. We compared HNMF with six different models
using phenotype or genotype features directly, using NMF on these
features separately, and using joint matrix factorization but with
only one type of loss function. HNMF significantly outperforms all
comparison models. Analyzing the identified phenotype and geno-
type groups reveals intuitive phenotype-genotype interactions that
characterize cardiac abnormality. For future study, we plan to ex-
tend HNMF to consider prior medical knowledge (e.g., known
phenotypic and genotypic characteristics associated with heart fail-
ure) in guiding the generation of the factor matrices for better pa-
tient stratification. We also plan to extend HNMF to a tri-
factorization model that allows for different group numbers in pa-
tient, genotype and phenotype factor matrices, in order to benefit
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HNMF with more flexibility to handle heterogeneous and distinct
modality of data sources. We plan to model the genetic matrix ap-
proximation using zero-inflated Poisson distribution, as genetic ma-
trix is sparse. We also plan to relax LGD criteria to include more
genetic variants and obtain Whole Genome Sequencing data to sys-
tematically capture potential regulatory variants.
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