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Abstract

Motivation: Hypertension is a heterogeneous syndrome in need of improved subtyping using

phenotypic and genetic measurements with the goal of identifying subtypes of patients who share

similar pathophysiologic mechanisms and may respond more uniformly to targeted treatments.

Existing machine learning approaches often face challenges in integrating phenotype and geno-

type information and presenting to clinicians an interpretable model. We aim to provide informed

patient stratification based on phenotype and genotype features.

Results: In this article, we present a hybrid non-negative matrix factorization (HNMF) method to in-

tegrate phenotype and genotype information for patient stratification. HNMF simultaneously

approximates the phenotypic and genetic feature matrices using different appropriate loss func-

tions, and generates patient subtypes, phenotypic groups and genetic groups. Unlike previous

methods, HNMF approximates phenotypic matrix under Frobenius loss, and genetic matrix under

Kullback-Leibler (KL) loss. We propose an alternating projected gradient method to solve the ap-

proximation problem. Simulation shows HNMF converges fast and accurately to the true factor

matrices. On a real-world clinical dataset, we used the patient factor matrix as features and

examined the association of these features with indices of cardiac mechanics. We compared

HNMF with six different models using phenotype or genotype features alone, with or without NMF,

or using joint NMF with only one type of loss We also compared HNMF with 3 recently published

methods for integrative clustering analysis, including iClusterBayes, Bayesian joint analysis and

JIVE. HNMF significantly outperforms all comparison models. HNMF also reveals intuitive pheno-

type–genotype interactions that characterize cardiac abnormalities.

Availability and implementation: Our code will be made publicly available on github upon

publication.
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1 Introduction

Precision medicine aims to utilize information from multiple modal-

ities—including phenotypic and genetic measurements—to develop

an individualized and comprehensive view of a patient’s pathophy-

siologic progression, to identify unique disease subtypes, and to ad-

minister personalized therapies (Kohane, 2015). Existing efforts are

often based on only a selected set of biomarkers. The rapid growth

of phenotypic and genetic data for many common diseases poses

technical challenges for subtyping them, due to the high dimension-

ality of data, diversity of data types, uncertainty and missing data.

However, the rapid growth of multiple data modalities, when linked

to the right patients, may provide a prismatic view of the underlying

pathophysiology of these diseases and offers a basis for meaningful

subtyping of these patients.

Hypertension is an example of a complex, heterogeneous clinical

syndrome characterized by elevated blood pressure. Although typic-

ally considered a single disease, primary hypertension (i.e., essential

hypertension) is in fact a heterogeneous group of subtypes with

varying etiologies and pathophysiology. This common form of

hypertension is highly prevalent and is polygenic in nature.

However, genetic studies of hypertension have focused primarily on

analyzing single variants at a time and then ranking them in terms of

significance, as has been done in several genome-wide association

studies [see Poulter et al. (2015) for a review]. However, it is more

likely that genetic variants interact with each other to increase sus-

ceptibility to disease. Furthermore, genetic variants interact with

phenotypic risk factors to further promote the development of dis-

eases such as hypertension. With the growing availability of high

throughput genotyping and phenotyping data (such as through

NIH/NHLBI TOPMed program), the need for integrating both data

modalities is becoming increasingly pressing. Thus, it is critical to

develop a methodology to combine phenotypic and genetic data

when clustering patients for the identification of novel subtypes of

the disease. Such work could help identify novel molecular and

pathophysiological pathways of disease and also may identify sub-

groups of patients who are more homogeneous in their response to

specific therapies.

Major contributions of this paper are: (i) Aiming to provide

informed patient stratification, we propose Hybrid Non-negative

Matrix Factorization (HNMF) that approximates phenotype and

genotype matrices using different appropriate loss functions, instead

of single loss function in previous joint NMF methods. (ii) We use

simulation to show HNMF converges fast and accurately to true fac-

tor matrices, and we use a real-world clinical dataset to show

HNMF-generated patient factor matrix is more effective in predict-

ing indices of cardiac mechanics compared to multiple non-NMF,

NMF and joint NMF based methods. (iii) We show that HNMF-

generated group matrices lead to insights on phenotype–genotype

interactions that characterize cardiac abnormalities.

From the clinical perspective, there have been only a few previ-

ous studies that have examined the clustering of hypertensive

patients. Katz et al. applied model-based clustering to a cohort of

1273 hypertensive individuals, using only phenotypic data as fea-

tures (Katz et al., 2017). Study participants were clustered into two

distinct groups that differed markedly in clinical characteristics, car-

diac structure/function, and indices of cardiac mechanics. Guo et al.

(2017) used K-means clustering of phenotypic data (clinical and

blood pressure characteristics) and found four groups of interest.

However, neither of these studies utilized genetic data, which could

have provided an additional important dimension to the clustering

of hypertension, particularly when combined with phenotypic data.

From the method perspective, non-negative matrix factorization

(NMF) refers to the set of problems on approximating a non-

negative matrix as the product of several non-negative matrices. The

problem has become popular since Lee and Seung’s Nature paper

(Lee and Seung, 1999), where they form a nonnegative matrix by

concatenating the set of pixel intensity vectors stretched from

human facial images. After factorizing such matrix into the product

of two matrices, they found that one matrix can be interpreted as

the set of image basis with part based representation of human faces,

and the other matrix is the coefficients if we were to reconstruct the

face image from those bases. Because of the non-negativity con-

straints, NMF is not a convex problem and they developed a multi-

plicative update algorithm to obtain a stationary solution, with

provable convergence of the algorithm (Lee and Seung, 2001).

Since then researchers have been working on NMF from various

aspects. Ding et al. (2005) showed that there is some equivalence be-

tween NMF and Kmeans/spectral clustering and claim NMF can be

used for data clustering. Ding et al. (2006) further developed a

t-NMF approach that can perform co-clustering on both matrix col-

umns and rows. They also discussed the various NMF variants (Ding

et al., 2010). Sra and Dhillon (2006) extended NMF to the case

when the matrix approximation loss is measured by Bregman diver-

gence, which is a much more general loss with both Frobenius norm

and KL divergence, which are discussed in (Lee and Seung, 2001)) as

its special cases. On the solution procedure aspect, multiplicative

updates have been recognized for its slow convergence and poor

quality. Lin (Lin, 2007) proposed a projected gradient approach for

NMF. Kim and Park (2011) also proposed an active set type of

method called principal block pivoting to solve the NMF problem.

NMF is a highly effective unsupervised method to cluster similar

patients (Hofree et al., 2013; Luo et al., 2016b) and sample cell lines

(Müller et al., 2008), and to identify subtypes of diseases (Collisson

et al., 2011). Conventional NMF can only model either phenotypic

measurements (e.g. using Frobenius loss) or genetic variants (e.g.,

using KL loss) but not both. Recent studies have investigated meth-

ods for joint matrix factorization, serving the purpose of meta-

analysis (Wang et al., 2015), multi-view clustering (Liu et al., 2013)

or imposing multiple characterization of documents (Kim et al.,

2015). However, these methods focus on using Frobenius loss to

measure approximation accuracy of multiple matrices, and cannot

readily integrate phenotypic measurements and genetic variants

where approximating the two matrices admit different types of loss

functions. Gunasekar et al. (2016) proposed collective matrix fac-

torization based on the Bregman divergence framework to integrate

multi-source EHR phenotyping data, implemented KL-divergence as

matrix approximation loss and experimented on discrete diagnosis

and medications data.

In theory, both KL divergence and Frobenius loss are special

cases of Bregman divergence, but care needs to be taken when mate-

rializing the theoretical framework to the concrete case of hybrid

genotypic and continuous phenotypic data. Challenges include how

to derive useful genetic variant information from terabytes of whole

exome sequencing data, how to filter deleterious variants, how to

properly implement HNMF with missing continuous data, etc. Our

paper is one such concrete materialization to integrate phenotypic

and genotypic information for patient subtyping. Addressing both

the clinical and methodological challenges, we propose the model of

HNMF which models the approximations of phenotypic and genetic

matrices under Frobenius loss and KL loss respectively. We develop

an alternating project gradient descent method for optimizing the

HNMF objective, and demonstrate its fast convergence and

2 Y.Luo et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

io
in

fo
rm

a
tic

s
/b

ty
8
0
4
/5

0
9
8
5
3
0
 b

y
 C

o
rn

e
ll U

n
iv

e
rs

ity
 L

ib
ra

ry
 u

s
e
r o

n
 1

8
 N

o
v
e
m

b
e
r 2

0
1
8



effectiveness in integrating both the phenotypic and genetic data

using both simulated and real-world studies.

2 Materials and methods

We develop a hybrid matrix factorization method to integrate both

phenotypic and genetic features. The model applies non-negative

matrix factorization to discover groups of phenotypic variables and

genetic variants simultaneously that collectively and interactively

characterize the groups of the patients. The approximation error is

measured using Frobenius loss for the phenotypic matrix, and KL

loss for the genetic matrix; hence we name our algorithm the

HNMF. We have made the following assumptions throughout the

paper:

1. The phenotype matrix and the genotype matrix share a common

set of subtypes;

2. The relationship between the variables and the groups are linear

and can be modeled with matrix multiplication.

2.1 Workflow of the study

We first outline the workflow of the study in Figure 1. This study

considers two types of patient data: phenotypic measurements and

genetic variants.

We first impute missing values in the phenotypic variables. For

genetic variants, we first annotate the variants and then keep those

variants that are likely gene disruptive (LGD). The pre-processed

phenotypic measurements and genetic variants are then used as in-

put to our HNMF algorithm. The patient factor matrix is then used

as the feature matrix to perform regression analysis to predict main

cardiac mechanistic outcomes. We next explain each step in detail.

2.2 Cohort construction and data collection

Our cohort comes from the Hypertension Genetic Epidemiology

Network (HyperGEN) study. HyperGEN, part of the NIH Family

Blood Pressure Program, is a cross-sectional study consisting of

individuals with hypertension, their siblings and offspring, and a

random sample of normotensives, all recruited from 4 cities in the

United States (Williams et al., 2000). We focus on the African

American participants (660 total), for whom we have both the

phenotypic data (e.g., vitals) and whole exome sequencing (WES)

data. We used two measurements from the echocardiograms that

are main reflectors of systolic (longitudinal strain) and diastolic

(septal e’ velocity) cardiac mechanics as outcome variables

(Table 1) (Mitter et al., 2017; Mor-Avi et al., 2011). As opposed to

conventional cardiac function measures such as ejection fraction,

indices of cardiac mechanics obtained by speckle-tracking echocar-

diography are more sensitive measures of intrinsic cardiomyocyte

function (Shah et al., 2014). Furthermore, indices of cardiac

mechanics are thought to be subclinical measures of myocardial

dysfunction that occur during the transition from risk factors (e.g.,

hypertension, obesity, diabetes, renal disease) to overt heart failure

(Selvaraj et al., 2016). WES identifies the variants found in the cod-

ing region of genes (exons). In order to accurately and consistently

call variants from across all datasets, we adopt the GATK frame-

work (DePristo et al., 2011) for a standardized processing of WES

data.

Fig. 1. Study workflow. HNMF stands for hybrid non-negative matrix factorization. LGD stands for likely gene disruptive

Table 1. Outcome variables reflecting cardiac mechanics

Outcome Description

Septal e’

velocity

Left ventricular early diastolic relaxation velocity,

measured at the septal mitral annulus in the apical

4-chamber view. Lower values reflect slower left ven-

tricular relaxation and worse diastolic function.

Longitudinal

strain

Left ventricular longitudinal strain measured in the ap-

ical 4-chamber view, a marker of subendocardial lon-

gitudinal systolic function. Lower absolute values

reflect worse systolic function.

Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization 3
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2.3 Imputation on phenotypic variables

Biomedical, epidemiological and clinical data often contain missing

values for test results, some due to issues during data acquisition

and archiving, but others due to the fact that clinicians do not order

certain tests based on patient-specific diagnostic and treatment

course. The missing percentage of the phenotypic variables consid-

ered in our study ranges from 0% to 37%. We had our cardiologist

colleagues pick rather inclusively 129 phenotypic variables (see

Supplementary Material) that can characterize the hypertension risk

and cardiac physiology of the patients. We are rather tolerant on

missing rate in order to retain as many variables as possible.

Nevertheless, only 13/129 (10%) of the phenotypic variables had

missingness > 10%. Six of these variables with missingness > 10%

(including those with missingness > 30%) were phenotypes related

to mitral inflow, which characterize diastolic function. Given the

importance of diastolic dysfunction (i.e., abnormal cardiac relax-

ation and/or reduced cardiac compliance) in the setting of hyperten-

sion, we chose to retain these variables because of their clinical

importance. We use the Multivariate Imputation by Chained

Equations (MICE) algorithm to perform the imputation. This ap-

proach assumes a conditional model for each variable to be imputed,

with the other variables as possible predictors (van Buuren and

Groothuis-Oudshoorn, 2011). The term chained equation comes

from the adoption of a Gibbs sampler, which is an iterative Markov

Chain Monte Carlo (MCMC) algorithm. Previous studies e.g., Luo

et al. (2016a)) showed that even at the presence of high missing rate

(over 50%), MICE imputation may still render clinically useful in-

formation to predict patient outcome due to redundant information

in phenotypic variables.

2.4 Annotation-based variant filtration and LGD variant

detection

We next used the ANNOVAR toolkit (Wang et al., 2010) to com-

prehensively annotate called variants with a wide array of informa-

tion, including their hosting gene ;[using several gene models such as

RefSeq, UCSC Known Gene, Gencode (Harrow et al., 2012)]; the

variant function; its predicted pathogenicity according to PolyPhen2

(Adzhubei et al., 2013), SIFT (Kumar et al., 2009), CADD (Kircher

et al., 2014), and other meta predictors; its minor allele frequency

among the 1000 Genomes populations and ExAC (Lek et al., 2016);

and its phenotype associations according to ClinVar, and HGMD

(Stenson et al., 2012).

To address issues of reference mis-annotation, we resort to the

recently released Exome Aggregation Consortium (ExAC) exome

dataset (Lek et al., 2016), which aims to aggregate exome sequenc-

ing data from a wide range of large-scale sequencing projects includ-

ing the cohorts of Myocardial Infarction Genetics Consortium,

Swedish Schizophrenia & Bipolar Studies and The Cancer Genome

Atlas (TCGA). We filter out those variants whose allele frequencies

are observed to be over 90% among the 60, 706 individuals aggre-

gated by ExAC. We also apply a similar 90% filtering threshold on

the alternate allele frequency in our cohort. We further focus on

likely gene disruptive (LGD) variants, which include frame-shift in-

sertion, frame-shift deletions, nonsense variants and splice site alter-

ations. We have 6430 gene features for our cohort, 660 subjects. We

follow the common practice and exclude the genes that have very

rare variants (<10 subjects) or very frequent variants (> 50% of the

subjects), resulting in 1481 genes. We then follow the common ap-

proach of gene prioritization (Moreau and Tranchevent, 2012) and

further select the genes that show significant difference between the

two hypertension groups (patient taking 1 vs. multiple anti-

hypertensive medications) by two-tailed binomial exact tests

(Howell, 2012). The gene selection is based on the entire patient co-

hort but uses a categorical label that is different from the final con-

tinuous outcomes of cardiac mechanics indexes. Eventually, 349

(110) genes (Supplementary Material) are selected for our cohort

with p-value of binomial test less than 0.1 (0.01). Each entry of our

genetic matrix specifies how many variants a patient has on that

gene.

2.5 Hybrid NMF

We propose the hybrid NMF (HNMF) model that integrates both

phenotypic and genetic measurements of patients. The phenotypic

measurements we consider are continuous values, hence we use

Gaussian distribution to model the approximation error. The genetic

measurements are counts of the genetic variants that happen to a

particular gene, thus we use Poisson distribution to model the vari-

ant count. A schematic view of our HNMF model is shown in

Figure 2.

Our goal is to maximize the joint likelihood of the two approxi-

mations. Let the variables be defined as in Table 2, we establish the

following constrained optimization problem

max k log P Xg

� �

�F;GgÞ þ logPðXp F;Gp

�

�

�

st: F � 0;Gp � 0;Gg � 0 ( 1 )

where k indicates the trade-off between the phenotypic approxima-

tion and genetic approximation (k ¼ 1 for our experiment), and the

log likelihood functions are defined as follows.

P
a

ti
en

ts

Phenotypic Variables

x

x

x

Patient Groups

Phenotypic Groups

P
a

ti
en

ts

Genetic Variables

x

Genetic Groups

x

Fig. 2. Hybrid non-negative matrix factorization model. In the figure, Xp is the

patient-by-phenotype-measurement matrix. Xg is the patient-by-genetic-vari-

ant matrix. F is the patient factor matrix specifying patient groups. Gp is the

phenotype factor matrix specifying groups of phenotypic measurements. Gg

is the genetic factor matrix specifying groups of genetic measurements

Table 2. Notations

Variable Description

n Number of patients

mp Number of phenotypes

mg Number of genotypes

k Number of patient groups

Xp 2 Rn�mp Patient by phenotype matrix, continuous value

Xg 2 Rn�mg Patient by genotype matrix, count value

F 2 Rk�n Patient group assignment matrix

Gp 2 Rk�mp Phenotype group assignment matrix

Gg 2 Rk�mg Genotype group assignment matrix

4 Y.Luo et al.
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logP Xg

�
�

�F;GgÞ ¼ �
1

2d2

X

ij

Xpij �
X

u

FuiGpuj

� �2
þ C1 (2)

logP Xg

�
�

�F;GgÞ

¼
X

ij

Xgij log
X

u

FuiGguj

� �

�
X

u

FuiGguj

� �

þ C2 (3)

We require F, Gg and Gp to be nonnegative in order to achieve

better interpretability. Since the values of the entries in both Xp and

Xg are nonnegative, with the nonnegativity constraints on F, Gg and

Gp we are essentially assuming an additive reconstruction of Xp and

Xg from the product of those factors under a hybrid loss. According

to the seminal paper from Lee and Seung in Nature (Lee and Seung,

1999), such additive reconstruction can result in better interpret-

ation of F,Gg andGp.

By minimizing the negative log likelihood, we arrive at the fol-

lowing objective function.

minL F;Gp;Gg

� �

¼
X

ij

k

2
Xpij � X̂pij

� �2
þ X̂gij �Xgij log X̂gij

� �

	 


st: F � 0;Gp � 0;Gg � 0 (4)

where X̂pij ¼
P

u FuiGpuj and X̂gij ¼
P

u FuiGguj Writing L in the ma-

trix form, we have

L F;Gp;Gg

� �

¼
X

ij

k

2
jjXp � X̂pjj

2
F þ X̂g �Xglog X̂g

� �

	 


(5)

where X̂p ¼ FTGp and X̂g ¼ FTGg. We can use the following alter-

nating projected gradient descent procedure to solve the objective

and establish the stopping criteria that the partial gradients should

be small enough or all factor matrix updates cannot produce a feas-

ible direction along which the objective function decreases (let Pþð�Þ

denote the non-negative projector):

Ftþ1 ¼ Pþ Ft � �t
FrFL F;Gt

p;G
t
g

� �

jF¼Ft
h i

(6)

Gtþ1
p ¼ Pþ Gt

p � �
t
Gp
rGp
L Ftþ1;Gp;G

t
g

� �

jGp¼G
t
p

h i

(7)

Gtþ1
g ¼ Pþ Gt

g � �
t
Gg
rGg
L Ftþ1;Gtþ1

p ;Gg

� �

jGg¼Gt
g

h i

(8)

These equations take turns in optimizing each factor matrix

while keeping the other two fixed. We next present the partial gra-

dients with respect to each of the three factor matrices. For pheno-

type group matrixGp, we have

rGp
L F;Gp;Gg

� �

¼ k FFTGp � FXp

� �

(9)

Let X̂g ¼ FTGg, and ~Xgij ¼ Xgij=X̂gij, for genotype group matrix

Gg, we have

rGg
L F;Gp;Gg

� �

¼ FðEG � ~XgÞ (10)

where EG 2 Rn�mg is an all-one matrix. For the patient group matrix

F, we have

rFL F;GP;Gg

� �

¼ k �GpX
T
p þGpG

T
p F

� �

þGg EF ��X
T
g

� �

(11)

With those gradients, we can adopt an alternating projected gra-

dient descent procedure to solve the hybrid matrix factorization

problem. This is an iterative procedure, at each iteration, the

algorithm optimizes the objective with one specific group of varia-

bles with all other variables fixed. The optimization procedure used

at each iteration will be projected gradient descent. In order to deter-

mine the step size at each gradient descent step, we use the Armijo

rule as a sub-procedure which looks for the largest g (step size) that

satisfies the following sufficient decrease condition. Let H; Hnew de-

note the parameters (e.g., F, Gg and Gp) before and after each iter-

ation respectively, and d 2 ð0; 1Þ be a predefined number. General

sufficient decrease condition can be written as

‘5 Hnewð Þ � L Hð Þ � dtr rHL Hð Þ H
new �Hð ÞT

� �

(12)

If L is a quadratic form of H, we have a special fast-to-check suf-

ficient decrease condition as Formula (13) (Lin, 2007). The algo-

rithm for projected gradient descent with Armijo rule can be

outlined as Algorithm 1. Note that q in the algorithm is a step size

controlling parameter that is set to the common choice of 0.1 (Lin,

2007).

1� dð Þtr rHL Hð Þ H
new �Hð ÞT

� �

þ
1

2
tr H

new �Hð Þr2
H
L Hð Þ Hnew �Hð ÞT

� �

� 0 (13)

2.6 Feature group discovery using HNMF

In HNMF, the row vectors in the phenotype factor matrixGp and in

the genetic factor matrix Gg specify the grouping of phenotypic

measurements and genetic variants respectively. Such groupings can

be viewed as mixtures of phenotypic (or genetic) features, as they

allow sharing of these features among different groups as specified

by its fractional weights across groups. The motivation is to identify

paired phenotypic group and genetic group that together character-

ize pathophysiologic underpinnings. The approximated phenotypic

matrix can be viewed as rank-one sum of outer-product of patient

group (e.g., FT½ ��j, jth column of the patient group matrix) and

phenotypic group (e.g., ½Gp�j�, jth row of the phenotypic group ma-

trix). Similar argument holds for genetic group matrix. Thus the pa-

tient group (e.g., FT½ ��j) bridges the corresponding phenotypic group

(e.g., Gp

� �

j�
) and genetic group (e.g., Gg

� �

j�
). We used the patient

group matrix FT as the instance-feature matrix in Ridge regression

and used the numeric values of the cardiac mechanic variables as

outcomes (listed in Table 1), and identify a column with maximum

coefficient (e.g., FT½ ��j). We selected the corresponding phenotypic

and genetic groups (e.g., ½Gp�j� and Gg

� �

j�
), which are paired through

the shared patient group (e.g., FT½ ��j) and provide interpretation

Algorithm 1 Projected gradient descent with Armijo rule

1: Initialize H. Set g ¼ 1

2: for i ¼ 1 to k do

3: if g satisfies Eq. ( 13 ) (or ( 12 ) if quadratic) then

4: Repeatedly increase g as g g=q until either g does

not satisfy Eq. (13)) (or (12)) if quadratic) or

Hðg=qÞ ¼ H

5: else

6: Repeatedly decrease g as g qg until g satisfy Eq.

(13) (or (12) if quadratic)

7: end if

8: Set Hnew ¼ maxð0;H� grHLðHÞÞ

9: end for

Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization 5
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advantage. Using the trained regression model, we rank the patient

groups by their regression coefficients and focus on the top patient

groups (and associated phenotypic and genetic groups) that are asso-

ciated with large effect size.

2.7 Evaluating the groups discovered by HNMF

Because there is no innate way (except for simulation) to determine

whether the groupings of phenotypic measurements and genetic var-

iants discovered by HNMF are good or poor, we evaluate their utility

as features, abstracted from the base data, in a prediction model. We

assume that good features will improve prediction and will give us

some insights into which phenotypic and genetic patterns are indica-

tive of patient cardiac mechanic abnormality. We use the phenotypic

and genetic data for participants from the hypertension genetic epi-

demiology network (HyperGEN) study. We take a subset of the

African American patients who are hypertensive, and for whom we

have both phenotypic and genetic data available at large scale. We

predict the numeric values of the cardiac mechanic variables as out-

comes (listed in Table 1). For each outcome variable, we randomly

split these patients into a 7: 3 train and held-out test dataset, and re-

peat the random initializations of HNMF and other NMF based com-

parison models 50 times in order to improve the statistical robustness

of the results. We did not require that all the individuals from the

same family to be included in either the training or the test set, but

not both. This is out of the consideration that we want to minimize

the potential bias from family variant patterns during model training.

However, we did perform additional experiments requiring all the

individuals from the same family to be included in either the training

or the test set, but not both, which yielded similar numerical results,

please refer to the Supplementary Material for more details.

To evaluate the effectiveness of HNMF in abstracting raw data

into more predictive features, we use the patient factor matrix F to

train a Ridge regression model. We chose Ridge regression over

alternatives such as support vector regression or random forest re-

gression for its capability to generate deterministic weights for indi-

vidual features. We match the groups in the phenotypic factor

matrix and genetic factor matrix according to their row indices, and

link them to the corresponding row in the patient factor matrix F.

Linear regression then provides a convenient way to directly assess

phenotypic and genetic group contribution.

3 Results

In this section, we first evaluate the algorithmic performance using a

simulated dataset where the actual factor matrices are known. Then,

we evaluate the hybrid matrix factorization performance using the

HyperGEN dataset.

3.1 Simulation

We first analyze simulated data where the underlying factor matrices

are known. Specifically, we consider a 20� 10 Xp matrix and a

20� 100 Xg matrix with the true number of factors being 3. That

is, they are generated by a 3� 20 F matrix, a 3� 10 Gp matrix,

and a 3� 100 Gg matrix. We first sample the F, Gp, and Gg matri-

ces. We then generate the Xp matrix by adding an error term �p on

top of FTGp where �p adopts standard normal distribution. Next we

generate the Xg matrix by sampling according to Poisson distribu-

tion with the parameter set to FTGg.

In order to evaluate the similarity between the factorized matrix

and its true counterpart, we use the following similarity score:

similarity A;Bð Þ ¼
tr ATBð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr ATAð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr BTBð Þ
p (14)

where tr �ð Þ is trace and tr ATBð Þ can be considered as matrix inner

product. This similarity score is essentially the cosine similarity,

which quantifies the closeness between the computed solution and

the actual factor matrix and provides a single number between 0 and

1 (Chi and Kolda, 2012). In order to test the sensitivity of estimates

to the initialization, we performed random initialization 10 times.

The simulation results are shown in Figure 3a where the similarity

score is plotted as a function of maximum number of iterations for

sub-procedures (optimizing F, Gp, Gg one at a time while fixing the

other two, using the Armijo rule), which represents the closeness to

the sub-problem optima. Figure 3 shows that as we have extra sub-

procedure iterations, the similarity scores first rise slightly and then

plateau quickly. We can also see that the similarity between the true

factor matrices and those recovered by HNMF quickly reaches to an

accurate level (>0.9). Figure 3b shows the convergence speed of the

proposed alternating projected gradient descent method with the

number of iterations for sub-procedures set to 100. We can see that

both loss functions (Frobenius loss for phenotype matrix and KL loss

for genotype matrix) quickly decrease within a few iterations. In fact,

for our simulation, the stopping criteria is usually met in less than 50

iterations. Regarding the sensitivity of estimates, Figure 3a shows

that the variation across runs with different initializations is relatively

low; Figure 3b shows that although the loss function curves may dif-

fer in the first few iterations across different initializations, they usu-

ally converge to the same levels quickly.

3.2 Application on cardiac mechanics

We then evaluate HNMF on its effectiveness of abstracting raw data

into more predictive features. Using the 2 indices of cardiac mechan-

ics listed in Table 1 as the outcome and the patient factor matrix F

as the predictors, we train a Ridge regression model. We evaluate

the root-mean-square error (RMSE) of our model on the held-out

test set, and compare it against two baselines: (b1) Using only genet-

ic variants as regression features; (b2) Using only phenotypic meas-

urements as regression features. We also established five groups of

comparison models as follows: (c1) Using only the genetic groups as

regression features by applying NMF on the genetic variant matrix

only; (c2) In disease with polygenic risk factors, each variant may

contribute a small portion of risk, thus we added the total count of

risky variants as additional feature to the genetic groups (Liu et al.,

(a) (b)

Fig. 3. Simulation results on a hybrid matrix factorization problem with rank

3. Ten random initializations are performed. (a) Similarity scores with error

bars as a function of number of iterations for sub-procedures (b) decreasing

trend of loss functions for phenotype (Frobenius loss) and genotype matrix

(KL loss) approximations during HNMF, shown are 10 runs. Error bars indi-

cate standard deviations
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2014); (c2) Using only the phenotypic groups as regression features

by applying NMF on the phenotypic measurement matrix only; (c3)

Using joint matrix factorization but use KL loss for both matrices;

(c4) Using joint NMF but use Frobenius loss for both matrices; (c5)

Using other recently published methods include: iCBayes—Bayesian

latent variable model for integrative clustering analysis (Mo et al.,

2018); jBayes—Bayesian joint analysis (Ray et al., 2014); JIVE –

Joint and individual variation explained (Lock et al., 2013). For the

two suggested Bayesian sampling methods, we used the optimal set-

ting described in their respective papers regarding sampling itera-

tions (burn-in iterations and max iterations, e.g., 3000 and 4000

respectively for jBayes).

We follow Ho et al. (2014) on the evaluation procedure in that

we vary the group number k from the smallest 2 to where the evalu-

ation metric plateaus and show that across the spectrum HNMF

outperforms multiple separate and joint NMF comparison models.

The baseline RMSE performances are: 1.25 and 3.88 for geno-

baseline on septal e’ velocity and longitudinal strain respectively,

1.20 and 3.55 for pheno-baseline respectively. The RMSE perform-

ance results of HNMF and comparison models are shown in

Figure 4. Comparing all the factorization models and non-

factorization models, we can see that using factor matrices as fea-

tures results in significant improvement (smaller RMSE) over using

phenotypic measurements and genetic variants directly as features.

Phenotype-only factor matrices often show better regression accur-

acy than genotype-only factor matrices, likely due to the fact that

genetic raw matrix is much sparser than the phenotypic raw matrix.

The HNMF factor matrix for regression also significantly outper-

forms all comparison models including genotype-only or phenotype-

only factor matrix for regression, as well as the two joint NMF

model results using either KL loss or Frobenius loss for both matri-

ces. This suggests that HNMF can effectively integrate the pheno-

type and genotype features to predict cardiac mechanics outcomes.

HNMF also outperformed recently published methods including

iCBayes, jBayes, and JIVE regarding both cardiac mechanics

indexes. Note that JIVE is a deterministic model (hence no confi-

dence intervals in the figure) whose performance varies little with

the rank of the matrix corresponding to joint variation (hence

appearing as a flat line in the figure). The joint Bayesian methods oc-

casionally may have large variations possibly due to the fact that our

study has a moderate number of subjects with both phenotype and

genetic data. Bayesian sampling based methods likely prefer more

subjects to achieve stable estimation while HNMF is more stable as

it directly optimizes the objective function. We also noted that

jBayes occasionally produced large RMSEs (e.g., k¼13 for septal s’

velocity), when the corresponding matrices contain large negative

entries. This likely suggests overfitting; on the contrary, HNMF pro-

duced matrices with entries that have controlled magnitude due to

non-negative constraints, and likely reduced overfitting.

3.3 Sensitivity analysis

When performing annotation-based genetic variant filtration, we se-

lect the genes that show significant difference in number of LGD var-

iants between the two hypertension groups (patient taking 1 vs.

multiple anti-hypertensive medications) by two-tailed binomial exact

tests. Using a P-value threshold of being less than 0.01 produces 110

genes for our cohort. This is a relatively stringent threshold and in

this section we perform sensitivity analysis by varying the P-value

threshold and including 0.05 and 0.1. With these P-value thresholds,

we include considerably more genes into consideration: 239 genes for

0.05 as threshold and 349 genes for 0.1 as threshold. The genotype

baseline RMSEs are 4.87 (4.63) for longitudinal strain and 1.56

(1.50) for septal e’ velocity under P-value threshold 0.1 (0.05).

Supplementary Figure S1 (Supplementary materials) shows the results

of the sensitivity analysis in comparison with Figure 4. Comparing

these figures, it is easy to see that under all p-value thresholds,

HNMF consistently outperforms all baselines and NMF comparison

models including pheno- and geno- separate NMF models and joint

NMF models with KL or Frobenius losses. On the other hand, as one

tightens the P-value threshold, the plateau region becomes wider, sug-

gesting that the regression performance is less sensitive as the group

number varies in the plateau region. Thus in the following phenotype

and genotype group analysis, we chose P-value threshold of 0.01.

Another reason is that with a stricter P-value threshold, we are more

confident that selected genes are likely implicated in the pathogenesis

of abnormal cardiac mechanics. We also note that with large enough

patient cohort size, techniques such as cross-validations can be used

to accurately determine the optimal group number. The larger the pa-

tient cohort size, the more effective cross-validation is, under more

relaxed filtering criteria that result in more genes to consider.

4 Discussion

Using the method in the feature group discovery section, we identi-

fied the top phenotypic and genetic groups that are associated with

(a)

(b)

Fig. 4. RMSE with 95% confidence interval for HNMF and comparison meth-

ods. gNMF – using genotype factor matrix as features; pNMF –phenotype fac-

tor matrix as features; hNMF –hybrid factor matrix as features; jNMF(KL) –

joint matrix factorization using KL loss; jNMF(Fro) – joint matrix factorization

using Frobenius loss; gNMFþc – genotype factor matrix and the total count of

risky variants. Other recently published methods include: iCBayes: Bayesian

latent variable model for integrative clustering analysis (Mo et al., 2018);

jBayes - Bayesian joint analysis (Ray et al., 2014); JIVE – Joint and individual

variation explained (Lock et al., 2013)

Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization 7
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worse cardiac mechanics. Due to space limitation, we only show the

top phenotypic and genetics groups associated with lower values of

septal e’ velocity and longitudinal strain, as listed in Table 3. The

phenotypic groups can help us identify variables that are correlated

with abnormal cardiac mechanics. The associated genetic group

consists of genes that potentially mediate the corresponding multi-

variable phenotypic abnormality. They collectively indicate prob-

lematic multi-factor genotype and phenotype interaction and

attribute such interaction to a specific patient group (in F), thus can

more comprehensively and precisely characterize and stratify these

patients in an evidence-driven fashion.

More specifically, the echocardiographic septal e’ velocity is one

of several variables used during the assessment of diastolic dysfunc-

tion. In general lower septal e’ values are reflective of a higher de-

gree of diastolic dysfunction, which is associated with the

development of heart failure and/or adverse cardiovascular out-

comes (Mitter et al., 2017). In septal-e’ phenotype group, preserved

(higher) left ventricular ejection fraction is often present in patients

with diastolic dysfunction, other variables are associated with the

development of diastolic dysfunction, including abnormal sodium,

calcium, and albumin levels, and abnormal left ventricular wall

thickness during diastole. In the septal-e’ gene group, TPM2 shows

strong susceptibility to variants that lead to cardiomyopathies and

IDI2 to chronic kidney disease (comorbidity and risk factor for car-

diovascular disease). NPR2 is linked to cardiac conduction.

GPRC6A is responsible for calcium sensing that affects L-type cal-

cium channel and is critical to cardiac cell function (Mackenzie

et al., 2005). MSMP is involved in resting heart rate modulation.

For longitudinal strain, lower values suggest worse longitudinal sys-

tolic function of the subendocardium (inner layer of the heart), thus

worse cardiac mechanics (Shah et al., 2014). In longitudinal strain

phenotype group, besides abnormal sodium, calcium and albumin

levels, both higher waist/hip ratio and faster sitting heart rate have a

known association with the development of heart failure (Bui et al.,

2011). In the longitudinal strain gene group, COX6B2 is in the car-

diac muscle contraction pathway, CLDN5 is expressed in heart

muscle, other genes also show strong susceptibility to variants that

lead to cardiomyopathies (TPM2), other cardiovascular diseases

(BMP4), and obesity as comorbidity (PAX5).

This study is subject to potential limitations. First, we only con-

sider the genetic variants that are in coding regions. Genetic varia-

tions in coding regions are thought to be the most clinically

significant because they often result in a change in the amino acid se-

quence of a protein. Thus, variations in coding regions of genes

typically are associated with more clinical sequelae than variants in

non-coding regions. However, variants in non-coding regions could

have clinical implications through gene regulation or epigenetic

modifications etc. The lack of non-coding variants is a limitation in

our study. Applying HNMF on both coding and non-coding variants

will be more computationally intensive. Thus in future work, we

will develop a more computationally efficient algorithm, and obtain

Whole Genome Sequencing (WGS) data to systematically capture

potential regulatory variants. Regarding the identified subgroups,

we only assessed and discussed their consistency to known know-

ledge. In the future, we also plan to provide more evidence, and in

particular, biological validation to confirm potential novel discov-

eries. The second limitation concerns the gene feature selection using

the entire patient cohort. This is out of consideration that genetic

features are sparse and we only have a moderate sized patient co-

hort. In addition, we use a categorical label that is different from the

final continuous outcomes of cardiac mechanics indexes to reduce

the impact on generalizability evaluation. Despite our best efforts,

we acknowledge that the impact on generalizability cannot be fully

eliminated, and we plan to sequence more subjects from external

sites to more strictly evaluate the generalizability of our algorithm

and how applicable the selected genes would be to future cohorts.

The third limitation concerns the fact that some individuals from the

same family may be split into the training set while others in the test

set. We did so in order to minimize the potential bias from family

variant patterns during model training. This may result in an overly

optimistic view of the generalizability. However, as neither HNMF

nor all the comparison methods explore the family structure, we ex-

pect that their relative performances are similar and models’ ranks

will hold in general. We also performed additional experiments by

assigning all individuals from the split families to the training set,

therefore guaranteeing family-preserving training-testing split. As

shown in Supplementary Figure S2, these experiments yielded simi-

lar numerical results and confirmed our expectation, please refer to

the Supplementary Material for more detail.

To sum, we proposed a novel HNMF algorithm that integrates

both phenotypic measurements and genetic variants as features in

order to subtype patients. HNMF models the approximation error

for the phenotypic matrix using Gaussian distribution, and models

the variant count for the genetic matrix using Poisson distribution.

The objective function is the negative log-likelihood of the data

given parameters. We developed an alternating projected gradient

descent method to solve the approximation problem. Using the

simulated dataset, we demonstrated that HNMF has fast conver-

gence and high accuracy when approximating the true factor matri-

ces. Using the real-world HyperGEN dataset, we demonstrated the

effectiveness of HNMF in integrating both the phenotypic and gen-

etic features to derive informative patient subgroupings. We used

the patient factor matrix as features to predict the cardiac mechanics

outcome variables. We compared HNMF with six different models

using phenotype or genotype features directly, using NMF on these

features separately, and using joint matrix factorization but with

only one type of loss function. HNMF significantly outperforms all

comparison models. Analyzing the identified phenotype and geno-

type groups reveals intuitive phenotype-genotype interactions that

characterize cardiac abnormality. For future study, we plan to ex-

tend HNMF to consider prior medical knowledge (e.g., known

phenotypic and genotypic characteristics associated with heart fail-

ure) in guiding the generation of the factor matrices for better pa-

tient stratification. We also plan to extend HNMF to a tri-

factorization model that allows for different group numbers in pa-

tient, genotype and phenotype factor matrices, in order to benefit

Table 3. Top phenotypic and genetic groups (and their representa-

tive components) associated with lower values of septal e’ velocity

and absolute longitudinal strain (worse cardiac mechanics)

Top phenotype group Top gene group

Septal e0velocity Sodium GPRC6A

Calcium MSMP

Albumin NPR2

Left ventricular ejection fraction IDI2

Relative wall thickness TPM2

Longitudinal strain Sodium COX6B2

Calcium PAX5

Albumin BMP4

Waist/hip ratio TPM2

Sitting heart rate CLDN5

Note: Paired phenotypic group and genetic group are linked by patient group.

8 Y.Luo et al.
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HNMF with more flexibility to handle heterogeneous and distinct

modality of data sources. We plan to model the genetic matrix ap-

proximation using zero-inflated Poisson distribution, as genetic ma-

trix is sparse. We also plan to relax LGD criteria to include more

genetic variants and obtain Whole Genome Sequencing data to sys-

tematically capture potential regulatory variants.
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