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Abstract—System configuration languages provide powerful
abstractions that simplify managing large-scale, networked sys-
tems. Thousands of organizations now use configuration lan-
guages, such as Puppet. However, specifications written in con-
figuration languages can have bugs and the shell remains the
simplest way to debug a misconfigured system. Unfortunately,
it is unsafe to use the shell to fix problems when a system con-
figuration language is in use: a fix applied from the shell may
cause the system to drift from the state specified by the config-
uration language. Thus, despite their advantages, configuration
languages force system administrators to give up the simplicity
and familiarity of the shell.

This paper presents a synthesis-based technique that allows ad-
ministrators to use configuration languages and the shell in har-
mony. Administrators can fix errors using the shell and the tech-
nique automatically repairs the higher-level specification written
in the configuration language. The approach (1) produces repairs
that are consistent with the fix made using the shell; (2) produces
repairs that are maintainable by minimizing edits made to the
original specification; (3) ranks and presents multiple repairs
when relevant; and (4) supports all shells the administrator may
wish to use. We implement our technique for Puppet, a widely
used system configuration language, and evaluate it on a suite of
benchmarks under 42 repair scenarios. The top-ranked repair is
selected by humans 76% of the time and the human-equivalent
repair is ranked 1.31 on average.

I. INTRODUCTION

Modern computing systems are large, complex, and need

to be reconfigured frequently to address changing threats and

requirements. The job of a system administrator is to perform

these tasks. For example, if a web server is under attack,

she may reconfigure a firewall; if a new security patch is

available, she may deploy it; if an intrusion detection system is

needed, she may set it up and ensure it does not interfere with

normal operations. System administration is a difficult task and

the majority of large organizations use system configuration

languages to make the job easier. For example, Puppet [42]

is deployed at over 33,000 companies, Chef [8] has over 40

million downloads [59], and Ansible [45] was quickly bought

by Red Hat a few years after its release.

Unfortunately, updating system configurations is a surpris-

ingly difficult task and several recent, high-profile computing

failures have been caused by configuration updates gone wrong.

For example, in 2016, some Google App Engine customers

suffered a two-hour service outage due to a configuration error

that was triggered during an application server update [18]. In

2015, the New York Stock Exchange suffered an outage that

halted trading for four hours because a software update went

awry [54]. In 2010, Facebook suffered a 2.5 hour outage that

was again caused by a faulty configuration update [16]. In that

incident, a system for verifying system configurations actually

exacerbated the problem.

This paper focuses on Puppet, the most widely deployed

system configuration language [58], but our work generalizes

to other configuration languages (see Section VIII). Puppet

configurations (known as manifests) have the following key

features. First, manifests are declarative, parameterizable, and

support modular composition. For example, Puppet has an on-

line repository of nearly 5,000 community-supported manifests.

Second, manifests make systems reproducible. For example,

if a new web server is needed, a system administrator can

quickly set it up if she already has a web server manifest.

Finally, manifests support centralized management. Puppet

uses a client-server model, where all manifests are maintained

on a centralized server and propagated to client machines.

Manifests may have bugs and even bug-free manifests need

to be updated to address changing requirements. However,

there are many cases where manifests make changes harder to

apply than they should be. A small change, such as creating a

new user, adding a firewall rule, or starting a service, is easy

to perform with the command-line shell, using commands such

as useradd, iptables, and service that are familiar to

administrators. The shell also lets the administrator explore the

state of the system and, unlike a manifest, typically provides

immediate feedback when the administrator makes a mistake.

By contrast, editing a manifest is much harder. First, in a large

manifest that uses high-level, user-defined abstractions, it can

be difficult to find where and how an update should be made.

Second, the only way to test an update is to redeploy it, which

can take anywhere from minutes to hours. Finally, an update

may have unintended effects, especially if the update is in a

function that is called from multiple contexts.

The natural solution to this problem is to use a manifest

and the shell simultaneously. For example, a manifest could

specify the state of the machine while small updates are made

using the shell. Unfortunately, it is not safe to make changes

from the shell when a manifest is in use, because the actual

state of the system will no longer match the state specified in

the manifest — a phenomenon known as configuration drift.

Our approach. We present a new approach to repairing system

configurations, called imperative configuration repair, which

bridges the gap between the shell and system configuration lan-
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Fig. 1: The user deploys a buggy Puppet manifest and uses the shell
to fix the machine state. Tortoise automatically produces a ranked list
of manifest repairs that preserve the changes made in the shell.

guages. Imperative configuration repair is a program synthesis-

based technique that allows a manifest to be automatically

repaired given a sequence of shell commands to guide the

desired system state. Therefore, instead of running the risk of

configuration drift, we allow system administrators to use a

familiar shell to fix errors with the confidence that the mani-

fest will be updated automatically. Our approach has several

important properties:

1) Our repair procedure is consistent: the synthesized repair

is guaranteed to preserve all changes made in the shell

(that are within the scope of the system model), so there

is no configuration drift.

2) Our repair procedure preserves the structure and abstrac-

tions in the manifest. Therefore, we synthesize maintain-

able patches.

3) When multiple consistent repairs exist, we rank them and

present several alternatives in a comprehensible manner.

4) Our approach places no restrictions on how the shell is

used and works with all existing shells.

We have implemented our approach in a tool called Tortoise,

which is outlined in Figure 1 and works as follows:

1) Suppose the administrator needs to update a machine

that is managed by a Puppet manifest. Tortoise allows

her to directly update the machine using ordinary shell

commands. Behind the scenes, Tortoise uses ptrace to

record all system calls and file system changes made from

the shell.

2) When she is done, Tortoise builds a model of the original

manifest and the updates from the shell in a language

called ΔP. The model treats the shell updates as hard

constraints and the original manifest as soft constraints.

3) Tortoise translates the ΔP model into logical formulae for

1 package{"apache2": ensure => present }
2

3 service{"apache2": ensure => running }
4

5 file{"/etc/apache2/sites-enabled/piedpiper.conf":
6 content => "<VirtualHost www.piedpiper.com:80>
7 DocumentRoot /var/sites/piedpiper
8 </VirtualHost>" }
9

10 file{"/var/sites/piedpiper:
11 ensure => "directory",
12 source => "puppet://sites/piedpiper",
13 owner => root,
14 mode => 0700,
15 recurse => "remote" }
16

17 Package["apache2"]
18 -> Service["apache2"]
19 Package["apache2"]
20 -> File["/etc/apache2/sites-enabled/piedpiper.conf"]
21 File["/etc/apache2/sites-enabled/piedpiper.conf"]
22 ~> Service["apache2"]

Fig. 2: Managing a single website.

an SMT solver (specifically, Z3-str [63]). These formulae

produce ∃∀-queries, which we solve using CEGIS [51].

4) Tortoise interprets each solution produced by the SMT

solver as a patch to the Puppet manifest, ranks the patches

in an intuitive way, and presents the most likely patches

to the user.

5) Finally, the user selects the patch she wishes to apply.

Although different patches have different effects, Tortoise

guarantees that all patches are consistent and preserve the

changes that the user made from the shell in step 1.

We evaluate Tortoise on an existing suite of Puppet man-

ifests [47]. We identify a total of 42 scenarios where the

manifests would need repair. However, instead of repairing the

manifests directly, as a system administrator would normally

have to do, we directly update the system using the shell and

use Tortoise to synthesize the repair to the manifest. The

highest-rank repair Tortoise synthesized was the correct repair

76% of the time, and the correct repair was in the top five

Tortoise-synthesized repairs 100% of the time. Tortoise and our

benchmarks are available at http://plasma.cs.umass.edu/tortoise.

The rest of this paper is organized as follows. Section II,

motivates our approach with an example. Section III details

Tortoise’s expressiveness. Section IV presents the ΔP language

and describes the translation from Puppet manifests and system

call traces to ΔP. Section V describes how Tortoise converts

ΔP constraints to logical formulae for an SMT solver, how

models returned by the solver are interpreted as repairs, and

how these repairs are ranked. Section VI evaluates Tortoise

and Section VII summarizes our work’s limitations. Finally,

Section VIII discusses related work and Section IX concludes.

II. A CONFIGURATION REPAIR SCENARIO

To motivate the need for imperative configuration repair,

we first present a simple manifest that sets up a web server

(Figure 2). This manifest has a bug and we describe how a

system administrator would find and fix the bug using the shell,

and then how Tortoise automatically synthesizes the repair to

the manifest by observing the administrator’s shell commands.

A manifest is a declarative specification of the expected

system configuration. A manifest specifies a set of resources,

their state, and their interdependencies. Each resource consists

626

http://plasma.cs.umass.edu/tortoise


of (1) a type, for example package, file, or service;

(2) a title, interpreted based on the type, for example, the

title of a file is the path of the file, whereas the title of a

package is the name of the package; and (3) a dictionary of

attributes to configure the resource, such as specifying that a

package should be present or absent, or that a file refers

to a directory.

Figure 2 shows a manifest with four resources: (1) the

apache2 package, which must be present on the system;

(2) the apache2 service, which must be running; (3) the

file piedpiper.conf that sets up www.piedpiper.com; and

(4) the directory containing the site’s files, which are copied

from the puppet master server (indicated by the puppet://

prefix). The manifest also specifies three dependencies:

(1) the apache2 package must be installed before the ser-

vice; (2) the apache2 package must be installed before

piedpiper.conf is created; and (3) the apache2 service

is “notified” (restarted) when piedpiper.conf changes.

This manifest will successfully deploy, but that does not

guarantee that the resulting system configuration is correct. In

fact, the manifest in Figure 2 has a bug: if we visit www.

piedpiper.com, we will get an HTTP 403 Forbidden error.

Repairing the configuration in the shell. When the system

administrator discovers this problem, she considers that a 403

error may either indicate that the client does not have per-

mission to access the requested resource or that the server is

misconfigured and cannot access a needed file. For security

reasons, the server does not send a detailed error message

to the client. Therefore, the only way to debug the problem

is to inspect the web server log. The administrator runs the

following command:
tail /var/log/apache2/error.log

The log contains the line “(13) permission denied”,

which indicates that the permissions on the site directory may

be incorrect. To investigate this, the administrator now runs

the following command:
stat /var/sites/piedpiper

The result of this command returns the directory’s owner, which

is root, and its permissions, which is 0700. This indicates

that the directory is not readable by others, including website

visitors. The fix is to make the directory readable by all:
chmod 755 /var/sites/piedpiper

Now, the administrator can refresh the page and verify that the

error is fixed.

Unfortunately, the state of the machine has now drifted from

state specified in the manifest. Using this manifest to configure

a second web server will lead to the same problem and the

administrator will have to manually apply the same fix. Worse,

Puppet itself will undo the fix on this server! Any changes to

the manifest, e.g., to install more software, will cause Puppet

to re-apply all resources and revert the permissions back to

their original broken state. When using Puppet, it is safe to

perform read-only actions to explore the machine state using

the shell, e.g., to view logs or inspect permissions. However,

it is unsafe to use the shell to perform updates.

1 package{"apache2": ensure => present }
2 service{"apache2": ensure => running }
3

4 define website($title,$root) {
5 file{"/etc/apache2/sites-enabled/$title.conf":
6 content => "
7 <VirtualHost $title:80>
8 DocumentRoot /var/sites/$root
9 </VirtualHost>" }

10

11 file{"/var/sites/$root":
12 ensure => "directory",
13 source => "puppet://sites/$root",
14 owner => root,
15 mode => 0700,
16 recurse => "remote" } }
17

18 website{"www.piedpiper.com": root => "piedpiper" }
19 website{"piperchat.com": root => "piperchat" }

Fig. 3: A website abstraction. For exposition, the inter-resource
dependencies are elided.

Tortoise solution. Tortoise allows the administrator to fix the

bug using the shell without the risk of configuration drift. To

do so, Tortoise first translates the manifest into a program,

written in ΔP, that models all the effects that the manifest has

on the file system. The model is lengthy, but only a small

fragment is relevant to this repair:

1 rlet title = "/etc/sites/piedpiper" from str;
2 rlet mode = 0700 from int(9);
3 ...
4 chmod(title,mode);

The code uses the chmod command to set the mode. However,

instead of using constants for the mode and the directory name,

the command refers to the repairable variables on the first two

lines. Each repairable variable specifies an original value and

a repair space of alternate values. For example, on line 2, the

original mode is 0700 but can be repaired to any 9-bit integer,

if needed. After producing this model, Tortoise translates the

observed system calls issued by the shell into an assertion,

also expressed in ΔP. In this case, the assertion is as follows:

5 assert(mode("/var/sites/piedpiper") == 0755);

The only way for this assertion to hold is if the value of mode

is repaired to 0755 and the value of title is left unchanged.

This repair to the ΔP model corresponds to changing line 14

of Figure 3 to mode => 0755. This is exactly the change

the administrator would have made herself. However, in more

sophisticated manifests, there may be several alternative repairs

that Tortoise ranks and presents to the user as patches.

User-defined abstractions in Puppet. We now consider a

more sophisticated example manifest that uses Puppet’s ab-

stractions to manage a second website, piperchat.com. The

naı̈ve approach is to duplicate and tweak the configuration for

piedpiper.com. But, a better approach is to create a custom

website type (known as a defined type in Puppet) for man-

aging a website that is parameterized by the domain name

and site directory. This custom type allows websites to be

configured with just one line each (lines 18 and 19 in Figure 3).

Suppose the system administrator built this abstraction before

fixing the permissions problem, thus both websites produce the

same error. She discovers the error by visiting piedpiper.com,

as she did earlier, witnesses the 403 error, and then uses the

shell to diagnose and fix the problem as before, using the

chmod command. Without Tortoise, there are two problems:
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1 define website($title,$root,$https = false) {
2 if ($https) { ... lots of configuration ... }
3 else { ... same as before ... } }

Fig. 4: Optional support for HTTPS.

(1) the configuration has drifted from the manifest as before

and (2) the other website remains broken.

Tortoise solution. There are two ways to correct the manifest

to be consistent with the system state:

1) Change line 15 to be consistent with the shell and affect

both websites:
mode => 0755

2) Change line 15 to be exactly consistent with the shell and

leave the other website unaffected:
$title == "piperchat" ? 0755 : 0700

There are situations where either type of repair may be desired.

The first repair generalizes a change made to one instance to

all instances of the same type, whereas the second kind of

repair is necessary to specify special-case behavior. In general,

Tortoise cannot know which kind of repair is desired, so it

presents both repairs to the administrator. Since special-cases

are the exception, Tortoise ranks the repairs in the order shown

above. Notice that both repairs update a line of code that is

within a defined type, so Tortoise is not limited to working

with Puppet’s built-in abstractions.

Reusing abstractions. Tortoise can also repair resources that

instantiate user-defined types, as the next example shows. Sup-

pose the administrator wants to start using HTTPS to secure

websites. Modern web browsers block HTTPS servers from

loading JavaScript from unsecured domains. Therefore, sites

need to be carefully upgraded to ensure that all third-party

code is served over HTTPS too. For this reason, it makes

sense to migrate one website at a time.

The process of upgrading www.piedpiper.com to HTTPS

involves specifying the certificate, private chain, ciphers, and

several other details that are difficult to get right the first time.

Moreover, there is a risk that a faulty edit to the website

type will inadvertently break the other website too. Therefore,

it is safer to directly edit the Apache configuration file for

www.piedpiper.com instead. Apache has a command-line tool

to catch syntax errors (apachectl configtest) that the

administrator may use for this task. Once the server is working

correctly, the administrator can abstract the changes to make it

easier to migrate other servers by adding an optional https

parameter to the website type, as sketched in Figure 4.

However, the configuration has again drifted from the man-

ifest. In this case, Tortoise detects that the configuration for

piedpiper.com is a concrete instance of the abstraction and

automatically adds the https attribute:
website{"www.piedpiper.com": root => "piedpiper", https => true }

This repair is notable because it repairs an instantiation of a

type that is not built-in to Puppet.

Summary. We have presented three ways in which Tortoise

allows a system administrator to use Puppet and a shell in

1 file{"/fileA": content => "test"}
2

3 define T($x,$prefix) {
4 if ($prefix) {
5 file{"/dir/$x": content => "test"} }
6 else {
7 file{$x: content => "test"} } }
8

9 T{x => "fileB", prefix => true}
10 T{x => "fileC", prefix => true}

Fig. 5: Repair example.

harmony, benefiting from the unique strengths of each tool.

In all cases, Tortoise synthesizes maintainable patches and

ensures that no configuration drift occurs.

III. THE TORTOISE REPAIR SPACE

Puppet’s own linting tools can help administrators fix syntax

errors and type errors. However, there are three more ways

in which a manifest may need to change. Tortoise helps

administrators make the third type of change listed below.

1) Adding, removing, or modifying dependencies. The

dependencies in a manifest impose a partial ordering on

resources. Although Puppet automatically inserts certain

dependencies (“auto-requires”), others need to be speci-

fied explicitly by the administrator. Missing dependencies

can cause a manifest to raise an error during deployment.

Tortoise does not correct dependency errors, but this is

the subject our prior work [47].

2) Creating new abstractions. A powerful feature of Puppet

is its ability to create new abstractions (defined types and

classes) to make manifests modular and reusable. For

example, in Section II, we created a website abstraction

to help manage a website. Tortoise does not help the user

create new abstractions. However, given a manifest that

has user-defined abstractions, Tortoise can perform repairs

within them.

3) Creating, deleting, and updating resources. Tortoise

supports repairs that involve deleting resources and cre-

ating new resources, including instances of user-defined

abstractions. In addition, Tortoise supports repairs that

involve creating, deleting, and modifying attributes of

existing resources, as detailed next.

The rest of this section gives examples of Tortoise-supported

repairs. We describe individual repairs in isolation, but a single

repair may involve several repairs of the kind illustrated below.

A. Supported Repairs

The most significant class of repairs that Tortoise performs

involves adding, removing, and updating attributes on existing

resources. Puppet has dozens of resource types and each type

has several attributes that can dramatically change how the

resource is interpreted. What makes Tortoise powerful is its

ability to correct the attributes of both built-in and user-defined

resources. To illustrate this, we use the manifest in Figure 5,

which has one defined type, T, and creates three files. It creates

/fileA directly, but uses the type T to create /dir/fileB

and /dir/fileC. An interesting feature of T is that it checks

to see if the $prefix attribute is set, and if it is, it builds a

filename using string interpolation.

628

www.piedpiper.com
www.piedpiper.com
piedpiper.com


Add new attribute. Tortoise can add new constant-valued

attributes to a resource. For example, in Figure 5, if the

administrator uses the shell to change the owner of /fileA to

alice, Tortoise will add the attribute owner => alice to

the corresponding resource. If she instead changes the owner of

/dir/fileB to alice, then Tortoise suggests two possible

changes, in order:

1) Add an attribute on line 5 that affects fileC too:

owner => alice

2) Change line 5 to create a special case for fileB, which

does not affect fileC:

$title == "fileB" ? owner => alice : owner => root

Delete existing attribute. Tortoise can also delete attributes.

For example, if the administrator changes the owner of /fileA

back to root, it will suggest removing the owner attribute.

Update existing constant. In Section II, we saw that Tortoise

can update the value of constants in attributes. The same

mechanism allows Tortoise to update attribute titles. For exam-

ple, renaming /fileA to /fileA2 causes Tortoise to update

the manifest to refer to the new file (Line 1 of Figure 5). A

harder repair involves renaming the files that are created in-

directly by the defined type. For example, we could rename

/dir/fileB in three ways:

1) If renaming the file part, e.g., to /dir/fileB2, the

repair is in the instantiation of T (line 9).

2) If renaming the directory part, e.g., to /dir2/fileB,

the repair is in the definition of T (line 3).

3) If renaming both, e.g., to /dir2/fileB2, the repair

must affect both locations.

Tortoise supports all three repairs.

Create and delete resource. Tortoise can create and delete

resources. For example, if the user deletes /fileA, Tortoise

suggests removing line 1 from the manifest. On the other hand,

if the user creates a new file /dir/fileD with the same

content specified in the definition of T, Tortoise suggests two

fixes: (1) create a new file or (2) create a new T resource.

B. Repair Consistency

A key property of Tortoise is that it produces consistent

repairs: a repair is guaranteed to preserve all changes made

using the shell that are within the scope of Tortoise’s system

model. Section IV presents this model in detail, but at a high-

level, we model certain essential properties of regular files and

directories, such as their contents and permissions. In contrast,

Tortoise does not support repairs that affect running processes

or special files, such as the /proc file system. For example,

many changes to the /proc file system are lost after reboot,

but can be persisted by editing certain configuration files in

the /etc directory. These kinds of repairs are straightforward

in principle, but would require a lot of engineering.

IV. FROM MANIFESTS AND SHELL COMMANDS TO ΔP

Section IV-A introduces our modeling language ΔP that pro-

vides a uniform way to model the semantics of manifests, the

Atomic Expressions

a ::= str String
| bool Boolean
| n Integer
| undef Undefined
| x Variable reference

Expressions

e ::= a
| file?(a) Test if a refers to a file
| dir?(a) Test if a refers to a directory
| exists?(a) Test if a refers to a file or directory
| defined?(a) Test if not undef
| e1 + e2 String concatenation
| · · · Comparisons and boolean connectives

Statements

c ::= let x = e Variable declaration
| if (e) c1 else c2 Conditional
| { c1; · · ·; cn } Block statement
| chmod(e1,e2) Set permissions of e1 to e2

| chown(e1,e2) Set owner of e1 to e2

| mkdir(e) Create directory
| write(e1,e2) Create file e1 with contents e2

| · · · Other file system operations
| rlet x = a from r Let x be a, but can be repaired to r

| assert(e) Assertion

Repair Spaces

r ::= [a1; · · ·; an] Finite set of alternatives
| str Any string or undef
| int(n) Any n-bit number or undef

Fig. 6: ΔP Syntax

constraints generated from shell commands, and the space of

possible repairs. Sections IV-B and IV-C describe primitive and

user-defined resources. Section IV-D describes how we model

repairs that create and delete resources. Finally, Section IV-E

details how manifests and shell commands are translated to ΔP.

Section V will describe translating ΔP into formulae for an

SMT solver. While it is possible to directly translate manifests

and shell commands into constraints, using ΔP has two advan-

tages: (1) it is much easier to model the semantics of manifests

in ΔP since it has imperative file-system operations and (2) we

can simplify ΔP programs before generating constraints, which

makes constraint solving scalable.

A. The ΔP Modeling Language

ΔP is an imperative language with primitive operations

that manipulate files, so it allows us to model the side-effects

that resources have on system state. In addition, it has two

features that facilitate repair: (1) it has repairable variable

declarations, which are ordinary variables that are augmented

with a repair space of alternate values and (2) it has assertions,

which we use to constrain repair spaces. Intuitively, a single

ΔP program with repairable variables represents a space of

possible programs, ranked by the number and kinds of repairs

made. The key to our approach is to translate manifests to ΔP

programs with repairable variables and to turn shell commands

into ΔP assertions that rule out programs that are not consistent

with the user’s repair.

File system operations. Figure 6 shows the syntax of ΔP,

which consists of statements, expressions, atomic expressions,

and repair spaces. Atomic expressions include constants and

variable references, which are the simplest kinds of expressions

that can appear in manifests. Atomic expressions also include
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1 let title = "/fileA";
2 let content = "Hello world";
3 if (exists?(title)) {
4 rm(title);
5 }
6 write(title, content)

(a) A trivial encoding.

1 file{"/fileA"t:

2 content => "Hello world"c

3 source => undefineds

4 mode => undefinedm

5 ensure => undefinede

6 }

(b) The annotated manifest.

1 rlet t = "/fileA" from str;
2 rlet c = "Hello world" from str;
3 rlet s = undef from str;
4 rlet e = undef from str;
5 rlet m = undef from int(9);
6 if (exists?(t)) { rm(t); }
7 if (e == "directory") {
8 assert(c == undef and s == undef);
9 mkdir(t)

10 }
11 else if (e == "file" or e == undef) {
12 assert(defined?(s) xor defined?(c));
13 if (defined?(s)) { cp(s, t); }
14 if (defined?(c)) { write(t, c); }
15 }
16 else {
17 assert(false);
18 }
19 if defined?(m) { chmod(t, m); }

(c) A repairable encoding.

Fig. 7: A file resource and a portion of its repair space.

the special value undef, which we use to explicitly indicate

that an optional attribute is not present.

ΔP’s expressions include predicates to test if a path refers

to a file (file?), a directory (dir?), or is non-existant

(exists?). These predicates only read file system state

and do not perform writes. For convenience, ΔP also has

a predicate to test that an expression is not the special value

undef (defined?). Finally, expressions include all atomic

expressions as well as conventional comparisons and boolean

operators, which we elide from the figure.

ΔP’s statements have imperative operations that model file

system updates, including operations to create files (write),

create directories (mkdir), set file permissions (chmod), set

file ownership (chown), and so on. ΔP also has conditionals

(if), immutable variables (let), and block statements.

Assertions and repairable variable declarations. An un-

usual feature of ΔP is that it supports repairable variable

declarations. The statement rlet x = a from r binds

the variable x to the atomic expression a and specifies that r

is its repair space. ΔP supports three sorts of repair spaces:

1) A finite set of atomic expressions, which may include

variables ([a1; · · ·; an]);

2) The space of all strings (str); and

3) The space of n-bit integers, for a fixed n (int(n)).

A repairable variable also expresses the soft constraint that x

should be a if possible, thus there is a cost associated with

picking an alternate value from r. In contrast, an assertion ex-

presses a hard constraint that cannot be violated (assert(e)).

One way to rank repairs would be by the number of soft con-

straints violated, but Section V presents a more subtle ranking

procedure that works better in practice.

B. Primitive Resources

We now present our model of two key Puppet types.

The file type. The file type only manages a single file, but

it has 32 optional attributes, some of which dramatically alter

its semantics. For brevity, we only discuss five representative

attributes, but our implementation supports other attributes too:

1) The ensure attribute determines if the resource is a file

or directory. If omitted, it is assumed to be a file.

1 package{"vim"p:

2 ensure => presente

3 }

(a) The resource.

1 rlet p = "vim" from str;
2 rlet e = "present" from str;
3 rlet s = "dpkg" from str;
4 if (e == "present") {
5 create(s + "://" + p, "");
6 }
7 else if (e == "absent") {
8 rm(s + "://" + p);
9 }

(b) The ΔP model.

Fig. 8: A package resource and its model.

2) The content attribute specifies the file source inline and

the source attribute copies contents from another file.

These attributes are mutually exclusive. If the resource is

managing a directory then neither may be defined.

3) The mode attribute sets the file’s permissions.

ΔP has the file system operations needed to model all the

behaviors described above. For example, consider the following

resource which only specifies a single attribute:

file{"/fileA": content => "Hello, world" }

We could model this resource as a trivial ΔP program that

deletes an existing file or directory, if needed, and replaces

it with the specified file (Figure 7a).1 However, the resource

needs to use repairable variables to support repair.

To encode the full repair space, we take the following steps:

(1) we produce a program with five repairable variables, one

for the title and four for each possible attribute (Figure 7c);

(2) we add all unused attributes to the resource and explicitly

mark them as undefined (Figure 7b), and (3) we annotate

atomic expressions in this manifest with the names of repairable

variables. The program in Figure 7c first declares the repairable

variables, though note that all variables except c and t are

set to undef. After these variables are declared, the program

has several cases that describe the space of all behaviors for a

file resource. With no repairs, the program reduces to the

trivial program in Figure 7a. However, repairs can make the

other cases relevant.

For example, suppose the user removes the file and creates

a directory with the same name. This change produces the

assertion assert(dir?("/fileA")), which must hold at

the end of the program. The only way to satisfy this assertion,

is to make the two following repairs: (1) the variable e must

be repaired to "directory", since that is the only way that

the branch with the mkdir statement is reachable, and (2) the

variable c must be repaired to undef, since the branch asserts

that c must be undef. Finally, it is easy to propagate the

repair back to the manifest, since we had annotated atomic

expressions with their corresponded repairable variables.

The package type. The package type is very common in

manifests and is a kind of resource type that Tortoise models

in a special way. We model a resource that installs a package

p using provider s as a ΔP program that creates an empty file

called s://p (Figure 8a). Conversely, we model a resource

that removes a package p using provider s as a ΔP program

1In practice, Puppet would not replace the file if it already had the specified
contents. However, our simplified model is adequate for modeling repairs.
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1 define T($title) {

2 file{$title + "/A"y:
3 content => "textA" }

4 file{$title + "/B"z:
5 content => "textB" }
6 }

7 T{"/dir1"x: }

(a) Defined type.

1 rlet x = "/dir1" from str;
2 rlet y = "/A" from str;
3 rlet z = "/B" from str;
4 let title0 = x + y;
5 let title1 = x + z;
6 ...

(b) ΔP model.

Fig. 9: A naive expansion of a defined type.

that deletes the file s://p. Since a repair may either remove

an installed package or change the package that is installed,

we translate a package resource into a ΔP program with three

repairable variables: one for the title, one for the provider, and

one for the ensure attribute, which determines if package is

present or absent (Figure 8b).

To repair a package from the shell, the Tortoise user

has to use standard commands, e.g., apt install or

apt remove.2 When Tortoise monitors system calls from

the shell, the system call trace includes commands to launch

these programs. We translate invocations of these programs to

constraints that create and delete files in the dpkg:// path.

For example, the command apt remove vim produces:

assert(file?("dpkg://vim") == false)

This assertion does not hold after the program in Figure 8b

executes, unless we repair the variable e to "absent".

Other types. Puppet has several other built in types (48 as

of this writing), many of which are operating system-specific.

With two exceptions, all types update the state of the file

system. Our implementation supports several other common

types, such as user accounts, SSH keys, cron jobs, and more.

ΔP makes it easy to add support for new types, since it has

the primitives needed to model types and their repair spaces.

The only two resource types that do not update the file system

are (1) notify, which prints a log message and has no effect

and (2) service, which starts and stops running services. The

former type is irrelevant for repairs and the latter could be

supported with some extensions to ΔP.

C. User-Defined Resources

A manifest can define new resource types, known as defined

types. A defined type can be thought of as function that

produces a manifest. For example, the manifest in Figure 9a

defines a type T that takes a directory name as a parameter and

produces two file resources within that directory. The manifest

uses T to create two files in the directory /dir1. Suppose

we use the shell to rename the file /dir1/A to /dir2/C.

The only way to make this edit is to change dir1 to dir2

(line 7) and A to C (line 2). The former edit has the added

effect of renaming /dir1/B to /dir2/B. We express this

dependency in the ΔP model by never duplicating atomic

expressions in the manifest (Figure 9b).

2apt is the package manager on Debian-based systems. It should be
straightforward to support other package managers too.

D. Creating and Deleting Resources

To support repairs that delete resources, we wrap the state-

ments of each resource in a conditional that is guarded by

a repairable boolean variable with the initial value true. If

the value of the boolean is repaired to false, then none of

the resource’s statements take effect, which corresponds to

the resource being deleted. We ascribe resource deletions a

much higher cost than attribute edits. We support repairs that

create new resources in a similar way, by creating template

resources that are guarded with a repairable variable that is

instead initialized to false.

E. From Shell Commands to Constraints

Tortoise does not parse shell commands but instead in-

tercepts all system calls made during repair. For exam-

ple, the system call mkdir("/dirA") turns into the as-

sertion assert(dir?("/dirA")). In a single repair

session, a user may make and revert changes. For exam-

ple, the command rmdir /dirA produces the assertion

assert(!dir?("/dirA")). However, if the user first

creates and then removes the directory, simply joining both

assertions is contradictory. Tortoise handles this kind of case

by calculating the strongest postcondition of the system call

sequence instead of naively turning each call into an assertion.

V. FROM ΔP TO LOGICAL FORMULAE

We now discuss how we translate ΔP programs into logical

formulae for an SMT solver, specifically Z3-str [63]. The

formulae that we produce use the theories of bit-vectors and

equalities between concatenated strings and string variables.

In our encoding, each model returned by the solver can be

interpreted as a combination of a repair, which assigns values to

the repairable variables, and a set of variables indicating which

repairable variables have changed from their initial value.

At a high-level, we transform a ΔP program into a formula

(φ) with the following variables:

•
⇀

fs
in

and
⇀

fs
out

are sets of variables that model the initial

and final state of the file system;

•
⇀
x are the values assigned to the repairable variables

(whether or not they are repaired); and

• n counts the number of repairs made.

We generate φ such that for all assignments to these variables,

φ is true, if and only if the modeled program updates the initial

file system (
⇀

fs
in

) to the final file system (
⇀

fs
out

), with exactly

n repairs to the repairable variables (
⇀
x ). Therefore, our goal

is to find an assignment to the repairable variables such that φ

holds for all input and output file systems:

∃n,
⇀

x .∀
⇀

fs
in
,

⇀

fs
out

.φ
(

n,
⇀

x,
⇀

fs
in
,

⇀

fs
out

)

To produce solutions ordered by the number of repairs, we

iteratively increase n and search for
⇀
x using counterexample-

guided inductive synthesis [51].

Encoding file systems. We model each path (p) using four

variables per path:

• The state of the path (sp): is sp a file, directory, or none;
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exists?(p) sp = dir ∨ sp = file

mode(p) = 0700 sp 6= none ∧ mp = 0755

contents(p) = "hello" sp = file ∧ cp = "hello"

Fig. 10: Examples of expressions and their encodings.

• The contents (cp), if cp is a file;

• The owner (op), if op is a file or directory; and

• The mode (mp), if mp is a file or directory.

We model a file system by modeling every possible path.

Although the space of paths is potentially unbounded, we only

need to consider the (prefixes of) paths that appear in the ΔP

program. Recall that we encode repairs as assertions, therefore

we model all paths that a repair affects, even if the repair

affected paths that did not appear in the original manifest.

Encoding expressions and statements. Since ΔP expressions

only read the state of the file system, they turn into predicates.

Figure 10 translates some example expressions to predicates.

Since ΔP statements update the state of the file system, we

model them as relations between two sets of variables that

represent the input and an output file system. For example, the

statement mkdir(/x) constraints the state of /x in the output

file system (s′/x) to be a directory. The mode and owner are

also set to 0755 and "root" respectively, which are Puppet’s

defaults. The content variable (c′/x) is left unconstrained, which

is safe to do, since its value is uninterpreted for directories.

Finally, the relation constrains the variables for all other paths

such that they are the same in the input and output state:
s
′

/x = dir ∧ o
′

/x = "root" ∧ m
′

/x = 0755 ∧
∀p.p 6= /x ⇒ (sp = s

′

p
∧ cp = c

′

p
∧ op = o

′

p
∧ mp = n

′

p
)

We translate all other primitive statements in a similar way.

Finally, we translate blocks and conditionals by introducing

intermediate states and flattening nested conditionals.

Encoding Repairable Variables. A repairable variable,

rlet x = a from r, turns into a new existentially quanti-

fied variable (x) with the specified domain (r). A repairable

variable also has a cost, which is defined as follows: if the

value of the variable in a model is equal to the original value

(a), then the cost is 0, otherwise the cost is 1. The total cost

of repairing a manifest is the sum of all unit costs.

Optimizing Update Synthesis. To speed up repairs for large

manifests, we use a minimization procedure that turns re-

pairable variables into constants when it is provably safe to

do so, by propagating information from the shell-based repair

to the ΔP model of the manifest. We transform the ΔP pro-

gram, translating repairable variable declarations for paths not

affected by the shell commands to ordinary let bindings. In

doing this, we have shrunk the overall number of repairable

declarations substantially, making the overall Tortoise perfor-

mance based more around the size of the update rather than

the size of the manifest (Section VI-C).

Ranking Repairs. Each model produced by the solver can

be interpreted as a repair and a ranking. Tortoise first ranks

repairs by the number of repairable variables changed, favoring

repairs that makes fewer changes. To break ties between

Benchmark
# of # of repair Tortoise Average

resources scenarios runtime (ms) repair rank

amavis 6 1 25 1.00
bind 6 3 21 1.60
clamav 6 2 23 3.50
hosting 19 1 26 1.00
irc 18 1 292 1.00
jpa 10 1 21 1.00
logstash 14 6 48 1.00
monit 7 4 25 1.00
nginx 9 4 27 1.00
ntp 4 3 18 1.33
powerdns 5 7 39 1.43
rsyslog 7 4 129 1.25
xinetd 4 5 1,970 1.20

Total 115 42 205 1.31

Fig. 11: Benchmark of real-world Puppet manifests [47]. We identified
a total of 42 scenarios in which the manifests would require repair.
On average, Tortoise took 205 ms to compute the repairs, and the
average rank of the ideal update was 1.31.

repairs with the same number of changes, Tortoise favors

repairs that make fewer changes within defined types. The

intuition behind this tie-breaking procedure is that changes

within defined types have the potential to affect more resources,

whereas changes outside defined types only affect a single

resource. Therefore, Tortoise primarily ranks repairs based on

the number of syntactic edits, but the secondary ranking favors

repairs typically make fewer semantic changes. However, all

repairs produced by Tortoise are consistent with the changes

made from the shell (Section III-B).

Applying Updates. Once a repair is chosen, applying an

update is straightforward. Recall that we annotate each atomic

expressions in the manifest with the name of the repairable

variable that holds its value. We only update those atomic

expressions whose repairable variables have been updated.

VI. EVALUATION

We evaluate Tortoise in three ways. Section VI-A evaluates

the quality of Tortoise-synthesized patches in an experiment by

measuring how highly Tortoise ranks correct patches on real-

world manifests. Section VI-B presents case studies of some

of these manifests. Finally, Section VI-C evaluates Tortoise’s

scalability on synthetic benchmarks.

A. Evaluating Repair Rankings

We studied the 13 manifests in a Puppet benchmark [47]

to identify scenarios in which the manifests may need to be

repaired. (Section VI-B highlights some of these repairs.) We

identified a total of 42 such repair scenarios. For each scenario,

we used Tortoise to perform imperative configuration repair,

instead of manually patching the manifest. We ran Tortoise 50

times per scenario to measure average performance. Figure 11

summaries the benchmarks, their size in number of resources,

the number of distinct scenarios for that benchmark, and the

average time Tortoise took to perform the repair.

For our experiment, we configured Tortoise to produce the

five, highest-ranked repairs for each repair scenario. We took
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1 $params::package_name = "pdns-server"
2 $params::package_provider = "dpkg"
3 define powerdns::install(
4 $package = $params::package_name,
5 $ensure = present,
6 $source = undefined,
7 ...) {
8 package {$package:
9 ensure => $ensure,

10 source => $source,
11 provider = $params::package_provider,
12 }
13 }
14 powerdns::install { ensure => present }

(a) PowerDNS

1 define ntp ($logfile = ’false’, ...) {
2 if ($logfile != ’false’) {
3 file { ’/etc/logrotate.d/ntpd’:
4 ensure => present,
5 ...
6 }
7 }
8 ...
9 }

10 ntp { logfile => true, ... }

(b) NTP

1 define xinetd($server_args, $port, ...) {
2 file { "/etc/xinetd.d/rsync":
3 ensure => present,
4 content => "$server $server_args $port",
5 }
6 }
7

8 $cf = ’/etc/rsync.conf’
9 $args = "--daemon --config $cf"

10 xinetd {
11 server_args => $args,
12 port => 873
13 }

(c) xinetd

Fig. 12: Portions of three manifests from our benchmarks.

each ranked list, randomized its order, and presented the repairs

to one of the authors. The author (without knowing Tortoise’s

ranked order) selected that repair that captured the intent of the

shell commands and labeled it “correct”. (Recall that while all

repairs are guaranteed to be consistent, some may capture and

generalize the intent of the shell command better than others.)

The average rank of the correct repair in Tortoise’s ranked lists

was 1.31. Overall, the highest-ranked repair was the correct

repair 76% of the time.

B. Repairs to Real-World Manifests

We describe three different types of repairs from our bench-

marks as case studies of Tortoise usage.

Operating system update. Different Linux distributions

offer the same packages under different package names.

For example, the PowerDNS benchmark (Figure 12a) in-

stalls the pdns-server package on Debian, but fails on

Red Hat where the package is called pdns. Running

yum install pdns from the Red Hat system shell fixes

the problem; here, Tortoise’s highest-ranked patch is the correct

patch. It is notable that the benchmark does not directly create

the package. Instead, it has a global variable that’s bound to

the package name and is used within a defined type.

Updating optional resources. Many reusable manifests pro-

vide optional features that the administrator may want to turn

on or off and Tortoise can help with these repairs. For example,

the NTP benchmark (Figure 12b) has an abstraction that option-

ally creates a log file. Suppose that the log is initially enabled,

but that it subsequently needs to be removed (e.g., because of

limited disk space or the log is deemed unnecessary). Tortoise

allows the administrator to simply delete the log file from the

shell. Its highest-ranked repair changes the logfile flag,

which is the right way to perform this update.

Configuration file updates. Manifests often use string interpo-

lation to create configuration files from templates. Figure 12c

shows a fragment of a benchmark that creates a configuration

file in this way. We used a text editor to update the config-

uration file, changing rsync.conf to piperchat.conf,

and Tortoise updated the variable on line 8.

C. Scalability Experiments

Tortoise’s running time is dominated by the SMT solver. The

size of each problem depends on (1) the size of the manifest and
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Fig. 13: Scalability: average of 10 trials with standard error.

(2) the number of shell commands. Figure 13a shows how the

running time of Tortoise varies with the number of resources.

We use a synthetic benchmark that creates n distinct resources

and uses the same shell command to update all manifests. The

graph shows that Tortoise produces an update in less than

1.5s, even when the manifest has 250 resources. Figure 13b

shows how the running time of Tortoise varies with the number

of shell commands while the size of the manifest increases

proportionally. We generate a sequence of n shell commands

where each updates a different resource. Tortoise takes up to

1.5s with 15 shell commands and over a minute for more.

Although 15 shell commands may appear to be restrictive,

note that we can easily batch them. If a repair requires 30

shell commands, we can issue the first 15 to get the manifest

to an intermediate state and then issue the next 15 to get the

manifest to a final state. Also note that each shell command

in the benchmark is an update that leads to a repair. Shell

commands that do not update the file system do not generate

constraints. Therefore, Tortoise allows the administrator to

explore the system as long as she likes.

VII. SCOPE AND LIMITATIONS

Threats to Experimental Validity. For our evaluation, one

author subjectively measured update correctness. Real system

administrators would provide a more accurate correctness mea-

sure. We used a suite of benchmarks collected from public

GitHub repositories, but did not ask the systems’ developers

to identify the repairs in these benchmarks. Instead, we in-

jected faults to create repair scenarios. A future user study of

industrial users could evaluate Tortoise’s usefulness in practice.
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Unsupported Puppet Features. Puppet is a sophisticated,

evolving language and Tortoise supports a significant subset of

Puppet features. Our prototype does not support certain features

such as inheritance (which Puppet documentation states should

be used “very sparingly”) and lambdas (a recent language

feature not yet widely used). Nevertheless, it would be possible

to add support for these features with more engineering effort.

Puppet also has two notable extra-linguistic features: manifests

may have embedded shell scripts (the exec type) and string

templates written in Ruby (ERB). Repairing these features are

beyond the scope of this paper.

Limitations of the ΔP Model. Section III describes three

classes of repairs, but Tortoise’s repair space only includes

repairs that add, remove, or update resources. Therefore, Tor-

toise is not complete with respect to the full space of desirable

repairs. However, for its supported repairs, Tortoise produces

repairs that are consistent with changes made from the shell

that are within the scope of ΔP (Section III-B). ΔP only

models a few key attributes of regular files and directories. If

a shell command performs an update beyond the scope of the

model, Tortoise will not detect it. For example, if a manifest is

configured to start a service and the user terminates the service

from the shell, Tortoise will not be able to repair the manifest.

Is is possible, in principle, to support this repair by enhancing

ΔP to model processes and intercepting more system calls. In

practice, Tortoise will require careful engineering to support

each kind of primitive resource. This paper supports a subset

of common primitive resources.

Interaction Model. During repair, we assume that all changes

to the machine are made using the Tortoise shell and we do not

detect changes made by background processes. In principle, it

is straightforward to support concurrent shells if their system

call logs can be totally ordered.

VIII. RELATED WORK

Program Repair and Synthesis. Fundamentally, Puppet man-

ifests are programs and Tortoise is an automated repair tool

that uses shell commands as partial specifications of desired

behavior. This is not unlike most automated program repair

tools [3], [5], [6], [7], [10], [11], [12], [13], [14], [15], [19],

[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [36],

[37], [38], [39], [40], [41], [43], [44], [48], [49], [53], [55],

[56], [57], [60] that use partial specifications, often tests, to

produce program patches that satisfy those specifications.

Our repair approach is a form of syntax-guided synthesis [1].

Tortoise models a space of possible repairs, similar to the

repair models of Singh et al. [50]. Whereas they repair student-

written programs to conform to complete, teacher-provided

specifications, Tortoise uses partial specifications provided from

shell commands and ranks candidate repairs based on size.

Tortoise allows users to freely manipulate a manifest and its

output while propagating changes from one to the other, which

is similar to prodirect manipulation [9].

Synthesis-based program repair tools, e.g., Angelix [37],

DirectFix [36], and SemFix [38], synthesize patches for more

complex C programs than Puppet manifests. Because manifests

are relatively simpler, Tortoise (1) is much faster, (2) generates

and ranks multiple patches for the user to select the best one,

and (3) does not require the user to write tests, instead turning

shell commands into assertions to guide repair, which is a

more natural interface for system administrators.

Configuration Languages. Automated testing and verification

of system configuration languages has focused on universal

properties such as convergence [21], idempotence [24], and

determinism [47]. These universal properties are necessary,

but insufficient for a manifest to be correct. Tortoise is an

interactive repair tool that can repair logic errors too. ConfVal-

ley [23], PCHECK [61], and ConfigC [46] are complementary

tools that validate program-specific configuration files.

Tools like ConfSuggester [62], AutoBash [52], and Con-

fAid [4] find errors in configuration files, using dynamic analy-

sis to track how configuration values affect program execution.

When a Puppet manifest creates a buggy configuration file, it

is the manifest the needs to be repaired and not the generated

configuration file itself. Given a fixed configuration, Tortoise

can repair a manifest and thus compliments these tools.

µPuppet [17] formalizes a subset of Puppet, including many

language features that Tortoise does not support. In contrast,

Tortoise models the effects that resources have on system

state (i.e., resource realization), which is out of scope for

µPuppet.

Shell Script Analysis. Tortoise complements shell script bug-

finding tools, such as ABASH [35] and synthesis tools, such

as StriSynth [20], as it works on Puppet manifests.

Other configuration languages. Tortoise leverages Puppet’s

DSL to model resources, which should be possible for lan-

guages like Salt [22], Ansible [45], and LCFG [2], but harder

for Chef [8], a Ruby-embedded domain-specific language.

IX. CONTRIBUTIONS

System configuration languages, such as Puppet, can make

system administration easier. However, manifests often have

bugs and the shell is often the best tool for diagnosing bugs.

Using Tortoise, administrators can fix bugs using the shell,

because Tortoise automatically synthesizes repairs to the un-

derlying manifest. We have demonstrated that Tortoise is

fast on reasonably sized manifests, and that 76% of the

time, it produces repairs equivalent to those written by hu-

mans.
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