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Abstract: A nonlocal formulation with the potential to mitigate mesh dependence in fiber models for steel elements is presented. The
formulation addresses two common modes of localization in prismatic steel bars: tension necking and compression buckling. These modes
are induced by geometric nonlinearity, unlike those addressed by previous nonlocal formulations that focus on localization induced by
material softening. Continuum finite element (FE) simulations are conducted to provide benchmark data for development as well as validation
of the nonlocal formulation. The nonlocal formulation is implemented through a one-dimensional (1D) line-element-based structural model
and has the following features: (1) a uniaxial stress-strain relationship with softening; (2) a length scale representing the necking or buckling
process; (3) a volume-averaged nonlocal strain measure that incorporates this length scale; and (4) an imperfection pattern. For both necking
and buckling, the nonlocal formulation successfully mitigates mesh dependence shown by the local models, implying that it can reproduce
softening load deformation response accurately regardless of mesh discretization. Additionally, comparison to FE benchmark data indicates
that the nonlocal formulation is able to characterize the strains inside the localized zone. This latter observation has important implications for
simulation of fracture or fatigue that originates in zones of localized strains, such as during cyclic buckling of rebar or local buckling-induced
fracture in rolled shapes. Limitations of the study are outlined, identifying challenges for incorporation into fiber models for beam-column
elements. DOI: 10.1061/(ASCE)ST.1943-541X.0001827. © 2017 American Society of Civil Engineers.
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Introduction

Accurate simulation of extreme-limit states in structures subjected
to earthquake or blast has long been a major focus of the structural
engineering and mechanics research communities. These limit
states are associated with local or global instability such as tension
necking, local buckling and fracture in steel frame structures and
concrete crushing, loss of confinement and reinforcing bar buckling
in reinforced concrete structures, and the accompanying loss of
component strength leading to structural collapse. These phenom-
ena may be simulated through methods developed over nearly five
decades within the area of nonlinear structural mechanics, includ-
ing: (1) phenomenological spring or hinge models calibrated
to component load-deformation response [see Jin and El-Tawil
(2005), or Dides and de la Llera (2005) for a comprehensive re-
view]; (2) fiber models that simulate cross-sectional behavior by
aggregating uniaxial material response (Spacone et al. 1996);
and (3) continuum finite element (FE) models that directly simulate

processes such as necking and buckling, along with multiaxial con-
stitutive response. Landmark guidance documents (FEMA 2009;
NIST 2009) have facilitated the use of these methods, with the ulti-
mate objective of simulating extreme limit states such as collapse.
Continuum FE simulations are generally considered unfeasible for
modeling frames in professional practice. Consequently, practi-
tioners as well as researchers rely on line-element-based frame
simulations using concentrated hinge/spring models or fiber formu-
lations. The hinge models are computationally efficient but require
calibration to component-specific tests and cannot be easily gener-
alized to untested components. Moreover, they cannot conveniently
simulate spread of plasticity (through the member length) or axial
force-moment (P-M) interaction. Fiber models, which are a subset
of line-element models, simulate these effects but are compromised
when softening and associated localization (concentration of strain
over a small zone) occurs in the member. In steel elements, locali-
zation is triggered by tension necking or local buckling such as flange
local buckling or buckling of a reinforcing bar, whereas in concrete
members, it may be triggered by material softening (e.g., crushing).
In fiber models, these behaviors are represented through a softening
constitutive relationship used in conjunction with Gauss integration
points or element discretization along the length of themember. Fig. 1
illustrates this approach schematically, indicating the physical proc-
esses that control localization, and their idealizations within a fiber-
based approach. Although commonly used for frame simulation, this
approach is problematic for two reasons:
1. When softening constitutive models are used, the simulated

post-peak response is nonobjective [Fig. 1(b)]; that is, it is
highly sensitive to discretization (number of Gauss points or
mesh size—Ibrahimbegovic 2009). Thus, to reproduce physical
or experimental response, the softening properties (negative
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stiffness) must be selected in an ad hoc manner in concert with
the mesh. Strategies to mitigate this nonobjectivity range from
empirical guidelines to energy-based methods that establish re-
lationships between mesh size and softening stiffness (Coleman
and Spacone 2001; Pugh et al. 2015). Numerous studies (Ibarra
and Krawinkler 2005; Lignos and Krawinkler 2011) indicate
that structural collapse is especially sensitive to the post-peak
stiffness, underscoring the need to simulate it accurately.

2. The strategies described here have focused on reinforced con-
crete elements, in which softening and localization is constitutive
in nature. Contrastingly, in steel members, the softening re-
sponse arises from geometric nonlinearity associated with neck-
ing or local buckling rather than from material softening. In
representing these through a uniaxial constitutive relationship,
the fiber approach disregards the length scale (e.g., wavelength
of local buckle; Fig. 1) that controls softening. As a consequence,
the simulated strains within the localized zone are meaningless
since they are normalized by a mesh-dependent gauge length.
Fig. 1(c) shows an entirely dissimilar curvature distributions
for different mesh sizes. This is particularly problematic if these
curvatures or strains are to be used for other purposes, such as
fracture or fatigue prediction. Specifically, fracture in the loca-
lized zone such as at the local buckle in a cyclically loaded
brace or beam (Fig. 2) is controlled by these localized strains.

Therefore, predicting this type of fracture with the fiber approach
necessitates empirical “fudge-factors,” which cannot be easily
generalized across different cross sections. Previous research
(Fell et al. 2010; Uriz 2005; Huang 2009) has focused on devel-
oping such factors, recognizing that direct simulation of loca-
lized continuum strains, and subsequently fracture or fatigue,
is not tractable within conventional fiber approaches. Some re-
searchers (e.g., Krishnan and Hall 2006) have combined fiber
with plastic hinge approaches to mitigate mesh-dependence
through a finite-length plastic hinge while retaining attractive
features (P-M interaction) of the fiber approach. However, these
approaches presuppose the location of localization.
To address these issues, this paper presents a nonlocal formu-

lation for simulation of necking and buckling controlled softening
in a steel bar. This formulation embeds a length scale into the uni-
axial constitutive relationship which relies on a nonlocal strain field
determined by averaging the conventional strain over a volume de-
fined by this length scale. Thus far, nonlocal approaches have been
used to eliminate mesh-dependence for softening material constit-
utive response in which the length scale is associated with internal
morphological features, such as aggregate size in concrete. These
approaches are well studied (Jirásek and Rolshoven 2003; Engelen
et al. 2003) and have been applied to various situations, including
shear banding in geomaterials (Shuttle and Smith 1988), crushing
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Fig. 1. Fiber-based simulation of localization processes through softening constitutive models

Fig. 2. Local buckling-induced strain amplification within tubular brace leading to fracture (reprinted from Fell 2008, with permission)
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in concrete (Bazant 1976), and softening due to porosity increase
ahead of advancing crack tips in steel (Enakoutsa et al. 2007). In
large measure, these formulations address continuum simulations;
several researchers have studied these approaches for frame
elements as well. This includes work by Armero and Ehrlich
(2004, 2006) and Marante et al. (2004), among others. Research
by Valipour and Foster (2009) implemented nonlocal formulations
to simulate concrete crushing in fiber-based frame elements. Even
more recently, Sideris and Salehi (2016), and Zhang et al. (2014)
implemented gradient-based formulations for frame elements.
However, all these implementations share the following features:
(1) they are primarily focused on localization due to material (typ-
ically concrete) softening; and (2) their main concern is the miti-
gation of mesh-dependence rather than simulation of strains within
the localized zone. The nonlocal formulation presented in this pa-
per is novel in that it simulates localization due to geometric non-
linearity, and (in addition to mitigating mesh dependence) it is also
able to characterize the strains within the localized zone. The for-
mulation addresses a cylindrical bar, which despite its simplicity
exhibits geometric nonlinear localization in tension as well as com-
pression. In concentrating on this geometrically simple condition,
the purpose is to develop foundational concepts for nonlocal
modeling of geometric softening in steel elements, which may sub-
sequently be incorporated into fiber models that simulate full cross-
sectional response. More specifically, the objectives and the scope
of this paper are as follows:
1. To present a uniaxial nonlocal formulation for a steel bar subject

to necking-induced localization in tension, and buckling-induced
localization in compression. The formulation is distinguished
by (1) an explicit length scale, reflecting necking/buckling phe-
nomena; (2) mitigation of mesh dependence; and (3) resulting
strain distributions (within the localized zone) that are consistent
with those obtained from continuum FE simulations, such that
they may be used in downstream simulation and assessment
of fracture and fatigue.

2. To develop, calibrate, and validate this formulation using con-
tinuum FE simulations that directly simulate various phenomena
responsible for localization and examine challenges for applica-
tion to more realistic settings where localization may occur over
a cross-section, and/or under-reversed cyclic loading.
Conventionally, it is understood that material damage or

degradation is responsible for localization. Where computational
resources are available, these phenomena may be simulated
directly through mesomechanical or micromechanical simulations
(e.g., through void cell simulation for steel—Faleskog et al. 1998,
or lattice models for concrete—Kim et al. 2013). However, in the
vast majority of cases where continuum mechanics-based simula-
tion is the only option, this must be simulated as constitutive soft-
ening. This gives rise to mesh-dependence, which must then be
mitigated through techniques such as nonlocal formulation to
reintroduce material-specific length scales into the solution. The
phenomena (necking and buckling) addressed in this paper are dif-
ferent in the sense that they, unlike material damage, can be con-
veniently simulated through continuum mechanics. However, they
are not simulated directly in the predominant framework for struc-
tural modeling, which relies on frame elements. In this framework,
buckling and necking are represented as constitutive softening
(as standard procedure), giving rise to tactical issues of mesh-
dependence that are strikingly similar to those observed when
material damage is simulated constitutively. It is important to em-
phasize that this mesh dependence and localization is not at the
material level but merely an artifact of the manner in which the
strain is represented in a uniaxial fiber model. Accordingly, this
research expediently adapts a methodology usually used for

constitutive softening induced localization to address necking or
buckling induced localization.

Problem Definition

The nonlocal formulation described here is informed by (1) the
physical underpinnings of the uniaxial bar problem; and (2) para-
metric FE simulations of the uniaxial bar to recover quantitative
data and insights regarding the localization processes, the load de-
formation response, and strain distributions. This section defines
the problem in terms of its physics and analytical derivations, as
a precursor to the FE simulations discussed in the next section.
The subsequent section integrates observations from these two sec-
tions to present the nonlocal formulation. Note that necking under
tension and buckling under compression are governed by entirely
different physical processes, and they may be treated as distinct
problems, although they both feature a cylindrical bar. Following
this, the discussion of their governing physics (in this section), as
well as their FE simulation, and finally the formulation are pre-
sented separately.

Necking in a Cylindrical Steel Bar

The tension necking response of a bar is well studied in literature
(Bridgman 1964); only a brief overview is provided here. Fig. 3(a)
schematically illustrates a cylindrical bar of cross-sectional area A0

and arbitrary length subjected to tension, whereas Figs. 3(b and c)
illustrate the longitudinal strain distribution and the load deformation
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Fig. 3. Necking localization in a tension bar: (a) schematic illustration;
(b) evolution of strain distribution; (c) load-deformation curve
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response. After an initial phase of elastic loading, the bar begins to
undergo yielding. During this phase, the bar is strained homo-
geneously, with increasing stress due to material strain hardening.
This continues until the ultimate strength of the material is
reached, corresponding to a peak point in the load deformation
curve [Fig. 3(c)]. From a physical standpoint, this occurs when
the stress increase due to strain hardening cannot compensate
for the decrease in cross-sectional area due to straining. The
well-known Considère (1885) criterion expresses this condition
mathematically:

σ ¼ dσ
dε

ð1Þ

In Eq. (1), σ and ε = longitudinal true stress and strain respec-
tively, implying that the peak point is attained when the true stress
equals the slope of the tangent to the true stress-strain curve. Eq. (1)
indicates an instability, such that after this criterion is satisfied, an
imperfection (e.g., a cross section with smaller area) results in in-
crease of strain at this cross section with an accompanying decrease
in force, leading to softening response. The reduction of cross-
sectional area in the vicinity of this weaker section forms a neck
[Fig. 3(a)]. The ensuing evolution of the deformation (and stress)
field is controlled by complex interactions of the evolving three-
dimensional (3D) neck geometry (and associated nonhomogeneous
strain fields) with the multiaxial constitutive properties of the steel
material. Due to these interactions, at any instant, a segment of the
bar is loading, such that the net longitudinal strain across it is in-
creasing, whereas the remainder of the bar unloads elastically.
From the perspective of this study, the pertinent observations are:
1. The strain corresponding to the initiation of necking instability

may be determined analytically from the Considère criterion.
2. The post-peak softening is the result of complex interactions

involving the change of neck geometry (cross-section as well
as longitudinal profile) under a nonhomogeneousand triaxial
stress state, coupled with constitutive hardening of the material
itself. Accurate simulation of this post-necking response is not
tractable analytically (i.e., in a closed form), and requires nu-
merical solution, as pointed out by Needleman (1972) and sub-
sequently Norris et al. (1978).

3. During this softening response, the neck represents a physical
length scale due to 3D geometry changes, which may be inter-
preted in a manner similar to morphological length scales that
control post-peak response in softening materials. This length
scale controls the softening response, as well as the strain field
internal to the neck.

Buckling and Localization of a Prismatic Steel Bar

The post-buckling response of prismatic elements has been studied
in various settings, including buckling of bracing elements (Ikeda
and Mahin 1986; Fell et al. 2010) and reinforcing steel (Zong et al.
2014). Figs. 4(a and b) schematically illustrate the post-buckling
response of a solid prismatic bar fixed at the ends and the corre-
sponding load deformation curve. While the elastic buckling
strength of the bar may be predicted through the Euler formula,
which assumes a perfectly straight, elastic member, it cannot be
used to characterize either the strength or the post-buckling re-
sponse for bars that yield and are geometrically imperfect. For
L=d, ratios less than 20 (which are the focus of the formulations
in this paper, with possible applications to reinforcing bars, and
extensions to flange local buckling), the compressive strength is
controlled by inelastic buckling or yielding and is equal to FyA0

of the bar (Zong et al. 2014). For larger L=d ratios, the strength
is controlled by the bar slenderness, as well as imperfections

and residual stresses, if present. After buckling or yielding, the re-
sponse falls on a spectrum depending on bar slenderness. Highly
squat bars (L=d < 5) exhibit hardening after yield, with no discern-
ible peak point; these are less interesting from the perspective of
this study. Bars with higher slenderness (8 < L=d < 20), which
are of primary interest in this study, exhibit a peak point and soft-
ening post-buckling response, as shown in Fig. 4(b). The softening
post-buckling response shown in Fig. 4 is associated with bending
of the bar, and induces tensile strain at the extreme fiber at the
points of maximum curvature [Fig. 4(a)]. Buckling-induced tensile
strain causes low-cycle fatigue and fracture of reinforcing bars, as
well as steel braces and beams that undergo local buckling. In the
context of this study, the relevant points are (1) the yield or
compressive strength, as well as post-buckling load-deformation
response may be characterized based on previous research; (2) this
response, including the strain distribution, is controlled by interac-
tions of slenderness, material properties, and imperfections; and
(3) the buckling length (between the points on the bar that represent
fixed end conditions) may be considered the controlling length
scale for the problem.

Finite Element Simulation

Referring to the preceding sections, the post-peak softening re-
sponse during both tension necking and compression buckling is
controlled by interactive phenomena that are not tractable analyti-
cally. However, outcomes of these phenomena (length scales, strain
distributions, and softening load-deformation response) are key in-
puts into the nonlocal uniaxial formulation. To this end, FE sim-
ulations discussed in this section parametrically examine these
phenomena. Following the structure of the previous section, FE
simulations for the necking bar are first described, followed by
those for the buckling bar.

Finite Element Simulations of Tensile Necking in a
Cylindrical Bar

Finite element models were constructed to simulate the necking
response of the cylindrical bar. These may be considered numerical
experiments, that is, proxies for experimental response, because
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tion; (b) load-deformation curve
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they can simulate controlling aspects of behavior (yielding, strain
hardening, necking, and the subsequent nonhomogeneous strain
field) with accuracy. However, unlike experiments, where data at
discrete locations (load and elongation) are usually recovered,
FE simulations provide access to the full continuum strain field.
The simulations examined two parameters; one is the L=d ratio,
whereas the other is a strain-hardening parameter. The former
allows examination of the degree to which the localization length
is affected by boundary conditions at the ends of the bar. Four val-
ues of the L=d ratio were generated by varying the diameter
(dbar ¼ 13.5, 16.5, 20, and 25 mm) and holding the length constant
(= 200 mm). The material constitutive response was represented as
a von Mises material with isotropic hardening. The hardening was
represented through the power-law relationship (proposed by
Kumar et al. 1981) shown here

σ ¼ E · ε for σ ≤ σY ;

σ ¼
�
σY − K ·

�
σY

E

�
n
�
þ K · εn for σ > σY ð2Þ

This relationship, which relates the true stress σ to the true strain
ε, is defined by three parameters: the yield stress σY and the con-
stants K and n. Of these, two are held constant such that σY ¼ 420
and K ¼ 790 MPa, whereas four values of n (= 0.1, 0.12, 0.15, and
0.18) examine the effect of different rates of strain hardening. The
values are consistent with those reported by Kanvinde (2004) for
low carbon structural steel. Note that the relationship implied by
Eq. (2) reflects a monotonically increasing stress, since it represents
continuum response, without geometric nonlinear softening. Along
with the parametric variation of the L=d ratio, this results in a total
of 16 (¼ 4 × 4) simulations. For illustrative purposes, Figs. 5(a–d)
show the axisymmetric FE model and response for one of these
simulations (dbar ¼ 20 mm; n ¼ 0.1). All models were composed
of axisymmetric elements (CAX8R) elements with reduced integra-
tion. The mesh was refined to approximately 0.4-mm element size,
which is sufficient to capture geometry changes and strain gradients
associated with necking. This results in approximately 2,500 ele-
ments per model depending on the bar diameter. All models were
subjected to displacement controlled tensile loading, as shown in
Fig. 5(a). Fig. 5(b) shows the deformed shape in the post-necking
phase, whereas Fig. 5(c) shows the engineering stress-strain curve
(assuming the gauge length is the length of the model). Referring to
Fig. 5(b), the displacement boundary conditions restrict radial de-
formations at the edge of the model. This radial constraint inhibits
plastic flow near the edge, reducing the von Mises stress, and
induces necking at the center of the model, without a preexisting
imperfection. The magnitude of applied deformations was large
enough to produce continuum strains on the order of 1.0 (i.e., 100%)
in the necked region, which is on the order of fracture strains in
structural steel (Smith et al. 2014), implying that sufficiently large
deformations were applied to evaluate the effects of necking. To
support the nonlocal formulation, the following quantities were re-
covered from the simulation: (1) load and deformation over the
gauge length of the entire model, including the softening response,
as shown in Fig. 5(c); (2) the neck diameter; and (3) the effective
uniaxial strain at each longitudinal location along the length of the
bar. Parameters and functional forms in the nonlocal formulation
were tuned to achieve agreement with these quantities. Recall that
although the FE models simulate a 3D response, the nonlocal for-
mulation uses uniaxial longitudinal strain. This uniaxial strain
is calculated in two steps. First, an average longitudinal displace-
ment is determined for each cross section based on nodal displace-
ments. Second, the longitudinal displacement field is numerically
differentiated to obtain the longitudinal strain field. Fig. 5(d) shows

the evolution of this longitudinal strain field with displacement at
four instants during the loading, which are also identified in the
load-displacement curve in Fig. 5(c). Referring to these figures,
it is noted that:
1. In the initial elastic and hardening phase, the longitudinal strain

is uniform over the length of the bar, equal to the applied
deformation over the gauge length.

2. Necking initiates at a value of true strain as defined by the Con-
sidère criterion [Eq. (1)]. When applied to a power-law material,
as is the case here, this results in εtruenecking ¼ n, meaning that the
true necking strain is numerically equal to the hardening coeffi-
cient n [= 0.1 for the simulation shown in Fig. 5; see Marker 2
on Fig. 5(c)].

3. After this point, the strain localizes in the central region of the
bar, and the strain outside this region decreases as the material
unloads elastically [Fig. 5(d)]. At any instant during this phase
of loading, the localized length may be unambiguously defined
as the region outside which strain is decreasing at all locations.
The localized length provides a measure of the length scale
controlling the necking process, for use within the nonlocal
formulation.
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model; (b) deformed model showing neck and strain calculation; (c) en-
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Fig. 6 plots the localization length [determined as shown in
Fig. 5(d)] against the engineering strain (a measure of deforma-
tion over the gauge length) for all 16 simulations. To provide a
consistent comparison of post-necking response among the sim-
ulations, the horizontal axis is adjusted such that the origin coin-
cides with the strain corresponding to the initiation of necking.
Referring to Fig. 6, it is apparent that all simulations, regardless
of the hardening coefficient n or dbar, show a virtually coincident
evolution of localization length once necking initiates. First, it is
interesting to note that the localized length decreases with increas-
ing deformation, indicating that regions that were previously
within the neck undergo unloading, forcing the neck to become
even sharper. Second, it is noted that immediately after necking,
the localized length is approximately five times the diameter of
the bar (for all simulations), suggesting a value for the nonlocal
formulation.

Finite Element Simulations of Buckling
in Prismatic Bar

Finite element simulations were also conducted to simulate buck-
ling in a prismatic bar. In terms of objectives and outputs, they are
similar to those for the necking bar (discussed in the previous sec-
tion). Accordingly, only the distinguishing aspects of these simu-
lations are summarized here. Fig. 7 is analogous to Fig. 5, showing
the FE model, the deformed shape, the load-deformation curve,
and the projected longitudinal strain distribution. Referring to
Fig. 7(a), two-dimensional (2D) models without axisymmetry were
constructed to simulate buckling. Eight-node serendipity elements
(CPE8R) were used for these models. The models included rota-
tionally fixed boundary conditions at each end and a perturbation
applied as a small transverse load at the center to initiate buckling.
All models were loaded in compression, so the stress and strain
quantities referred to in this section are compressive. Two param-
eters (σy ¼ 280, 420, 500, 600 MPa; and L=d ¼ 8, 10, 12,
and 15) were varied to generate a total of 16 (¼ 4 × 4) simulations.
Fig. 7 shows response of the simulation for σy ¼ 420 MPa and
L=d ¼ 12. Response of other simulations is qualitatively similar.
Referring to Figs. 7(a–d), the main observations are:
1. For the L=d ratios considered in this study, which are consistent

with those for buckling rebar, the load deformation curve (un-
like that for the necking bar) does not have a plateau but rather
abruptly drops from the peak point. It is acknowledged that for
material properties and L=d ratios significantly different from

those used in these simulations the response may be qualita-
tively different, exhibiting a plateau and even hardening. To
illustrate this point, Fig. 7(c) shows the load-deformation curve
obtained from a simulation of a buckling bar with L=d ¼ 7.5.
As is evident from this figure, at this length, the load-
deformation curve shows a plateau rather than the sudden
drop-off.

2. Referring to Fig. 7(d), the effective longitudinal strain (calcu-
lated in a manner similar to the necking bar) is especially inter-
esting considering that two plateaus are observed, along with a
low point in the center. A closer evaluation of the underlying
kinematics [shown in Figs. 7(a and b)] reveals that in case of
the buckling bar, the effective longitudinal strain is a projection
of the rotated segments of the bar after buckling rather than axial
compression. The nature of this strain field informs the nonlocal
formulation for the buckling bar.
Unlike the controlling length scale for the necking bar, which

was determined to be dependent on bar diameter and relatively in-
sensitive to boundary conditions, the controlling length scale for
the buckling bar is controlled by the boundary conditions. In fact,
the simulations indicate that the entire length of the bar between the
fixed ends participates in localization, unlike the tension bar where
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shown for L=d ¼ 7.5; (d) effective strain field at four loading instants
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unloading zones are observed outside the central localized region.
Consequently, the formulation is presented assuming that the
localization length may be determined a priori, from the boundary
conditions in the application scenario of interest. For example,
Zong et al. (2014) provide relationships between this length and
hoop spacing in a reinforced concrete column. The trends summa-
rized in Figs. 5(a–d) and 6 (for the necking bar) and Figs. 7(a–d)
(for the buckling bar) provide a basis for the nonlocal formulation
outlined in the next section.

Model Formulation, Implementation, and Results

The nonlocal formulation for both necking and buckling is imple-
mented within a uniaxial, line-element-based structural model
through a specially developed MATLAB program; this is referred
to hereafter as the “line model” to remove ambiguity with respect
to the continuum FE model. Fig. 8(a) illustrates the generic line
model, Fig. 8(b) shows the constitutive relationships for tension
and compression, and Fig. 8(c) outlines the solution process.
Multiple variants of this generic model with different meshes,
lengths, and loadings (i.e., tension versus compression) were used
to develop and validate the nonlocal approach. Referring to
Figs. 8(a–c), the line model has the following attributes:
1. Each model represents a bar of length L subdivided into nele

elements, each of length L=nele. The elements all have a
cross-sectional area A, except those selected to have an imper-
fection, whose area is 0.02% lower as compared to the other
elements. Imperfection patterns are discussed separately for
the tension and compression formulations. The magnitude of
imperfections was selected to be large enough to numerically
trigger localization without significantly affecting prelocaliza-
tion or post-localization response, which was found to be
relatively insensitive to imperfection magnitude within a neigh-
borhood of the values used.

2. To examine mesh dependence, multiple nele are simulated for
each parameter set. In all cases, the mesh size is selected such

that L=nele is lower than the characteristic length corresponding
to the configuration being simulated, such that the strain field
within the localized region is simulated accurately. The nonlocal
formulation cannot be interpreted meaningfully if the mesh
size is greater than the characteristic length (Wu and Wang
2010).

3. Each element is a constant strain element with linear basis func-
tions without the need for Gauss integration. Consequently, the
nonlocal formulation, which requires integration of strains over
a neighborhood of a point, directly integrates strains from neigh-
boring elements.

4. For both tension necking and compression buckling, a trilinear
constitutive relationship [Fig. 8(b)] is used to represent uniaxial
material response. Unlike Eq. (2), which increases monotoni-
cally to describe material hardening for the continuum model,
the trilinear response includes the softening branch to describe
loss of load due to geometric nonlinearity. Furthermore, the tri-
linear constitutive relationship refers to engineering, rather than
true strain. The trilinear relationship is selected because: (1) it is
able to functionally represent the load deformation curve, in-
cluding the softening phase, for both necking and buckling
as shown in Fig. 8(b); (2) it is implemented in academic and
commercial structural analysis codes such as OpenSEES and
LS-DYNA; and (3) it has relatively few (maximum of five) para-
meters to calibrate.
The algorithm for the implemented solution is shown in a flow-

chart [Fig. 8(d)]. Referring to this flowchart, a tangent stiffness ma-
trix based on local strain values and a constitutive model identical
to that used for the nonlocal strains is used to determine a trial in-
cremental displacement vector; this greatly facilitates convergence.
The local strain values themselves are determined from shape func-
tions applied to the displacement vector from the previous con-
verged load step. Nonlocal strains are then calculated and used
within the appropriate constitutive relationship [Fig. 8(b or c)]
to determine stresses and conduct force-recovery. A Newton–
Raphson iterative scheme is used to eliminate force residuals and

Imperfect element 
with smaller area Δ (applied)

F = ?

L
L/nele

Δi Δi+1

(a)

(b)

(c)

Gather node, element, boundary 
condition information

Apply displacement Δ at end node

Use tangent stiffness matrix with 
local strain to determine “trial” 

displacement vector 

Conduct element force recovery 
using nonlocal strain formulation and 

length scale (Equations 3 – 6)

Iterate to refine until 
equilibrium with external forces (i.e., 

0 at all except the end node) is 
achieved

Retain force at boundary node as F(d)

Δ = {Δ
1
,Δ

2
,...}∼

Δ = { Δ
i

Δ
i

,Δ
i+1

,...}∼

Fig. 8. (a) Generic line model; (b) idealized trilinear constitutive relationship for tension necking; (c) idealized trilinear constitutive relationship for
compression buckling; (d) solution process
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achieve convergence to a displacement vector. This is retained for
the subsequent load step.

Nonlocal Formulation for Necking in Tension Bar

Referring to Fig. 8(b), the constitutive response for necking bar in
tension is represented as a trilinear relationship. The first two
ascending branches of this relationship describe elastic response
followed by strain hardening in a spatially homogeneous manner.
The third branch reflects softening, and the introduction of a length
scale is necessary to mitigate mesh dependence. Referring to
Fig. 8(c), the constitutive relationship utilizes the nonlocal strain
measure that incorporates the length scale by averaging strain in
the neighborhood of each point. A key feature of the formulation
is the development of this strain measure. The formulation is de-
veloped with two considerations: mitigation of mesh dependence
and simulation of the strain field inside the localized zone.
Eqs. (3)–(6) describe the formulation. The nonlocal strain is deter-
mined as follows:

ε�p ¼ m · εwp þ ð1 −mÞ · εp ð3Þ

In Eq. (3), ε�p = nonlocal strain measure used in the constitutive
relationship; εwp = weighted average of strain in the neighborhood
of any point; εp = plastic strain; and m = parameter between 0 and
1. Following the work of Vermeer and Brinkgreve (1994), this is
termed an “over-nonlocal” formulation, combining the more basic
form of nonlocal strain, which is usually taken directly as εwp , along
with the local plastic strain εp. This enables a greater degree of
control if both the softening load-deformation response as well
as the localized strain distribution are targeted. The weighted aver-
age strain is determined by integrating the plastic strain over the
characteristic length Lc in the neighborhood of each point such that

εwpðxÞ ¼
Z
Lc

αðx; ξÞ · εpðx; ξÞ · dξ ð4Þ

In Eq. (4), αðx; ξÞ = weight function defined over the length Lc;
and ξ = local variable with its origin at the material location of in-
terest, that is, x. The weighting function is selected as a bell-shaped
function with a peak at x (i.e., at ξ ¼ 0), with the following form:

αðx; ξÞ ¼ α 0ðx; ξÞR
Lc
α 0ðx; ξÞ · dξ ð5Þ

where

α 0ðx; ξÞ ¼ 15

8 · Lc

�
1 − 4 · ðx − ξÞ2

L2
c

�
for jx − ξj

≤ Lc=2; α 0ðx; ξÞ ¼ 0 for jx − ξj > Lc=2 ð6Þ

Eq. (5) normalizes the weight function, so it does not alter the
nature of a homogeneous strain state. Considering Eqs. (3)–(6), the
nonlocal formulation includes two parameters. Of these, m is se-
lected as 0.5 to provide best overall agreement with FE data, and
the characteristic length Lc is selected as five times the bar diam-
eter, following the observations of the FE simulations (Fig. 6).
Once the strain measure is established in this manner, the constit-
utive relationship is calibrated in concert with it. Referring to
Fig. 8(b) and prior discussion, the first two branches of the trilinear
curve correspond to a homogeneous state of strain and, therefore,
are unaffected by the gauge length. Accordingly, the parameters
associated with these branches (E, σY , ε

necking
eng , σnecking

eng ) may be
determined directly from the true stress-strain curve of the material.
For example, the latter two (that is, εneckingeng and σnecking

eng ), may be

determined by applying the Considère criterion to the calibrated
constitutive response [Eq. (2)] for the material and subsequently
applying transformations to convert the true quantities to their
engineering counterparts. The softening branch is controlled by
the parameter Esoft ≤ 0. The unloading stiffness is taken as E
[Fig. 8(a)]. Since the formulation is restricted to monotonic load-
ing, laws for reversed cyclic loading (or yielding in the negative
direction) are undefined. The softening branch reflects localized,
nonhomogeneous strain state. Consequently, its value is sensitive
to the gauge length over which it is measured. For consistency with
the framework presented, the gauge length for calibration of
Esoft ≤ 0 is taken as Lc ¼ 5 · dbar (after the observations shown
in Fig. 6). This process is used to calibrate the relationship for each
of the 16 FE simulations for the necking bar.

Table 1 summarizes the calibrated values of all parameters for
each simulation. Once calibrated in this manner, this relationship is
used within the line model to reproduce the load deformation re-
sponse, and the evolution of internal strain distribution for each of
the parameter sets examined in the FE simulations. In each line
model, the center element is imperfect, with an area 0.02% lower
than the other elements.

Figs. 9(a–h) show load deformation curves determined from the
line models. These are represented as engineering stress-strain
curves, in which the strain is the deformation normalized by the
entire length of bar. Before necking, the curves are not dependent
on this gauge length. For purposes of illustration, four out of 16
parameter sets (including a range of dbar and n, as indicated on
the figures) are selected; results from other parameter sets are quali-
tatively similar. Figs. 9(a–d) show results from the line model using
the local formulation, which is used in conventional fiber models,
whereas the figures below them [Figs. 9(e–h)] show counterpart
results for the nonlocal formulation. For each figure, results from
three levels of mesh discretization are shown along with the cor-
responding results of the continuum FE simulation. The latter may
be considered “true” or objective response. Referring to the figure,
it is immediately apparent that for each parameter set the conven-
tional formulation is highly mesh-sensitive such that the finer mesh
results in a steeper softening slope. The nonlocal formulation does
not show nonobjectivity and closely follows the true or objective
response of the continuum FE solution, demonstrating the efficacy
of the formulation in mitigating mesh-dependence. In case of the
nonlocal formulation, an error is noted between the FE and the
structural model solution; this is an artifact of the assumed trilinear
constitutive relationship, which cannot perfectly replicate the
smooth curve of the FE response.

Figs. 10(a–h) and 11(a–h) are similar to Figs. 9(a–h), except
they illustrate other aspects of simulated response. Figs. 10(a–h)
indicate the strain distribution along the length of the bar as deter-
mined from the local and nonlocal formulations for various mesh
sizes and compare it to the objective FE response; these are similar

Table 1. Calibrated Parameters for Uniaxial Constitutive Models for
Tension Bar [Fig. 8(b)]

Configuration
parameters

Calibrated parameters for uniaxial
stress-strain relationship

L=d n
E

(MPa)
σY

(MPa) εneckingeng

σnecking
eng

(MPa)
Esoft
(MPa)

10 0.1 200,000 420 0.105 580 570
10 0.15 200,000 420 0.16 695 360
15 0.1 200,000 420 0.105 580 570
15 0.15 200,000 420 0.16 695 360

Note: εneckingeng ¼ en − 1, as calculated from the Considère condition.
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to the one shown previously in Fig. 5(d). The strain distributions
shown in Figs. 10(a–h) are determined at a deformation 1.25 times
the true necking deformation for each parameter set. This deforma-
tion (1.25 times necking) was selected because it results in
continuum plastic strains on the order of 0.6–0.7 at the center
of the necked cross section; these are consistent with the strains
required to cause fracture. As a result, the deformations at this point
and in Figs. 10(a–h) represent a fully developed localized strain
profile. Figs. 11(a–h) show the temporal evolution of longitudinal
strain at the center of the bar [similar to the peak point in Fig. 5(d)]
determined from the continuum FE model. Note that the engineer-
ing strain εeng plotted on the horizontal axis is a proxy for the axial
deformation, normalized across the entire gauge length. Referring
to these figures, the following observations may be made:

• All simulations with the local formulation [Figs. 10(a–d)] loca-
lize strains in the center element, and the magnitude of this strain
varies widely between the different meshes by as much as
300%. This is not surprising, since the model is incapable of
distributing strain to adjacent elements, and the center element
(with a predetermined length) must accommodate all deforma-
tions after localization. Consequently, the strain distributions
shown in Figs. 10(a–d) are entirely controlled by element size
and are spurious. This means they may not be reliably used for
fracture or fatigue prediction. As a result, comparison with the
true (FE) strain distribution is of little value.

• Figs. 10(e–h) show response of the nonlocal formulations cor-
responding to the simulations in Figs. 10(a–d). Referring to
these figures, the nonlocal formulation is able to characterize
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Fig. 9. Engineering stress-strain response for tension bar from FEM and line model (a–d) for local formulation; (e–h) for nonlocal formulation
indicating the mitigation of mesh-dependence
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Fig. 10. Longitudinal strain distribution for tension bar from FEM and line model for (a–d) local formulation; (e–h) nonlocal formulation
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the general nature of the strain distribution by distributing strain
to neighboring elements. As the mesh is refined, the distribution
approaches the true or objective distribution. However, even in
the limit, this does not converge to the true (FE) distribution.
This may be attributed to the sharpening of the neck and
reduction in localized length (see Fig. 6 and the associated
discussion). Since the nonlocal formulation assumes a fixed
characteristic length, it cannot capture this second-order aspect
of localization. Nonetheless, the formulation mitigates much of
the mesh sensitivity of the conventional local formulation. This
trend is observed across all 16 parameter sets.

• Referring to Figs. 11(a–h), both local and nonlocal formulations
are able to characterize the evolution of peak strain (at the center
of the bar) up to the strain at localization. After this point, the
strain determined by the local model diverges from the objective
(FE) strain, and moreover, the nature of this divergence is highly
mesh dependent, such that the finer mesh shows a steeper rise
in peak strain. On the other hand, the nonlocal formulation
[Figs. 11(e–h)] is able to follow the evolution of the true strain
in a mesh independent manner. However, following the point
given here, the nonlocal formulation cannot capture the second-
order effect of neck sharpening, which produces the nonlinearity
in the strain history after localization.

Nonlocal Formulation for Buckling in Compression Bar

Referring to Fig. 8(b), the buckling response of the compression bar
is also represented as a trilinear relationship. However, in contrast
to the necking bar, the final two branches reflect post-buckling soft-
ening, and only the first branch (elastic loading) corresponds to the
homogeneous strain state. The double-plateau shape of the effective
longitudinal strain for the buckling bar [see Fig. 7(d) and associated
discussion] implies that standard nonlocal formulations with a
peaked weighting function and central imperfection are incapable
of reproducing the strain distribution associated with the buckled
bar, albeit they may be used if mesh-independence is the only ob-
jective. In an effort to achieve these two objectives simultaneously,
the optimal approach to determine nonlocal strains was identical
to that used for the tension bar [in terms of weight function form,

and mixed formulation Eqs. (3)–(6)], excepting the following
modifications:
1. Initial imperfections with cross-sectional area 0.02% lower than

other elements were introduced into two elements located at the
1/4 and 3/4 points along the length. This is in contrast to a single
imperfect element at the center of the line models that simulate
necking. It is noted here that these imperfections are not phy-
sical, but rather notional, to encourage the formation of loca-
lized zones at the 1/4 and 3/4 points, resulting in the projected
strain distribution that is consistent with the kinematics of the
problem [Fig. 7(d)].

2. Following the observations of the FE simulations (the entire
length of the bar participates in localized, softening response)
and prior discussion, the characteristic length Lc is determined
as the distance between the fixed-fixed boundary conditions,
that is, Lc ¼ L.
The first (elastic) branch of the constitutive relationship may be

calibrated through the parameters E and σY , assuming that the com-
pressive strength for this range of L=d ratios is controlled by yield-
ing. Referring to Fig. 8(c), the descending portion of the load
deformation curve is approximated by two lines, following the
functional form suggested by Zong et al. (2014) that represents
reinforcement bar buckling. In these cases too, the unloading rela-
tionship for the nonlocal strain is elastic, defined by E [Fig. 8(b)].
Once calibrated in this manner (Table 2), this relationship is used
within the line model to simulate response of all 16 parameter sets.
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Fig. 11. Evolution of longitudinal strain at the center of the tension bar from FEM and line model for (a–d) local formulation; (e–h) nonlocal
formulation

Table 2. Calibrated Parameters for Uniaxial Constitutive Models for
Compression Bar [Fig. 8(c)]

Configuration
parameters

Calibrated parameters for uniaxial
stress-strain relationship

L=d σY

E
(MPa)

σY
(MPa) ε1

E1
soft

(MPa)
E2
soft

(MPa)

10 280 200,000 280 0.0094 11,200 1,440
15 280 200,000 280 0.0056 27,400 1,020
10 420 200,000 420 0.0105 17,850 1,880
15 420 200,000 420 0.0072 36,800 2,150
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Figs. 12 and 13 illustrate the simulation results of selected param-
eter sets. These are analogous to Figs. 9 and 10 shown previously
for the necking bar, illustrating the load deformation curve and ef-
fective longitudinal strain distribution. Referring to these figures,
the following observations may be made:
• Figs. 12(a–d) show engineering stress strain curves (engineering

strain is measured over the entire model length) determined
from the local formulation, superimposed on the corresponding
FE response. As expected, they indicate severe mesh sensitivity
in the softening phase, such that the finer mesh results in a stee-
per softening response.

• Figs. 12(e–h) show that the nonlocal formulation successfully
eliminates mesh dependence in load-deformation response, such
that the curves are coincident for all element discretizations and
for all parameter sets (of which four are shown). However, it is
pertinent to note that even the results of the nonlocal formulation

have some error with respect to the objective FE response. This
error may be attributed to two factors. First, the softening con-
stitutive response used within the line model [Fig. 8(c)] represents
the softening curve only approximately. Second, the softening
curve itself, as outlined by Zong et al. (2014), is an empirical
fit to true (either FE or experimental response), introducing an-
other layer of inaccuracy. Directly calibrating the constitutive re-
sponse used in the line model to the FE load deformation data will
reduce inaccuracy due to the latter factor. However, the current
calibration is retained since it demonstrates efficacy of the ap-
proach in the setting in which it is likely to be applied (i.e., using
predeveloped functional forms for bar buckling).

• Figs. 13(a–h) show the distribution of longitudinal strain, which
represents the post-buckling rotations [Fig. 7(b)], determined at
a net compressive engineering strain of 0.1 (10%). Of these,
Figs. 13(a–d) suggest that the local formulation is incapable
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of characterizing the strain distribution, concentrating all
the strains in the two imperfect elements. This is similar to
the phenomenon observed for tension necking in which all strain
concentrates in the imperfect central element [Figs. 10(a–d)].
The nonlocal formulation can successfully mitigate this problem
by distributing strain to neighboring elements and replicating
the FE or true strain distribution qualitatively and even quanti-
tatively, especially as the mesh is refined—compare the solid
lines on Figs. 13(e–h) to those representing the curve for
50 elements. This degree of agreement is observed across all
parameter sets. Since the longitudinal strain distribution repre-
sents post-buckling rotations of bar segments, curves such as
the ones shown in Figs. 13(e–h) may be suitably processed
to determine bar curvatures and ultimately continuum strains,
which may be used to assess fracture or low-cycle fatigue.
Nonlocal formulations are counterintuitive vis-à-vis conven-

tional continuum mechanics since they assume that response at
a location is affected by deformation at a remote location. Their
philosophical basis requires some elucidation. In the context of
material failure, the explanation is that conventional continuum
models do not admit the possibility of material heterogeneities that
limit localization or otherwise produce interaction between neigh-
boring locations. Following this, aggregate size in concrete or grain
size in soils are often a defining length scale in nonlocal models for
these materials (Wu and Wang 2010). For the steel bar studied here,
nonlocality arises because the uniaxial strain formulation cannot
capture the two- or 3D deformations that are responsible for buck-
ling or necking. Thus, nonlocality must be invoked to reintroduce
this behavior into the uniaxial construct.

Summary, Conclusions, and Limitations

This article presents a nonlocal formulation that enables simulation
of tension necking and compression buckling in a steel bar through
line elements using a uniaxial softening constitutive model. In a
departure from prior nonlocal formulations which focus on mitigat-
ing mesh dependence under material softening, the current formu-
lation addresses localization due to geometric nonlinear effects, and
it has the additional objective of simulating strain fields internal to
localized zones. The latter is especially important since it enables
the assessment of fracture and fatigue directly within a uniaxial
fiber-based framework. By incorporating insights gained from con-
tinuum FE simulations, the formulation combines efficacy of the
FE approach with efficiency of line models. The research focuses
on canonical problems of geometric nonlinear localization in ten-
sion (necking) and compression (buckling). These problems are
attractive because they represent basic forms of localization in steel
members. Moreover, the modes of localization and the resulting
strain distributions can be simulated directly through FE simula-
tions, providing insights for developing the formulations, as well
as a rigorous testbed for validating them. Accordingly, a major re-
search task is continuum FE simulations of necking and buckling
bars. While the FE simulation serves to inform and verify the ap-
proach, it is noted that such FE simulation is often impractical in the
context of building simulations especially when suites of simula-
tion runs must be conducted, such as in seismic collapse fragility
analysis (FEMA 2009).

For tension necking, FE simulations reveal that a characteristic
length equal to five times the bar diameter controls the localization
process. Consequently, the nonlocal formulation uses this length
scale. Analogous FE simulations are conducted for compression
buckling. These feature a fixed-fixed prismatic bar, in which the
length between the fixed ends is determined to be the controlling

characteristic length. For both conditions, the formulations include
a nonlocal strain measure with a mixed functional form (combining
a local strain with a weighted strain measure), a bell-shaped weight
function, and preexisting imperfection locations. These functional
forms and weighting methods simultaneously satisfy the objectives
of mesh independence while characterizing the localized strain
field. The results indicate that these dual objectives are successfully
realized across the range of simulation parameters for both the ten-
sion and compression scenarios. In summary, the research demon-
strates the potential of using nonlocal formulations to simulate
geometric nonlinear localization in frame elements.

It is critical to acknowledge that owing to its focus on a simpli-
fied problem, the work is of a fundamental nature whose main value
lies in demonstrating the adaptation of nonlocal formulations for
the purposes outlined here. As a result, the formulation in itself
cannot be applied to structural problems with the exception of those
that are very similar to the problems examined here in terms of
geometry or material properties. The anticipated application of
the underlying concepts is in the context of a fiber-type framework
for beam-column elements, in which the nonlocal uniaxial model
may be used in place of currently used, nonregularized constitutive
models to represent local buckling in a cross section or rebar buck-
ling and downstream processes such as fracture. Significant scien-
tific and practical challenges must be overcome before this is
accomplished. These include the following:
1. Consideration of force gradients over the localization length:

The current formulation is demonstrated only for a constant
force over the length of the element. However, in beam-columns
with a moment gradient, localization usually occurs under stress
gradients along the member axis. The interaction of these stress
gradients with localization modes and imperfections is an im-
portant future area of study.

2. Investigation of different L=d ratios to examine their influence
on post-buckling response: The postbuckling response shown in
this paper (i.e., absence of a yield plateau) is not general and
may not be valid for L=d ratios that are lower (about 7.5).
For these, a different constitutive model (similar to the one used
for tensile necking) may be more appropriate.

3. Consideration of cyclic loading: The current formulation as-
sumes tensile and compressive loads to be mutually exclusive.
However, in common situations such as seismic loading, ele-
ments undergo reversed cyclic loading. Both the material model
as well as the nonlocal formulation will require adaptation to
successfully simulate these situations. Specifically, history ef-
fects pertaining to variable loading amplitudes and unsymmetric
cycles must be rigorously considered—even without localiza-
tion, these issues are challenging in themselves. Kostic et al.
(2013) provide discussion of such modeling.

4. Incorporation of single-fiber response into cross-sectional beha-
vior: This research addresses the response of a single element,
representative of a fiber within a cross section. Upscaling this
response to the cross-section is not trivial and will pose
additional challenges. This includes consideration of buckling
modes (such as flange or web local buckling) that engage multi-
ple fibers across the cross section and triggering of torsional
modes that accompany flexural yielding and softening; see
Elkady and Lignos (2015).

5. Implementation within structural analysis code architectures
(e.g., OpenSEES): This may not provide convenient function-
ality for sampling strains from remote locations for stress com-
putations, which is a requisite for the nonlocal formulations.
In summary, major challenges must be overcome to develop

the preliminary work presented here into a frame element-based
modeling framework that retains the attractive features of fiber

© ASCE 04017091-12 J. Struct. Eng.

 J. Struct. Eng., 2017, 143(9): 04017091 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, D

av
is

 o
n 

11
/1

6/
17

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



analysis (spread of plasticity, P-M interaction) that is also robust in
terms of mesh dependence and provides the opportunity to conven-
iently incorporate continuum-based fracture and fatigue models
within frame elements.
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