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Abstract. We consider the problem of optimal consumption of multiple goods in incomplete

semimartingale markets. We formulate the dual problem and identify conditions that allow for

existence and uniqueness of the solution and give a characterization of the optimal consumption

strategy in terms of the dual optimizer. We illustrate our results with examples in both complete

and incomplete models. In particular, we construct closed-form solutions in some incomplete

models.

1. Introduction

The problem of optimal consumption of multiple goods has been investigated in [5, 2]. For a

single consumption good in continuous-time settings, it was first formulated in [17]. Since then,

this problem was analyzed in a large number of papers in both complete and incomplete settings

with a range of techniques based on Hamilton-Jacobi-Bellman equations, backward stochastic

differential equations, and convex duality being used for its analysis.

In the present paper, we formulate a problem of optimal consumption of multiple goods in a

general incomplete semimartingale model of a financial market. We construct the dual problem

and characterize optimal consumption policies in terms of the solution to the dual problem. We

also identify mathematical conditions, that allow for existence and uniqueness of the solution

and a dual characterization. We illustrate our results by examples, where in particular we obtain

closed-form solutions in incomplete markets.

Our proofs rely on certain results on weakly measurable correspondences for Carathéodory

functions, multidimensional convex-analytic techniques, and some recent advances in stochastic

analysis in mathematical finance, in particular, the characterization of the “no unbounded profit

with bounded risk” condition in terms of non-emptiness of the set of equivalent local martingale

deflators from [3, 9] and sharp conditions for solvability of the expected utility maximization

problem in a single good setting from [19]. Measurability-wise the price processes of consumption
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goods are only needed to be optional. Strict positivity is also required, but no boundedness away

from zero or infinity is supposed. Comparing to [3, 19], apart from the conditions on the price

process of the consumption goods that are unequivocal in single-good settings, one of the leading

challenges in the present work was handling the multidimensionality of the utility process in the

spatial variable. The key step in here is an introduction of an auxiliary utility process (see (2.7)

below) and its representation as a pointwise image function (in the convex-analytic sense) of

the original multivalued utility process under the corresponding linear transformation, which

is also identified. Further, a challenging point in the proofs that only emerges in the case of

multiple goods, but not in single-good settings, is the measurability of the candidate optimizer.

It is proven via establishing weak measurability of a certain correspondence, in the spirit of [1].

Here the model assumptions, in particular, the aforementioned optionality and strict positivity

of the consumption goods processes, play an important role. Finally, the present paper provides

a general framework for analyzing numerous questions related to stability and asymptotics in

the multiple goods settings from both mathematical and economic viewpoints.

The remainder of this paper is organized as follows: in Section 2 we specify the model setting,

formulate the problem, and state main results (in Theorem 2.4). In Section 3 we discuss various

specific cases. In particular, we present there the structure of the solution in complete models

and the additive utility case as well as closed-form solutions in some incomplete models (with

and without an additive structure of the utility). We conclude the paper with Section 4, which

contains proofs.

2. Setting and main results

2.1. Setting. Let S̃ = (S̃t)t≥0 an Rd-valued semimartingale, representing the discounted prices1

of d risky assets on a complete stochastic basis (Ω,F , (Ft)t∈[0,∞),P), with F0 being the trivial

σ-algebra. We fix a stochastic clock κ = (κt)t≥0, which is a nondecreasing, càdlàg, adapted

process, such that

(2.1) κ0 = 0, P(κ∞ > 0) > 0 and κ∞ ≤ Ā,

where Ā is a positive constant. The stochastic clock κ specifies times when consumption is

assumed to occur. Various optimal investment-consumption problems can be recovered from

the present general setting by suitably specifying the clock process κ. For example, the problem

of maximizing expected utility of terminal wealth at some finite investment horizon T < ∞

can be recovered by simply letting κ , I[[T,∞[[. Likewise, maximization of expected utility from

consumption only up to a finite horizon T < ∞ can be obtained by letting κt , min(t, T ),

for t ≥ 0. Other specifications include maximization of utility form lifetime consumption, from

consumption at a finite set of stopping times, and from terminal wealth at a random horizon, see

e.g.,[19, Examples 2.5-2.9] for a description of possible standard choices of the clock process κ.

1Since we allow preferences to be stochastic (see the definition below), there is no loss of generality in assuming

that asset prices are discounted, see [19, Remark 2.2] for a more detailed explanation of this observation.
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We suppose that there are m different consumption goods, where Sk
t denotes the discounted

price of commodity k at time t. We assume that for each k ∈ {1, . . . ,m}, Sk = (Sk
t )t≥0 is a

strictly positive optional processes on (Ω,F , (Ft)t∈[0,∞),P). We denote S = (S1, . . . , Sm).

A portfolio is defined by a triplet Π = (x,H, c), where x ∈ R represents an initial capital,

H = (Ht)t≥0 is a d-dimensional S̃-integrable process, Hj
t represents the holdings in the j-th

risky asset at time t, j ∈ {1, . . . , d}, t ≥ 0, c is an m-dimensional consumption process, whose

every component (ckt )t≥0 is a nonnegative optional process representing the consumption rate of

commodity k, k = {1, . . . ,m}. The wealth process X = (Xt)t≥0 of a portfolio Π = (x,H, c) is

defined as

(2.2) Xt , x+

∫ t

0
Hu dS̃u −

∫ t

0
cu · Su dκu, t ≥ 0,

where · denotes the dot product in Rm.

2.2. Absence of arbitrage. The main objective of this part is to specify the no-arbitrage type

condition (NUPBR) below. As it is commonly done in the literature (see for example [16]), we

begin defining X to be the collection of all nonnegative wealth processes associated to portfolios

of the form Π = (1, H, 0), i.e.,

X ,

{
X ≥ 0 : Xt = 1 +

∫ t

0
HudS̃u, t ≥ 0

}
.

In this paper, we suppose the following no-arbitrage-type condition:

(NUPBR) the set XT ,
{
XT : X ∈ X

}
is bounded in probability, for every T ∈ R+,

where (NUPBR) stands for no unbounded profit with bounded risk. This condition was originally

introduced in [10]. It is proven in [12, Proposition 1], that (NUPBR) is equivalent to another

(weak) no-arbitrage condition, namely absence of arbitrages of the first kind on [0, T ], see [14,

Definition 1].

A useful characterization of (NUPBR) is given via the set of equivalent local martingale

deflators (ELMD) that is defined as follows:

(2.3)
Z ,

{
Z > 0 : Z is a càdlàg local martingale such that Z0 = 1 and

ZX = (ZtXt)t≥0 is a local martingale for every X ∈ X
}
.

It is proven in [3, Proposition 2.1] (see also [9]) that condition (NUPBR) holds if and only

if Z 6= ∅. This result was previously established in the one-dimensional case in the finite time

horizon in [13, Theorem 2.1]. Also, [24, Theorem 2.6] contains a closely related result (in a finite

time horizon) in terms of strict σ-martingale densities, see [24] for the corresponding definition

and details.

Remark 2.1. Condition (NUPBR) is weaker than the existence of an equivalent martingale

measure (see for example [4, p. 463] for the definition an equivalent martingale measure), another

classical no-arbitrage type assumption, which in the infinite time horizon is even stronger than

(2.4) {Z ∈ Z : Z is a martingale} 6= ∅.
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Note that in the finite time horizon setting, (2.4) is equivalent to the existence of an equivalent

martingale measure. Besides, (2.4) is apparently stronger than (NUPBR) (by comparison of

(2.3) and (2.4) combined with [3, Proposition 2.1]). We also would like to point out that (2.4)

holds in every original formulation of [17], where the problem of optimal consumption from

investment (in a single consumption good setting) was introduced, including the infinite-time

horizon case. In general, (2.4) can be stronger than (NUPBR). A classical example, where

(NUPBR) holds but (2.4) fails, corresponds to the three-dimensional Bessel process driving the

stock price, see e.g., [10, Example 4.6].

2.3. Admissible consumptions. For a given initial capital x > 0, an m-dimensional optional

consumption process c is said to be x-admissible if there exists an Rd-valued predictable S̃-

integrable process H such that the wealth process X in (2.2), corresponding to the portfolio

Π = (x,H, c) is nonnegative; the set of x-admissible consumption processes corresponding to a

stochastic clock κ is denoted by A(x). For brevity, we denote A , A(1).

2.4. Preferences of a rational economic agent. Building from the formulation of [18], we

assume that preferences of a rational economic agent are represented by a optional utility-valued

process (or simply a utility process) U = U(t, ω, x) : [0,∞) × Ω × [0,∞)m → R ∪ {−∞}, where

for every (t, ω) ∈ [0,∞) × Ω, U(t, ω, ·) is an Inada-type utility function, i.e., U(t, ω, ·) satisfies

the following (technical) assumption.

Assumption 2.2. For every (t, ω) ∈ [0,∞)× Ω, the function

Rm
+ 3 x 7→ U(t, ω, x) ∈ R ∪ {−∞}

is strictly concave, strictly increasing in every component, finite-valued and continuously differ-

entiable in the interior of the positive orthant, and satisfies the Inada conditions

lim
xi↓0

∂xi
U(t, ω, x) = ∞ and lim

xi↑∞
∂xi

U(t, ω, x) = 0, i = 1, . . . ,m,

where ∂xi
U(t, ω, ·) : Rm

++ 7→ R is the partial derivative of U(t, ω, ·) with respect to the i-th

spatial variable2. On the boundary of the first orthant, by upper semicontinuity, we suppose that

U(t, ω, x) = lim sup
x′→x

U(t, ω, x′) (note that some of these values may be −∞ and that U(t, ω, x) =

lim
t↓0

U(t, ω, x + t(x′ − x)), where x′ is an arbitrary element in the interior of the first orthant,

see [7, Proposition B.1.2.5]). Finally, for every x ∈ Rm
+ , we assume that the stochastic process

U(·, ·, x) is optional.

Remark 2.3. The Inada conditions in Assumption 2.2 were introduced in [8]. These are technical

assumptions that have natural economic interpretations and that allow for a deeper tractability

of the problem (as e.g., in [16]). Likewise, the semicontinuity of U is imposed for regularity

purposes. It also used in e.g., [22, 23].

2For the results below, we only need to specify the gradient of U(t, ω, ·) in the interior of the first orthant, i.e.,

at the points x ∈ Rm, where U(t, ω, x) is (finite-valued and) differentiable.



OPTIMAL CONSUMPTION OF MULTIPLE GOODS 5

In particular, modeling preferences via utility process allows to take into account utility

maximization problems under a change of numéraire (see e.g., [20, Example 4.2]). This is the

primary reason why we suppose that the prices of the traded stocks are discounted, as this allows

to simplify notations without any loss of generality. Note also that Assumption 2.2 does not

make any requirement on the asymptotic elasticity of U , introduced in [16].

To a utility process U satisfying Assumption 2.2, we associate the primal value function,

defined as

(2.5) u(x) , sup
c=(c1,...,cm)∈A(x)

E

[∫ ∞

0
U(t, ω, ct(ω)) dκt

]
, x > 0.

To ensure that the integral above is well-defined, we use the convention

(2.6) E

[∫ ∞

0
U(t, ω, ct(ω)) dκt

]
, −∞ if E

[∫ ∞

0
U−(t, ω, ct(ω)) dκt

]
= ∞,

where U−(t, ω, ·) is the negative part of U(t, ω, ·). Note that formulation (2.5) is a generalization

of the formulation in [18, p. 205]. In the form (2.5), we allow for stochastic preferences and

include several standard formulations as particular cases.

2.5. Dual problem. In order to specify model assumptions that ensure existence and unique-

ness of solutions to (2.5) and to give a characterization of this solution, we need to formulate an

appropriate dual problem. Let us define

(2.7) U∗(t, ω, x) , sup
c∈Rm

+
:

c·St(ω)≤x

U (t, ω, c) , (t, ω, x) ∈ [0,∞)× Ω× [0,∞).

Let us set a family of transformations A : [0,∞)× Ω× Rm 7→ R, as

A(t, ω, c) , c · St(ω), (t, ω, c) ∈ [0,∞)× Ω× [0,∞)m.

Note that for every (t, ω) ∈ [0,∞) × Ω, A(t, ω, ·) is a linear transformation from Rm to R and

U∗(t, ω, ·) is the image of U(t, ω, ·) under A(t, ω, ·) (see e.g., [7, p. 96] for the definition and

properties of the image of a function under a linear mapping3). We define a stochastic field V ∗

as the pointwise conjugate of U∗ (equivalently, as the pointwise conjugate of the image function

of U under A) in the sense that

V ∗(t, ω, y) , sup
x>0

(U∗(t, ω, x)− xy) , (t, ω, y) ∈ [0,∞)× Ω× [0,∞),

where sup
x>0

and sup
x≥0

coincide thanks to continuity of U∗ established in Lemma 4.1. We also

introduce the following set of dual processes:

Y(y) , cl
{
Y : Y is càdlàg adapted and

0 ≤ Y ≤ yZ (dκ× P)-a.e. for some Z ∈ Z
}
,

3Equivalently, see [21, Theorem 5.2], where U∗(t, ω, ·) is named the image of U(t, ω, ·) under the linear trans-

formation A(t, ω, ·), (t, ω) ∈ [0,∞)× Ω.
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where the closure is taken in the topology of convergence in measure (dκ × P) on the measure

space of real-valued optional processes ([0,∞)× Ω,O, dκ× P), where O is the optional sigma-

field. We write Y , Y(1) for brevity. Note that Y is closely related to - but different from -

the set with the same name in [16]. The value function of the dual optimization problem, or

equivalently, the dual value function, is then defined as

(2.8) v(y) , inf
Y ∈Y(y)

E

[∫ ∞

0
V ∗(t, ω, Yt(ω)) dκt

]
, y > 0,

with the convention E[
∫∞

0 V ∗(t, ω, Yt(ω)) dκt] , ∞ if E[
∫∞

0 V ∗+(t, ω, Yt(ω)) dκt] = ∞, where

V ∗+(t, ω, ·) is the positive part of V ∗(t, ω, ·). Note that, in the single-good, but otherwise

similar, settings, properties of the dual value function are investigated in [19, 3]. We are now in

a position to state the following theorem, which is the main result of this paper.

Theorem 2.4. Assume that conditions (2.1) and (NUPBR) hold true and let U satisfies As-

sumption 2.2. Let us also suppose that

(2.9) v(y) < ∞ for every y > 0 and u(x) > −∞ for every x > 0.

Then we have

(i) u(x) < ∞, for every x > 0, and v(y) > −∞, for every y > 0, i.e., the value functions

are finite-valued.

(ii) The functions u and −v are continuously differentiable on (0,∞), strictly concave,

strictly increasing and satisfy the Inada conditions

(2.10)
lim
x↓0

u′(x) = ∞, lim
y↓0

− v′(y) = ∞,

lim
x→∞

u′(x) = 0, lim
y→∞

− v′(y) = 0.

(iii) For every x > 0 and y > 0, the solutions ĉ(x) to (2.5) and Ŷ (y) to (2.8) exist and are

unique and, if y = u′(x), we have the optimality characterizations

(2.11) Ŷt(y)(ω) =
∂xi

U
(
t, ω, ĉt(x)(ω)

)

Si
t(x)(ω)

, (dκ× P)-a.e., i = 1, . . . ,m.

and

(2.12) Ŷt(y)(ω) = U∗
x

(
t, ω, ĉt(x)(ω) · St(ω)

)
, (dκ× P)-a.e.,

with U∗
x denoting the partial derivative of U∗ with respect to its third argument.

(iv) For every x > 0, the constraint x is binding in the sense that

(2.13) E

[∫ ∞

0
ĉt(x) · St

Ŷt(y)

y
dκt

]
= x, where y = u′(x).

(v) The functions u and v are Legendre conjugate, i.e.,

(2.14) v(y) = sup
x>0

(
u(x)− xy

)
, y > 0, u(x) = inf

y>0

(
v(y) + xy

)
, x > 0.
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(vi) The dual value function v can be represented as

(2.15) v(y) = inf
Z∈Z

E

[∫ ∞

0
V (t, ω, yZt(ω)) dκt(ω)

]
, y > 0.

Remark 2.5 (On sufficient conditions for the validity of (2.9)). Condition (2.9) holds if there

exists one primal element c ∈ A and one dual element Y ∈ Y such that

E

[∫ ∞

0
U (t, ω, zct(ω)) dκt

]
> −∞ and E

[∫ ∞

0
V ∗ (t, ω, zYt(ω)) dκt

]
< ∞, z > 0.

In particular, for every x > 0, as an m-dimensional optional process with constant values(
x

Ām
, . . . , x

Ām

)
belongs to A(x), a sufficient condition in (2.9) for the finiteness of u is

E

[∫ ∞

0
U
(
t, ω, x

Ām
, . . . , x

Ām

)
dκt

]
> −∞, x > 0,

which typically holds if U is nonrandom. Likewise, as Z 6= ∅ (by (NUPBR) and [3, Proposition

2.1]), finiteness of v holds if for one equivalent local martingale deflator Z, we have

E

[∫ ∞

0
V ∗ (t, ω, yZt(ω)) dκt

]
< ∞, y > 0.

3. Examples

Complete market solution and dual characterization

If the model is complete, the dual characterization of the optimal consumption policies has

a particularly nice form, as Z contains a unique element, Z. The solutions corresponding to

different y’s in the dual problem (2.8) are yZ, y > 0. Therefore, in (2.12) and (2.11) we have

Ŷ (y) = yZ, y > 0.

Special case: Additive utility

An important example of U∗ corresponds to U having an additive form with respect to its

spatial components, i.e., when

U(t, ω, c1, . . . , cm) = U1(t, ω, c1) + · · ·+ Um(t, ω, cm), (t, ω) ∈ [0,∞)× Ω,

where for every k = 1, . . . ,m, Uk is a utility process in the sense of [19, Assumption 2.1]

and a utility process in sense of the Assumption 2.2 with m = 1. In this case, for every

(t, ω) ∈ [0,∞)×Ω, U∗(t, ω, ·) is given by the infimal convolution of Uk(t, ω, ·)’s, see the definition

in e.g., [21, p. 34]. Let V i(t, ω, ·) denote the convex conjugate of U i(t, ω, ·), i = 1, . . . ,m. Then

the convex conjugate of U∗(t, ω, ·) is V ∗(t, ω, ·) given by

V ∗(t, ω, ·) = V 1(t, ω, ·) + · · ·+ V m(t, ω, ·).

This result was established e.g., in [21, Theorem 16.4, p. 145]. In this case, the optimal

ĉ(x) = (ĉ1(x), . . . , ĉm(x)) has a more explicit characterization via Ii(t, ω, ·) ,
(
U i
x

)−1
(t, ω, ·), the

the pointwise inverse of the partial derivative of U i(t, ω, ·) with respect to the third argument,

as (2.11) can be solved for ĉi(x), i = 1, . . . ,m, as follows

(3.1) ĉit(x)(ω) = Ii

(
t, ω, Ŷt(y)(ω)S

i
t(ω)

)
, (dκ× P)-a.e., i = 1, . . . ,m.



8 OLEKSII MOSTOVYI

Using (2.12), we can restate (3.1) as

ĉit(x)(ω) = Ii
(
t, ω, U∗

x

(
t, ω, ĉ∗t (x)(ω)

)
Si
t(ω)

)
, (dκ× P)-a.e., i = 1, . . . ,m,

where ĉ∗(x) is the optimizer to the auxiliary problem (4.2) corresponding to the initial wealth

x > 0.

Remark 3.1. In the following three examples we consider some incomplete models that admit

closed-form solutions for one good and show how these results apply to multiple good settings.

Example of a closed form solution in an incomplete model with additive

logarithmic utility

Let us suppose that d traded discounted assets are modeled with Ito processes of the form

(3.2) dS̃i
t = S̃i

tb
i
tdt+ S̃i

t

n∑

j=1

σij
t dW

j
t , i = 1, . . . , d, S̃0 ∈ Rd,

where W is an Rn-valued standard Brownian motion and bi, σij , i = 1, . . . , d, j = 1, . . . , n, are

predictable processes, such that the unique strong solution to (3.2) exists, see e.g., [11]. Let us

suppose that there are m consumption goods and that the value function of a rational economic

agent is given by

sup
c∈A(x)

E

[∫ T

0
e−νt log(c1, . . . , cm)dt

]
, x > 0,

(with the same convention as the one specified after (2.5)), where an impatience rate ν and a

time horizon T are positive constants. Note that in this case κt =
1−e−νt

ν
, t ∈ [0, T ], i.e., κ is

deterministic. Let us also suppose that there exists an Rd-valued process γ, such that

bt − σtσ
T
t γt = 0 (dκ× P)− a.e.

Let E denotes the Doleans-Dade exponent. Then, using [6, Theorem 3.1 and Example 4.2] and

Theorem 2.4, we get

ĉ∗t (x) =
xν

1− e−νT
E

(∫ ·

0
γTs dS̃s

)

t

, x > 0,

ĉit(x) =
ĉ∗t (x)

Si
tM

, i = 1, . . . ,m, x > 0,

Ŷt(y) =
y

E
(∫ ·

0 γ
T
s dS̃s

)
t

, y > 0, t ∈ [0, T ].

Example of a closed-form solution and dual characterization in an incomplete

additive case

Let us fix a filtered probability space (Ω,F ,P), where (Ft)t≥0 is the augmentation of the

filtration generated by a two-dimensional Brownian motion (W 1,W 2). Let us suppose that

there are two traded securities: a risk-free asset B, such that

Bt = ert, t > 0,
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where r is a nonnegative constant, and a risky stock S̃ with the dynamics

dS̃t = S̃tµtdt+ S̃tσtdW
1
t , t ≥ 0, S̃0 ∈ R+,

where processes µ and σ are such that θt =
µt−r
σt

, t ≥ 0, the market price of risk process, follows

the Ornstein-Uhlenbeck process

dθt = −λθ(θt − θ̄)dt+ σθ

(
ρdW 1

t +
√
1− ρ2dW 2

t

)
, t ≥ 0, θ0 ∈ R+,

where λθ, σθ, and θ̄ are positive constants, ρ ∈ (−1, 1). Let us also assume that κ corresponds

to the expected utility maximization from terminal wealth, i.e., κ = I[[T,∞[[, T ∈ R+, that there

are m consumption goods, where Si, i = 1, . . . ,m, are deterministic, and

U(T, ω, c1, . . . , cm) =
cp1
p

+ · · ·+
cpm
p
, (c1, . . . , cm) ∈ Rm

+ , ω ∈ Ω,

where p < 0. Let us set

q ,
p

1− p
, A ,

m∑

i=1

(Si
T )

−q, and B , A1−p.

Then, by direct computations, we get

U∗(T, ω, x) =
xp

p
B, x > 0.

Using the argument in [15], one can express the optimal trading strategy Ĥ(x) in a closed form

in terms of a solution to a system of (nonlinear) ordinary differential equations (see [15, p. 147]),

where Ĥt(x) is the number of shares of the risky asset in the portfolio at time t, t ∈ [0, T ]. With

X̂(x) such that

dX̂t(x) = Ĥt(x)dS̃t + (X̂t(x)− Ĥt(x)S̃t)rdt, X̂0(x) = x,

using Theorem 2.4, we get

ĉ∗T (x) = X̂T (x), x > 0,

ŶT (y) =
y

E
[(
ĉ∗T (1)

)p] (ĉ∗T (1))p−1 , y > 0,

ĉiT (x) =
ĉ∗T (x)

A
(Si

T )
−(1+q), x > 0.

Example of a closed-form solution and dual characterization in an incomplete

non-additive case

Here we will suppose that κ = I[[T,∞[[, where T ∈ R+, and let

U(t, ω, c1, c2) = −
cp11
p1

cp22
p2

, p1 < 0, p2 < 0,

i.e., there are two consumption goods. One can see that U(t, ω, ·) is jointly concave, since the

Hessian of −U(t, ω, ·) is positive definite on R2
++. We also extend U(t, ω, ·) to the boundary of

R2
+ by −∞. Then, with p , p1 + p2 < 0, U∗ is given by

U∗(t, ω, x) =
xp

p

(−p1)
p1−1(−p2)

p2−1

(−p)p−1
(S1

t )
−p1(S2

t )
−p2 , x > 0.
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Let us define G ,
(−p1)p1−1(−p2)p2−1

(−p)p−1 (S1
T )

−p1(S2
T )

−p2 . Then U(T, ω, x) = xp

p
G(ω), x > 0. Let

us suppose that W 1 and W 2 are two Brownian motions with a fixed correlation ρ such that

0 < |ρ| < 1. Let (Ft)t≥0 be the usual augmentation of the filtration generated by W 1 and W 2

and (Gt)t≥0 be the usual augmentation of the filtration generated by W 2. We also assume that

there is a bond B and a stock S̃ on the market. Their dynamics are given by

dS̃t = S̃t(µtdt+ σtdW
1
t ), S̃0 ∈ R,

dBt = Btrtdt, B0 = 1,

where the drift µ, volatility σ, and sport interest rate r are bounded, progressively measurable

processes with respect to (Gt)t ∈ [0, T ], and σ is strictly positive.

Let us suppose that S1
T and S2

T are GT -measurable random variables with moments of all

orders. Then G is also GT -measurable random variable with moments of all orders (by Hölder’s

inequality) and the auxiliary value function u∗ defined in (4.2) satisfies the settings of [25].

Also, as u∗(x) ≥ xp

p
E[G] > −∞ and since V (T, ω, ·) is negative-valued (thus, v(y) ≤ 0), the

assumption (2.9) holds.

Let us set

λt ,
µt − rt

σt
, δ ,

1− p

1− p+ ρ2p
,

dQ

dP
, exp

(
−

ρ2p2

2(1− p)2

∫ T

0
λ2
sds+

ρp

1− p

∫ T

0
λsdW

2
s

)
,

Kt ,
p

(1− p)

(
λt + ρδ

βt

EQ[exp(
∫ T

0 (rs/δ)ds)|Ft]

)
, t ∈ [0, T ].

Then, using [25, Proposition 3.4] and Theorem 2.4, we deduce that

ĉ∗T (x) = x exp

(∫ T

0

(
r +Ksλs −

1
2K

2
s

)
ds+

∫ T

0
KsdW

1
s

)
, x > 0,

ŶT (y) =
y

E
[(
ĉ∗T (1)

)p] exp
(∫ T

0
(p− 1)

(
r +Ksλs −

1
2K

2
s

)
ds+

∫ T

0
(p− 1)KsdW

1
s

)
, y > 0,

ĉiT =
ĉ∗T (x)pi

pSi
T

, i = 1, 2, x > 0,

are the optimizers to (2.8), (4.2), and (2.5), respectively. From Theorem 2.4, we conclude that

for every x > 0, ĉiT (x), i = 1, 2, and ŶT (u
′(x)) are related via (2.11) and (2.12).

4. Proofs

We begin from a characterization of the utility process U∗ defined in (2.7).

Lemma 4.1. Let U satisfies Assumption 2.2 and U∗ be defined in (2.7). Then, U∗ is an

Inada-type utility process for m = 1 in the sense of Assumption 2.2.

Proof. For every (t, ω) ∈ [0,∞) × Ω, as U∗(t, ω, ·) is an image function under an appropriate

linear transformation of a concave function U(t, ω, ·), therefore using e.g., [7, Theorem B.2.4.2],
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one can show that U∗(t, ω, ·) is concave. In order to show strict concavity of U∗(t, ω, ·), one can

proceed as follows. First, for some positive numbers x1 6= x2, let c
i ∈ Rm

+ be such that

(4.1)
ci · St(ω) ≤ xi, and

U∗ (t, ω, xi) = U(t, ω, ci), i = 1, 2.

The existence of such ci’s follows from compactness of the domain of the optimization problem

in the definition of U∗(t, ω, x) (for every x > 0) and upper semicontinuity of U(t, ω, ·). Since

in (4.1), ci necessarily satisfies inequality ci · St(ω) ≤ xi with equality, i = 1, 2, from the strict

monotonicity of U(t, ω, ·) in every spatial component and x1 6= x2, we deduce that c1 6= c2.

Consequently, from strict concavity of U(t, ω, ·), we get

U∗
(
t, ω, x1+x2

2

)
= sup

c∈Rm
+
:

c·St(ω)≤
x1+x2

2

U(t, ω, c)

≥ U
(
t, ω, c

1+c
2

2

)

> 1
2U
(
t, c1

)
+ 1

2U
(
t, ω, c2

)

= 1
2U

∗ (t, ω, x1) +
1
2U

∗ (t, ω, x2) .

Therefore, U∗(t, ω, ·) is strictly concave. As U∗(t, ω, ·) is increasing and strictly concave, it is

strictly increasing.

For every (t, ω) ∈ [0,∞) × Ω and x > 0, using the Inada conditions for U(t, ω, ·) one

can show that there exists c in the interior of the first orthant, such that c · St(ω) = x and

U∗(t, ω, x) = U(t, ω, c). As a result, differentiability of U∗(t, ω, ·) (in the third argument) follows

from differentiability of U(t, ω, ·) and general properties of the subgradient of the image func-

tion, see e.g., [7, Corollary D.4.5.2]. As U∗(t, ω, ·) is concave and differentiable, we deduce that

U∗(t, ω, ·) is continuously differentiable in the interior of its domain, see [7, Theorem D.6.2.4].The

Inada conditions for U∗(t, ω, ·) follow from the (version of the) Inada conditions for U(t, ω, ·)

and [7, Theorem D.4.5.1, p.192].

For every (t, ω) ∈ [0,∞)×Ω, as U(t, ω, ·) is a closed concave function, using e.g., [21, Theorem

9.2, p. 75], we deduce that U∗(t, ω, ·) is also a closed concave function4. In particular, we get

U∗(t, ω, 0) = lim
z↓0

U∗(t, ω, z), (t, ω) ∈ [0,∞)× Ω.

Finally, for every x ≥ 0, U∗(·, ·, x) is optional as a supremum of countably many optional

processes (where from continuity of U(t, ω, ·) in the relative interior of its effective domain, it is

enough to take the supremum (in the definition of U∗(t, ω, ·)) over the m-dimensional vectors,

whose components take only rational values).

�

Remark 4.2. Lemma 4.1 asserts that U∗ satisfies Assumption 2.1 in [19].

4Note that in general, the image of a closed convex or concave function under a linear transformation is not

necessarily closed, see a discussion in [7, p.97].
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For every x > 0, we denote by A∗(x) the set of 1-dimensional optional processes c∗, for which

there exists an Rd-valued predictable S̃-integrable process H, such that

Xt , x+

∫ t

0
Hu dS̃u −

∫ t

0
c∗u dκu, t ≥ 0,

is nonnegative, P-a.s. We also define

(4.2) u∗(x) , sup
c∗∈A∗(x)

E

[∫ ∞

0
U(t, ω, c∗t (ω)) dκt(ω)

]
, x > 0.

with the convention analogous to (2.6):

E

[∫ ∞

0
U∗(t, ω, c∗t (ω)) dκt(ω)

]
, −∞, if E

[∫ ∞

0
U∗−(t, ω, c∗t (ω)) dκt(ω)

]
= ∞.

Proof of Theorem 2.4. Let x > 0 be fixed and c ∈ A(x). Then c∗t , ct · St, t ≥ 0, is an optional

process such that c∗ ∈ A∗(x). Therefore,

(4.3) u∗(x) ≥ u(x) > −∞, x > 0.

Since U∗ satisfies the assertions of Lemma 4.1, standard techniques in convex analysis show that

−V ∗ has the same properties as U∗. Therefore, optimization problems (4.2) and (2.8) satisfy the

assumptions of [19, Theorem 3.2]. Consequently, [19, Theorem 3.2] applies, which in particular

asserts that u∗ and v are finite-valued and that for every x > 0, the exists a strictly positive

optional process ĉ∗(x), the unique maximizer to (4.2).

Let us consider

(4.4) sup
x∈Rm

+
:

x·St(ω)≤ĉ∗t (x)(ω)

U (t, ω, x) , (t, ω) ∈ [0,∞)× Ω,

and define a correspondence ϕ : [0,∞)× Ω � Rm as follows

ϕ(t, ω) ,
{
x ∈ Rm

+ : x · St(ω) ≤ ĉ∗t (x)(ω)
}
.

From strict positivity of the Sk’s and positivity and (dκ × P)-a.e. finiteness of ĉ∗(x) (by [19,

Theorem 3.2]), we deduce that ϕ has nonempty5 compact values (dκ × P)-a.e. Let us consider

the lower inverse of ϕl defined by

ϕl(G) , {(t, ω) ∈ [0,∞)× Ω : ϕ(t, ω) ∩G 6= ∅} , G ⊂ Rm.

Let us also consider a subset of Rm of the form A , [a1, b1]× · · · × [am, bm], where ai’s and bi’s

are real numbers. In view of the weak measurability of ϕ (see [1, Definition 18.1, p. 592]) that

we are planning to show, it is enough to consider bi ≥ 0, i = 1, . . . ,m. In addition, let us set

āi = max(0, ai). One can see that for such a set A, as

ϕl(A) = ϕl([ā1, b1]× · · · × [ām, bm]),

with ā , (ā1, . . . , ām), we have

ϕl(A) =
{
(t, ω) : ā · St(ω) ≤ ĉ∗t (x)(ω)

}
.

5Note that the origin in Rm is in ϕ(t, ω) for every (t, ω) ∈ [0,∞)× Ω.
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As ĉ∗(x) and Si’s are optional processes and since ϕl

( ⋃
n∈N

An

)
=
⋃
n∈N

ϕl(An) (see [1, Section

17.1], where An’s are subsets of R
m), we deduce that ϕl(G) ∈ O for every open subset G of Rm,

i.e., ϕ is weakly measurable. As U is a Carathéodory function (see [1, Definition 4.50, p. 153]),

we conclude from [1, Theorem 18.19, p. 605] that there exists an optional Rm-valued process

ĉt(x), t ∈ [0, T ], the maximizer of (4.4) for (dκ× P)-a.e. (t, ω) ∈ [0,∞)× Ω. The uniqueness of

such a maximizer follows from strict concavity of U(t, ω, ·) (for every (t, ω) ∈ [0,∞) × Ω)6. As

ĉ∗(x) ∈ A∗(x), we deduce that ĉ(x) ∈ A(x). Combining this with (4.3), we conclude that ĉ(x)

is the unique (up to an equivalence class) maximizer to (2.5).

For x > 0, let ĉit(x), i = 1, . . . ,m, denote the components of ĉt(x). As ĉt(x)(ω) · St(ω) = ĉ∗t (ω),

(dκ× P)-a.e., (where the argument here is similar to the discussion after (4.1)) relations (2.10),

(2.12), (2.13), and (2.14) follow from [19, Theorem 3.2], whereas (2.15) results from [19, Theorem

3.3] (equivalently, from [3, Theorem 2.4]). In turn, combining (2.12) with [7, Theorem D.4.5.1],

we get

Ŷt(ω) = U∗
x

(
t, ω, ĉ∗t (x)(ω)

)

=
{
s(t, ω) ∈ R : Si

t(ω)s(t, ω) = ∂xi
U (t, ω, ĉt(x)(ω)) , i = 1, . . . ,m

}

(dκ× P)-a.e.,

i.e., (2.11) holds. �
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