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Abstract: A nonlocal formulation framework is presented to address mesh-dependent strain localization in displacement-based frame
element models in the presence of constitutive softening. The framework consists of a nonlocal displacement-based frame element and
a nonlocal fiber-based plasticity model, and is used to simulate the postpeak response of RC structural members. The algorithmic imple-
mentation of the framework is discussed, and its performance is thoroughly investigated. Mesh sensitivity studies reveal that the proposed
approach eliminates mesh-dependent strain localization and leads to objective global (i.e., load displacement) and local (i.e., curvature profile)
response in the presence of concrete softening. Comparison with historical test data from 24 column specimens shows that the postpeak
response of RC beam-columns is predicted with reasonable accuracy. The limitations of the presented framework are discussed along with
areas for further development. DOI: 10.1061/(ASCE)ST.1943-541X.0002218. © 2018 American Society of Civil Engineers.
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Introduction and Background

The simulation of extreme limit states in structures is an essential
component of performance-based engineering. In RC beam-
columns, these limit states are controlled by local instabilities at
the material and cross-sectional levels, such as concrete crushing
and rebar buckling on the compression side of the member and
rebar necking and fracture on the tension side. These phenomena
result in postpeak softening (negative stiffness) in the load-
displacement response of the structural member, which indicates
loss of member strength and eventually leads to structural collapse.
Consequently, accurate and robust simulation of the softening re-
sponse or strength degradation of beam-columns is a critical com-
ponent of performance assessment of RC frame structures.

Current approaches to simulating nonlinear structural response
(in research or practice) include continuum finite-element (FE)
and line-element models. Continuum FE models are generally con-
sidered prohibitively expensive for large-scale simulations. As a
result, line-element models are commonly used in structural sim-
ulations using one of two approaches: (1) concentrated or plastic
hinge models, in which the nonlinear behavior is lumped into rota-
tional springs at the member ends (Clough et al. 1965; Giberson
1967); or (2) distributed plasticity models, wherein the cross-
sectional response at discrete locations along the member is

integrated. In the latter type, the section behavior may be described
by a stress-resultant plasticity model (El-Tawil and Deierlein 1998)
or a fiber model, which aggregates uniaxial material response across
each section. Distributed plasticity models, in turn, use one of two
formulations: a displacement-based (DB) formulation, which fol-
lows the standard finite-element method; or a force-based (FB)
formulation (Spacone et al. 1996a, b), which may be considered
a frame-member interpretation of the mixed finite-element method
(Zienkiewicz and Taylor 2005).

Although hinge-type models are computationally efficient, the
locations of the plastic hinges in these models must be defined a
priori, thereby preventing the simulation of damage initiation and
propagation in a generic sense. Moreover, these models cannot con-
veniently capture the axial force–bending moment (P-M) interac-
tion effects [an example of a plastic hinge model that incorporates
P-M interaction was given by Powell and Chen (1986)]; as a result,
they usually require component-based calibration based on the
axial load level and moment gradient, and cannot be generalized
across different components (Scott and Fenves 2006). These draw-
backs are overcome in fiber-section models, which enable the
formation of plastic hinges at any location and generic spread of
plasticity along the member. However, the performance of fiber-
based frame models is compromised when simulating the softening
response of the member. In particular, two problems can be iden-
tified in the predictions of a fiber model simulation in the presence
of constitutive softening: (1) nonobjectivity of the global response,
i.e., the postpeak load-displacement response becomes highly sen-
sitive to the member discretization (or the mesh size); and (2) locali-
zation of the strain field over a distance controlled by the member
discretization, and the size of the localization zone approaches zero
as the number of elements is increased.

In the context of continuum FE models, numerous studies have
documented the mesh sensitivity of the load deformation response
and strain localization associated with the modeling of softening
materials (Bažant and Oh 1983; Bažant et al. 1987; Bažant and
Jirásek 2002). Over the last several decades, various methods have
been used to enhance the strain field and overcome these problems,
most notably nonlocal continuum mechanics. The fundamental
premise of the nonlocal continuum theory is that the response
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(i.e., stress or force) at a material point depends on the deformation
at the point and on the deformation profile in the vicinity of that
point. The application of the nonlocal theory in continuum FE
models was shown to prevent mesh-dependent strain localization
in various constitutive frameworks; examples include nonlocal
damage models (Pijaudier-Cabot and Bažant 1987; Bažant and
Pijaudier-Cabot 1989), nonlocal smeared cracking models (Bažant
and Lin 1988b; Jirásek and Zimmermann 1998), and nonlocal soft-
ening plasticity models (Bažant and Lin 1988a; Brinkgreve 1994).

The previous examples are of the so-called integral nonlocal for-
mulations, which are the focus of this paper. In general, two main
classes of nonlocal formulations exist, namely integral formula-
tions and gradient formulations (explicit and implicit). Integral non-
local models introduce weighted spatial averages of field quantities
into the constitutive model. In the explicit gradient formulation, the
integral is approximated with a truncated Taylor series for suffi-
ciently smooth deformation fields. The nonlocal field is, therefore,
given in terms of the local field and its second-order derivative,
which introduces a spatial interaction for a continuous strain field.
The presence of these higher-order derivative terms, however, im-
poses stronger continuity requirements on the displacement field
than does the integral approach, which makes the explicit formu-
lation computationally less attractive. This aspect is avoided in the
implicit gradient formulation, which contains second-order deriv-
atives of the nonlocal field instead, and was shown to be a special
case of the integral nonlocal formulation (Peerlings et al. 2001).
The implicit gradient and integral nonlocal formulations exhibit
qualitatively equivalent behavior in different localization contexts
(Peerlings et al. 2001). The implementation of the gradient formu-
lation, however, requires solving the partial differential equation
introduced into the model for the nonlocal variables. In contrast,
the integral formulation requires only computing integral terms of
existing variables. From the implementation point of view, the inte-
gral model may be considered more cumbersome because it requires
data transfer between different elements. Nonetheless, it enforces the
nonlocality in a more transparent way; the implications of this aspect
are highlighted in the element formulation section of this paper.

In the context of frame-element models, Coleman and Spacone
(2001) first noted the mesh sensitivity in FB element models of RC
members, and several methods were subsequently proposed to ad-
dress the problem (Scott and Fenves 2006; Addessi and Ciampi
2007; Valipour and Foster 2009; Feng et al. 2015; Sideris and
Salehi 2016). Some of these methods were developed in the context
of frame elements directly, whereas others were adapted from
existing continuum FE approaches. Plastic hinge integration meth-
ods in FB elements are an example of the former type, wherein the
integration along the element is manipulated to control localization
via a priori specification of the location and length of the plastic
hinge (Scott and Fenves 2006; Addessi and Ciampi 2007). The
methods adapted from continuum FE may be categorized as either
partial regularization techniques or true localization limiters. The
crack band model (Bazant 1982; Bažant and Oh 1983) is a common
partial regularization technique, originally used for simulating the
tensile fracture in concrete continuum FE models and later ex-
tended to simulate the compressive softening of concrete in frame
elements (Coleman and Spacone 2001; Pugh et al. 2015). The
method is based on adjusting the material stress-strain relationship
in coordination with the mesh size, to ensure constant energy dis-
sipation across different levels of mesh refinement. This approach
results in an objective load-displacement response; however, mesh-
dependent localization of deformation is not mitigated.

On the other hand, nonlocal formulations are true localization
limiters which imbed a material length scale into the model, and
enforce a mesh-independent and physically-guided deformation

field (e.g., inelastic strains or curvature profile). Addessi and
Ciampi (2007) proposed an integral nonlocal formulation with a
resultant section constitutive law for the flexural response, and
adopted the formulation for both FB and DB elements. This for-
mulation does not consider P-M interaction, and therefore requires
calibration based on the axial load level. Valipour and Foster (2009)
presented a fiber-based nonlocal FB frame element based on a se-
cant stiffness approach and a damage model for concrete, with a
characteristic length empirically expressed as a fraction of the beam
length. The approach is based on a secant iteration scheme and is,
consequently, less suited for implementation in tangent stiffness–
based computer codes. Feng et al. (2015) and Sideris and Salehi
(2016) developed fiber-based FB frame elements based on the
implicit gradient approach, also using empirical plastic hinge
lengths as the length-scale parameter. The key difference is that
Sideris and Salehi (2016) incorporated the nonlocality in the strain-
displacement equations, rather than the constitutive relations.

The preceding examples predominantly use FB element for-
mulations. In the FB element, equilibrium is strictly satisfied, even
with nonlinear material response. Although this feature provides the
advantage of using very coarse meshes (typically one element per
member), the solution algorithm typically involves the use of nested
iterative loops. The nonlocal FB formulation presented by Sideris
and Salehi (2016) overcomes this problem and yields a single sys-
tem of algebraic equations to solve. However, the model has other
limitations, including the need to enforce additional intermediate
boundary conditions at localization locations and the inability of
the model to accommodate multielement meshing (i.e., the entire
beam-column member can only be modeled with a single element).
The latter limitation means that the model, in its current form, can-
not incorporate distributed loads along the member length.

For the DB element, very few studies have combined a DB
formulation with a nonlocal approach, and virtually none in a fiber-
based context. Zhang and Khandelwal (2016) presented a DB non-
local model, also based on the implicit gradient approximation,
with a section resultant constitutive relationship. The model uses an
alternative framework, isogeometric analysis (Hughes et al. 2005),
for constructing higher-order finite-element interpolation functions
in order to approximate the higher-order gradient terms. Although
theoretically attractive, the approach is relatively complicated to
implement in existing finite-element codes.

A DB frame element formulation with nonlocal fiber-based
constitutive relations is presented in this study. The proposed for-
mulation combines the advantages of fiber-based models and the
localization-limiting properties of the nonlocal theory. The formu-
lation preserves the straightforward element state determination
of the standard finite-element procedure and the ability to model
members with distributed loads. The approach does not incorporate
any additional boundary conditions or impose stronger continuity
requirements on the interpolation functions. Additionally, the
developed frame element is combined with an efficient method
for approximating the nonlocal field variables that drive the soft-
ening response, proposed by Brinkgreve (1994), which improves
the computational efficiency of the nonlocal averaging procedure.
The proposed formulation and associated material model are imple-
mented in the open source structural analysis platform OpenSees
version 2.4.2 (McKenna 2000) and used to simulate the postpeak
response of reinforced concrete beam-columns. The performance
of the model is assessed via mesh sensitivity studies and validated
against available experimental data.

The paper begins by articulating the motivation for nonlocal
theories, and describing the nonlocal averaging procedure. The
proposed element formulation is described in the consequent
section and the novel nonlocal aspects are highlighted. Next, the
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constitutive framework selected for the current study and the algo-
rithmic implementation of the proposed formulation are discussed.
This is followed by a summary of the numerical simulations con-
ducted to assess the performance of the nonlocal model. The paper
concludes with a discussion of the model limitations and areas for
future work.

Nonlocal Theory: Concept and Physical Basis

Modeling of Concrete Damage in a Continuum

In frame and continuum simulations, progressive damage in hetero-
geneous brittle materials, such as concrete, is typically modeled
at the constitutive level as strain-softening. Early experimental
tests by several researchers (Van Mier 1984; Vonk 1993; Jansen
and Shah 1997; Van Mier et al. 1997) confirmed that, under com-
pressive loading, the damage within a concrete specimen tends to
localize in a region of finite length. This localized damage is mac-
roscopically measured over a certain gauge length and represented
as softening (Fig. 1), whereas the rest of the specimen unloads
elastically.

In a classical continuum with strain-softening, the boundary-
value problem becomes ill-posed, which leads to the aforemen-
tioned mesh dependence of the solution (Bažant and Belytschko
1985; Bažant and Lin 1988a; Bažant and Jirásek 2002). This
numerical phenomenon motivated the use of the nonlocal con-
tinuum, which is now widely recognized as an effective means
of regularizing the strain-softening boundary-value problem. In
the standard (local) FE continuum, the size of the localization zone
depends artificially on the mesh size, and can become arbitrarily
small upon mesh refinement. In the nonlocal continuum, on the
other hand, a finite localization zone is obtained by considering in-
teractions between neighboring material points within a prescribed
interaction radius R. Theoretically, this interaction radius is deter-
mined by amaterial characteristic length, which is, in turn, informed
by the heterogeneity of the microstructure—e.g., the maximum

aggregate size in concrete (Bazant 1976; Bažant and Pijaudier-
Cabot 1989). In a more practical sense, the interaction radius of the
nonlocal continuum may be informed by the gauge length over
which the localized damage is measured in an experimental setup.
With this interpretation, the nonlocal theory serves to diffuse or dis-
tribute the damage over this gauge length to achieve consistency
with experimental measurements. This concept is described math-
ematically in the following subsection.

Nonlocal Averaging Concept

The formulation presented in this paper falls under the category of
integral nonlocal models, wherein a local field variable is replaced
by its nonlocal counterpart. The nonlocal variable gfðxÞ at a location
x is calculated as a weighted average of the local variable fðxÞ over
a spatial neighborhood of that location. In the one-dimensional con-
text, this averaging procedure is expressed as

gfðxÞ ¼ Z
L
w̄ðx; rÞfðrÞdr ð1Þ

where L represents the entire one-dimensional domain; and
w̄ðx; rÞ = weighting function that satisfies the normalizing condi-
tion, such that the nonlocal averaging operator does not alter a
uniform field, i.e.

w̄ðx; rÞ ¼ wðx; rÞR
L wðx; rÞdr

ð2Þ

The value of the weight function wðx; rÞ depends solely on the
distance between two spatial locations, determined by the differ-
ence between the global coordinate of the point x and the local co-
ordinate of a neighboring point r. The choice of the weight function
and the interaction radius of the nonlocal model determines the size
of the localization zone and the strain distribution within the zone.
A bell-shaped function is conventionally used as the weight func-
tion. In the proposed formulation, this function is defined as

wðrÞ ¼
�
1 − r2

R2

�
2

ð3Þ

where R = interaction radius; and the Macaulay brackets h·i indi-
cate the positive part of the argument only. Fig. 2 plots this weight
function; the horizontal axis represents the local coordinate r and
the vertical axis represents the corresponding weight wðrÞ.

 Local Coordinate r

W
ei

gh
t 

 w
(r

)

R

Fig. 2. Weight function used for nonlocal averaging.

length over 
which the 
damage is 
measured

strain-
softening

elastic 
unloading

compressive 
loading

elastic 
unloading

Fig. 1. Idealized damage localization in a concrete cylinder.
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Nonlocal Displacement-Based Frame-Element
Formulation

The nonlocal element formulation is derived by enriching the DB
beam element with nonlocal section deformation variables. The
nonlocal variables are obtained through a nonlocal averaging op-
eration that incorporates interactions with neighboring sections
over a certain interaction radius. The two-dimensional element for-
mulation presented herein is based on Euler–Bernoulli beam
theory. The main equations of the basic (local) formulation are pre-
sented first, and then the nonlocal enrichment of the formulation is
illustrated. The element has six global degrees of freedom (DOFs)
(Fig. 3). By transforming the DOFs to the local coordinate system
and eliminating the rigid body modes, the element deformations
vector v can be expressed as

v ¼ ½ v1 v2 v3 �T ð4Þ

and the corresponding vector of element forces q (Fig. 3) is

q ¼ ½ q1 q2 q3 �T ð5Þ

The interpolation of the displacement field can be expressed as

uðxÞ ¼ NðxÞv ð6Þ

uðxÞ ¼
�
uaðxÞ
utðxÞ

�
ð7Þ

where uðxÞ = vector of the axial and transverse displacements at
each section along the element; and NðxÞ = matrix of the displace-
ment shape functions, which uses the cubic Hermitian polynomials
for transverse displacements and linear Lagrange polynomials for
the axial displacement

NðxÞ ¼
�
ξ 0 0

0 ξ3 − 2ξ2 þ ξ ξ3 − ξ2

�
ð8Þ

where ξ ¼ x=l, where l = element length. This choice yields con-
stant axial strain and linear curvature along the element length, and
leads to the following kinematic relationship:

eðxÞ ¼ BðxÞv ð9Þ
where eðxÞ = vector of section deformations

eðxÞ ¼
�
εaðxÞ
φðxÞ

�
ð10Þ

where εaðxÞ ¼ u 0
aðxÞ = section axial strain; φðxÞ ¼ u 0 0

t ðxÞ =
section curvature; and the strain-displacement matrix BðxÞ consists
of shape function derivatives. The corresponding resultant section
forces sðxÞ (Fig. 3) are

sðxÞ ¼
�
NðxÞ
MðxÞ

�
ð11Þ

which consist of the section axial force and bending moment. The
changes in the section forces sðxÞ are related to changes in section
deformations eðxÞ through the section stiffness matrix ks

ks ¼
∂s
∂e ¼

2
6664
∂N
∂εa

∂N
∂φ

∂M
∂εa

∂M
∂φ

3
7775 ð12Þ

Application of the principal of virtual displacement leads to the
following equilibrium condition between the element forces q and
the section forces s:

q ¼
Z

l

0

BTðxÞsðxÞdx ≈ XNp

i¼1

BTðxiÞsðxiÞΩi ð13Þ

Eq. (13) is evaluated using numerical quadrature over Np num-
ber of sections along the element, where Gauss-Legendre is the
selected as the integration rule. In the expression, Ωi represents
the quadrature weight associated with each integration point. In
a similar fashion, the element stiffness matrixK is assembled from
the individual section stiffness matrices as follows:

K ¼ ∂q
∂v ¼

Z
l

0

BTðxÞksðxÞBðxÞdx ≈ XNp

i¼1

BTðxiÞksðxiÞBðxiÞΩi

ð14Þ
In the fiber-based formulation, each section is divided into a

number of fibers Nf (Fig. 3), and the section forces are evaluated
by aggregating the uniaxial stresses σj at each fiber location

sðxiÞ ¼
XNf

j¼1

aTj σjAj ð15Þ

where Aj = cross-sectional area of fiber j; and aj ¼ ½ 1 −yj � = a
transformation matrix, where yj = location of fiber j in the cross
section. Similarly, the fiber uniaxial strains are evaluated from the
section deformations as

εj ¼ ajeðxiÞ ð16Þ
The nonlocal formulation is obtained by introducing nonlocal

deformation variables into the constitutive model. These nonlocal
variables can be introduced as section deformations at the element

(a)

(b)

(c) (d)

Fig. 3. Schematic representation of fiber-based frame element:
(a) element global DOFs; (b) natural DOFs and corresponding element
forces; (c) section deformations and corresponding forces; and
(d) fiber-discretized cross section.
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level, or as uniaxial strains at the section level. In the proposed
formulation, the nonlocal section deformations ~e are evaluated
as a weighted average of the corresponding local deformations
at the neighboring sections

~eðxÞ ¼
Z
L
w̄ðrÞeðx; rÞdr ð17Þ

where w̄ðrÞ = normalized weight function presented in the preced-
ing section; and L represents the entire domain. Because of
the monotonically decreasing nature of the weight function, the
contributions from neighboring sections die out as the distance r
increases. Therefore, it is computationally efficient to use a weight
function with a bounded support, such as the function in Eq. (3).
Eq. (17) is also evaluated using numerical quadrature, leading to the
following expression for the nonlocal deformation of section i,
evaluated by averaging the deformations over N neighboring sec-
tions (determined by the interaction radius):

~eðxiÞ ¼
P

N
k¼1 wðrkÞeðxkÞΩkP

N
k¼1 wðrkÞΩk

ð18Þ

where wðrkÞ and Ωk = nonlocal weight and quadrature weight, re-
spectively, associated with section k; and rk = distance between
sections i and k. The expression represents a normalized weighted
average which does not alter a uniform field, as explained in the
preceding section. The nonlocal uniaxial fiber strains ~ε are evalu-
ated in a manner similar to Eq. (16)

~εj ¼ aj ~eðxiÞ ð19Þ
Finally, the fiber stresses and strains are related through a con-

stitutive relationship, in which the uniaxial stresses depend on both
the local and nonlocal uniaxial strains. The constitutive model used
in this work is described in the following section.

The assumption that plane sections remain plane, which follows
from Euler–Bernoulli beam theory, implies no interaction between
the individual fibers in a cross section. This limitation means
that shear deformations are not considered in the element formu-
lation. Extension of the nonlocal formulation to shear-deformable
beams—for example, the mixed formulation beam element by
Filippou and Saritas (2006)—warrants further investigation.

Furthermore, in the context of the nonlocal formulation, the
forces at a section i are now a function of the deformations at sec-
tion i, and the deformations at the neighboring sections. This can be
expressed as

sðxiÞ ¼ sðeðxiÞ; ~eðxi; eðxkÞÞÞ ð20Þ
where subscript k implies summation over N neighboring sections.
The stiffness matrix for section i can be evaluated by taking the
derivative of the section forces vector in Eq. (20), with respect
to both of its arguments

knl
s ðxiÞ ¼

∂sðxiÞ
∂eðxkÞ ¼

∂sðxiÞ
∂eðxiÞ δik þ

∂sðxiÞ
∂ ~eðxiÞ

∂ ~eðxiÞ
∂eðxkÞ ð21Þ

where δik = Kronecker delta, and no summation is implied over the
subscript i; the first term on the right-hand side of the equation rep-
resents the local section stiffness; and the second term is obtained
using the chain rule. Substituting into Eq. (14) for the element stiff-
ness matrix gives

K ¼
XNp

i¼1

BTðxiÞksðxiÞBðxiÞΩi

þ
XNp

i¼1

XN
k¼1

BTðxiÞfksðxiÞ
∂ ~eðxiÞ
∂eðxkÞBðxkÞΩi ð22Þ

where fksðxiÞ ¼ ∂sðxiÞ=∂ ~eðxiÞ; Np = number of integration points
along the element; and N = number of integration points (or sec-
tions) included in the nonlocal averaging operation, and typically
spans several elements. The second term on the right-hand side rep-
resents an additional nonlocal contribution to the element stiffness
matrix. The current numerical implementation of this formulation
ignores the nonlocal term, and approximates the element stiffness
matrix by the local stiffness matrix (the first term only). Although
using the fully consistent tangent stiffness matrix typically accel-
erates convergence, it may be argued that the nonlocal term in
Eq. (22) increases the bandwidth of the stiffness matrix and, cor-
respondingly, increases the computational expense. This issue may
require further investigation to weigh this expense against that re-
quired for convergence with an approximate local stiffness matrix.
Such investigation is, however, outside the scope of this paper.

Eqs. (18) and (19), in combination with the constitutive model
presented in the following section, represent the nonlocal enrich-
ment of the conventional DB element formulation. The following
observations can be made:
1. Eq. (18) requires communication of the deformation data be-

tween neighboring sections within a given element, as well
as sections in the neighboring elements. The extent of the inter-
action with neighboring sections depends on the selected length
scale or interaction radius associated the weighting function
in Eq. (3).

2. The nonlocality in the current formulation is introduced through
integral terms of existing quantities of the deformation field
(section deformations or fiber strains). The formulation does
not incorporate additional intermediate boundary conditions
or impose stronger continuity requirements on the interpolation
functions of the finite element solution.

3. The proposed model enforces the nonlocality at the constitutive
level, through appropriately enriched material models. This as-
pect has the following implications:
• The formulation imposes constraints on the form of the con-

stitutive model used in combination with the proposed non-
local DB element (the stress is a function of the local and
nonlocal strains).

• The imposed length scale (through the interaction radius of
the weight function) may be attributed a physical meaning
that is directly related to strain measurements in a uniaxial
experiment. The interpretation of this length-scale parameter
in the current study was briefly discussed in the preceding
section, and is quantatively specified subsequently.

• The formulation may be directly extended to model multiple
softening responses with different length parameters within
the same section; a feature that may be suited for modeling
multiple localization phenomena in composite sections (for
example, concrete crushing and rebar buckling in a RC sec-
tion). Such phenomena may be difficult to accommodate
using recent gradient frame-element formulations which en-
force the nonlocality in the strain-displacement relationship
of the element (e.g., Sideris and Salehi 2016) using a single,
and somewhat empirical, length-scale parameter.

Nonlocal Constitutive Model

A bilinear softening plasticity model is used to model the concrete
response in the proposed framework. The basic (local) form of the
model is presented first, and then the nonlocal enrichment is de-
scribed. The model retains the typical one-dimensional equations
of elastoplasticity, which consist of a yield function that has the
form

© ASCE 04018217-5 J. Struct. Eng.
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fðσ;κÞ ¼ kσk − σyðκÞ ð23Þ

where σ = stress; and κ = hardening/softening variable. The evo-
lution of the yield stress is described by a hardening/softening law.
A linear softening law has the form

σyðκÞ ¼ σo þHκ ð24Þ

whereH = plastic modulus, such thatH < 0 for softening materials.
The model also includes the following stress-strain relationship,
flow rule, and consistency conditions, respectively

σ ¼ Eðε − εpÞ ð25Þ

ε̇p ¼ λ̇signðσÞ ð26Þ

λ̇ ≥ 0; fðσ; κÞ ≤ 0; λ̇fðσ; κÞ ¼ 0 ð27Þ
where E = elastic modulus; ε and εp = total and plastic strain, re-
spectively; and λ̇ = rate of the plastic multiplier. Finally, the rate of
the hardening/softening variable is related to the plastic strain rate by

κ̇ ¼ kε̇pk ð28Þ

The simplest nonlocal plasticity formulation is obtained by
replacing the local softening variable κ with its nonlocal counter-
part ~κ, defined as

~κ ¼
Z
L
w̄ðx; rÞκðrÞdr ð29Þ

This so-called purely nonlocal form leads to regularizing the
global response (i.e., the load-displacement), but it does not prevent
mesh-dependent strain localization. The same result was noted by
Planas et al. (1993), Brinkgreve (1994), and Bažant and Jirásek
(2002). This problem is resolved by the overly nonlocal model
in which the local softening variable κ is replaced by a linear com-
bination of the local and nonlocal counterparts. This combination is
herein referred to as κ̄, and is defined as

κ̄ ¼ m
Z
L
w̄ðx; rÞκðrÞdrþ ð1 −mÞκ ð30Þ

Accordingly, the consistency conditions in Eq. (27) now
become

λ̇ ≥ 0; fðσ; κ̄Þ ≤ 0; λ̇fðσ; κ̄Þ ¼ 0 ð31Þ
and the rest of the equations remain the same. This formulation was
first proposed by Brinkgreve (1994), and has been adopted in
different constitutive frameworks (e.g., Strömberg and Ristinmaa
1996; Bažant and Di Luzio 2004; Grassl and Jirásek 2006).
Eq. (30) introduces a weighting parameter m which must take val-
ues greater than 1.0, thereby attributing a higher weight to the non-
local model (hence the name overly nonlocal). Using m > 1.0,
therefore, ensures that zones of low local plastic strain get higher
nonlocal plastic strain, which leads to effective distribution of
the plastic strains over the localization zone (Brinkgreve 1994).
The local and the simple nonlocal formulations are recovered
when m ¼ 0.0 and 1.0, respectively. In addition to the interaction
radius R,m is a model parameter that likewise affects the size of the
localization zone and, correspondingly, the slope of the softening
response.

In a monotonic loading context, the value of the softening
variable represents the equivalent plastic strain, i.e., κ ¼ kεpk;
therefore κ̄ can be expressed as

κ̄ ¼ ð1 −mÞkεpðxÞk þm
Z
L
w̄ðrÞkεpðxþ rÞkdr ð32Þ

In the local material model, the consistency conditions
[Eq. (27)] for all Gauss points are uncoupled, i.e., they can be
solved for each Gauss point separately for the increment of the
plastic multiplier. In contrast, in the nonlocal model, the value
of the yield stress at each Gauss point depends on the value of
the softening variable (and therefore the plastic multiplier) at the
neighboring Gauss points. Consequently, the consistency condi-
tions become coupled, and a system of equations for all Gauss
points within the softening zone needs to be solved; Rolshoven
(2003) presented a detailed implementation of the stress return al-
gorithm for nonlocal softening models. The computational expense
associated with the aforementioned approach can be circumvented
by making suitable approximations of the nonlocal plastic strain.
Recognizing that the plastic response usually dominates the elastic
response, the averaging terms of the plastic strains in Eq. (32) can
be approximated by the total strains (which are directly calculated
from the loading and boundary conditions of the problem). Using
this approach, the consistency conditions for all Gauss points
remain uncoupled, and the need to solve a system of equations
for multiple points is eliminated. This approximation was first in-
troduced by Brinkgreve (1994). The nonlocal softening variable
can now be expressed as

κ̄ ¼ kεpðxÞk −mkεk þmk~εk ð33Þ
where

~ε ¼
Z
L
w̄ðrÞεðxþ rÞdr ð34Þ

The approximation in Eq. (33) indicates that the nonlocal soft-
ening variable at a material point (i.e., a fiber location in the cross
section) can now be evaluated using the local quantities at the point
(the softening variable and total strain) in addition to the nonlocal
total strain at the point; the latter is evaluated using the proposed
nonlocal element formulation.

The proposed nonlocal element formulation, in combination
with the nonlocal constitutive model described herein, was imple-
mented in OpenSees and its perfomance was investigated, as dis-
cussed in the following section. The algorithmic implementation
scheme is illustrated in Fig. 4, which omits the constitutive equa-
tions for brevity. A detailed description of the stress-return algo-
rithm was given by Brinkgreve (1994).

Assessment of Proposed Nonlocal Framework

The performance of the proposed framework was assessed via a
series of numerical simulations which compared the nonlocal
model predictions with those of the conventional (local) model
and with experimental data. The test problem was a RC cantilever
column subjected to constant axial load, and monotonically in-
creasing lateral displacements (Fig. 5). The following parameters
defined the problem: (1) the axial load ratio, which is defined
as η ¼ P=ðfcAgÞ, where P is the axial load, fc is the unconfined
concrete strength, and Ag is the gross concrete area in the section;
(2) the volumetric transverse reinforcement ratio ρt, which charac-
terizes the confinement of the concrete in the column; and (3) the
shear span:depth ratio, defined as M=Vd, where M=V is the
moment:shear ratio (for a cantilever beam loaded at the tip
with a lateral force, this ratio is the beam length L) and d is the
section depth. The response quantities of interest were the lateral
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load-displacement response (global response), and the curvature
profile along the column (local response). The objective of the
numerical investigation was to examine the ability of the proposed
approach to robustly and accurately simulate the global and local
response of the column. To this end, the numerical study consisted
of the following two phases:
1. A mesh sensitivity study, in which the sensitivity of the simula-

tion results to the choice of the member discretization (or
mesh size) was examined over a practical range of problem
parameters. The results obtained using the proposed nonlocal
approach were compared with those obtained with the conven-
tional analysis methodology.

2. Comparison with experimental data, in which the predicted re-
sponse of 24 RC columns was validated against the observed
response in laboratory experiments.
To appropriately compare the simulation results to experimental

data in Phase 2, the material parameters were carefully selected to
represent the constitutive response observed in the experiments.
The selection of these parameters, in addition to the nonlocal model
parameters, is discussed in the following subsection, followed by a
summary of each phase of the numerical investigation.Fig. 5. Configuration of test problem.

 Global System   
Structure  

Coordinate 
Transformation 

 
Nonlocal Displacement Beam Column 

 
 
 
 
 
 
 
 

Element 

For  = 1:number of sections per element 
Local section deformation 
 

 
 
Nonlocal section deformations 
for  = 1: number of sections  within 
characteristic length over multiple elements 
 

 
 

 

 

Element forces  

 

 
Element stiffness 

 

  
 

 

Nonlocal Fiber Section 
 

 
 
 
 

Section 

for  = 1: number of fibers 
Local fiber uniaxial strain 

 
Nonlocal fiber uniaxial strain 

 
 

Resultant section forces 

 

Section (local) stiffness 

 

 
 

  

Nonlocal Softening Plasticity Material 
 

 
 

Material Fiber uniaxial stress  
 
Fiber (local) tangent modulus  
 

Fig. 4. Algorithmic implementation of nonlocal element formulation in OpenSees.
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Selection of Material Parameters

In the simulation models, the cross section of the column con-
sisted of fibers of unconfined and confined concrete, and layers
of longitudinal reinforcing steel [Fig. 3(d)]. Fig. 6 shows a sche-
matic representation of the response of each material. The nonlo-
cal bilinear softening material was used to model the response of
the concrete. Both the unconfined and confined concrete had no
tensile strength; the compressive response is shown on the positive
side for the concrete [Fig. 6(a)]. The Steel02 material in OpenSees
[Giuffré-Menegotto-Pinto model by Menegotto and Pinto (1973)]
was used to model the response of the reinforcing bars with a
symmetric behavior in tension and compression [Fig. 6(b)].
Fracture of the rebar in tension and buckling in compression
was not considered in the simulation models, because the primary
purpose of the study was to simulate concrete damage in compres-
sion. These mechanisms, however, have a significant effect on
the response of RC columns at ultimate limit states and are the
subject of ongoing studies by the authors. The strength of the un-
confined concrete fc and the yield stress of the reinforcing bars
fy (Fig. 6) were obtained from the experimental data directly. For
the remaining material parameters, the following assumptions
were made:

Steel Reinforcement
The elastic modulus Es of the steel was assumed to be 200 GPa,
and the strain-hardening ratio b (the ratio of the postyield tangent to
the initial elastic tangent modulus) was assumed to be 1% unless
reported otherwise. In cases where the experimental stress-
strain curve of the reinforcement was provided, a bilinear approxi-
mation of the curve was used in the simulation model. For the
elastic-plastic transition parameters of Steel02 material, OpenSees
recommended values were adopted (R0 ¼ 15, cR1 ¼ 0.925, and
cR2 ¼ 0.15). These parameters control the radius of curvature
of the transition between the initial elastic branch and the postyield
branch of the steel material.

Unconfined Concrete
The concrete strain at maximum stress εc was assumed be 0.002,
which is a generally accepted value in the literature. Because the
adopted material model is bilinear (i.e., the behavior was approxi-
mated as elastic until the onset of softening), the elastic modulus
Ec is directly calculated as fc=εc. The deterioration rate or soft-
ening slope (referred to in the figure as Ed) was determined such
that the spalling strain (strain at zero stress) was 0.008. This was
an approximate value based on observations from experimental

tests on normal-weight concrete, which indicated that the spalling
strain of the unconfined concrete was in the range 0.006–0.010.
However, the choice of the spalling strain of the unconfined
concrete had little or no influence on the response of the beam-
column specimens in the validation study, and the overall behavior
of the RC section was controlled primarily by the confined
concrete.

Confined Concrete
The properties of the confined concrete, particularly the maximum
stress fcc and the deterioration rate or softening slope Edc,
strongly control the overall postpeak response of the column.
Consequently, accurate estimation of these parameters guarantees
consistency of the comparison of the simulated and experimen-
tally observed responses, and is a key ingredient in the model
validation process. Therefore, a separate study was conducted to
select an appropriate confinement model. The details of the study,
which compared four commonly used confinement models, are
reported in the Appendix. The modified Kent and Park model
(Scott et al. 1982) was selected for the current study because it
balanced accuracy with simplicity. Scott et al. (1982) provide
an overview of the equations used to predict the maximum con-
crete stress fcc, concrete strain at maximum stress εcc, and the
softening slope Edc.

Nonlocal Length-Scale Parameter
The nonlocal interaction radius R affects the length of the plastic
curvature zone in the column, the value of the maximum curvature,
and the overall postpeak response of the member. In reference to
the preceding discussion of compressive damage in concrete, this

Table 1. Parameters of test problems created for mesh sensitivity study

Number
Shear span:depth

ratio, L=d
Axial load ratio,
η ¼ P=ðfcAgÞ

Transverse
reinforcement

ratio, ρt

1 4.70 0.35 0.020
2 4.70 0.10 0.020
3 4.70 0.65 0.020
4 4.70 0.35 0.010
5 4.70 0.35 0.040
6 2.58 0.35 0.015
7 2.58 0.10 0.015
8 2.58 0.65 0.015
9 2.58 0.35 0.008
10 2.58 0.35 0.031

(a) (b)

Fig. 6. Material models adopted in simulations: (a) unconfined and confined concrete; and (b) longitudinal steel reinforcement.

© ASCE 04018217-8 J. Struct. Eng.

 J. Struct. Eng., 2018, 144(12): 04018217 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, D

av
is

 o
n 

11
/2

0/
18

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



0 1 2 3 4

Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

4 ele
6 ele
8 ele

L/d = 4.7
= 0.35

t
= 0.020

Local

0 1 2 3 4

Drift Ratio (%)

0

20

40

60

80

100

120

140

La
te

ra
l L

oa
d 

(k
N

)

4 ele
6 ele
8 ele

L/d = 4.7
= 0.10

t
= 0.020

Local

0 0.5 1 1.5 2

Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

4 ele
6 ele
8 ele

L/d = 4.7
= 0.65

t
= 0.020

Local

0 1 2 3 4
Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

4 ele
6 ele
8 ele

L/d = 4.7
= 0.35

t
= 0.010

Local

0 1 2 3 4

Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

4 ele
6 ele
8 ele

L/d = 4.7
= 0.35

t
= 0.040

Local

0 1 2 3 4

Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.35

t
= 0.020

Nonlocal

0 1 2 3 4

Drift Ratio (%)

0

20

40

60

80

100

120

140

La
te

ra
l L

oa
d 

(k
N

)

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.10

t
= 0.020

Nonlocal

0 0.5 1 1.5 2

Drift Ratio (%)

0

50

100

150

La
te

ra
l L

oa
d 

(k
N

)

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.65

t
= 0.020

Nonlocal

0 1 2 3 4
Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.35

t
= 0.010

Nonlocal

0 1 2 3 4

Drift Ratio (%)

0

50

100

150

200

La
te

ra
l L

oa
d 

(k
N

)

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.35

t
= 0.040

Nonlocal

(a)

(b)

(c)

(d)

(e)

Fig. 7. Load-displacement response predicted using nonlocal and local models: (a) Test Problem 1; (b) Test Problem 2; (c) Test Problem 3;
(d) Test Problem 4; and (e) Test Problem 5.

© ASCE 04018217-9 J. Struct. Eng.

 J. Struct. Eng., 2018, 144(12): 04018217 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, D

av
is

 o
n 

11
/2

0/
18

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



0 0.5 1 1.5 2 2.5

Curvature (/mm) 10-4

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.35

t
= 0.020

Nonlocal

0 0.5 1 1.5 2 2.5

Curvature (/mm) 10-4

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.10

t
= 0.020

Nonlocal

0 2 4 6 8

Curvature (/mm) 10-5

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.65

t
= 0.020

Nonlocal

0 0.5 1 1.5 2 2.5

Curvature (/mm) 10-4

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.35

t
= 0.010

Nonlocal

0 0.5 1 1.5 2 2.5

Curvature (/mm) 10-4

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

6 ele
8 ele
10 ele
12 ele

L/d = 4.7
= 0.35

t
= 0.040

Nonlocal

0 0.2 0.4 0.6 0.8 1 1.2

Curvature (/mm) 10-3

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

4 ele
6 ele
8 ele

L/d = 4.7
= 0.35

t
= 0.020

Local

0 2 4 6 8

Curvature (/mm) 10-4

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

4 ele
6 ele
8 ele

L/d = 4.7
= 0.10

t
= 0.020

Local

0 1 2 3 4 5 6

Curvature (/mm) 10-4

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

4 ele
6 ele
8 ele

L/d = 4.7
= 0.65

t
= 0.020

Local

0 0.2 0.4 0.6 0.8 1 1.2

Curvature (/mm) 10-3

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

4 ele
6 ele
8 ele

L/d = 4.7
= 0.35

t
= 0.010

Local

0 0.2 0.4 0.6 0.8 1 1.2

Curvature (/mm) 10-3

0

1

2

3

4

5

H
ei

gh
t /

 S
ec

tio
n 

D
ep

th

4 ele
6 ele
8 ele

L/d = 4.7
= 0.35

t
= 0.040

Local

(a)

(b)

(c)

(d)

(e)

Fig. 8. Curvature profile predicted using nonlocal and local models: (a) Test Problem 1; (b) Test Problem 2; (c) Test Problem 3; (d) Test Problem 4;
and (e) Test Problem 5.
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parameter can be interpreted to effectively represent the gauge
length associated with a strain-softening relationship (and, there-
fore, a certain softening slope), i.e., the length over which the strain
is measured in an experimental setup. In the specific case of
confined concrete, the softening slope of the confined concrete
is typically predicted via a confinement model that consists of re-
gressed equations based on small or full scale RC column tests.
Consequently, the softening slopes dictated by these models have
clearly defined length scales. The interaction radius can, therefore,
be directly inferred from the confinement model. This study
adopted the length scale associated with the modified Kent and
Park confinement model. This value was reported by Scott et al.
(1982) as 400 mm, and was used for all numerical examples.
For general application of the proposed approach, the appropriate
length scale associated with the confinement model or experimental
stress-strain curve should be used. It should be noted that the size of
the specimens in the Kent and Park experiments was 1,200 × 450×
450 mm, and therefore size effects may be present if this confine-
ment model is used to predict the properties of confined concrete in
larger columns. However, this is an inherent artifact of the confine-
ment model, and is not addressed in the proposed approach. In ad-
dition, the present research studied only cantilever columns in
which the localization initiated at the domain boundary. In this par-
ticular case, the interaction radius was conveniently interpreted to
be equivalent to the characteristic length. In circumstances where
localization occurs farther from the boundary, the interaction radius
is half of the characteristic length. Jirásek and Rolshoven (2003)
further discussed the difference between localization zones close
to and far from the domain boundary.

Nonlocal Weighting Parameter
The weighting parameter m was selected somewhat arbitrarily
to be 1.5. As previously discussed, m must take values larger than
1.0 to mitigate mesh-dependent strain localization (Brinkgreve
1994). Choosing m in the range 1.2–2.0 had minimal effect on
the response.

Mesh Sensitivity Study

Table 1 lists the parameters of the test problems created for this
study, which included three different levels of axial load ratios and
transverse reinforcement ratios for two columns with shear span:
depth ratios of 2.58 and 4.70. For each test problem, a pair of sim-
ulation models was created as follows: (1) a simulation model which
used the proposed nonlocal framework (herein referred to as the
nonlocal model); and (2) a simulation model which used the con-
ventional approach and Concrete02 material in OpenSees (referred
to as the local model). Both simulation models used successively
refined meshes (i.e., different number of elements per member),
and two variations of the mesh density, either a uniform or a non-
uniformmesh; in the latter, the element size varied along themember
to provide a higher resolution of the plastic hinge region. The Gauss-
Legendre quadrature rule was used, with two Gauss points per
element. The results of each simulation pair (the load-displacement
response and the curvature profile along the column)were compared.

Fig. 7 shows the lateral load versus drift ratio predicted by both
approaches for Test Problems 1–5, and Fig. 8 shows the predicted
curvature profile for the same test problems at the last step of the
analysis (at 3% drift ratio for Problems 1, 2, 4, and 5, and 1.5%
drift ratio for Test Problem 3). The following observations can
be made from the figures:
• Although both approaches predicted the peak capacity of the

column objectively, the postpeak response predicted by the local
model exhibited severe mesh sensitivity. As the mesh was re-
fined, the postpeak slope became steeper, resulting in severe
convergence problems in the local model. This was particularly
noticeable in test problems with high axial load ratios (repre-
sented by Test Problem 3 in Fig. 7). This was not unexpected,
because in such cases most of the column section is in compres-
sion, and the postpeak response is primarily controlled by the
concrete softening.

• On the other hand, the load-displacement response predicted
by the nonlocal model was unaffected by the mesh size.

Table 2. Properties of column specimens tested in laboratory

Number Reference
Length,
L (mm)

Section
depth,
d (mm)

Axial
load ratio,

η ¼ P=ðfcAgÞ

Unconfined
concrete strength,

fc (MPa)

Transverse
reinforcement

ratio, ρt

Longitudinal
reinforcement

ratio, ρl

1 Ang et al. (1981), Specimen 3 1,600 400 0.38 23.6 0.028 0.015
2 Ang et al. (1981), Specimen 4 1,600 400 0.21 25.0 0.022 0.015
3 Atalay and Penzien (1975), Specimen 11 1,676 305 0.28 31.0 0.015 0.016
4 Atalay and Penzien (1975), Specimen 10 1,676 305 0.27 32.4 0.009 0.016
5 Atalay and Penzien (1975), Specimen 6S1 1,676 305 0.18 31.8 0.009 0.016
6 Gill et al. (1979), Specimen 1 1,200 550 0.26 23.1 0.015 0.018
7 Gill et al. (1979), Specimen 3 1,200 550 0.42 21.4 0.018 0.018
8 Kanda et al. (1988), 85STC-1 750 250 0.11 27.9 0.011 0.016
9 Kono and Watanabe (2000), D1N60 625 242 0.66 37.6 0.015 0.024
10 Kono and Watanabe (2000), D1N30 625 242 0.33 37.6 0.015 0.024
11 Saatcioglu and Grira (1999), BG-1 1,645 350 0.43 34.0 0.010 0.020
12 Saatcioglu and Grira (1999), BG-2 1,645 350 0.43 34.0 0.020 0.020
13 Saatcioglu and Grira (1999), BG-3 1,645 350 0.20 34.0 0.020 0.020
14 Saatcioglu and Grira (1999), BG-4 1,645 350 0.46 34.0 0.013 0.029
15 Saatcioglu and Grira (1999), BG-8 1,645 350 0.23 34.0 0.013 0.029
16 Soesianawati et al. (1986), Specimen 1 1,600 400 0.10 46.5 0.009 0.015
17 Soesianawati et al. (1986), Specimen 2 1,600 400 0.30 44.0 0.012 0.015
18 Soesianawati et al. (1986), Specimen 3 1,600 400 0.30 44.0 0.008 0.015
19 Soesianawati et al. (1986), Specimen 4 1,600 400 0.30 40.0 0.006 0.015
20 Tanaka and Park (1990), Specimen 1 1,600 400 0.20 25.6 0.026 0.016
21 Tanaka and Park (1990), Specimen 7 1,650 550 0.30 32.1 0.021 0.013
22 Watson and Park (1989), Specimen 5 1,600 400 0.50 41.0 0.014 0.015
23 Watson and Park (1989), Specimen 9 1,600 400 0.70 40.0 0.048 0.015
24 Zahn et al. (1985), Specimen 7 1,600 400 0.22 28.3 0.016 0.015

© ASCE 04018217-11 J. Struct. Eng.

 J. Struct. Eng., 2018, 144(12): 04018217 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, D

av
is

 o
n 

11
/2

0/
18

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



The mesh-objectivity of the results was evident across the entire
range of simulations. Additionally, whereas the formulation
added a layer of computational effort to the analysis, the non-
local model simulations exhibited superior convergence beha-
vior compared with the local model.

• The curvature profile predicted by the local model (left-hand
side of Fig. 8) suffered from localization of the plastic curvature
into a single element at the base of the column for all cases,
leading to mesh-dependent values of the maximum curvature
and the length of the plastic hinge. In contrast, the nonlocal
model (right-hand side of Fig. 8) successfully predicted a unique
curvature profile and eliminated the mesh dependence of the
curvature values and distribution.

• The mesh convergence of the nonlocal simulations character-
ized by a low axial-load ratio (e.g., Test Problem 2 in Fig. 8)
was relatively slow compared with the remaining set, meaning
that finer meshes were needed to obtain a converged curvature
distribution. This phenomenon may be attributed to the fact
that most of the concrete section was in tension, which pos-
sessed zero load-carrying capacity in the current model. In such

problems, the nonlocal effect becomes less pronounced as the
response is no longer controlled by compressive softening. In
contrast, in test problems with relatively high axial load ratios
(Test Problems 1, 3, 4, and 5 in Fig. 8), the curvature profile
rapidly converged using a relatively coarse mesh size.
The effect of the mesh density variation on the convergence of

the curvature profile is perhaps relevant to the present discussion;
using a nonuniform mesh accelerates the mesh convergence in the
nonlocal model because it permits a higher resolution of the plastic
curvature at the hinge zone compared with a uniform mesh with the
same number of elements (used for Test Problems 6 through 10—
not depicted in the figures). This contrasts with the local model, in
which the mesh sensitivity is accentuated with the nonuniform
mesh, because the size of the first element (in which the curvature
localizes) is much smaller than its counterpart in the uniform mesh.

Furthermore, in order for the nonlocal formulation to be effec-
tive, the member discretization needs to be such that the length
(or integration weight) associated with a single Gauss point is
smaller than the interaction radius of the nonlocal model (therefore
allowing interaction with at least one neighboring Gauss point).
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Fig. 9. Predicted and experimentally observed load-displacement response: (a) Ang et al. (1981), Specimen 3; (b) Atalay and Penzien (1975),
Specimen 10; (c) Gill et al. (1979), Specimen 1; (d) Gill et al. (1979), Specimen 3; (e) Kono and Watanabe (2000), D1N60; and (f) Ang et al.
(1981), Specimen 4.

© ASCE 04018217-12 J. Struct. Eng.

 J. Struct. Eng., 2018, 144(12): 04018217 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, D

av
is

 o
n 

11
/2

0/
18

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



For the columns used in this study, this constraint was achieved
with as few as three or four elements per member and two Gauss
points per element. However, this is a constraint for the nonlocality
of the model to take effect, and does not eliminate the general need
for sufficient discretization in DB elements to accurately interpolate
nonlinear deformation fields. In the mesh sensitivity study con-
ducted herein, a discretization of 6–10 elements per member
seemed to achieve satisfactory nonlinear curvature profile for all
test problems.

Comparison with Experimental Results

For this phase of the study, a database of 24 laboratory experiments,
obtained from the PEER Structural Performance Database (Berry
et al. 2004), was assembled to provide benchmark response data
across a wide range of section dimensions, transverse confinement
ratios, tie configurations, and axial load ratios. The properties of the
columns tested in the experiments are summarized in Table 2;

all columns had square sections with depth d ranging between
242 and 550 mm, and shear span:depth ratios M=Vd between
2.18 and 5.5. The ratio of the axial load on the column ranged
between 0.1 and 0.7 of the nominal axial capacity, and all the
specimens were reported to fail in flexure. Each column was sub-
jected to monotonic lateral displacements, and the predicted force-
deformation backbone was compared with the available cyclic data
of each experiment. Additionally, the predicted curvature profile
was compared with the experimentally observed curvature values
at discrete locations along the column, if such measurements were
available.

Figs. 9 and 10 show the predicted response of 12 columns over-
laid on the corresponding experimental data for each column.
These results are representative of the simulations conducted for
all the specimens in Table 2. To establish the context of the com-
parison between the predicted and the experimentally observed re-
sponse, it is noted that the nonlocal material model does not capture
cyclic degradation. Therefore, its efficacy may be appropriately
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Fig. 10. Predicted and experimentally observed load-displacement response: (a) Saatcioglu and Grira (1999), BG-3; (b) Saatcioglu and Grira (1999),
BG-4; (c) Soesianawati et al. (1986), Specimen 1; (d) Soesianawati et al. (1986), Specimen 3; (e) Soesianawati et al. (1986), Specimen 4; and
(f) Tanaka and Park (1990), Specimen 7.
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judged against the monotonic backbone of the experimentally ob-
served responses. It is important to note the distinction between this
monotonic backbone (which includes only in-cycle degradation or
softening) and the cyclic envelope, which includes both in-cycle

and cycle-to-cycle degradation. With this consideration, the follow-
ing observations are made based on the results in Figs. 9 and 10:
• The load-displacement response predicted by the nonlocal

model is in good agreement with the experimental cyclic
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Fig. 11. Predicted and experimentally observed curvature profiles: (a) Ang et al. (1981), Specimen 3; (b) Soesianawati et al. (1986), Specimen 4;
(c) Gill et al. (1979), Specimen 3; and (d) Tanaka and Park (1990), Specimen 1.
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data. Reconstructing the backbone envelope from a cyclic test
is not straightforward; however, the overall trends of the in-
cycle strength degradation are generally well-reproduced.

• In some specimens [e.g., Tanaka and Park (1990), Specimen 7
in Fig. 10(f), and Watson and Park (1989), Specimen 9], the
member capacity is underestimated by the simulation. This can
be attributed to the uncertainty associated with estimating the
confined concrete strength, as reported in the corresponding re-
ferences (Tanaka and Park 1990; Watson and Park 1989). In gen-
eral, the discrepancy between the theoretical and experimental
confined concrete capacity may be attributed to various factors,
including (1) underestiamtion or overestimation of the confined
concrete strength and/or strength degradation, and (2) additional
confinement effects unaccounted for in the simulation model (for
example, the confinement provided by the column base). With
these considerations in mind, the results suggest that the selected
modified Kent and Park model (Scott et al. 1982) predicts the
strength and the softening slope of the confined concrete with
reasonable accuracy, despite its simplicity.
Fig. 11 shows the simulated and experimentally measured cur-

vature distributions for four columns at the drift ratios indicated in
each figure. These specimens had a double-ended configuration,
and therefore the curvature values in the laboratory experiment
were recorded along the top and bottom halves. On the other hand,
the simulated curvature profile was based on an equivalent canti-
lever column (Fig. 5) subjected to monotonic displacements; there-
fore, the same profile was replicated for the top and bottom column
halves and for the positive and negative loading directions.

The following factors affected the accuracy of the experimen-
tally measured curvature distribution and must be considered to
provide context for the comparison (Fig. 11): (1) the curvature dis-
tribution was generally unsymmetric and/or the plastic hinge zone
was concentrated in either half of the column, which typically led
to large variations in the measured values for the top and bottom
halves of the column [e.g., Gill et al. (1979), Specimen 3 and
Tanaka and Park (1990), Specimen 1 in Figs. 11(c and d), respec-
tively]; (2) in some specimens [e.g., Ang et al. (1981), Specimen 3
in Fig. 11(a), and Soesianawati et al. (1986), Specimen 3], the
maximum curvature was shifted away from the central stub, pos-
sibly due to the additional confinement provided by the central
stub, which was not accounted for in the simulations; and
(3) slightly different curvature measurements at the same drift ratio
were recorded for different load cycles [Figs. 11(a and c)] due to
cycle-to-cycle degradation of the specimen, which also was not
captured in the simulations.

With these considerations in mind, it was concluded that the
simulated curvature profile agreed reasonably well with the exper-
imentally measured values, with regard to both the value of the
maximum curvature and the length of the plastic hinge zone.

The member discretization used to predict the curvature was rela-
tively coarse (10 elements per member, and two Gauss points per
element), thus demonstrating the computational efficiency of the
proposed approach.

Building upon the preceding discussion of the nonlocal model
parameters, the significance of the interaction radius R should be
emphasized. A major advantage of the proposed framework is the
independence of the value of R with respect to the specimen length,
section properties, and mesh size. Instead, this value depends solely
on the characteristic length of the softening constitutive relation-
ship, thereby enabling generic and robust simulation of the soften-
ing response of RC structural members.

Summary, Conclusions, and Limitations

This study introduced a novel nonlocal formulation framework
for the simulation of the postpeak response of RC beam-columns
to address the major weaknesses of displacement-based frame
elements in the presence of softening constitutive response. The
proposed framework consists of a nonlocal DB frame element
and a fiber-based nonlocal plasticity model. The framework was
implemented in OpenSees, and the performance of the nonlocal
model was compared with that of the conventional local model
and a large suite of available experimental data. The major findings
of this study are summarized as follows:
• The proposed framework successfully eliminates the mesh-

dependent strain localization in the presence of concrete soften-
ing in compression. The mesh sensitivity study shows that the
nonlocal model yields objective global (i.e., load-displacement)
and local (i.e., curvature profile) response.

• The proposed framework is able to predict the in-cycle strength
degradation (or softening) of RC beam-columns subjected to
combined axial loads and monotonically increasing lateral dis-
placements with reasonable accuracy. The numerical examples
in this study demonstrate that both the global and local column
response are in good agreement with the corresponding experi-
mental test data.

• The nonlocal frame element retains the standard DB finite-
element formulation and enriches the formulation with integral
terms of existing deformation variables that are straightforward
to calculate. The formulation does not incorporate additional
boundary conditions or impose stronger continuity requirements
on the finite-element interpolation functions. This DB formula-
tion is readily suited for modeling members with distribu-
ted loads.

• The nonlocal formulation incorporates a length-scale parameter
that is directly informed by the characteristic length associated
with the constitutive relationship, and is easily established based

Table 3. Column specimens examined in comparison of confinement models

Column label Reference
Unconfined concrete
strength, fc (MPa)

Transverse
reinforcement ratio, ρt

Longitudinal
reinforcement ratio, ρl

4A5-9 Sheikh and Uzumeri (1980) 40.5 0.024 0.033
B4-20 Sheikh and Uzumeri (1980) 34.7 0.017 0.037
B6-21 Sheikh and Uzumeri (1980) 35.5 0.024 0.037
D4-23 Sheikh and Uzumeri (1980) 35.9 0.017 0.037
D6-24 Sheikh and Uzumeri (1980) 35.9 0.023 0.037
No. 6 Scott et al. (1982) 25.3 0.017 0.019
No. 2 Scott et al. (1982) 25.3 0.018 0.018
A Razvi (1988) 32.0 0.013 0.031
B Razvi (1988) 29.0 0.027 0.031
A Razvi (1988) 39.0 0.028 0.016
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on the uniaxial stress-strain relationship determined by the con-
crete confinement model. This value does not depend on the
member length or section geometry, and is not based on an em-
pirical plastic hinge relationship.

• The nonlocality in the proposed formulation is enforced at the
constitutive level through an appropriately enriched nonlocal

plasticity model. This aspect lends the length-scale parameter
the straightforward interpretation adopted in this study. How-
ever, it also means that the model requires transfer of the defor-
mation data between different integration points (typically over
multiple elements) to calculate spatial averages of the deforma-
tion variables.
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Fig. 12. Observed and predicted uniaxial response of RC columns by different confinement models: (a) Sheikh and Uzumeri (1980), 4A5-9;
(b) Sheikh and Uzumeri (1980), 4B4-20; (c) Sheikh and Uzumeri (1980), 4D4-23; (d) Scott et al. (1982), Specimen 2; (e) Scott et al. (1982), Specimen
6; and (f) Razvi (1988), 16B.
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• Because of the aforementioned property, the proposed nonlocal
fiber-based frame model is computationally more expensive
than lumped plasticity models. However, the efficacy of fiber-
based models (enabling the spread of plasticity and capturing
P-M interaction) is the main motivation for the formulation de-
veloped in this study. A quantitative comparison of the integral
nonlocal formulation presented in this study against recent
gradient-based frame element formulations in the literature
may be needed to assess the performance and computational
expense associated with each.
The nonlocal constitutive relation employed in this study is

suited for monotonic loading only, and it represents a rather sim-
plified approximation of the nonlinear concrete response. Addition-
ally, the proposed framework focused on the simulation of concrete
softening in compression, and neglected other localized phenom-
ena at the cross-section level (e.g., rebar buckling). Therefore,
future work will focus on (1) developing a more realistic nonlocal
uniaxial constitutive model for concrete which incorporates both
strength and stiffness degradation and is suited for cyclic and seis-
mic loading applications, and (2) incorporating the effects of dam-
age of other components of the RC cross-section, namely buckling
of the steel rebar in compression and fracture in tension; these
phenomena can be incorporated in the fiber-based frame model
by using uniaxial material models for steel bars with nonlocal soft-
ening, as in the model presented by Kolwankar et al. (2017).

Appendix. Selection of Confined Concrete Model

In frame-element models utilizing a fiber section discretization, the
effect of the confining transverse reinforcement in the column is
conventionally modeled in an indirect manner by enhancing the
strength and postpeak response of the confined concrete. Several
models in the literature provide frameworks for estimating the con-
fined concrete properties; examples include Mander et al. (1988),
the modified Kent and Park model (Scott et al. 1982), Sheikh and
Uzumeri (1982), Razvi and Saatcioglu (1999), and Hoshikuma et al.
(1997). In the present numerical investigation, accurate prediction
of the confined concrete strength and strength degradation was es-
sential for consistency of the comparison of the simulation models
and experimental test data. Therefore, it was deemed necessary to
investigate different confinement models to determine a suitable
model for estimating the confined concrete properties.

The experimental stress-strain curves of 10 column specimens
tested under pure axial load in three different studies (Scott et al.
1982; Sheikh and Uzumeri 1980; Razvi 1988) were used to assess
the performance of four confinement models. The properties of the
column specimens are presented in Table 3; these specimens were
selected to span a range of transverse reinforcement ratios and tie
configurations. For each column, the uniaxial stress strain curves
predicted by the confinement models [Mander et al. (1988); the
modified Kent and Park model by Scott et al. (1982); Sheikh and
Uzumeri (1982); and Razvi and Saatcioglu (1999)] were compared
with the corresponding experimental stress-strain curve. The main
material parameters considered in the comparison were the con-
fined concrete maximum stress fcc and the softening slope Edc.

Fig. 12 shows representative results of the comparison in which
the predictions of the four confinement models are laid atop the
experimentally observed response. Model predictions usually pro-
duce best fits to the test data to which the model was calibrated;
therefore, the main objective of the comparison was to select a
model which consistently produced reasonable predictions across
different data sets. The results suggest that the Mander et al. (1988)
model generally underestimates the strength degradation of the

confined concrete, and in some cases, overestimates the strength.
For the selected specimens, the comparison indicates that the Razvi
and Saatcioglu (1999), modified Kent and Park (Scott et al. 1982),
and Sheikh and Uzumeri (1982) models tend to provide relatively
reasonable estimates of the strength and degradation rate, with the
Razvi and Saatcioglu model occasionally overestimating the capac-
ity. The modified Kent and Park model was selected for the present
study because it (1) provides reasonably accurate estimates of the
confined concrete parameters, and (2) produces a relatively simple
stress-strain curve that can be conveniently approximated with the
bilinear material model adopted in the present study (Fig. 13).
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