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Abstract 8 

Membrane diffusion is one of the key mechanisms in the cellular function of receptors. The 9 

signaling of receptor for advanced glycation end-products (RAGE) has been extensively studied 10 

in the context of several pathological conditions, however, very little is known about RAGE 11 

diffusion. To fill this gap, RAGE lateral diffusion is probed in native, cholesterol depleted and 12 

cytoskeleton altered cellular conditions. In native GM07373 cellular conditions, RAGE has a 13 

90% mobile fraction and an average diffusion coefficient of 0.3 μm2/s. When depolymerization 14 

of the actin cytoskeleton is inhibited with the small molecule Jasplakinolide (Jsp), the RAGE 15 

mobile fraction and diffusion coefficient decrease by 22% and 37%, respectively. In contrast, 16 

depolymerizing the filamentous actin cytoskeleton using the small molecule cytochalasin D (CD) 17 

does not alter the RAGE diffusion properties. There is a 70% and 50% decrease in 18 

phosphorylation of extracellular signal-regulated kinase (p-ERK) when the actin cytoskeleton is 19 

disrupted by CD or Jsp in RAGE expressing GM07373 cells. Disrupting the actin cytoskeleton in 20 

GM07373 cells that do not express detectable amounts of RAGE results in no change in p-ERK. 21 

Cholesterol depletion results in no statistically significant change in the diffusion properties of 22 

RAGE or p-ERK. This work presents a strong link between the actin cytoskeleton and RAGE 23 

diffusion and downstream signaling, and serves to further our understanding of the factors 24 

influencing RAGE lateral diffusion. 25 

Keywords Fluorescence recovery after photobleaching, phosphorylation of ERK, cell membrane 26 

biophysics, actin cytoskeleton, cholesterol depletion 27 

 28 
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Introduction 30 

Lateral diffusion of membrane proteins is often interrelated with their cellular signaling and 31 

functions in the cell membrane (Axelrod 1983; Ganguly et al. 2008; Ronchi et al. 2008). The 32 

receptor for advanced glycation endproducts (RAGE) is a transmembrane protein that belongs to 33 

the immunoglobulin (Ig) superfamily. Many RAGE ligands have been identified, including 34 

advanced glycation endproducts (AGEs), S100 proteins, high mobility group box 1 (HMGB1), 35 

and amyloid-β fibrils (Koch et al. 2010; Leclerc et al. 2009; Schmidt et al. 1992; Taguchi et al. 36 

2000; Yan et al. 1996). RAGE and its signaling are associated with many disease states, 37 

including some types of cancer, retinal disease, cardiovascular disease, Alzheimer’s disease, 38 

respiratory disorders, chronic inflammation and diabetic complications (Barile and Schmidt 39 

2007; Basta 2008; Bierhaus and Nawroth 2009; Briot et al. 2009; Hofmann et al. 1999; Logsdon 40 

et al. 2007; Yan et al. 2009). RAGE is reported to activate various signaling cascades, including 41 

mitogen-activated protein kinases (MAPKs), Rac/Cdc42 and Janus kinases (JAK)/signal 42 

transducers and activators of transcription (STATs) and NF-κB (Ghavami et al. 2008; Hermani 43 

et al. 2006; Huttunen et al. 1999; Lander et al. 1997; Wang et al. 2008; Yeh et al. 2001). 44 

Through these signaling pathways, RAGE influences cell survival, motility and the inflammatory 45 

response. Even though RAGE signaling has been studied extensively in different disease states, 46 

very little is reported regarding RAGE diffusion in the cell membrane. The goal of the current 47 

study is to investigate the lateral diffusion and cellular signaling of RAGE in the endothelial cell 48 

membrane and to study the effects of cholesterol depletion and alterations to the actin 49 

cytoskeleton on these properties. 50 

Cholesterol and the actin cytoskeleton play an important role in the organization of the 51 

cell membrane. Functional domains in the cell membrane, known as lipid rafts or lipid 52 
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nanodomains, contain about 3 to 5-fold excess cholesterol compared to neighboring regions of 53 

bilayer (Ando et al. 2015; Lingwood and Simons 2010; Pike 2003; Simons and Gerl 2010). 54 

These functional domains act as platforms for localizing and signaling of many membrane 55 

proteins. Altering membrane cholesterol levels has been reported to affect the organization and 56 

signaling of a number of receptors (Adkins et al. 2007; Arora et al. 2014; Bag et al. 2015; Brown 57 

and London 1998; Pike 2003; Pucadyil and Chattopadhyay 2006). The actin cytoskeleton serves 58 

as a structural element that can affect the functionality of membrane proteins, including their 59 

oligomerization and transmembrane signaling (Kusumi et al. 2011).  60 

Both cholesterol and the actin cytoskeleton have been reported to play a key role in 61 

RAGE functions. For example Reddy et al. showed cholesterol depletion inhibited the S100-62 

induced effects involving RAGE in vascular smooth muscle cells and that intact caveolae are 63 

necessary for RAGE signaling (Reddy et al. 2006). RAGE has also been reported to be part of 64 

functional cholesterol-enriched domains in neural endothelial cells (Lisanti et al. 1994; Sbai et 65 

al. 2010). Xiong et al. showed that the actin cytoskeleton played a pivotal role in RAGE-66 

mediated plasma membrane plasticity in a human umbilical vein endothelial cell line (Xiong et 67 

al. 2011). They found that RAGE over expression reorganizes filamentous actin (F-actin) by 68 

increasing β-catenin levels, resulting in inhibition of membrane sealing. Although it is evident 69 

that cholesterol and the actin cytoskeleton affect some RAGE functions, possible roles in 70 

affecting RAGE lateral diffusion remain unknown.  71 

In this study, we have genetically fused monomeric red fluorescent protein (mRFP) to the 72 

C-terminus of RAGE and measured its lateral diffusion using fluorescence recovery after 73 

photobleaching (FRAP) in GM07373 endothelial cells. In FRAP, a small area on the cell 74 

membrane is photobleached with a focused laser beam and the fluorescence recovery from the 75 
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diffusion of neighboring fluorescent molecules into the photobleached spot is recorded over 76 

time. Several models have been constructed to extract diffusion parameters such as the immobile 77 

population, diffusion coefficient and time-dependency of the diffusion (Feder et al. 1996; van 78 

Zoelen et al. 1983). RAGE diffusion at native, cholesterol depleted and altered actin 79 

cytoskeleton conditions have been studied. Methyl-β-cyclodextrin (MβCD) was used to deplete 80 

cellular cholesterol. The actin cytoskeleton was altered using cytoskeletal drugs cytochalasin D 81 

(CD) and Jasplakinolide (Jsp). Finally, signaling was measured by quantifying the 82 

phosphorylation of extracellular-signal-regulated kinase (p-ERK) at native and altered cellular 83 

conditions.  84 

 85 

MATERIALS & METHODS 86 

Cell culture  87 

All experiments were performed using bovine artery GM07373 endothelial cells (Coriell 88 

Institute Biorepositories, Camden, NJ). GM07373 cells were grown in complete growth medium 89 

consisting of Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, MO), 90 

10% fetal bovine serum (FBS) (Irvine Scientific, Santa Ana, CA) and 12.5 mM Streptomycin 91 

and 36.5 mM Penicillin (Fisher Scientific, Pittsburgh, PA) in a water-jacketed CO2 incubator 92 

(Thermo Scientific, Waltham, MA).  Cells were sub-cultured using 0.25% (w/v) trypsin-EDTA 93 

(Life Technology, Carlsbad, CA) solution every two days.  All transfected GM07373 cells were 94 

established to express respective recombinant proteins stably before any microscopy or 95 

molecular biology experiments were performed. Plasmid and transfection details are in the 96 

supplementary information. 97 
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 98 

Western blotting  99 

GM07373 cells expressing RAGE (GM07373-RAGE) or RAGE-mRFP (GM07373-RAGE-100 

mRFP) were cultured to 100% confluence and rinsed with ice cold phosphate buffered saline 101 

(PBS). Cells were lysed with RIPA buffer (150 mM sodium chloride, 1.0% NP-40 detergent, 102 

0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) with HaltTM protease inhibitor 103 

cocktail (1×, Thermo Scientific, Rockford, IL). After the initial lysis treatment, cells were passed 104 

through a 21 gauge needle to ensure complete cell lysis. The protein mixture was first separated 105 

on the NuPAGE® Novex® 4-12% Bis-Tris protein gel (Life Technology, Eugene, OR) and then 106 

electro blotted onto Immun-Blot® LF PVDF membrane (Bio-Rad, Hercules, CA) as described 107 

previously (Matsudaira 1989; Towbin et al. 1979). The PVDF membrane was probed following 108 

the manufacturer’s protocol (Bio-Rad). Antibodies used for probing were: anti-RAGE rabbit (H-109 

300, Santa Cruz Biotechnology), anti-RFP rabbit (Life Technology), anti-Vinculin goat (sc-7649, 110 

Santa Cruz Biotechnology), anti-Actin rabbit (sc-1616-R, Santa Cruz Biotechnology), anti-p-111 

ERK rabbit (Tyr 204, sc-101761, Santa Cruz Biotechnology), anti-total-ERK 1/2 mouse (sc-112 

514302, Santa Cruz Biotechnology). The labeled secondary antibodies were Alexa Fluor 647 113 

goat anti-rabbit (Life technologies), Alexa Fluor 488 donkey anti-goat (Life technologies), Alexa 114 

Fluor 488 goat anti-mouse (Life technologies). Fluorescence was measured on a Typhoon FLA 115 

9500 variable mode laser scanner (GE Healthcare, Waukesha, WI). The total-ERK and vinculin 116 

protein bands were used as a loading control in Western blot experiments. The fluorescence 117 

intensities were calculated from the 42 kDa band of p-ERK divided by the 42 kDa band of total-118 

ERK or the 42 kDa band of actin divided by the 130 kDa band of vinculin. The 42 kDa band of 119 

ERK was used since it has a stronger intensity than the 44 kDa ERK band. All experiments were 120 
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performed in triplicate unless otherwise noted in figure legends. Reported p values were 121 

calculated using the Student’s t-test with a two-tailed homoscedastic distribution. Protein 122 

sequences were analyzed by mass spectrometry as reported in the supplemental information. 123 

  124 

FRAP sample preparation 125 

Sterile glass bottom culture dishes were made by attaching a cover glass (22mm × 22mm, No. 126 

1.5, Corning Inc., Corning, NY) to the bottom of a polystyrene petri dish (35mm × 10mm, Fisher 127 

Scinetific) containing a pre-drilled 3/4 inch diameter hole as described previously (Buster et al. 128 

2010). GM07373-RAGE or GM07373-RAGE-mRFP cells were sub-cultured onto the culture 129 

dishes two days before the experiment.  Cells were either used without further treatment or 130 

treated at 37 ºC with MβCD (Sigma-Aldrich, 5mM, in serum free DMEM for 30 minutes) to 131 

deplete the cholesterol or with CD (Sigma-Aldrich, 10 µM, in serum free DMEM for 60 132 

minutes) or with Jsp (Santa Cruz Biotechnology, 3µM, in serum free DMEM for 30 minutes) to 133 

alter the actin cytoskeleton as previously reported (Arora et al. 2014; Schwab et al. 2003; Shaw 134 

and Tilney 1999) before the FRAP experiments.  135 

 136 

FRAP Microscopy 137 

All FRAP experiments were performed on a Nikon Eclipse TE2000U inverted microscope 138 

(Nikon, Melville, NY) which was equipped with an oil-immersion objective (100×, Apo TIRF, 139 

1.49 numerical aperture). The microscope was housed in a home built 0.9×0.6×0.5 m3 Plexiglas 140 

box containing a heat source to maintain a 36 ± 2 ºC at the sample throughout the experiment. 141 

Fluorescence was excited with a mercury lamp (X-cite 120 PC, EXFO Photonic Solutions Inc., 142 

Mississauga, Ontario, Canada) operating at 25% of the power and an excitation filter 143 
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(HQ545/30x, Chroma Technology Corp., Bellows Falls, VT). The resulting fluorescence 144 

emission was collected through an emission filter (HQ620/60x, Chroma Technology Corp.). For 145 

photobleaching a region of the cell membrane, a 488-nm laser was directed to the sample with a 146 

dichroic mirror (Q495lp, Chroma Technology Corp.). The laser power and photobleaching spot 147 

diameter at the sample were 10 mW and 4.0 µm, respectively. A LabView program (National 148 

Instruments, Austin, TX) was developed to control a shutter (Thorlabs, Jessup, MD) in the laser 149 

path. The photobleaching time was 2 msec. Fluorescence images were recorded using a 150 

PhotonMAX 512B EMCCD camera (Princeton Instruments, Trenton, NJ) and Winview 151 

(Photometric, Tucson, AZ) image acquisition software. Ten pre-photobleach and 100 post-152 

photobleach images were collected with a time resolution of 410 ms per image. Dark-state 153 

formation in mRFP is expected to have a negligible impact on the FRAP data collected on this 154 

timescale. Data collection was completed within 1 h after adding imaging medium (pH=7.2, 155 155 

mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 2 mM NaH2PO4, 10 mM HEPES and 10 mM 156 

Glucose) to the cells.  157 

 158 

FRAP data analysis 159 

The fluorescence images collected pre-photobleach and post-photobleach were analyzed with 160 

ImageJ (version 1.48, National Institute of Health) software. The fluorescence intensity from 161 

three regions of interest (ROIs) was extracted for each image in the series of 110 images. The 162 

ROIs were classified as the photobleached region (an area on the plasma membrane illuminated 163 

by the laser spot), the non-photobleached region (an area on the plasma membrane away from 164 

the photobleached region), and the background (an area where there was no cell present in the 165 

field of view). Fluorescence recovery curves were constructed with a three-step process: (i) the 166 
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background intensity was subtracted from fluorescence intensities in the photobleached ROI, the 167 

resulting curves were normalized with the fluorescence intensities from (ii) the non-168 

photobleached ROI and (iii) the average pre-photobleached intensity from the subsequently 169 

photobleached region to account for the lamp intensity fluctuations as well as photobleaching 170 

during the image acquisition period as described by Phair et al. (Phair et al. 2004). Fluorescence 171 

recovery curves were analyzed and the results were averaged over 24 to 53 cells for each data 172 

set. The number of cells measured was lower for Jsp, CD and MCD data sets. These treatments 173 

result in a smaller average spread cell diameter, which reduces the number of cells that can be 174 

analyzed by FRAP compared to the untreated cells. Mobile fractions (MF) were calculated using 175 

equation 1. 176 

       (1) 177 

Where F0 is the intensity immediately after photobleaching, F0 is the pre-photobleaching 178 

intensity and F∞ is the final intensity (i.e., in image 110), where all fluorescence intensities refer 179 

to the values from the fluorescence recovery curves. Each fluorescence recovery curve was 180 

further fit to equation 2 using IGOR Pro V 6.32A (WaveMetrics Inc., Lake Oswego, OR) to 181 

measure the time dependency of the fluorescence recovery as well as diffusion coefficients 182 

(Feder et al. 1996). 183 

      (2) 184 

 185 

Where F(t) is the fluorescence intensity at time t, α is the time exponent and τ is time for 50% 186 

fluorescence recovery. Diffusion coefficients were calculated using equation 3.  187 
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Where D(t) is the diffusion coefficient at time t and ω is the radius of the photobleached spot. 190 

The statistical significance of all reported data sets was calculated using first the F-test at the 191 

95% confidence level and then the homoscedastic/heteroscedastic (as determined from the F-192 

test) Student’s t-test with a two-tailed distribution. The resulting p values that indicate statistical 193 

differences are reported in Figure 7; statistical differences at the 95% confidence level (i.e., p 194 

values below 0.05) are considered significant. Diffusion parameters are presented as box-and-195 

whisker plots. For box-and-whisker plots, the boundary of the box shows the twenty-fifth and 196 

seventy-fifth quartiles. A line and a triangle within the box indicate the median and the mean, 197 

respectively. Whiskers above and below the boxes are 1.5 times the interquartile range.   198 

 199 

Actin cytoskeleton staining 200 

Cells were sub-cultured onto glass-bottom petri dishes and allowed to spread in the incubator for 201 

two days before the experiment. Cells were treated as described above with 5 mM MβCD, 10 202 

µM CD, or 3 µM Jsp before the actin cytoskeleton was stained for fluorescence imaging. The 203 

staining protocol was described previously (Syed et al. 2014). Briefly, cells were fixed with 4% 204 

(w/v) paraformaldehyde in PBS for 10 minutes. Triton X-100 (0.1% (v/v) in PBS) was used for 205 

cell membrane permeabiliztion. Blocking was performed using bovine serum albumin (1% (w/v) 206 

in PBS) for 5 minutes. Cells were further incubated with Atto 647N conjugated phalloidin 207 

(Sigma-Aldrich) to stain the F-actin overnight at 4 °C. Stained cells were rinsed with imaging 208 

medium before imaging using the Nikon Eclipse TE2000U inverted microscope described above. 209 

The actin cytoskeleton was further quantified to measure the alignment in the actin fibers in 21 to 210 

41 cells. Alignment was calculated using an ImageJ plugin, FibrilTool, as described previously 211 

(Boudaoud et al. 2014).  212 
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 213 

 214 

Results and Discussion 215 

Characterization of RAGE and RAGE-mRFP Expression  216 

The primary goal of this study is to probe the lateral diffusion of RAGE in the GM07373 cell 217 

membrane in order to characterize the role of the actin cytoskeletal and cholesterol in altering 218 

RAGE diffusion. To achieve this goal, plasmids were transfected into GM07373 cells to stably 219 

express full-length RAGE or RAGE-mRFP. RAGE or RAGE-mRFP expression was confirmed 220 

by Western blot analysis of cell lysates as shown in Fig. 1. A protein band corresponding to 221 

RAGE at ~55 kDa (band 1, Fig. 1) was observed in the GM07373-RAGE cell lysate (lane b, Fig. 222 

1) but not in the GM07373 cell lysate (lane a, Fig. 1). Surprisingly, the GM07373-RAGE-mRFP 223 

cell lysate (lane c, Fig. 1) showed three bands in the 60 to 80 kDa molecular weight range after 224 

probing the membrane with the RAGE primary antibody. Bands 1 to 4 were positive for RAGE 225 

peptides as measured by mass spectrometry. After the PVDF membrane was probed with a 226 

polyclonal mRFP antibody, only a single band was observed from the GM07373-RAGE-mRFP 227 

cell lysate (band 5, Fig. 1) near the molecular weight of band 3. It was confirmed by fluorescence 228 

imaging of the PVDF membrane that fluorescence was measured only at the location of band 5, 229 

thus RAGE-containing bands 2 and 4 do not contribute to the fluorescence microscopy results 230 

reported below.  231 

 Phosphorylation of extracellular-signal-regulated kinase (p-ERK) was used as a marker 232 

for downstream RAGE signaling (Huttunen et al. 2002; Zong et al. 2010). There was no 233 

statistically significant difference in p-ERK levels in cells expressing RAGE or RAGE-mRFP 234 
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(Fig. 2), indicating that the mRFP tag on RAGE did not alter p-ERK signaling in GM07373 235 

cells.   236 

 237 

RAGE-mRFP diffusion in the native GM07373 cell membrane  238 

FRAP experiments on GM07373 cells expressing RAGE-mRFP were performed and the average 239 

recovery curve from 24-53 cells is shown in Online Resource 1 (Fig. S1). Each replicate curve 240 

was individually fit to the time-dependent diffusion model with an immobile fraction (i.e., all 241 

parameters α, F0, F∞ and τ in equation 2 were allowed to vary) as described by Federer et al. 242 

(Feder et al. 1996). The time exponent (α) from the fit parameters provides information on the 243 

nature of the mode of diffusion. An α value of 1 indicates time-independent Brownian diffusion, 244 

whereas a value less than 1 indicates time-dependent diffusion. The average α value measured 245 

for RAGE-mRFP was 0.9 (Fig. 7). The average mobile fraction was 90% and the average 246 

diffusion coefficient was 0.3 µm2/s for RAGE-mRFP at native cellular conditions. While FRAP 247 

provides a measure of the average diffusion properties of RAGE-mRFP, it is known that RAGE 248 

diffusion is heterogeneous (Syed et al. 2016). For example, when the diffusion coefficient is 249 

measured one receptor at a time across 100 receptors, the diffusion coefficient varies by over 4 250 

orders of magnitude. The heterogeneity in RAGE diffusion is not detectable with the ensemble 251 

FRAP method. On the other hand, FRAP measurements yield the fraction of mobile RAGE, 252 

which has not been possible to measure with other analysis techniques (Syed et al. 2016).   253 

 254 

Alterations to the F-actin cytoskeleton alter RAGE-mRFP diffusion properties measured by 255 

FRAP 256 
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 To study the possible effect of the actin cytoskeleton on RAGE lateral diffusion, the actin 257 

cytoskeleton was altered with two drugs, CD and Jsp. CD depolymerizes the filamentous actin 258 

cytoskeleton and prevents repolymerization by binding to actin monomers (Casella et al. 1981). 259 

Jsp binds with filamentous actin and inhibits depolymerization (Spector et al. 1999).  Atto 647N 260 

conjugated phalloidin was used to measure the effect of CD and Jsp on the actin cytoskeleton in 261 

GM07373-RAGE cells as shown in Fig. 3. In the native GM07373 cells, the actin cytoskeleton 262 

staining generated partially aligned fibers with a well-defined cell boundary as shown in Fig. 3a. 263 

After the CD treatment, the actin structure was significantly altered and no clear cell boundary 264 

was observed (Fig. 3c). Jsp binds to the actin cytoskeleton in competition with the Atto 647N 265 

conjugated phalloidin (Bubb et al. 2000). Hence, Atto 647N phalloidin actin cytoskeleton 266 

staining was diminished for Jsp treated cells (Fig. 3d). There was no change in the actin 267 

expression as measured from Western blot analysis of the cell lysate treated with CD or Jsp (Fig. 268 

4). 269 

 RAGE-mRFP diffusion parameters were measured for CD or Jsp treated cells. The 270 

RAGE-mRFP mobile fraction and diffusion coefficient were decreased by 22% and 37%, 271 

respectively, when the actin cytoskeleton was altered with Jsp (Fig. 7). In contrast, CD treatment 272 

does not alter the RAGE diffusion properties. Jsp and CD have opposite effects on the 273 

polymerization of the actin cytoskeleton. Jsp hinders depolymerization, whereas CD 274 

depolymerizes the actin filaments. Jsp results in less mobile and slower RAGE, suggesting an 275 

actin cytoskeleton fixed in a polymerized state slows RAGE diffusion and reduces the mobile 276 

fraction. Surprisingly, CD treatment to depolymerize the actin cytoskeleton does not statistically 277 

increase RAGE mobility as measured by FRAP; although it is noteworthy that prior to altering 278 
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the actin cytoskeleton RAGE diffusion is already relatively unhindered with a large mobile 279 

fraction and nearly Brownian behavior as indicated by the  value. 280 

  To understand if RAGE diffusion properties are linked to downstream signaling, 281 

phosphorylation of ERK (p-ERK) was measured in both GM07373 and GM07373-RAGE cells 282 

after CD and Jsp treatment.  p-ERK was decreased by 70% and 50% in GM07373-RAGE cells 283 

when the actin cytoskeleton was disrupted with CD and JSP, respectively (Fig. 5a and b). There 284 

was no statistically significant change in p-ERK observed in GM07373 cells lacking detectable 285 

RAGE expression after CD or Jsp treatment (Fig. 5c and d). This indicates that the downstream 286 

signaling of RAGE is altered when the actin cytoskeleton is disrupted, regardless of the effects 287 

disrupting the actin cytoskeleton has on RAGE diffusion.   288 

To investigate the effect of cholesterol on the lateral diffusion of RAGE-mRFP, 289 

cholesterol was depleted using MβCD. The total free cholesterol was depleted by 45% and no 290 

statistically significant change in the endogenous cholesterol ester was observed when cells were 291 

incubated with 5 mM MβCD as measured by Amplex® Red cholesterol quantification assay 292 

(Fig. 6a). The diffusion parameters statistically unchanged for RAGE-mRFP (Fig. 7). There was 293 

also no change in p-ERK measured after cholesterol depletion from both GM07373-RAGE cells 294 

and GM07373 (Fig. 6b-d). These conclusions are valid in the absence of RAGE ligand. In the 295 

presence of ligand, RAGE signaling may be dependent on cholesterol as previously reported 296 

(Reddy et al. 2006).  297 

It has been previously reported that a change in membrane cholesterol not only affects the 298 

cell membrane structure but also has a global effect, including reorganization of the actin 299 

structure (Kwik et al. 2003). This appears to be valid in GM07373-RAGE cells (Fig. 3 a and b). 300 
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A significant 40% decrease in the actin fiber alignment was measured after cholesterol depletion 301 

in both the GM07373-RAGE and GM07373 cell lines. No change in the actin expression was 302 

observed with cholesterol depletion (Fig. 6). These observations indicate that cholesterol 303 

depletion affects the actin cytoskeleton organization, but the cholesterol-depletion-induced 304 

changes to the actin cytoskeleton alignment are not associated with changes in RAGE diffusion 305 

properties.  306 

In summary, RAGE-mRFP diffuses in the cell membrane with a large mobile fraction at 307 

native GM07373 cellular conditions. The depolymerization of the actin cytoskeleton plays a role 308 

in how RAGE diffuses in the membrane, and more generally, the actin cytoskeleton 309 

polymerization dynamics alter the downstream signaling of RAGE. Even though there is a 310 

significant change in the actin cytoskeleton alignment as revealed by phalloidin staining, 311 

cholesterol depletion has no effect on RAGE lateral diffusion as measured by FRAP or signaling 312 

as measured by p-ERK. The combined data point to an important role for actin depolymerization 313 

in the diffusion properties of RAGE and a link between the actin cytoskeleton and RAGE-314 

mediated p-ERK signaling. 315 

 316 
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 473 

Figures  474 

  475 

Figure 1. Western blot analysis of (a) GM07373 cell lysate, (b) GM07373-RAGE cell lysate, and 476 

(c) GM07373-RAGE-mRFP cell lysate. (Top) fluorescence image of the PVDF membrane 477 

probed with anti-RAGE antibody; (bottom) fluorescence image of the PVDF membrane probed 478 

with anti-mRFP antibody. Unlabeled bands (three upper bands in the top image and three lower 479 

bands in the bottom image) are present in all lanes and likely represent non-specific interactions 480 

of antibodies.  481 
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 483 

Figure 2. Western blot analysis of phosphorylation of ERK and total-ERK expression in the 484 

GM07373-RAGE cell lysate and GM07373-RAGE-mRFP cell lysate. (a) Fluorescence image of 485 

the PVDF membrane probed with anti-p-ERK or anti-total-ERK antibody. (b) Average (n = 3) 486 

fluorescence intensities of the 42 kDa band of p-ERK divided by the 42 kDa total-ERK band. 487 

Error bars represent one standard deviation. 488 
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 490 

Figure 3. Fluorescence images of GM07373-RAGE cells with the actin cytoskeleton stained with 491 

Atto 647N conjugated phalloidin. (a) No treatment, (b) 5 mM methyl-β-cyclodextrin treatment, 492 

(c) 10 µM cytochalasin-D treatment, or (d) 3 µM Jasplakinolide treatment. The intensity scales 493 

are: (a) and (b) 1700 to 7000 intensity units, (c) 1500 to 3000 intensity units, and (d) 1500 to 494 

1700 intensity units. The scale bar is 20 µm and is the same for all images.  495 
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 497 

Figure 4. Western blot analysis of actin expression in the (a, b) GM07373-RAGE and (c, d) 498 

GM07373 cell lysate with no treatment (No), 10 µM cytochalasin D (CD) treatment, or 3 µM 499 

Jasplakinolide (Jsp) treatment. (a, c) Fluorescence image of the PVDF membrane probed with 500 

anti-actin or anti-vinculin antibody. (b, d) Average (n = 3) fluorescence intensities of the actin 501 

band divided by the vinculin band. Error bars represent one standard deviation. 502 
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 504 

Figure 5. Western blot analysis of phosphorylation of ERK and total-ERK expression in the (a, 505 

b) GM07373-RAGE and (c, d) GM07373 cell lysate with no treatment (No), 10 µM cytochalasin 506 

D (CD) treatment, or 3 µM Jasplakinolide (Jsp) treatment. (a, c) Fluorescence image of the 507 

PVDF membrane probed with anti-p-ERK or anti-total-ERK antibody. (b, d) Average (n = 3) 508 

fluorescence intensities of the 42 kDa band of p-ERK divided by the 42 kDa total-ERK band. 509 

The band intensities were normalized to the no treatment band. Error bars represent one standard 510 

deviation. 511 
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513 
Figure 6. (a) Cholesterol quantification with Amplex® Red assay. Average (n = 2) free 514 

cholesterol (1 and 2) and cholesterol ester (3 and 4) concentration as measured from GM07373-515 

RAGE cell lysate at native cellular conditions (1 and 3) and 5 mM methyl-β-cyclodextrin 516 

(MβCD) treated (2 and 4). Effect of MβCD treatment on (b, c) GM07373-RAGE cells and (d, e) 517 

GM07373 cells. (b, d) Fluorescence image of the PVDF membrane probed with anti-p-ERK, 518 

anti-total-ERK, anti-actin or anti-vinculin antibody. (c, e) Average (n=4) fluorescence intensities 519 

of the 42 kDa band of p-ERK divided by the 42 kDa total-ERK band (left); Average (n=2) 520 

fluorescence intensities of the actin band divided by the vinculin band (right). Error bars 521 

represent one standard deviation. 522 

523 
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 524 

 525 

Figure 7. Box-and-whisker plots (n = 24 to 53) of RAGE-mRFP diffusion parameters in the 526 

GM07373 cell membrane obtained by FRAP after no treatment (No), 5 mM methyl-β-527 

cyclodextrin (MβCD) treatment, 10 µM cytochalasin D (CD) treatment, or 3 µM Jasplakinolide 528 

(Jsp) treatment. The median and mean are represented as a horizontal line and triangle, 529 

respectively. The box limits are 50% (25–75%), the whiskers indicates 1.5 times the interquartile 530 

range, and the outliers are shown as open circles. *** indicates a statistically different from no 531 

treatment at the p<0.001 level. 532 
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