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ABSTRACT

This paper introduces a multiscale framework for spatiotemporal modeling of protein-protein

interaction. Cellular protein molecules represent multivalent species that contain modular features,

such as binding domains and phosphorylation motifs. The binding and transformations of these

features occur at a small time and spatial scale. On the other hand, space and time involved

in protein diffusion, colocalization, and formation of complexes could be relatively large. Here,

we present an agent-based framework integrated with a multiscale Brownian Dynamics simu-

lation algorithm. The framework employs spatial graphs to describe multivalent molecules and

complexes with their site-specific details. By implementing a time-adaptive feature, the Brownian

Dynamics algorithm enables efficient computation while capturing the site-specific interactions of

the diffusing species at the sub-nanometer scale. We demonstrate these capabilities by modeling

two multivalent molecules, one representing a ligand and the other a receptor, in a two-dimensional

plane (cell membrane). Using the model, we show that the algorithm can accelerate computation

by orders of magnitudes in both concentrated and dilute regimes. We also show that the algorithm

enables robust model predictions against a wide range of selection of time step sizes.



1 Introduction

A key challenge to spatiotemporal modeling of multivalent species is to deal the multiscale nature

of the problem (Ayton et al., 2007). Multivalent protein-protein interaction is a central theme of

cell signaling and gene transcription. Cellular protein molecules represent multivalent species with

modular features, such as binding domains and phosphorylation motifs (Bhattacharyya et al., 2006).

These features at the submolecular scale play critical roles in their mutual recognition and binding.

The molecular-scale domains and motifs of the cellular proteins mediate interactions at very small

spatial and temporal scales. In contrast, the protein molecules are subject to long-range diffusion in

and across the cellular compartments (Weng et al., 1999).

Several models have been developed in the past to study multivalent antigen-mediated IgE

receptor clustering in the plasma membrane of mast cells (Goldstein and Perelson, 1984; Hlavacek

et al., 1999; Mahajan et al., 2014; Monine et al., 2010). However, these models were either equation-

based deterministic models or developed using a non-spatial Kinetic Monte Carlo approach called

network-free simulation (Yang et al., 2008; Yang and Hlavacek, 2011; Sneddon et al., 2011). The

explicit geometric features of molecules and complexes were missing in these models.

In this paper, we introduce a multiscale Brownian Dynamics (BD) simulation algorithm that

enables accelerated computation while capturing the sub-nanometer scale site-specific interactions

of the molecules and their complexes. We develop a model of a trivalent ligand and a trivalent

receptor molecule and their diffusion, rotation, and site-specific binding in the plasma membrane of

a cell. The multivalent molecules and their site-specific features are described by spatial graphs.

The mobile ligand-receptor graphs form larger graphs (multimolecular complexes) that evolve

dynamically during the course of a simulation. The lateral and rotational motion of the molecules

and evolving complexes are simulated using the BD algorithm. Using the model, we provide

analysis on the computational performance and accuracy of our algorithm. We show that the

algorithm speeds up computation by orders of magnitude without compromising the accuracy in

both concentrated and dilute regimes. Moreover, we show that the time-adaptive feature enables

robust predictions against a wide range of selection of time steps.
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2 Methods

Below, we first provide details of the model. We then explain the multiscale Brownian Dynamics

algorithm.

2.1 Model

The model is a reaction-diffusion model of multivalent ligand-receptor interaction in the cell plasma

membrane. The model is developed using the agent-based approach (Gilbert, 2008). More details

are provided below.

2.1.1 Cell membrane, Molecules, and Complexes

We consider a 1 µm2 two-dimensional plane, which represents a small part of the cell membrane

(∼ 0.3% of the surface area of a spherical cell of 5 µm radius). We consider a trivalent ligand

and a trivalent receptor molecule that we describe by spatial graphs (Grünert and Dittrich, 2010)

(Figure 1). A spatial graph is a collection of small circles (nodes). The spatial organization of these

nodes creates a coarse-grained structure of a molecule. When two or more such molecule graphs

combine in a prescribed manner, they form a complex graph. Each ligand or receptor molecule

contains three equally-spaced binding arms. In each binding arm, one node is designated as the

reaction center (Figure 1). The reaction centers serve as the mutual recognition sites of the ligand

and receptor molecules. In a complex, the molecules remain linked via these reaction centers

(Figure 1C).

Figure 1: Illustration of the species (molecules and their complexes). (A) A trivalent ligand molecule.
(B) A trivalent receptor molecule. (C) A ligand-receptor complex.
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2.1.2 Motion of molecules and complexes

We consider both lateral diffusion (translation) and rotation of the molecule and complex graphs.

The diffusion and rotation rates are determined by their effective size. To define the effective size

for a graph, we consider a circle that completely contains the corresponding structure (Figure 2A).

The circle is centered at the center of mass of the structure. The center of mass is determined by

the mass of individual nodes and their spatial locations. We consider identical mass for all nodes

because they have an identical size in the model (Table 1). The radius of the circle extends from

this center to the farthest node. We define the circle area as the effective region (A), and its radius as

the effective size (a). For a molecule graph, a remains fixed over time. However, for a complex

graph, a is designated as a(t) because it evolves with the complex size and geometry over time.

For a ligand or receptor molecule, we predefine their diffusion constants Dm (Table 1). For

a complex graph, diffusion evolves based on the following rule: D(t)/Dm = am/a(t), where am

and a(t) represent the effective size of a molecule and complex, respectively. This rule obeys the

Stokes-Einstein formula according to which the diffusion coefficient is inversely related to particle

radius. In a similar way, for a ligand or receptor molecule, we predefine their rotation speed (ωm)

(Table 1). For a complex, the rotation speed ω(t) obeys the following rule: ω(t)/ωm = am/a(t).

During the course of a simulation, we translate or rotate each graph as a rigid body. In each time

step ∆t, we first advance a graph by a distance
√

4D(t)∆t~e, where~e is a unit vector in a random

direction. We then rotate the graph around its center of mass by an angle ω(t)∆t. We randomly

select the rotation direction clockwise or anti-clockwise.

2.2 Time-adaptive Brownian Dynamics algorithm

The multiscale simulation algorithm is illustrated in Figure 2. The algorithm ensures collision-free

motion of the structures defined by the molecule and complex graphs, as discussed below.

2.2.1 Calculation of adaptive step size

For each molecule or complex agent, the algorithm assigns a local search domain of radius S. In

Figure 2B, the two concentric gray and blue circles illustrate a species agent and its search domain,
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Figure 2: Illustration of the BD simulation algorithm. (A) A complex and its effective region (gray
circle) and effective size (a). (B) A species (gray region at the center) and its search domain (blue
region). The species has four collision partners (other gray regions with the search domain). (C)
The center-to-center distance between a species (Agent 4) and its collision partners (Agents 1, 2,
3, and 5). (D) Overlap between the effective regions of agent 4 and 5. Such overlap is permitted
ensuring the graphs within the gray circles never collide. When any such overlap happens in the
entire system, the algorithm makes sure all species are advanced by less than 1 nm in each step.

respectively. The gray circle at the center represents the effective region of the species. The blue

circle represents the search domain whose radius (S) is a tunable parameter.

In the algorithm, an upper bound lmax limits the particle jumps in a single step. lmax is the

maximum distance any agent can travel over a single time step ∆t. We set lmax < S. Thus, an agent

can find all its potential (current) collision partners within its search domain. The agent in Figure 2B

has four partners (other gray circles inside the blue circle).

In each BD step, the algorithm evaluates dk, j, the center-to-center distance between each agent

k and each of its collision partners j ∈ {1 · · · ,mk(t)} (Figure 2C,D). Here, the center of an agent

implies the center of mass of the graph represented by the agent. The algorithm then computes

the collision distance, dc
k, j = dk, j− (ak +a j), where ak and a j are the effective size of the graphs
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corresponding to agent k and j, respectively. Next, for the entire system, it identifies the smallest

dc
k, j: dc

min = min{dc
k, j}, where k ∈ {1, · · · ,n(t)} (assuming the system has n(t) species at time t),

and j ∈ {1, · · · ,mk(t)}. This distance, dc
min, is then used to determine the time step size ∆t, as

discussed next.

If dc
min > 0, all the grey circles representing the effective regions of the agents (graphs) in

the system are at non-overlapping positions. Under this condition, the algorithm first evaluates

the shortest possible time ∆tc that might lead to an overlap or collision between a pair of circles:

∆tc = min{(dc
k, j)

2/4(
√

Dk(t)+
√

D j(t))2}, where k ∈ {1, · · · ,n(t)} and j ∈ {1, · · · ,mk(t)}. Dk(t)

and D j(t) are the instantaneous diffusion coefficients of the corresponding agents. The algorithm

then compares ∆tc with a prescribed lower-bound on the time step size, ∆tmin. If ∆tc > ∆tmin, the

algorithm sets ∆t = ∆tc, and advances all agents by
√

4Dk(t)∆tc. This distance in a single step

could represent a wide range of selections below the upper limit lmax, which has a default value of

100 nm in our simulations. However, if ∆tc ≤ ∆tmin, the algorithm sets ∆t = ∆tmin, and advances all

agents by
√

4Dk(t)∆tmin. We consider ∆tmin = 10−5 seconds. At this time resolution, all graphs in

our model are expected to advance by less than 1 nm in a single step.

If dc
min ≤ 0, at least one pair of circles in the system is in overlapping positions (Figure 2D).

This implies that at least one pair of graphs (contained by those overlapping circles) are in close

proximity to collide or mediate site-specific binding. Under such a condition, a high-resolution step

is preferred to account for the steric collision or site-specific binding. the algorithm identifies the

time step ∆t based on the following rule: ∆t = max{min{l2
min/4Dk(t)},∆tmin} for k ∈ {1, · · · ,n(t)}.

Here, lmin is a defined small length (a tunable parameter in the algorithm). We set lmin = 1 nm. This

ensures all graphs are advanced by less than 1 nm in each step whenever there is an overlap of the

effective regions.

2.2.2 Collision rejection and site-specific binding

The algorithm allows overlap of two circles (effective graph regions) while ensuring that the graphs

within those circles are advanced in a collision-free manner. If a move results in a collision between

two graphs, the move is rejected for the two graphs only. We consider a thin reaction layer, lr = 0.1
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nm, around each reaction center. When the reaction center of a ligand molecule and that of a

receptor molecule fall within lr, an implicit bond is assumed that holds the molecules together.

In this work, we consider high-affinity ligand-receptor interaction and assume irreversible bond

formation. We prohibit intra-complex binding or ring formation (Monine et al., 2010; Mahajan

et al., 2014). Only chain and branched structure are allowed.

2.2.3 Code implementation

The simulation algorithm and the model were specified in C++. The C++ code is provided in the

Supplementary Information. All simulations were conducted on a dedicated node on AMAZON

Elastic Compute Cloud (EC2): c3.4xlarge (16vCPU, 30 GiB, 2×160).
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3 Results

3.1 Simulation of multivalent ligand-receptor systems

In Figure 3A and B, we show snapshots from our simulations. At time zero, the molecules were

initiated at random non-overlapping positions in the membrane domain, and snapshots were taken

after 500 seconds of simulation.

Figure 3C shows the time evolution of receptor clustering. The mean cluster size represents the

average of the number of receptors incorporated in the ligand-receptor complexes at the indicated

time points. Initially, all receptors were available as isolated molecules, and hence the mean cluster

size was 1 at time zero. As time progressed, larger (and fewer) clusters populated in the system.

Figure 3: Simulation of a trivalent ligand-trivalent receptor system. The ligand and receptor
molecules are indicated in green and red, respectively. (A) A branched complex structure formed
in the simulation. (B) A small part of the structure in Panel A. (C) Time evolution of receptor
aggregation. (D) Computation (CPU) time versus simulation time.
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Figure 4: Simulation snapshots of multivalent ligand (green)-receptor (red) systems. In all cases the
receptor is trivalent while the ligand is bivalent (A), trivalent (B), pentavalent (C), and decavalent
(D).

Figure 3D shows how the computation time (CPU time) evolved as the simulation progressed. Most

of the computation was spent in the first few seconds because the system was in a concentrated

regime (species were either single molecules or small complexes). As the simulation progressed,

larger (and fewer) species formed and the system approached a dilute regime. In the dilute regime,

the adaptive algorithm took larger steps, thus accelerating computation.

Figure 4 shows some representative snapshots from simulations that involved different other

multivalent ligand-receptor combinations. A movie file showing the time-evolution of a trivalent

ligand-trivalent receptor system is included in the Supplementary Information.

9/18



Figure 5: Computational speed gain in the time-adaptive algorithm. All simulations involved
100 trivalent receptor and 100 trivalent ligand molecules. (A) Concentrated regime: 1,000 nm×
1,000 nm membrane domain. (B) Dilute regime: 10,000 nm×10,000 nm membrane domain.

3.2 Gain in computation speed

We evaluated the computational performance of our algorithm against a naive implementation of

the model (Figure 5). In the naive implementation, the time step ∆t was held fixed and the search

domain (S) was infinite. The fixed ∆t was chosen so that a single ligand or receptor molecule in

each step could advance only by 1 nm, which is the smallest step size for the adaptive algorithm.

The trivalent ligand-receptor system was simulated using the naive and adaptive approach for a

dilute and a concentrated regime (Figure 5A and B, respectively), and corresponding computation

(CPU) times were compared.

The figure shows a dramatic reduction in computation time in the adaptive algorithm. The

difference between the naive and adaptive algorithm is even more pronounced in the dilute regime,

where the naive algorithm spent most of the computation in particle advancement.
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Robustness and accuracy

The results we have discussed so far represents lmax = 100 nm. A larger lmax accelerates computation

but a smaller lmax is desired for higher spatial and temporal resolution (accuracy). However, as

discussed in Methods, the algorithm requires lmax ≤ S, where S is the local search radius associated

with each species in the system. A larger S may facilitate computation by permitting a larger lmax

but involves more computation in checking possible collision among the species.

We investigated three different combinations of lmax and S (Figure 6). The black lines in both

panels of Figure 6 represents the case where S = 100 nm and lmax = 1 nm (S : lmax = 100:1).

We expected this combination to yield more accurate simulations because it enforced a high

spatiotemporal resolution by constraining all particle jumps below 1 nm. The green lines represent

the case where we considered the default scenario (Table 1): S = 100 nm and lmax = 100 nm (S : lmax

= 100:100). The red lines represent the case where we set S = 10 nm, and lmax = 10 nm (S : lmax =

10:10). We compared the prediction accuracy (Figure 6A) and computational efficiency (Figure 6B)

among these three cases.

Figure 6A shows the predicted mean receptor cluster size as a function of time under the above

three conditions. Except for the stochastic variations, the predictions are closely similar in all three

cases, indicating the robust behavior of the time adaptive feature. Despite the distinct upper bounds

(lmax), the algorithm adapted the step sizes as necessary to capture the site-specific interactions with

similar accuracies.

Figure 6B compares computation time among the three conditions above. First, it is interesting

to note that the 100:1 case took only ∼ 3,500 CPU seconds despite the adaptive feature was

compromised with lmax = 1 nm. Corresponding naive simulation, where we also restricted the step

size below 1 nm, took ∼ 300,000 seconds (Figure 6A). Therefore, the accelerated computation

in the 100:1 case is not due to the adaptive feature. Rather it is due to the local search feature of

the algorithm. The 100:1 case involves search over a domain of 100 nm radius, whereas the naive

implementation involves a search over the entire membrane domain to avoid species collision.

The two other cases (100:100 and 10:10) revealed modest improvements in computation speed
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Figure 6: Sensitivity and computational performance under different combinations of S and lmax.
Three different combinations were chosen and compared. The lines in different color correspond to
different ratio of S and lmax: 100 nm:1 nm (black), 100 nm:100 nm (green), and 10 nm:10 nm (red).
Each line is the average of 30 realizations. The shaded regions represent corresponding standard
deviations.

compared to the 100:1 case. Nevertheless, these two cases plateaued rapidly as the system ap-

proached from the concentrated to dilute regime. This indicates that the adaptive feature could be

of greater advantage in the dilute regimes. On the other hand, the local search feature alone can

improve computation speed significantly in a concentrated regime.
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4 Discussion

In this work, we have demonstrated a computationally efficient algorithm for modeling reaction-

diffusion systems involving multivalent molecules. Here, we limited our focus to modeling cell-

surface ligand-receptor assembly, a key early step of immunoreceptor and receptor tyrosine kinase

(RTK) signaling (Puffer et al., 2007; Schlessinger, 2000; Deak et al., 2016). The approach and

analysis could be adapted for modeling and simulation of more complex multivalent species or

particle interactions in molecular biology or other fields.

Among the existing spatiotemporal modeling tools, SRSim (Grünert and Dittrich, 2010) provides

a unique capability for spatiotemporal modeling of macromolecular assembly. SRSim also employs

spatial graphs to represent protein molecules and complexes. However, SRSim simulations more

comparable could be expensive for the time and spatial scales of signaling protein interactions.

MCell (Bartol et al., 2015) is a spatiotemporal modeling tool with the special capability to consider

complex geometries for cellular compartments. However, MCell treats reaction species as featureless

points (Kerr et al., 2008). Therefore, it has a limited ability to incorporate site-specific attributes of

the biomolecules. VirtualCell (Loew and Schaff, 2001) is another spatiotemporal modeling tool.

However, it is primarily limited to partial differential equation (PDE)-based deterministic modeling.

It might be useful to extend our multiscale approach to incorporate some of the unique features

of the above tools. In particular, our algorithm might be coupled to features creating complex

geometries for the reaction compartments, as implemented in MCell.

In this work, we have limited the scope to modeling protein-protein interactions in the plasma

membrane, which is often treated as a two-dimensional space. However, a three-dimensional

extension of the approach might enable modeling the cytoplasmic and extracellular compartments.

We expect that the computational benefits of our algorithm will be significant in a three-dimensional

space where simulation of particle advancement could be more expensive than that in a two-

dimensional system.
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Parameter Comment

L = 1,000 nm Membrane length

W = 1,000 nm Membrane width

nL = 100 Ligand copy number.

nR = 100 Receptor copy number

nsiteL = 3 Number of binding arms in a ligand

nsiteR = 3 Number of binding arms in a receptor

neL = 5 Number of nodes per ligand arm

neR = 5 Number of nodes per receptor arm

re = 0.5 nm Radius of each node

Dm = 10−10 cm2/s Diffusion coefficient of a ligand

or receptor molecule

ωm = 10 radian/s Rotation speed of a ligand

or receptor molecule.

lr = 0.1 nm Reaction layer thickness.

S = 100 nm Radius of the local search domain.

lmax = 100 nm Upper limit on particle jump size.

lmin = 1 nm Limit on jump size when effective

regions overlap.

∆tmin = 10−5 s Lower bound on time step size.

Table 1: Default parameter values of the model.
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