CFLUANTTTATTY I

FliMA

. Quantitative Finance
Twm

ISSN: 1469-7688 (Print) 1469-7696 (Online) Journal homepage: http://www.tandfonline.com/loi/rquf20

El
&
A

€Y Routledge

Taylor &Francis Group

Canonical sectors and evolution of firms in the US
stock markets

Lorien X. Hayden, Ricky Chachra, Alexander A. Alemi, Paul H. Ginsparg &
James P. Sethna

To cite this article: Lorien X. Hayden, Ricky Chachra, Alexander A. Alemi, Paul H. Ginsparg
& James P. Sethna (2018): Canonical sectors and evolution of firms in the US stock markets,
Quantitative Finance, DOI: 10.1080/14697688.2018.1444278

To link to this article: https://doi.org/10.1080/14697688.2018.1444278

@ Published online: 08 Jun 2018.

N
C)/ Submit your article to this journal &

||I| Article views: 20

A
& View related articles &'

-

(&) View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=rquf20


http://www.tandfonline.com/action/journalInformation?journalCode=rquf20
http://www.tandfonline.com/loi/rquf20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2018.1444278
https://doi.org/10.1080/14697688.2018.1444278
http://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/14697688.2018.1444278
http://www.tandfonline.com/doi/mlt/10.1080/14697688.2018.1444278
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2018.1444278&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2018.1444278&domain=pdf&date_stamp=2018-06-08

Quantitative Finance, 2018
https://doi.org/10.1080/14697688.2018.1444278

g Routledge

Taylor & Francis Group

'.) Check for updates

© 2018 iStockphoto LP

Canonical sectors and evolution of firms in the US
stock markets

LORIEN X. HAYDEN®, RICKY CHACHRA, ALEXANDER A. ALEMI,
PAUL H. GINSPARG and JAMES P. SETHNA*®

Department of Physics, Cornell University, Ithaca, NY 14853, USA

(Received 17 November 2016; accepted 19 January 2018; published online 8 June 2018)

Unsupervised machine learning can provide an objective and
comprehensive broad-level sector decomposition of stocks

1. Main text

Stock market performance is measured with aggregated quan-
tities called indices that represent a weighted average price of
a basket of stocks. Market-wide indices such as Russell 3000®
(Russell 3000®Index 2015) and the S&P 500® (S&P 500®In-
dex 2014) consist of stocks from diverse companies reflecting
a broad cross-section of the market. Sector-specific indices
such as the Dow Jones® Financials Index (Dow Jones®US In-
dices 2015), CBOE® Oil Index (CBOE®OQOil Index
2013) and the Morgan Stanley® High-Tech 35 Index
(Morgan Stanley®High-Tech 35 Index 2005), etc., are more
granular and their composition requires a classification of com-
panies into sectors. Major industrial classification schemes
classify firms into sectors, albeit with many ambiguities (Nadig
and Crigger 2011). It is not clear, for example, how to assign a
sector to conglomerates or diversified companies such as Gen-
eral Electric®. Conversely, non-conglomerates with exposure
to firms outside their own sector (for example, an investment
bank exclusively serving pharmaceutical firms) also blur the
boundaries of sector-identification. Moreover, as companies
and their economic environments evolve, neither the indus-
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trial sectors nor the firms’ sector association remains static,
necessitating updates to sector assignments and addition of
new sectors.

A significant number of studies have previously aimed at
identifying categories of stocks in financial markets with a
variety of approaches. Recent numerical techniques have in-
cluded extensive use of random matrix theory, principal com-
ponent analysis or associated eigenvalue decomposition of
the correlation matrix (Plerou et al. 2002, Coronnello et al.
2005, Kim and Jeong 2005, Eom et al. 2007, Conlon et al.
2009, Fenn et al. 2011), specialized clustering methods (Man-
tegna 1999, Bonanno et al. 2000, 2003, Kullmann et al. 2000,
Basalto et al. 2005, Heimo et al. 2009, Musmeci et al. 2014)
or time series analysis (Martins 2007, Podobnik and Stanley
2008), pairwise coupling analysis (Bury 2013), and even topic-
modeling of returns (Doyle and Elkan 2009). Indeed, relevant
prior work analyzing historical stock price returns (Fama and
French 1993, Laloux et al. 1999, Plerou et al. 2002) elucidated
that the high-dimensional space of stock price returns has a
low-dimensional representation.

In parallel with this, there is a long tradition of style analysis
in finance in which time series can be selected which serve
as useful benchmarks for the performance of other stocks or
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Table 1.

Canonical sectors and major business lines of primary constituent firms. The eight canonical sectors identified by the analysis

described here are listed in the column on the left; these were named in accord with the business lines (middle column) of firms that
show strong association with these sectors. Some examples are provided in the right column; a full list is available on companion website
(Chachra et al. 2013).

Canonical sector

Business lines

Prototypical examples

c-cyclical general and specialty retail, discretionary goods
c-energy oil and gas services, equipment, operations
c-financial banks, insurance (except health)

c-industrial
c-non-cyclical
c-real estate
c-technology

capital goods, basic materials, transport
consumer staples, healthcare
realty investments and operations
semiconductors, computers, comm. devices

Gap, Macy’s, Target
Halliburton, Schlumberger
US Bancorp., Bank of America
Kennametal, Regal-Beloit
Pepsi, Procter & Gamble
Post Properties, Duke Realty
Cisco, Texas Instruments
Duke Energy, Wisconsin Energy

c-utility electric and gas suppliers
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Figure 1. Low-dimensional projection of the stock price return data.

Stock price returns are projected onto a plane spanned by two stiff
vectors from the SVD of the emergent simplex corners as described
in appendix E. Each coloured circle corresponds to one of the 705
stocks in the dataset used in the analysis. Colours denote the sectors
assigned to companies by Scottrade® (2015) with the colour scheme
of figure B1. The grey corners of the simplex correspond to sector-
defining prototype stocks, whereas all other circles are given by a
suitably weighted sum of these grey corners. Projections along other
singular vectors are shown in Figure E1.

indices. The three-factor model of Fama and French (1993) is
one such example. Recently, Vistocco and Conversano (2009)
proposed that Archetypal Analysis (AA) (Cutler and Breiman
1994) could provide these benchmark time series while also
providing a way to plot this data in a meaningful way. In
particular, they provide a triangular plot for Italian mutual
funds and suggest parallel coordinate plots or asymmetric maps
for higher dimensional representations. The positive decompo-
sition of mutual funds into sectors using standard benchmarks
(not derived using AA) was later studied by the same authors
(Conversano and Vistocco 2010).

Here, we demonstrate a new, holistic way of classifying
stocks into industrial sectors by utilizing the emergent structure
of price returns in data space. Beyond the proposal of Vistocco

and Conversano, we provide an interpretation of the archetypes
of AA as sectors of the economy. This structure is purely
contained in the geometry of the time series. Other methods,
such as SVD, can discern that there is some such structure but
are not well suited to a clean description. AA, on the other
hand, determines the convex hull of the data-set making it
uniquely suited to creating a quantitative analysis of the data. In
particular, if we take the log price returns of individual stocks,
remove the overall market return, normalize to zero mean and
unit s.d., then stock returns are well-approximated by a hyper-
tetrahedral structure. Each lobe of the hyper-tetrahedron is
populated by stocks of similar or related businesses (figure 1);
the lobe-corners (canonical sectors) approximate the returns
of companies that are prototypical of individual sectors (table
1). Returns of each stock can be decomposed into a weighted
sum (figure 2) of the canonical sector returns (figure 3). Lastly,
the canonical sector weights for a given company are dynamic
and lead to insights into its evolution (figure 5).

The matrix of daily log returns of a stock s are defined as
ris = log Py — log P;—1)s where P, are adjusted closing
prices (i.e. corrected for stock splits and dividend issues) and ¢
is in trading days. In the present analysis, we used normalized
returns, R}, = (rrg — (res)1)/0s, Where 02 = (r2), — (r5)? is
the variance (squared volatility) and (); represents the average
over time (trading days). Overall market returns from each
stock were also removed, yielding what we shall call the log
price returns R, = R}, — (R},)s. (The two degrees of freedom
we remove from each stock — the variance and the overall
return — are of practical interest elsewhere, but obscure the
classification into sectors.) The hyper-tetrahedron, or simplex,
which emerges (figure 1) is a self-organized structure: it has
prototypical firms in corners (table 1), closely related firms
clumped together in each lobe, diversified companies (GE®,
Walt Disney®, 3M®, etc.) close to the centre, and the number
of lobes denoting how many distinct sectors are exhibited by
the data. This suggests a natural way to decompose stocks into
canonical sectors: for convex sets, each interior point is repre-
sentable as a unique weighted sum of corner points, implying
here that every stock’s return is approximated by a weighted
sum of returns from the canonical sectors. Conversely, the
weights for a given stock quantify its exposure to the canonical
sectors.

We applied an in house python implementation of the AA
algorithm described by Mgrup and Hansen (M6rup and Hansen
2012). The dataset consisted of 705 US firms’ stocks with a
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minimum $1 billion June 2013 market capitalization and with
continuous 20 years (1993-2013) of listing on major exchanges
(appendix A). Analysis of this dataset (appendices B and C)
revealed eight emergent sectors which were named in accor-
dance with the companies they comprised (prefix c- denotes
‘canonical’): c-cyclical (including retail), c-energy (including

oil and gas), c-industrial (including capital goods and basic ma-
terials), c-financial, c-non-cyclical (including healthcare and
consumer non-cyclical goods), c-real estate, c-technology, and
c-utility. Calculated participation weights for a sample of 12
firms in figure 2 show a decomposition of their stocks into
the canonical sectors with resulting insights discussed in the
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Figure 2. Canonical sector decomposition of stocks of selected companies. A complete set of all 705 stocks is provided on the companion
website (Chachra et al. 2013); the color scheme is shown on the right. Conglomerates like GE® decompose roughly into their core business
lines. Tech firms such as Apple® that sell mass-market consumer goods have an important fraction in c-cyclical, whereas IBM® has a
significant portion of c-non-cyclical returns presumably due to its government contracts. Telecom companies like AT&T® are generally
classified under a separate telecom category by major classification systems, yet analysis shows their returns are described by a combination
of c-non-cyclical and c-utility sectors. Health insurance providers like Aetna® are commonly classified as financial services firms, but their
returns consist of a major part c-non-cyclical and only a minor part of c-financial—the healthcare sector is generally less prone to economic
downturns. Defense contractors like Lockheed® are listed as capital goods companies, but their returns are seen to be majority c-non-cyclical
and only a smaller share of c-industrial sector.
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Figure 3. Emergent sector time series. Annualized cumulative log price returns of the eight emergent sectors are shown. The time series
capture all important features affecting different sectors: building-up of the dot-com bubble (c. 2000) followed by a burst, the soaring energy
valuations (2003-2008) followed by a crash, and the financial crisis of 2008. We note that the dot-com bubble was confined to the c-tech
sector whereas the financial crisis effects were spread throughout the sectors. Precise definition of the cumulative returns plotted here is given
in equation (C1); other measures of sector dynamics are in figure C1.
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Figure 4. Changes in the decomposition with dimensionality. A Sankey diagram (generated using D3 (Bostock et al. 2011)) displaying the
relationships between sector decompositions with n = N + 1 and n = N. Relative node sizes correspond roughly to the amount of the
market participating in the sector. Connection width depicts how strongly the sectors for decompositions with different n relate. For details,
see appendix G.1.
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Figure 5. Evolving sector participation weights. Results from the sector decomposition made with rolling two-year Gaussian windows
are shown for selected stocks. A complete set of 705 charts is provided on the companion website (Chachra et al. 2013). For stable and
focused companies such as Pacific Gas & Electric® or IBM®, one sees no significant shifts in sector weights; changes in time agree with
errors expected from unresolved fluctuations (Chachra ef al. 2013). Wal-Mart®’s returns, on the other hand, have moved significantly from
c-cyclical to c-non-cyclicals (consumer staples) in the post-financial crisis years as shown; this is also true of other low-price consumer
commodities retailers such as Costco®, but not true of higher price retailers such as Whole Foods®, Macy’s®, etc. Corning®, previously
an industrial firm with a huge presence in optical fibre, suffered in the aftermath of the dot-com crisis and now is classified as a tech firm
presumably due to its Gorilla® glass used in cellphones, laptop displays, and tablets. Berry Petroleum grew within its home state of California
in the early 1990s through development on properties that were purchased in the earlier part of 20th century. In 2003, the company embarked
on a transformation (Berry Petroleum Company History 2013) by direct acquisition of light oil and natural gas production facilities outside
California. The figure shows a clear shift in the distribution of sector weights as the company has moved toward c-energy and away from
c-real estate. Similarly, as Plum Creek® Timber converted to a real estate investment trust (REIT) in the late 1990s (Plum Creek®History
2014), its sector weights have significantly shifted toward c-real estate sector.

caption. Associated with each canonical sector f isatime series
of returns. As expected, these series show hallmark historical
events of individual sectors (figure 3): the dot-com bubble, the
energy crisis, and the financial crisis being the major events in
the last two decades.

Determining the correct number of canonical sectors that
appropriately describe the space of stock market returns is
akin to the more general issue of selecting a signal-to-noise
ratio cut-off, or a truncation threshold in the dimensional-
reduction of data. The choice of this threshold is generally
sensitive to sampling, yet the results presented here are rea-
sonably robust with different choices leading to meaningful
and similar decompositions. Figure 4 depicts the changes in

the decomposition with dimension. Details of how the figure
was generated as well as more information on the two and three
dimensional decompositions are available in appendix G.

In addition to the full data-set of 20 years x 705 firms,
we also applied the algorithm to overlapping, two-year Gaus-
sian windows to study how the sector weights for firms have
evolved in time (figure 5, see also appendix C). As expected,
the sector decomposition of firms is dynamic. Mergers, ac-
quisitions, spin-offs, new products, effect of competitive en-
vironments or shifting consumer preferences can change the
business foci of firms and hence alter the sector association of
firms. External events affecting companies in an idiosyncratic
manner also show clear signature in this analysis.
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The eight-factor decomposition presented here explains
11.1% of the total variation (+2) in the normalized returns with
the market mode removed, and 56% of the random matrix
theory explainable variation defined in appendix F. For com-
parison, the classic three-factor decomposition of portfolio re-
turns by Fama and French (Fama and French 1993) into market
mode, market capitalization, and growth vs. value yields an >
value of only 4.75%. Indeed, if only three factors are used
instead of the eight for the decomposition presented here, the
regression yields a comparable 72 value (5.61%) but there ap-
pears to be no correspondence between three factors found by
our unsupervised model, and those of Fama and French (figure
F1). Carrying out a similar comparison with Fama and French’s
analysis applied to model portfolio returns, the regression on
the S&P 500® yields an -2 value of 99.4% for Fama and French
compared to 93.5% for our eight-factor decomposition (market
mode reintroduced). Our decomposition was optimized with-
out concern for market capitalization, which appears to be the
key difference: For an equal weighted index of the 338 stocks
in the S&P 500® with current tickers and a complete data series
in our time of interest, we obtain an r2 value of 99.0% (97.0%
for 3 factors) compared to 95.8% for Fama and French. We
conclude that a sector decomposition like the one presented
here, perhaps weighted by market capitalization, should be
an improved guide to investors, compared to the widespread
value/growth and large-cap/small-cap stock characterizations
currently used.

Future work remains to address survivorship bias, effects
of sampling at different frequencies, and incorporating mar-
ket capitalization. Investors, analysts, and governments alike
would benefit from the development of new investable sector
indices (appendix H) that measure the health of our industrial
sectors just like the macroeconomic indicators (GDP, housing
starts, unemployment rate, etc.) measure the health of our
broader economy. Tracing the sectors back in time could elu-
cidate the incorporation of science and technology into our
economic system. Finally, our unsupervised decomposition
could provide data suitable for quantitative modelling of the
internal and external dynamics of our economic system.

Acknowledgements

We thank Jean—Philippe Bouchaud, Ming Huang and Janet Gao
for helpful discussions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was partially supported by NSF [grant number
DMR-1312160], [grant number DMR-1719490], [grant number IIS-
1247696] and [grant number DGE-1144153].

ORCID

Lorien X. Hayden
James P. Sethna

http://orcid.org/0000-0002-0047-5140
http://orcid.org/0000-0001-9126-0892

References

Basalto, N., Bellotti, R., Carlo, ED., Facchi, P. and Pascazio,
S., Clustering stock market companies via chaotic map
synchronization. Phys. A: Stat. Mech. Appl., 2005, 345, 196-206.

Berry Petroleum Company History, 2013. Available online at: http://
www.bry.com/pages/history.html (accessed 1 January 2015).

Bonanno, G, Caldarelli, G, Lillo, F. and Mantegna, R.N., Topology
of correlation-based minimal spanning trees in real and model
markets. Phys. Rev. E, 2003, 68, 046130.

Bonanno, G., Vandewalle, N. and Mantegna, R.N., Taxonomy of stock
market indices. Phys. Rev. E, 2000, 62, R7615-R7618.

Bostock, M., Ogievetsky V. and Heer J., D3: Data-driven documents.
IEEE Trans. Vis. Comput. Graph. (Proc. InfoVis), 2011, 17, 2301-
2309.

Burda, Z., Gorlich, A., Jarosz, A. and Jurkiewicz, J., Signal and noise
in correlation matrix. Physica A, 2004, 343, 295-310.

Burda, Z., Gorlich, A., Jurkiewicz, J. and Wacaw, B., Correlated
Wishart matrices and critical horizons. Eur. Phys. J. B, 2006, 49,
319-323.

Bury, T., Market structure explained by pairwise interactions. Phys.
A: Stat. Mech. Appl, 2013, 392, 1375-1385.

CBOE®Oil Index, 2013. Available online at: http://www.cboe.
com/products/IndexComponentsAuto.aspx?PRODUCT=0IX
(accessed 01 January 2015).

Chachra, R., Alemi, A.A., Hayden, L., Ginsparg, PH. and
Sethna, J.P, 2013. Project Website with additional figures
and analyses [online]. Available online at:www.lassp.cornell.edu/
sethna/Finance (accessed 1 January 2015).

Conlon, T., Ruskin, H. and Crane, M., Cross-correlation dynamics in
financial time series. Phys. A: Stat. Mech. Appl, 2009, 388, 705—
714.

Conversano, C. and Vistocco, D., Analysis of mutual funds
management styles: A modeling, ranking and visualizing approach.
J. Appl. Stat, 2010, 37, 1825-1845.

Coronnello, C., Tumminello, M., Lillo, E, Micciche, S. and
Mantegna, R., Sector identification in a set of stock return time
series traded at the London stock exchange. Acta Phys. Pol. B,
2005, 36, 2653-2679.

Cutler, A. and Breiman, L., Archetypal analysis. Technometrics, 1994,
36, 338-347.

Ding, C. and He, X., K-means clustering via principal component
analysis. In Proceedings of the Twenty-first International
Conference on Machine Learning, ICML 04, Banff, Alberta,
Canada, pp. 29, 2004 (ACM: New York).

Ding, C.H.Q., Li, T. and Jordan, M.I., Convex and semi-nonnegative
matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell,
2010, 32, 45-55.

Dow Jones®US Indices, Industry Indices, 2015. Available online
at:www.djindexes.com/mdsidx/downloads/fact_info/Dow_
Jones_US_Indices_Industry_Indices_Fact_Sheet.pdf (accessed 1
January 2015).

Doyle, G. and Elkan, C., Financial topic models. In Proceedings of
the NIPS Workshop on Applications for Topic Models: Text and
Beyond, Whistler, Canada, 2009.

Eom, C., Oh, G, Jeong, H. and Kim, S., Topological properties of
stock networks based on random matrix theory in financial time
series. Papers, arXiv.org, 2007.

Fama, E.F. and French, K.R., Common risk factors in the returns on
stocks and bonds. J. Financ. Econ., 1993, 33, 3-56.

Fenn, D.J., Porter, M.A., Williams, S., McDonald, M., Johnson,
N.F. and Jones, N.S., Temporal evolution of financial-market
correlations. Phys. Rev. E, 2011, 84, 026109.

Heimo, T., Kaski, K. and Saramiiki, J., Maximal spanning trees, asset
graphs and random matrix denoising in the analysis of dynamics of
financial networks. Phys. A: Stat. Mech. Appl., 2009, 388, 145-156.

Hyvirinen, A. and Oja, E., Independent component analysis:
Algorithms and applications. Neural Netw., 2000, 13, 411-430.

Kersting, K., Wahabzada, M., Thurau, C. and Bauckhage, C.,
Hierarchical convex NMF for clustering massive data. J. Mach.
Learn. Res. Proc. Track, 2010, 13, 253-268.


http://orcid.org
http://orcid.org/0000-0002-0047-5140
http://orcid.org
http://orcid.org/0000-0001-9126-0892
http://www.bry.com/pages/history.html
http://www.bry.com/pages/history.html
http://www.cboe.com/products/IndexComponentsAuto.aspx?PRODUCT=OIX
http://www.cboe.com/products/IndexComponentsAuto.aspx?PRODUCT=OIX
www.lassp.cornell.edu/sethna/Finance
www.lassp.cornell.edu/sethna/Finance
www.djindexes.com/mdsidx/downloads/fact_info/Dow_Jones_US_Indices_Industry_Indices_Fact_Sheet.pdf
www.djindexes.com/mdsidx/downloads/fact_info/Dow_Jones_US_Indices_Industry_Indices_Fact_Sheet.pdf

6 Feature

Kim, D.H. and Jeong, H., Systematic analysis of group identification
in stock markets. Phys. Rev. E, 2005, 72, 046133.

Kullmann, L., Kertész, J. and Mantegna, R.N., Identification of
clusters of companies in stock indices via Potts super-paramagnetic
transitions. Phys. A: Stat. Mech. Appl, 2000, 287, 412-419.

Laloux, L., Cizeau, P., Bouchaud, J.P. and Potters, M., Noise dressing
of financial correlation matrices. Phys. Rev. Lett., 1999, 83, 1467—
1470.

Lee, D.D. and Seung, H.S., Learning the parts of objects by non-
negative matrix factorization. Nature, 1999, 401, 788-791.

Li, T. and Ding, C., The relationships among various nonnegative
matrix factorization methods for clustering. In Sixth International
Conference on Data Mining, 2006. ICDM’06, pp. 362-371, 2006.

Livan, G, Alfarano, S. and Scalas, E., Fine structure of spectral
properties for random correlation matrices: An application to
financial markets. Phys. Rev. E, 2011, 84, 016113.

Mantegna, R.N., Hierarchical structure in financial markets. Eur.
Phys. J. B. Conden. Matter Complex Syst., 1999, 11, 193-197.
Martins, A.C., Random, but not so much a parameterization for the
returns and correlation matrix of financial time series. Phys. A: Stat.

Mech. Appl., 2007, 383, 527-532.

Mehta, M.L., Random Matrices, Vol. 3, 2004 (Academic Press:
Boston, MA).

Morgan Stanley®High-Tech 35 Index, 2005. Available online at:
www.nasdaq.com/options/indexes/msh.aspx (accessed 1 January
2015).

Morup, M. and Hansen, L.K., Archetypal analysis for machine
learning and data mining. Neurocomputing, 2012, 80, 54-63.

Musmeci, N., Aste, T. and Di Matteo, T., Relation between financial
market structure and the real economy: Comparison between
clustering methods. 2014. Available online at SSRN: https://ssrn.
com/abstract=2525291.

Nadig, D. and Crigger, L., Signal from noise. J. Indexes, 2011, 14,
40-43.

Pastor, L., Heaton, J. and Foss, A., The index is dead long live the
index. J. Indexes, 2013, 16(16-21), 55.

Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T.
and Stanley, H.E., Random matrix approach to cross correlations
in financial data. Phys. Rev. E, 2002, 65, 066126.

Plum Creek®History, 2014. Available online at: http://www.
plumcreek.com/AboutPlumCreek/History/tabid/55/Default.aspx
(accessed 1 January 2015).

Podobnik, B. and Stanley, H.E., Detrended cross-correlation analysis:
A new method for analyzing two nonstationary time series. Phys.
Rev. Lett., 2008, 100, 084102.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.,
Numerical Recipes: The Art of Scientific Computing, 3rd ed., Vol.
3, 2007 (Cambridge University Press: New York, NY).

Russell 3000®Index, 2015. Available online at:www.russell.com/
indexes/data/fact_sheets/us/russell_3000_index.asp (accessed 1
January 2015).

Scottrade®, 2015. Available online at: www.scottrade.com (accessed
1 January 2015).

S&amp;P 500®Index, 2014. Available online at: us.spindices.com/
indices/equity/sp-500 (accessed 1 January 2015).

Tagiliani, M., The Practical Guide to Wall Street, Vol. 1, 2009 (John
Wiley & Sons: Hoboken, NJ).

Thurau, C., Kersting, K. and Bauckhage, C., Convex non-negative
matrix factorization in the wild. In Proceedings of the Ninth IEEE
International Conference on Data Mining ICDM *09, pp. 523-532,
2009.

Thurau, C., Kersting, K. and Bauckhage, C., Yes we can—
simplex volume maximization for descriptive web scale matrix
factorization. In Proceedings of the CIKM, edited by J. Huang, N.
Koudas, GJ.F. Jones, X. Wu, K. Collins-Thompson and A. An, pp.
1785-1788, 2010 (ACM: New York, NY).

Thurau, C., Kersting, K., Wahabzada, M. and Bauckhage, C., Convex
non-negative matrix factorization for massive datasets. Knowl.
Inform. Syst., 2011, 29, 457-478.

Tsalmantza, P. and Hogg, D.W., A Data-driven model for spectra:
Finding double redshifts in the sloan digital sky survey. Astrophys.
J., 2012, 753, 122.

Vistocco, D. and Conversano, C., Visualizing and clustering
financial portfolios using internal compositions. In Presented
at Statistical Methods for the Analysis of Large Data-
Sets Pescara, ltaly, 23-25 September, 2009. Available on-
line at: http://new.sis-statistica.org/wp-content/uploads/2013/10/
CO09- Visualizing-and-clustering- financial-portfolios-using.pdf .

Wang, Y.X. and Zhang, Y.J., Nonnegative matrix factorization: A
comprehensive review. IEEE Trans. Knowl. Data Eng., 2013, 25,
1336-1353.

Yahoo!®Finance, 2015. Available online at: finance.yahoo.com
(accessed 1 January 2015).

Zhang, 7., Li, T., Ding, C. and Zhang, X., Binary matrix factorization
with applications. In Proceedings of the 2007 Seventh IEEE
International Conference on Data Mining, ICDM ’07, pp. 391—
400, 2007 (IEEE Computer Society: Washington, DC).

Appendix A. Data-set particulars

Company names, tickers, listed-sectors and market caps of US-based
firms used in this analysis were obtained from Scottrade® (Scottrade®
2015). Daily closing prices adjusted for stock splits and dividend
issues were obtained from Yahoo® Finance (Yahoo!®Finance 2015).
The rare cases of missing prices in the time series were replaced
with linearly interpolated values. A brief summary of listed sectors
and number of companies in each is provided in Table A1 and a full
list of company names, tickers, market caps and listed-sector info is
available on the companion website (Chachra et al. 2013).

Table Al. Listed sectors and number of companies dataset analyzed.
Tickers for each company were obtained from (Scottrade® 2015).
Listed sector Companies
Basic materials 58
Capital goods 61
Consumer cyclical 41
Consumer non-cyclical 40
Energy 42
Financial (+Real estate) 138
Healthcare 53
Services (+Retail) 101
Technology 93

Telecom 6

Utility 57
Transport 15
TOTAL 705

Appendix B. Returns factorization and sector decomposi-
tion

A variety of factorization algorithms have been developed in recent
years for dimensional reduction, classification or clustering. Exam-
ples include archetypal analysis (AA) (Cutler and Breiman 1994),
heteroscedastic matrix factorization (Tsalmantza and Hogg 2012),
binary matrix factorization (Zhang et al. 2007), K-means clustering
(Ding and He 2004), simplex volume maximization (Thurau et al.
2010), independent component analysis (Hyvirinen and Oja 2000),
non-negative matrix factorization (NMF) (Lee and Seung 1999; Wang
and Zhang 2013) and its variants such as the semi- and convex-
NMF (Ding et al. 2010), convex hull NMF (Thurau ez al. 2011) and
hierarchical convex NMF (Kersting et al. 2010), among others. Each
method has a unique interpretation (Li and Ding 2006) and therefore,
a successful application of any of these methods is contingent upon
the underlying structure of the data.

The hyper-tetrahedral structure of log price returns seen in our
analysis motivates a decomposition so that each stock’s return is a
weighted mixture of canonical sectors, constrained to lie in the convex
hull of the data. Hence we employ AA factorization which is defined


www.nasdaq.com/options/indexes/msh.aspx
https://ssrn.com/abstract=2525291
https://ssrn.com/abstract=2525291
http://www.plumcreek.com/AboutPlumCreek/History/tabid/55/Default.aspx
http://www.plumcreek.com/AboutPlumCreek/History/tabid/55/Default.aspx
www.russell.com/indexes/data/fact_sheets/us/russell_3000_index.asp
www.russell.com/indexes/data/fact_sheets/us/russell_3000_index.asp
www.scottrade.com
us.spindices.com/indices/equity/sp-500
us.spindices.com/indices/equity/sp-500
http://new.sis-statistica.org/wp-content/uploads/2013/10/CO09-Visualizing-and-clustering-financial-portfolios-using.pdf
http://new.sis-statistica.org/wp-content/uploads/2013/10/CO09-Visualizing-and-clustering-financial-portfolios-using.pdf
finance.yahoo.com

Feature 7

as:
Ris ~ Ry Cyr p W

Cslf EO,Z/:CS/f = 1,

s (B1)
Wes = 0,3 Wpy = L.
f

Columns of R;sCyf = E;f are the emergent sector time series
(basis vectors) representing the n corners of the hyper-tetrahedron,
and Wy are the participation weights (Wgg > 0) in sector f so
that > f W s = 1 for each stock s. The sector matrix E;¢ is within

the convex hull (C > 0, Y, Cysr = 1) of the data Ry. It can be
found by either minimizing the squared error with convex constraints
in factorization as originally proposed (Cutler and Breiman 1994),
or by making a convex hull of the dataset and choosing one or more
of its vertices to be basis vectors, or by making a convex hull in
low-dimensions and choosing one or more of its vertices to be basis
vectors (Thurau er al. 2009), or by minimizing after initializing with
candidate archetypes that are guaranteed to lie in the minimal convex
set of the data (Morup and Hansen 2012). The columns of the C matrix
are shown in figure B1.

c-cyclical c-ener
005 r y 1 1 1 1 1 1 T I gIy 1 1 1 1 1 1
oL H. 1 1 1 1 bl M 1l 1 1 1 1 | 1
c-financial c-industrial
005 r 1 1 1 1 1 1 T } 1 1 1 1 1 1 1
oL | | | | | | L iMﬂ Wmmlm lI\HuM\ ‘I | | \‘ ‘n II ” li J [N TR hl “Il“l s”"
c-non-cyclical c-real estate
0-05 r 1 1 1 1 1 1 T I 1 1 1 1 1 1 1
O L ‘ ‘.I | 1 1 ‘ “ 1 | “ | ‘ | 1 L I ‘ 1 1 1 1 1 | I NJN 1
c-tech c-utilit
005 r 1 1 1 1 1 1 T I yI 1 1 1 1 1 1
0 L [ 1 1 J) | j“'w 1 1 L I 1 1 1 1 I"J“ 1 1
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
B Basic M Cyclical Financial B Non-cyclical B Telecom B Services Retail
M Capital B Energy Health B Tech W Utility B Real estate B Transport

Figure B1. Canonical Sector Constituents (shown as columns of the Cs¢). Cy ¢ represents a weighted combination of stocks that defines the
canonical sector each of which has a time series represented by E; ¢ that is given by Eyf = Ry5Cyy. The eight subplots show the constituent
participation component of stocks in each canonical sector f. Canonical sectors are labeled on the plot; their names were chosen according
to the listed sectors of firms that comprise them. Noteworthy features seen above include the co-association of listed sectors: basic, capital,
transport and part of cyclicals into industrial goods. Similarly, healthcare and non-cyclicals are coupled together in what we call non-cyclicals.
Canonical retail goes primarily with listed retail and cyclicals. Stocks are colored by listed sectors as shown at the bottom. Listed sector

information was obtained from Scottrade® (2015).
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Appendix C. Calculations and convergence

Numerical computations were performed using an in-house Python
language implementation of the principal convex hull analysis (PCHA)
algorithm as described in (M6rup and Hansen 2012). For the full data-
set, the factorization R = EW, with E = RC as defined in equation
(B1) converged in 35 iterations to a predefined tolerance value of
AssE < 107, where A ssE 1s the average difference in the sum of
squared error per matrix element in R — E'W from one iteration to the
next. The resulting columns of E; ¢ are shown in figure C1 (top row).
Annualized cumulative log returns are obtained by summing rows of
Etf :

I
0r(0)=—= Ey 1)
250 =0

The time series Q ¢(7) are shown in figure 3 and the middle row
of figure C1. Weights W, for selected stocks are shown in figure
2, the remainder are available on the companion website (Chachra et
al. 2013). In each canonical sector f, the component of weights for
companies are shown in figure C2.

The analysis of evolving sector weights was performed similarly,
but with a sliding Gaussian time window. We decomposed the lo-
cal normalized log returns for each stock into the canonical sectors

c-cyclical c-energy c-financial

5 5 = = =

2, J , J
10 - = = =

O-v v 0 -
95 01 07 13

| |
95 01 07 13

[
95 01 07 13

c-industrial

1 e

[

[
95 01 07 13

determined from the entire time series. Each column (time series)
of the returns matrix R;s was multiplied with a Gaussian, G (t) =
exp(—(t — u)z /(2 x 2502)) of standard deviation 250 centered at
/4 to obtain Rt’é. We use Cy ¢ found using the full dataset (equation
(B1)) (corresponding to keeping the sector-defining simplex corners
fixed). R,“S is factorized to obtain new weights W% . that describe
sector decomposition of stocks in that period focused at t = pu:
RV = Rllé/cs’f W“s. 1 is increased in steps of 50 starting at © = 0
and ending at . = 5000, and W# is calculated at each p with the
corresponding R*. These results are plotted in figure 5 for a select
group of companies; the remainder are available on the companion
website (Chachra et al. 2013).

To address the challenge of distinguishing signal from noise in
the evolving sector weights, we emulated the effect of noise for each
of the companies from figure 5. For each of these companies, we
took its sector weights, @ f» and multiplied by E;¢ to obtain a time
series for the company with weights that are constant in time. We
then added gaussian random noise with standard deviation one and
replaced these companies by this simulated data. Figure C3 shows the
comparison between the real flows and the simulated constant data
with noise added. General features are shown to be signal while small
fluctuations are consistent with noise.

c-non-cyclical c-real estate c-tech

-

c-utility

W

AN M

[ N [ N [ N [ N
95 01 07 13 95 01 07 13 95 01 07 13 95 01 07 13

Figure C1. Canonical sector time series. Top row: normalized log returns (columns of E;¢), middle row: cumulative log returns (same as
figure 3 and defined in equation (C1)), and bottom row: unweighted price index of canonical sectors (equation (H1)).



Feature 9

c-cyclical c-energy
1- | | |

ol INRERY IHJ‘LJ‘\M‘\MHU ! 1\% ! jm s

a c-financial c-industrial
r I

T |

L 1 bl Uk WL
obul M]ulhun ... il futio i 1 H‘.hm.lw |

Ml W MV I M
ﬂ | VJ | .ll‘ Huﬂ \ bl bl b mm

-tech c-utility
T I I

L# M ! .h \l.uu.nhmlu\l d‘\u“ | \MuimL..\\thh bl b

00“‘ Li ;M|‘1L|O

lditaid ‘ m
200 300 400 500 600 700 200 300 400 500 600 700
M Basic M Cyclical Financial B Non-cyclical Bl Telecom B Services Retail
M Capital M Energy Health M Tech W Utility B Real estate M Transport

Figure C2. Weight distribution in canonical sectors. Each of the eight subplots shows the constituent participation weights of all 705
companies in a canonical sector (rows of W ). Stocks are colored by listed sectors as shown at the bottom. Listed sector information was
obtained from (Scottrade® 2015).

Berry Petroleum: BRY BRY Pie + Noise

Corning: GLW GLW Pie + Noise

IBM IBM IBM Pie + Noise

PG&E: PCG PCG Pie + Noise

Plum Creek Timber: PCL PCL Pie + Noise

Wal-Mart: WMT WMT Pie + Noise
95 98 01 04 07 10 13 95 98 01 04 07 10 13

Figure C3. Comparison between flow diagrams presented in figure 5 with simulated data. The simulated data is created from the dot product
of the weight vector of the company with the corner time series as described in this section. This yields a version of the company with constant
weights in time. To this we add gaussian noise with standard deviation one and repeat the analysis to generate the flows in time. In the left
column are the actual flows for companies, on the right is their constant in time counterpart with added noise. We see that key features are in
fact signal while small fluctuations correspond to noise. Colour scheme as in figures 2 and 5.
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Appendix D. Dimensionality of the space of price returns

It is often the case with large data-sets that the effective dimension-
ality of the data space is much lower when one filters out the noise.
Of the many dimensional reduction methods, the most commonly
used is singular value decomposition (SVD) (Press et al. 2007), a
deterministic matrix factorization. We discuss SVD in more detail in
order to draw a contrast with previous SVD results, and to apply it
for quantifying the explainable variation in the returns data.

An SVD of R;g is a matrix factorization (Press et al. 2007) Ry =
Ui Zppr VfT,S such that matrices U and V are orthogonal; X is a
diagonal matrix of ‘singular values’. If the goal were purely rank-
reduction, n entries of X chosen to lie above ‘noise threshold’ are
retained and the rest truncated so that 0 < f, f’ < n. This effectively
reduces the dimension of R to n. The choice of n can be informed b
the distribution of singular values as discussed later. The rows of V
are precisely the eigenvectors of the stock-stock returns correlation
matrix, &g ~ RST, Rys. It was previously reported that some compo-
nents of the stiff eigenvectors of this stock-stock correlation matrix
loosely corresponded to firms belonging to the same conventionally
identified business sector (Plerou et al. 2002) (but see figure D1).

After normalizing the log returns, the returns matrix R has entries of
unit variance. If the entries were uncorrelated random variables drawn
from a standard normal distribution, their singular values (which are
also the positive square roots of the eigenvalues of RT R) would be

market mode
I I

0.1 -

Feature

0.025 -

0.020 -

0.015 -

0.010 -

0.005 -

nmn lll 1
100 150

n.n [l .
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Figure D2. Normalized distribution of singular values. Filled blue
histogram corresponds to distribution of singular values of returns
from the dataset R;s—one notices a clear separation of the hump-
shaped bulk of singular values, and about 20 stiff singular values
(the largest singular value ~952, corresponding to the market mode
is not shown). Pink line histogram outline shows the distribution of
singular values of a matrix of the same shape as R but containing
purely random Gaussian entries.

sy Ml a %
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Figure D1. Singular vectors VfT.S of the SVD of returns Ry. The orthonormal right singular vectors (rows of VjT's) of SVD of Ry are equivalent

to the eigenvectors of the stock-stock correlation matrix &gy ~ RT R. Eight of these stiffest eigenvectors including the market mode are
shown in rows of two at a time. Each has 705 components corresponding to stocks in the dataset. The market mode with all components
in the same direction describes overall fluctuations in the market; it was excluded from the analysis described in the paper. Previous work
(Plerou et al. 2002) has suggested that each eigenvector of the stock-stock correlation matrix describes a listed sector, however as seen above,
a more correct interpretation is that each eigenvector is a mixture of listed sectors with opposite signs in components. For example, the stiffest
direction (after market mode) has positive components in real estate and utility, but negative in tech. Less stiff eigenvectors (including the
last one shown here), do not contain sector-relevant information. Stocks are coloured by listed sectors as shown at the bottom. Listed sector

information was obtained from (Scottrade® 2015).
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described by Wishart statistics (Mehta 2004). The Wishart ensemble
for a matrix of size & x B predicts a distribution of singular values
with a characteristic shape (Mehta 2004), bounded for large matrices
by «/a++/B. Comparing the stock correlations with Wishart statistics
has been previously used to filter noise from financial datasets (Laloux
etal. 1999). As shown in figure D2, most singular values of the returns
matrix R lie in the bulk below the bound set by the Wishart ensemble,
whereas only ~20 fall outside that cut-off (The singular value bounds
of a random Gaussian rectangular matrix of size ¢ x 8 can be shown
to be /o £ /B for large matrices.) Historically, this has served as
indication that singular values within the bulk correspond to noise
(Laloux et al. 1999). Recently, however, much progress has been
made in the development of techniques to extract signal from the
bulk (Burda et al. 2004, 2006, Livan et al. 2011). Our method does
not claim to capture this information. Rather, we measure its ability
to capture variation in the data above the cutoff by means of random
matrix theory explainable variation as defined in section F. The largest
singular value of R;s corresponds to what we will refer to as the
‘market mode’ as this represents overall simultaneous rise and fall
of stocks. In the analysis presented in this paper, this mode has been
filtered from the returns matrix by projecting the R matrix into the
subspace spanned by all non-market mode eigenvectors. This is nearly
equivalent to filtering the market mode using simple linear regression
(as done commonly (Plerou et al. 2002)), although more convenient.

-20 0
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Appendix E. Low-dimensional projections of price returns

The emergent low-dimensional, hyper-tetrahedral (simplex) structure
of stock price returns can be seen by projecting the dataset into
stiff ‘eigenplanes’. Eigenplanes are formed by pairs of right singular
vectors from a SVD. Here, we construct an SVD of the simplex
corners, Eyp = Xy YZka; simplex corners are mapped to columns of
Y ZT because YZka = X]Z; E; (in other words, Xth is a projection
operator). The plots in figure E1 are the projections of the dataset,
Xth Ris = vis. The rows of v taken in pairs form the axes of the
projections in figures 1 and E1. With those plots, it becomes clear that
the eigenplanes represent projections of a simplex-like data into two-
dimensions. Secondly, we note that the simplex structure becomes
less clear as one looks at planes corresponding to smaller singular
value directions; the signal eventually becomes buried in the noise.

Similarly, the results of the factorization can be seen in eigenplanes
fromthe SVDof E;p Wyp = Ly MNkTS . These results (rows of MNkTS)
are shown in figure E2, where we notice that the data is now perfectly
resides in simplex region as expected due to constraints.

"0 15 -150 "0 15

Low-dimensional projections of stock returns data, coloured by Scottrade® sector. Each coloured circle represents a stock in our

dataset and is coloured according to sectors assigned by Scottrade® (Scottrade® 2015) as indicated in figure D1. The first row is equivalent
to figure 1. Black circles represent the archetypes found with our analysis. The (i, j)th figure in the grid is a plane spanned by singular vectors
iand j + 1 (rows of X T R) from the calculations described earlier. Projections after the factorization are shown in figure E2.
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Figure E2. Cross-sections along eigenplanes of the factorized returns. Each coloured circle represents a stock in our dataset and is coloured
according to the primary canonical sector association with the colour scheme in figure 2. Black circles represent the archetypes found with
our analysis. The (i, j)th figure in the grid is a plane spanned by singular vectors i and j + 1 (rows of MNT ) from the calculations described
earlier. Projections of raw data (before the factorization) are shown in figure E1. Note that the colours are very similar to those of the traditional
Scottrade® classification shown in figure E1; the colour schemes were designed to roughly match. Note that here all points have been projected

into the hyper-tetrahedron by our factorization.

Appendix F. Coefficient of determination (r2)

We measured the goodness of the returns decomposition R = EW
by measuring the coefficient of determination (r?) as follows:

r2=1-SSE/SST (F1)

Here, SSE denotes the sum of square errors ||[R — E W||2 , and

SST is the total sum of squares ||R||%. This is also known as the
proportion of variance explained (PVE). For the factorization of the
full dataset, normalized with the market mode removed, the calculated
r2 valueis 11.1%. The SVD of R with singular values shown in figure
D2 provides a convenient way to put this number in context for the
returns dataset. Only 20 singular values (excluding the market mode)
were above the cut-off that was predicted by random matrix theory
for a matrix of purely random Gaussian entries. For any matrix M
with elements m;;, the norm ||M||%p = Zi,/’ ml2 =3 sl.z, where
s; are the singular values (Press et al. 2007). Thus, the fraction of
intrinsic variation in R above the cutoff is the sum of squares of
the 20 singular values (not including market mode) divided by SST,

iz%o siz /IIR| |% = 19.8%. Therefore, as a first approximation, the
factorization explains 11.1/19.8 = 56% of the random matrix theory
(RMT) explainable variation.

For reference we provide the RMT explainable variation for the
factor decomposition of Fama and French, the classification by Scot-
trade®, and the top 8 singular vectors given by SVD. The percentage
of the RMT explainable variation for different numbers of factors
compared to the 3 factor decomposition of Fama and French is shown
in table F1. Fama and French have the benefit of allowing factors to
have positive or negative weights. In order to compare with another
non-negative decomposition, we fix the weight matrix according to
the Scottrade® labels and run archetypal analysis for this n = 14
factor version. The r2 value for this decomposition is 10.7% with a
corresponding RMT explainable variance of 54.2% compared to 56%
for our 8 factors. For completeness, we also note that if R is rank-
reduced to the eight stiffest components found by SVD (not including
market mode), then the factorization explains 85% of the the RMT
explainable variation in R with overall results in good accord with
the analysis presented here. This implies that sector decomposition
information was already contained in the stiff modes from the SVD
of R, however SVD is not the appropriate tool for the decomposition.
Figure F1 further shows that our unsupervised 3-factor decomposition
appears quite distinct from Fama and French’s hand-created one.



Feature 13

Figure F1.

(b)

Three Factor Model vs. Fama and French. 2D projections of the weights for each company in the SP500 with current tickers and

data in the date range we consider. Red denotes companies with large market caps (market cap >10 billion), blue denotes medium (market
cap 2-10 billion) and green denotes small (market cap < 2 billion). For our decomposition (a), there is no separation distinguishable by size
of company. In comparison, for the Fama and French decomposition (b), there appears a gradation from large to small companies consistent
with a factor of the model being related to size. (This is natural, since one of Fama and French’s factors explicitly is the difference between
large and small-cap returns). Thus our unsupervised 3-factor decomposition appears quite distinct from Fama and French’s hand-created one.

Table F1. Percentage of the Explainable Variance captured by our

model compared with the Fama and French factor model. Regression

is done on the normalized dataset of 705 stocks without the market

mode removed. To capture this, we add the market mode to factors
obtained by our decomposition.

Bulk Variation 80.2%
Explainable Variation 19.8%
Factors Percent of Explainable Variation
Market Mode (MM) 8.0%
2 factors + MM 26.0%
3 factors + MM 36.1%
4 factors + MM 42.8%
5 factors + MM 48.9%
6 factors + MM 55.3%
7 factors + MM 59.4%
8 factors + MM 63.7%
9 factors + MM 68.1%
Fama and French 24.0%

Appendix G. The number » of canonical sectors

It is an open problem to determine the effective dimensionality (op-
timal rank) of a general dataset (matrix). One could select among
models of different dimensions using statistical tests such as the r
discussed above, or information theory based criteria such as Akaike
Information Criterion (AIC) or the Bayesian Information Criterion
(BIC), but the choice of the selection criterion is itself generally
made on an ad hoc basis. Therefore, a direct observation of the
comprehensibility of results is often the most reliable criterion. In the
data-set used for analysis described here, a factorization with n > 8
yielded results where both the emergent time series E7¢ and weights
in Wy showed qualitative signs of overfitting. For example, with
n = 9 the results were in good agreement with n = 8 except for
an additional resulting sector involving participation from only 11
seemingly unrelated stocks (table G1 and figure 4). The high-level
results of factorization with different values of n may be explored in
a number of ways, several of which are described below.

G.1. Sector changes with dimensionality

One approach to investigating how the sector decomposition changes
with dimension is to produce a flow diagram. To do this, we performed
the fit || E; 5 — Et’f/Sf/,fH%, with the constraint. Zf/ Sf’,f = 1.
Hence the sectors for n = 9 can be expressed as a linear combination
of sectors for n = 8, n = 8 as a linear combination of n = 7,
and so forth. The results of these fits are presented in figure 5. The
figure represents these relationships though connections between the
decompositions forn = N + 1 and n = N weighted according to the
matrix SV-V+D More precisely, we create a node corresponding to
each of the 9 sectors whose size is proportional to ) ¢ Wy,; where
Wy,s is the weight matrix for the 9 sector decomposition. Hence, the
relative node sizes represent the amount of the market particpating
in the sector. Multiplying this vector by § ®.9) gives the approximate
size for each node in n = 8. Multiplying this vector by s(7.8) gives
the approximate size for eachnode inn = 7, and so on. In this way, we
generate a Sankey diagram whose node sizes correspond roughly to
the amount of the market in the sector and whose connections depict
how strongly the sectors for decompositions with different n overlap.
In the image, we see that the n = 9 decomposition gives the 8 sector
version with an additional small sector whose companies were listed
in table G1. We also see that for n = 7 c-finance and c-real estate
merge. At n = 6, c-industrial and c-cyclical merge. For n = 5, the
new sector containing c-industrial and c-cyclical merges with c-non-
cyclical. For n = 4, c-utility and c-energy merge. Finally, forn = 3
and n = 2, no clear pattern emerges given this image alone.

G.2. Two and three sector decompositions

We further explore the two and three sector decompositions by exam-
ining their constituent companies and looking at pie charts describ-
ing the relationship between our 8 sector decomposition and those
with n = 2 and n = 3 respectively. Recall that each archetype is
constrained to be a linear combination of companies, or in other
words to lie in the convex hull of the data. Using this informa-
tion, we list the 20 companies which contribute the most to each
sector in the two and three factor decompositions (tables G2-G4).
For the two sector decomposition, we find the sectors divide roughly
into c-assets (e.g. financial and real estate companies) and c-goods
(e.g. companies which provide goods and services). For n = 3,
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Figure G1. Pie charts depicting sectors as linear combinations of other sector decompositions having a different value of the dimensionality
n. (a) Two sector decomposition with respect to the eight sector version (b) Three with respect to eight (c) eight with respect to two (d) eight
with respect to three. For (a) and (b), the color scheme is the same as used throughout for the eight sector decomposition. For (c) and (d)
colors correspond to those in figure 4 for the two and three sector nodes. Through these charts it is evident that the two sector decompositions
corresponds to an c-assets sector containing c-finance and c-real estate. and a c-goods sector containing companies which provide goods
and services. In (c) and (d) we see c-industrial, c-cyclical and c-non-cyclical which merge by n = 5 split between the two and three factor
decompositions respectively, consistent with figure 4.

Table G1. Companies which form a new sector when the dimensionality of the decomposition is increased from n = 8 to n = 9. The labels
given are those indicated by Scottrade®.

Ticker Company name Label
EQT EQT Corporation Energy
RDN Radian Group Inc. Financials
STT State Street Corporation Financials
LH Laboratory Corp. of America Holdings Healthcare
UHS Universal Health Services Inc. Healthcare
STZ Constellation Brands Inc. Non-Cyclicals
CNL Cleco Corporation Utilities
OKE ONEOK Inc. Utilities
CAKE The Cheesecake Factory Incorporated Cyclicals
EFX Equifax Inc. Industrials
ESRX Express Scripts Holding Company Non-Cyclicals

Table G2. Top 20 contributing companies to each sector in the two sector decomposition. Ranking is determined by the martix Cs, ¢ which
describes each sector as a linear combination of stocks. Labels are those given by Scottrade® and percentage describes the percentage of the
sector attributable to the company.

C-assets Label Percent Full name C-goods Label Percent Full name

DDR real estate  1.77% DDR Corp. HON tech 0.53% Honeywell International Inc.
ONB financial 1.7% Old National Bankcorp. TMO health 0.51% Thermo Fisher Scientific Inc.
BRE real estate  1.66%  Brookfield Real Estate Serv. NAV cyclical 0.49% Navistar International Corp.
PEI real estate  1.54% Pennsylvania RIT CSL basic 0.47% Carlisle Companies Inc.
FMBI financial 1.5% First Midwest Bancorp. Inc. IRF tech 0.47% International Rectifier Corp.
PRK financial 1.5% Park National Corp. APD basic 0.46% Air Products & Chemicals Inc.
BAC financial 1.42% Bank of America Corp. PCP basic 0.43% Precision Castparts Corp.
STI financial 1.41% SunTrust Banks Inc. OMC misc services  0.43% Omnicom Group Inc.
DRE real estate  1.29% Duke Realty Corp. MXIM tech 0.43%  Maxim Integrated Products, Inc.
UBSI financial 1.28% United Bankshares Inc. TEX health 0.41% Teleflex Inc.

CPT real estate  1.28% Camden Property Trust NSC transport 0.41% Norfolk Southern Corp.
BRS real estate  1.28% Post Properties Inc. NBL energy 0.4% Noble Energy Inc.
WABC financial 1.26% Westamerica Bancorp. SM energy 0.4% SM Energy Company
FMER financial 1.26% FirstMerit Corp. WMT retail 0.39% Wal-Mart Stores Inc.
CNA financial 1.26% CNA Financial Corp. CR basic 0.38% Crane Co.

VLY financial 1.25% Valley National Bancorp. ADI tech 0.38% Analog Devices Inc.
MTB financial 1.24% M&T Bankcorp. IT™W cyclical 0.38% Illinois Tool Works Inc.
WRI real estate  1.23%  Weingarten Realty Investors PPG basic 0.38% PPG Industries Inc.
BDN real estate  1.21% Brandywine Realty Trust BA capital 0.38% The Boeing Company
ZION financial 1.2% Zions Bancorp. AME tech 0.38% Ametek Inc.

Total 27.54% Total 8.53%
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Table G3.  Top 20 contributing companies to each sector in the three sector decomposition. Ranking is determined by the martix Cy, ¢ which
describes each sector as a linear combination of stocks. Labels are those given by Scottrade® and percentage describes the percentage of the
sector attributable to the company.

Sector 1 Label Percent Sector 2 Label Percent Sector 3 Label Percent
XOM energy 1.29% BRE real estate 2.16% IRF tech 1.29%
HP energy 1.22% PEI real estate 2.08% EMC tech 1.22%
CVX energy 1.21% BWS retail 1.99% ADI tech 1.21%
ETR utility 1.2% CNA financial 1.79% CSCO tech 1.2%
APD basic 1.2% ONB financial 1.73% TXN tech 1.2%
0),.4'¢ energy 1.19% DDR real estate 1.63% BMC tech 1.19%
NFG utility 1.18% PRK financial 1.59% SNPS tech 1.18%
PX basic 1.17% CBSH financial 1.59% PLXS tech 1.17%
CL non-cyclical 1.16% BC cyclical 1.56% CPWR tech 1.16%
NBL energy 1.15% FMER financial 1.55% AVT tech 1.15%
ol energy 1.11% RDN financial 1.54% SWKS tech 1.11%
LNT utility 1.11% MAS capital 1.54% HPQ tech 1.11%
D utility 1.08% DDS retail 1.47% PMCS tech 1.08%
DTE utility 1.07% FMBI financial 1.47% MXIM tech 1.07%
SCG utility 1.06% ALK transport 1.46% ARW tech 1.06%
WEC utility 1.04% WABC financial 1.43% TER tech 1.04%
APA energy 0.99% PCH real estate 1.42% ATML tech 0.99%
BAX health 0.98% VLY financial 1.41% MCHP tech 0.98%
MUR energy 0.98% BAC financial 1.41% LRCX tech 0.98%
CPB non-cyclical 0.98% STI financial 1.37% CGNX tech 0.98%
Total 22.38% Total 19.14% Total 32.18%
Table G4. Top 20 contributing companies to each sector in the three sector decomposition. Ranking is determined by the martix Cy, ¢ which
describes each sector as a linear combination of stocks.
Sector 1 Full name Sector 2 Full name Sector 3 Full name
XOM Exxon Mobil Corp. BRE Brookfield Real Estate Serv. IRF International Rectifier Corp.
HP Helmerich & Payne Inc. PEI Pennsylvania RIT EMC EMC Corp.
CVX Chevron Corp. BWS Brown Shoe Co. Inc. ADI Analog Devices Inc.
ETR Entergy Corp. CNA CNA Financial Corp. CSCO Cisco Systems Inc.
APD Air Products & Chemicals Inc. ONB Old National Bancorp. TXN Texas Instruments Inc.
(0):4'¢ Occidental Petroleum DDR DDR Corp. BMC BMC Software Inc.
NFG National Fuel Gas Company PRK Park National Corp. SNPS Synopsys Inc.
PX Praxair Inc. CBSH Commerce Bancshares Inc. PLXS Plexus Corp.
CL Colgate-Palmolive Co. BC Brunswick Corp. CPWR Compuware Corp.
NBL Noble Energy Inc. FMER FirstMerit Corp. AVT Avnet Inc.
ol Oceaneering International Inc. RDN Radian Group Inc. SWKS Skyworks Solutions Inc.
LNT Alliant ENergy Corp. MAS Masco Corp. HPQ Hewlett-Packard Company
D Dominion Resources Inc. DDS Dillard’s Inc. PMCS PMC-Sierra Inc.
DTE DTE Energy Corp. FMBI First Midwest Bancorp. Inc. MXIM Maxim Integrated Products Inc.
SCG SCANA Corp. ALK Alaska Air Group Inc. ARW Arrow Electronics Inc.
WEC Wisconsin Energy Corp. WABC Westamerica Bancorp. TER Teradyne Inc.
APA Apache Corp. PCH Potlatch Corp. ATML Atmel Corp.
BAX Baxter International Inc. VLY Valley National Bancorp. MCHP Microchip Technology Inc.
MUR Murphy Oil Corp. BAC Bank of America Corp. LRCX Lam Research Corp.
CPB Campbell Soup Company STI SunTrust Banks Inc. CGNX Cognex Corp.

the division is less clear. Another way to look at the constituents
of these sectors is by examining pie chart representations of these
decompositions. Again consider the fit ||E; ¢ — Et’f/Sf/,fll%, with
the constraint Sy = 1. Applying this, we can express the two
sector archetypes as linear combinations of the 8 sector archetypes
and vice versa. Additionally, we can do the same for the three factor
decomposition. The pie charts these fits produce are shown in figure
G1. The results are consistent with the sector breakdowns described
from examining the constituent companies.

G.3. Robustness

In general, a factorization analysis of the returns dataset would be
sensitive to number of stocks in the dataset, criteria applied for picking
stocks, period over which historical prices are obtained, and frequency
at which returns are computed. A robust macroeconomic analysis

would therefore require a large number of stocks chosen without
sampling bias, with returns calculated over the period of interest and
sensitivity checked for frequency of returns calculation. On the other
hand, an equity fund manager faces a less daunting task for an analysis
that is limited to the universe of her portfolio of stocks: either to find
its canonical sectors, or to analyse the exposure of her holdings to the
core sectors of the economy.

Appendix H. Canonical sector indices

The matrix Cyy in decomposition R = RCW represents how returns
R of stocks s must be combined to make canonical sector returns
Ey = RisCyy. Since a canonical sector is defined as a combination
of stocks, an investment in the sector f can made via buying a basket
of constituent stocks s in proportions given by Cg¢ or through an
index [;f:
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Itf = pls’cx/f (HL)

where, p are stocks prices suitably weighted by market cap or other
divisor as common practice for common indices (Tagiliani and Guide
2009). An unweighted index of this kind is shown in the bottom row
of figure C1 for results corresponding to the analysis described in this
paper. Conversely, a pre-defined basket of stocks such as the S&P
500® can be unbundled to find its exposure to the canonical sectors.

With an investment strategy employing longs and shorts at the same
time in correct proportions, it is conceivable to invest in, for example,
the c-tech component of S&P 500®.

The desirable features of an index include completeness, objectiv-
ity and investability (Pastor ef al. 2013). The c-indices constructed
using the ideas outlined here would not only be of value to investors
through investment vehicles such as exchange-traded funds, Futures,
etc., but also serve as important economic indicators.
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