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ABSTRACT
A goal of software engineering research is advancing software qual-
ity and the success of the software engineering process. However, 
while recent studies have demonstrated a new kind of defect in 
software related to its ability to operate in fair and unbiased man-
ner, software engineering has not yet wholeheartedly tackled these 
new kinds of defects, thus leaving software vulnerable. This paper 
outlines a vision for how software engineering research can help re-
duce fairness defects and represents a call to action by the software 
engineering research community to reify that vision. Modern soft-
ware is riddled with examples of biased behavior, from automated 
translation injecting gender stereotypes, to vision systems failing 
to see faces of certain races, to the US criminal justice system relying 
on biased computational assessments of crime recidivism. While 
systems may learn bias from biased data, bias can also emerge from 
ambiguous or incomplete requirement specification, poor design, 
implementation bugs, and unintended component interactions. We 
argue that software fairness is analogous to software quality, and 
that numerous software engineering challenges in the areas of re-
quirements, specification, design, testing, and verification need to 
be tackled to solve this problem.
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1 BIAS IN SOFTWARE
Bias is rampant in modern software. Try it out: type “He is a nurse.
She is a doctor.” into http://translate.google.com and translate it into
Turkish. Then translate the result (“O bir bebek hemşire. O bir dok-
tor.”) into English and you get “She is a nurse. He is a doctor.” [24]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264838

Figure 1: Automatically translating text from a language
without gendered pronouns into English can be influenced
by societal biases [24].

(Figure 1). Want to upload a video to YouTube and have closed cap-
tions generated automatically? If your video features a man’s voice,
the closed captions are likely to be more accurate than one with a
woman’s voice [74]. Want your futuristic house or autonomous car
to recognize you when you get in? Facial recognition systems often
perform poorly on female andAfrican American faces [48]. Looking
for a job? Hopefully, when an employer searches for your name, the
search engine doesn’t decide to show ads about your (nonexistent)
arrest record only because of your race [73] (Figure 2). Evidence of
bias in software goes on and on. In 2016, Amazon software decided
not to offer same-day delivery to predominantly minority neigh-
borhoods [51]. Staples offered online discounts to customers only
in wealthier and more affluent neighborhoods [36, 60]. Language
processing tools work better on English written by white people
than people of other races [10]. The software US courts use to
assess the risk of a criminal repeating a crime when deciding on
bail and sentencing has been shown to exhibit racial bias [6].

With the increased use of machine learning in business, biases
in underlying data used to train such systems can infiltrate the sys-
tems’ outcomes. The machine learning community is aware of this

Figure 2: Though since fixed, in 2013, Google searches
for traditionally African American names (e.g., “Latanya
Sweeney”) were more likely to result in ads for arrest
records [73].
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problem and has begun research on building machine classifiers
that are fair in the face of biased data [2, 22, 38, 44, 76, 82, 84], e.g.,
as part of its Fairness, Accountability, and Transparency in Ma-
chine Learning workshops (https://www.fatml.org/). The recently
formed Conference on Fairness, Accountability, and Transparency
(https://fatconference.org/) brought together, in 2018, researchers
and practitioners interested in related topics. But while this confer-
ence was heavily attended by machine learning, policy, and legal
experts, notably, software researchers and engineers were not well
represented.

Despite the relatively low involvement, to date, of the software
engineering community in this endeavor (with a few notable ex-
ceptions [3, 34, 77] discussed in Sections 2.3 and 2.4), the problems
of producing fair software are, in fact, squarely in the software
engineering domain. Much like other important software proper-
ties, such as quality or security, producing fair software requires
(1) eliciting and specifying requirements that capture fairness prop-
erties, (2) architecting and designing systems while adhering to
their fairness concerns, (3) validating and verifying fairness prop-
erties of the resulting software products, and (4) maintaining the
fairness properties as the software evolves. As with software se-
curity and quality, it is insufficient to treat software fairness as an
after-the-system-is-built concern; instead, fairness needs to be a
first-class entity in the software engineering process, and doing
so requires language, tool, and automation support at the levels of
requirements, design, implementation, testing, and verification.

This paper represents a call to action for software engineering
researchers to tackle the important challenges of engineering fair
software. We outline the challenges that must be tackled to sup-
port developing fair systems and argue for the urgency of such
research. Section 2 lays out the relevant challenges and presents
research ideas our community should tackle. Section 3 places our
call to action in the context of ongoing research. Finally, Section 4
summarizes our key arguments for the proposed line of research.

2 FAIRNESS RESEARCH CHALLENGES
How do we fight bias in software? Developing better machine
learning methods is a start, but because there are many causes of
bias, it cannot be the entire solution. Software fairness is analogous
to software quality and security: good design and proper algorithms
are important, but so are quality control via, e.g., testing and formal
verification. For example, today, both companies and customers can
use software testing tomeasure software quality, identify and report
bugs, and prevent regressions. Similarly, tools are needed to support
software fairness testing to measure software discrimination, enable
identifying and reporting discrimination bugs, and protect against
discrimination regressions— changes to code or data that introduce
discrimination.

Experience has shown that high-level software concerns, such
as security, quality, maintainability, self-adaptivity, etc. must be
treated as first-class entities throughout the development lifecycle—
not ignored until after the system is implemented— or else they are
unlikely to be satisfied in the final product, e.g., [4, 25]. Fairness is
similar, and when fairness is not made a first-class concern, systems
result in unexpected, biased behavior, e.g., [24, 34, 48, 74]. This
section outlines the research challenges that need to be addressed

for software engineers to treat fairness as a first-class concern when
building systems. This list is, of course, inherently partial, and more
challenges are likely to arise as research progresses.

2.1 Requirements and Specifications
What does it mean for software to be fair? There have emerged
numerous definitions of algorithmic fairness [63]. But while each
of these definitions is appropriate in a given context, many are
impossible to satisfy simultaneously [33]. For example, consider
software that decides if an applicant should receive a loan, and
consider fairness metrics with respect to race. The group fairness
definition [22, 28, 38, 82, 84] states that the same fraction of the
applicants of each race should get loans. If a higher fraction of
applicants of one race receive loans than of another, that’s bias.
Meanwhile the individual or causal fairness definition [28, 34] states
that no two applicants identical in every way except race should
result in one receiving the loan and the other not. So if there are
two applicants who differ only in race, they should either both get
a loan or neither of them should get a loan. Both of these properties
seem desirable in a fair system. However, when applied to the
real world, the two definitions cannot be (non-degeneratively, e.g.,
giving loans to no one) satisfied simultaneously. Suppose there
is strong correlation between the applicants’ race and income (or
any other attribute). Then it is not possible to both give the same
fraction of individuals of all races a loan and to give all pairs of
individuals identical in every way except race a loan. If only every-
one above a certain income receives the loan, individual fairness is
satisfied but group fairness is not. If the same fraction of applicants
of each race receives a loan, then for the race correlated with lower
incomes, some individuals who receive a loan must have lower
incomes than some individuals of another race who do not receive
a loan, and thus individual fairness cannot be satisfied.

The creation of a catalog of fairness definitions and guidelines
for when each definition should be used is an open challenge in
the engineering of fair software. Of the dozens of existing defini-
tions [63], each depends on and is appropriate for certain contexts.
To properly elicit and specify fairness requirements, the software
engineers and often their clients must understand these contexts
and the relationships between the contexts and the potentially
desired fairness properties. Guidelines are needed to drive the ques-
tions clients should be asked, concerns and assumptions that need
to be considered in selecting fairness definitions to use in specify-
ing requirements, and the implications and restrictions imposed by
these requirements.

The creation of requirement consistency and implication analy-
ses is another open challenge. As mentioned earlier, combinations
of fairness requirements that rely on multiple definitions of fair-
ness may be, at times counterintuitively, mutually exclusive [33],
and automated analyses or simulation can identify inconsistent or
unsatisfiable requirements. Further, certain fairness requirements
may result in unexpected or undesirable behavior. For example,
recent work has shown that on one dataset, placing a constraint on
a decision-tree machine-learning system [38] not to discriminate
against gender significantly increased its discrimination against
race [34]. Such an outcome is likely to be an unwelcome surprise
to the software stakeholders who specified the requirement of no
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bias against gender. Analyses that help understand the possible im-
plications of such constraints and how fairness requirements affect
other requirements are critical for understanding the trade-offs and
for properly specifying such requirements.

Further, analyses can help understand when satisfying a require-
ment does not achieve the overall desired goal. For example, the
group fairness property described above can be tricked to appear
as if the system technically satisfies the property, while failing to
satisfy it in spirit. Consider an instance of the loan recommendation
system that recommends loans to all tall applicants of race α but to
no short applicants of race α , and to all short applicants of race β
but to no tall applicants of race β . Despite clear bias with respect
to race and height, a requirement of no group discrimination with
respect to race is satisfied because discrimination against short
applicants of race α is cancelled out by discrimination against tall
applicants of race β . This phenomenon can easily be missed when
specifying requirements, and automated analyses are needed to
mitigate such risks.

2.2 Architecture and Design
Inconsistencies among desired system properties are common. For
example, security and usability properties are often at odds, with se-
curity making systems harder to use. It is often difficult to tell prior
to developing a system architecture or prototype how requirements
will interact [70], and the case is likely to be no different for poten-
tially conflicting fairness requirements. An open research challenge
is to create tools that help model system architecture and identify
potential conflicts or trade-offs. Similar challenges in understanding
trade-offs, in terms of functional and non-functional properties of
systems, have been tackled with discrete-event simulation [69, 71]
and fuzzy logic [29], and such approaches can potentially help with
making fairness-related design decisions. Multi-objective optimiza-
tion can help identify fair trade-offs when considering treating
multiple software stakeholders fairly when eliciting requirements
from them [30]. Similar approaches could perhaps be used to bal-
ance mutually opposing fairness requirements.

Years of system-building experience has produced architectural
styles and design patterns for various desirable software proper-
ties [75], e.g., the peer-to-peer architectural style to avoid single
points of failure. An open research challenge is to develop styles
and patterns for fairness properties, perhaps augmenting the above-
mentioned catalog of fairness definitions with which styles and
patterns help address each definition. Further, style and pattern
interactions need to be studied to understand which ones can, and
which ones cannot be composed.

For systems that rely on machine learning, the design of fairness-
aware algorithms that can produce fair models even when faced
with biased training data is critical. Such algorithms are in devel-
opment, e.g., [2, 22, 38, 82, 84], and more mature frameworks with
theoretical guarantees are emerging [76].

2.3 Testing and Debugging
The primary method for ensuring software quality is testing [4].
There is strong reason to believe the same should be true for soft-
ware fairness. Even advanced tools to ensure fairness of require-
ments and design cannot prevent all bugs, unintended interactions,

assumptions that fail to hold in the real world, and other causes of
bias. Testing can, as with quality, assess the fairness of the built
system, provide a mechanism for debugging bias, and guard against
bias regressions.

To date, relatively little software engineering research has fo-
cused on these issues, with the notable exceptions of Themis [5, 34]
and FairTest [77]. Themis is a mechanism for automated test gener-
ation for systems with categorical inputs, such as, for example, the
loan recommendation system described above. Themis automati-
cally generates fairness test suites for group and causal (individual)
fairness; executing these test suites produces a fairness score and
a measure of confidence in that score. FairTest allows developers
to write manual tests and performs various analyses to measure
fairness-related statistics.

Fairness bugs are common in software systems with complex
inputs and outputs, to which Themis and FairTest cannot directly
apply. For example, tools with natural English inputs parse Eng-
lish written by white people more accurately than that written by
people of other races [10], and facial detection and recognition
tools’ accuracy also depends on demographic information, such as
race and gender [48]. A major challenge for automated fairness
test generation is to generate tests for systems with such inputs.
Testing such systems for causal fairness requires the generation of
carefully controlled natural language and photos that are identical
except for a fixed set of sensitive attributes. Further, automated test
generation does not yet address covariants in attributes; accounting
for such covariants can generate more accurate test suites.

The large feature spaces involved in applications with potential
bias create a significant scaling challenge for testing. Exhaustive
testing is, of course, infeasible for real-world systems, but some
definitions of discrimination, including causal discrimination, are
susceptible to provably-sound pruning and adaptive sampling to
reduce the test space [34]. Further efficiency improvements and
guided test generation are needed to make fairness testing applica-
ble to large, real-world systems. For example, new methods may
exploit discovered tests that identify evidence of bias to guide subse-
quent test generation and may be able to find more evidence faster
than random search. Further, fairness testing requires executing
the software under test many times, often with similar inputs. This
offers an opportunity for improving the efficiency of execution
using information from prior executions. This incremental execu-
tion optimization could, potentially, greatly reduce test execution
time and increase the applicability of fairness testing to larger sys-
tems. Similarly, test prioritization and selection may improve the
efficiency of fairness testing systems.

As with software quality, while testing can identify fairness bugs,
developers also need debugging tools to understand and remove the
root causes of the bias. Root causes can lie in the involved require-
ments, algorithms, implementation, or data [9], and an extensive
suite of debugging tools is necessary to support the developers,
including tools for debugging how data inaccuracies may affect
software outcomes. As an example of data imperfections being a
root cause of bias, such imperfections may affect certain sensitive
groups more than others: Due to database errors, which are more
prevalent in DHS records than SSA records, the E-Verify program
(the voluntary, government-run system that employers can use
to check whether new employees are work-eligible) had rejection
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rates 30 times higher for naturalized citizens and 50 times higher for
legal nonimmigrants, than for natural-born citizens [67]. Ideas from
research on inferring causal models [52] and relationships [56, 58]
in data can be adapted to build models of causal relationships in
software behavior, aiding system understanding and debugging
tasks. Such fairness analysis has the potential to produce powerful
tools because it combines the ability to obtain new execution data
on demand by running the software under analysis, and to conduct
causal experiments to test causal hypotheses [34].

2.4 Verification
As with all software correctness, verification is a highly desirable
goal for software fairness. Recent work proposing verification of
fairness properties highlights relevant challenges [3]. First, fairness
properties are often aggregates of many executions, as opposed
to correctness properties that can be invalidated by a single coun-
terexample execution. This can complicate model-checking and
even make checking assertions more challenging. Second, fairness
properties are often not only reflective of the software but also of
the input population relevant to the software execution, making it
more difficult, or less relevant, to verify the software for all popula-
tions. Third, fairness properties are often probabilistic, restricting
which existing verification techniques can be applied directly to
the problem.

Another research challenge with respect to formal verification of
fairness properties is identifying ways to encode fairness definitions
as verifiable program properties. Some such definitions can be
encoded as probabilistic program properties [3], though others may
require different mechanisms. Developing runtime environment
support for asserting these properties during execution can also
help ensure proper behavior.

Finally, support for debugging fairness bugs when formal ver-
ification finds behavioral counterexamples or evidence of bias is
needed to help developers not only detect bias but also remove it
and improve systems.

3 RELATED WORK
Discrimination shows up in many software applications, e.g., adver-
tisements [73], hotel bookings [53], and image search [42]. At the
same time, software is entering domains in which discrimination
could result in serious negative consequences, including criminal
justice [6], finance [64], and hiring [68]. Software discrimination
may occur unintentionally, e.g., as a result of implementation bugs,
as an unintended property of self-organizing systems [11, 16, 18, 19],
as an emergent property of component interaction [12, 17, 21, 49],
as conflicting logic from multiple developers’ changes [13–15, 20]
or as an automatically learned property from biased data [22, 23, 37–
40, 82–84].

Existing work on test generation focuses on two specific mea-
sures of discrimination, group and causal. Group discrimination
is a generalization of the Calders-Verwer (CV) score [23], used
frequently in prior work on algorithmic fairness, particularly in
the context of fair machine learning [2, 22, 38, 43, 44, 76, 82, 84].
Many other definitions exist [63]. One defines discrimination by
observing that a “better” input is never deprived of the “better”
output [28]. That definition requires a domain expert to create a

distance function for comparing inputs. Causal discrimination [34]
measures causality [66]. Fairness in machine learning research is
also concerned with causal measures of discrimination, e.g., coun-
terfactual fairness [50]. FairML [1] uses orthogonal projection to
co-perturb characteristics, which can mask some discrimination,
but find discrimination that is more likely to be observed in real-
world scenarios.

FairTest [77] uses manually written tests to measure four kinds
of discrimination scores: the CV score and a related ratio, mutual
information, Pearson correlation, and a regression between the
output and sensitive inputs.

Reducing discrimination in machine learning classifiers [2, 22,
38, 43, 44, 76, 76, 82, 84] and selection algorithms [72] is important
work that is complementary to the effort the software engineering
community needs to put in to create tools and other support for
developing fair software.

Some fairness properties can be encoded as probabilistic program
properties over a distribution of executions and asserted at runtime
or even formally verified with probabilistic guarantees [3]. This
work can form the basis of future research on formally verifying
fairness properties.

Combinatorial testing may be relevant to fairness testing as it
aims to minimize the number of tests needed to explore certain
combinations of input characteristics. For example, all-pairs testing
generates tests that evaluate every possible value combination for
every pair of input characteristics, which can be particularly helpful
when testing software product lines [7, 41, 45, 46]. The number of
tests needed to evaluate every possible value pair can be signifi-
cantly smaller than the exhaustive testing alternative since each test
can simultaneously contribute to multiple value pairs [26, 41, 78].
Such combinatorial testing optimizations may aid fairness testing.
Advances in combinatorial testing, e.g., using static or dynamic
analyses for vacuity testing [8, 35] or to identify configuration op-
tions that cannot affect a test’s output [47], can directly improve
efficiency of discrimination testing by identifying that changing
a particular input characteristic cannot affect a particular test’s
output, and thus no causal discrimination is possible with respect
to that particular input.

It is possible to detect discrimination in software without explicit
access to it. For example, AdFisher [27] collects information on
how changes in Google ad settings and prior visited webpages
affect the ads Google serves. AdFisher computes a variant of group
discrimination, but could be adapted to measure other fairness
requirements as well.

Causal relationships in data management systems [32, 54, 55]
can help explain query results [59] and debug errors [79–81] by
tracking and using data provenance [57]. For software systems
that use data management, such provenance-based reasoning may
aid testing for causal relationships between input attributes and
outputs. Our prior work on testing software that relies on data
management systems has focused on data errors [61, 62], whereas
this work focuses on testing fairness.

Automated test generation tools, e.g., Randoop [65] and Evo-
Suite [31] target improving software quality, but their underlying
mechanisms may be helpful for generating fairness test suites as
well. Fairness testing, however, involves more than generating test
suites. It also processes the results of these tests to compute bias.
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Some generation can use results of the analyses in an iterative loop
to determine when to generate more tests and to guide which tests
to generate. The goals of traditional test generation tools also differ
from the goal of fairness testing, aiming instead to generate tests for
testing goals, e.g., maximizing coverage, which leads to diverse test
suites [31, 65]. Fairness testing often needs to generate pairs of simi-
lar, not diverse, inputs that traditional tools are unlikely to generate.

4 SUMMARY
Software fairness is an increasingly important problem for today’s
software that should be tackled from multiple directions. In partic-
ular, ensuring software fairness is a software engineering problem,
with deep apparent parallels between software fairness and soft-
ware quality. Requirements elicitation, design, testing, and verifi-
cation— all critical parts of the software engineering lifecycle and
of ensuring software quality— are all relevant and necessary for
ensuring software fairness, but significant research challenges exist
in creating developer support in each of these areas.

There are early encouraging signs that the software engineering
community is getting involved in software fairness, such as the 2018
IEEE/ACM International Workshop on Software Fairness (FairWare
2018). Combined with the machine learning community’s efforts,
this challenging problem provides numerous opportunities for in-
terdisciplinary, collaborative solutions. The potential for significant
societal impact andmany challenging and interesting research prob-
lems, such as fairness requirements specification, automated test
generation, and efficient test selection and execution make these
exciting research problems worthy of the attention of software engi-
neering researchers, as well as researchers in data science, machine
learning, theoretical computer science, and other disciplines.
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