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ABSTRACT
Predicting the risk of potential diseases from Electronic Health
Records (EHR) has attracted considerable attention in recent years,
especially with the development of deep learning techniques. Com-
pared with traditional machine learning models, deep learning
based approaches achieve superior performance on risk prediction
task. However, none of existing work explicitly takes prior medical
knowledge (such as the relationships between diseases and corre-
sponding risk factors) into account. In medical domain, knowledge
is usually represented by discrete and arbitrary rules. Thus, how to
integrate such medical rules into existing risk prediction models to
improve the performance is a challenge. To tackle this challenge,
we propose a novel and general framework called PRIME for risk
prediction task, which can successfully incorporate discrete prior
medical knowledge into all of the state-of-the-art predictive models
using posterior regularization technique. Different from traditional
posterior regularization, we do not need to manually set a bound
for each piece of prior medical knowledge when modeling desired
distribution of the target disease on patients. Moreover, the pro-
posed PRIME can automatically learn the importance of different
prior knowledge with a log-linear model. Experimental results on
three real medical datasets demonstrate the effectiveness of the
proposed framework for the task of risk prediction1.

CCS CONCEPTS
• Information systems→Datamining; •Applied computing
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1The PRIME source code is publicly available at http://www.acsu.buffalo.edu/
~fenglong.
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1 INTRODUCTION
With the immense accumulation of Electronic Health Records (EHR)
being available, the analysis of such data enables researchers and
healthcare providers to get closer to the goal of personalized
medicine. However, raw EHR data has its own issues, such as high di-
mensionality, temporality, sparsity, irregularity and bias [5]. These
challenges dramatically increase the difficulty of directly applying
traditional machine learning or statistical models [13, 14, 27, 28, 32]
to predict patients’ potential diseases, which is a core task in medi-
cal domain, named risk prediction. Therefore, it is crucial to develop
more powerful models for solving the challenges introduced by the
raw EHR data in risk prediction task.

Recently, deep learning models have shown the ability of directly
extracting meaningful features from raw electronic health records
in many domains, including computational phenotyping [1, 4],
diagnosis prediction [7, 8, 20], risk prediction [2, 3, 5, 9, 25], and so
on. Especially for risk prediction task, attention-based recurrent
neural networks (RNN) are employed to predict the disease of
Heart Failure in [9]. Convolutional neural networks (CNN) are also
introduced to capture the local temporal characteristics of patients’
visits and predict the risks of diseases [2, 3, 5], with improvement
in performance.

Though the aforementioned deep learning based models have
achieved good performance in the risk prediction task, they all
ignore the importance of prior medical knowledge, such as the
relationships between diseases and their corresponding risk factors.
As we all know, prior medical knowledge plays an important role
in healthcare domain. When a patient visits a doctor, the doctor
first reviews the current symptoms, and then takes a careful review
on medical history, such as medications, smoking history, alcohol
use, and diseases of family history, which are risk factors of diseases.
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With the current symptoms and patient’s past medical history, the
doctor may have an initial diagnosis for this patient. For example,
the symptoms of a patient are rapid irregular heartbeat associated
with shortness of breath, increased need to urinate at night, chest
pain and fainting. He/She has been suffering high blood pressure
and coronary artery disease more than eight years. According to the
experience (or prior medical knowledge) and current symptoms,
the doctor can quickly diagnose that the patient may have heart
failure rather than other diseases. It is because high blood pressure
and coronary artery disease are two key risk factors of heart failure.
Therefore, considering prior medical knowledge is essential for risk
prediction task.

However, it is extremely difficult to directly apply prior medical
knowledge to EHR data. On the one hand, the medical knowledge
is arbitrary or heterogeneous. Some diseases may be related to
age (continuous value), while others are caused by the habits such
as smoking or drinking (categorical value). On the other hand,
almost all the medical knowledge is represented by rules. Thus,
transforming the discrete arbitrary medical rules into the continuous
real values is a thought-provoking problem. Even if we can obtain
the real-valued representations of prior medical knowledge, how
to reasonably combine the knowledge with the predictive models
is still a challenge.

Posterior regularization [12] is an effective technique to convert
the discrete knowledge into continuous real-valued features by
modeling the posterior distribution as a constrained posterior fea-
ture set. However, the main drawback of directly applying posterior
regularization technique is that it needs to manually set a bound
for each constraint feature, which is impractical in medical domain.
For example, when predicting the risk of heart failure disease for a
patient, the doctor may consider the frequency of historical diseases
(called underlying diseases in medical domain) and their durations.
Here, the frequency and durations of underlying diseases can be
modeled as constraint features. It is hard to set exact bound values
for these two constraint features to determine whether the patient
has heart failure or not. Obviously, the key challenge here is how
to automatically learn the bound values of constraint features and
guarantee the predictive performance meanwhile.

To tackle all the aforementioned challenges, in this paper, we
propose a novel predictive framework PRIME, which can success-
fully integrate heterogeneous discrete PRIorMEdical knowledge
into the predictive models to improve the performance. Specifically,
the framework can employ all the existing deep learning based
approaches as the basic predictive model, such as recurrent neu-
ral networks (RNN) and convolutional neural networks (CNN). To
automatically learn the bounds of constraint features, we use a
log-linear model in the proposed PRIME instead of modeling the
posterior distribution as a constrained posterior set. It not only
makes the training process of the proposed model more efficient,
but also learns different weights for different constraint features.
We conduct experiments on three medical datasets. The results
show that the proposed framework PRIME is able to incorporate
heterogeneous prior medical knowledge and outperforms existing
risk prediction models.

It is worthwhile to highlight the contributions of the proposed
framework as follows:

• To the best of our knowledge, this is the first attempt to take
prior medical knowledge into account for risk prediction
task.

• We propose a novel framework PRIME, which models prior
medical knowledge as posterior regularization and learns
the desired posterior distribution with a log-linear model.

• The proposed PRIME is a general model, which can be easily
applied to any predictive models in healthcare. Moreover,
it is able to distinguish the importance of different prior
knowledge contributed to the risk prediction.

• Experimental results on three medical datasets demonstrate
that the proposed PRIME is effective for the task of risk
prediction.

In the following sections, we first review existing work in Sec-
tion 2. In Section 3, we introduce the background information on
deep learning based risk prediction models and posterior regular-
ization technique. The details of the proposed PRIME are presented
in Section 4. In Section 5, we conduct experiments on three real
EHR datasets and demonstrate the effectiveness of the proposed
PRIME. The limitation of the proposed framework is discussed in
Section 6. Finally, we conclude this work in Section 7.

2 RELATED WORK
In this section, we briefly review existing studies which are closely
related to our work, including deep learning based models for
healthcare applications and posterior regularization techniques
with deep learning models.

2.1 Deep Learning for Healthcare
For most healthcare applications, the first step is to extract effec-
tive phenotypes from longitudinal EHR [1, 3–5, 7–9, 13, 14, 16, 20,
21, 24, 26–29, 32]. Traditional electronic phenotyping approaches
are mainly based on matrix factorization [27, 28, 32] and tensor
factorization [13, 14]. Recently, deep learning based models have
shown their superior ability to learn complex patterns from high
dimensional, noisy and temporal EHR data. Multi-layer perception
(MLP) is used to learn the representations of phenotypes [4] and
medical codes [7]. However, MLP based models do not consider the
temporal nature of the EHR data. To model the temporal EHR data,
recurrent neural networks (RNN) are applied to predict patients’
health status [8, 9, 20, 24, 26] and patient subtyping [1]. Convolu-
tional neural networks (CNN) focus on capturing local temporal
dependency among EHR data and are used for predicting multiple
diseases [25] and for other related task.

Risk prediction is an important yet challenging task in healthcare
domain. Choi et al. [9] try to use attention-based recurrent neural
networks to predict the risk of heart failure disease. Cheng et al. [5]
apply the CNN model to analyze discrete patient EHR data. Che
et al. [2] propose to use the pretrained embeddings of medical
features in the CNN model to improve the prediction performance.
In [3], the authors build a semi-supervised deep learning model
with generative adversarial networks for the risk prediction task.

Compared with all the aforementioned predictive models, the
proposed framework PRIME has the following advantages: (1) It
takes prior medical knowledge into account, and (2) it is a general
model that can include any state-of-the-art predictive model when
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modeflfingpatfients’vfisfits.Theprfiorknowfledgegufidesthepredfictfive
modeflstoflearnbettersub-optfimaflparameters,whfichfinaflflyfleads
togoodpredfictfiveperfformance.

2.2 PosterfiorReguflarfizatfionfinDeepLearnfing

TheproposedfframeworkPRIMEfisfinspfiredbyposterfiorregu-
flarfizatfion[12],whfichhasbeensuccessffuflflyfintroducedfintodeep
flearnfingmodeflsfforsentfimentcflassfificatfion[17]andmachfinetrans-
flatfion[31]finnaturaflflanguageprocessfing.Huetafl.[17]addthe
first-orderflogficruflesfintoconvoflutfionaflneuraflnetworkstoffurther
enhancetheperfformanceoffsentfimentcflassfificatfiontask.However,
thfisworkstfiflflneedstomanuaflflysettheboundvafluesoffconstrafined
posterfiorffeatures.
Dfifferentffromthework[17],weuseaflog-flfinearmodefltorep-

resentthedesfireddfistrfibutfion.Empfloyfingflog-flfinearmodeflsnot
onflyenabflestheproposedPRIMEtofincorporateprfiormedficafl
knowfledgeasreafl-vafluedffeatures,butaflsomakestheproposed
fframeworkdfifferentfiabfle.

3 BACKGROUND

Inthfissectfion,wefirstdescrfibetheEHRdatausedfinthfispaper,
thenfintroducethebasficdeepflearnfingbasedrfiskpredfictfionmodefls,
andfinaflflypresenttheposterfiorreguflarfizatfiontechnfique.

3.1 EHRDataDescrfiptfion

TheEHRdataconsfistsoffpatfients’tfime-orderedvfisfitfingrecords.
LetPdenotethesetoffaflflthepatfients,where|P|fisthenum-
beroffpatfientsfintheEHRdata.Foreachpatfientp∈P,there

areTptfime-orderedvfisfitsV
(p)
1 ,V

(p)
2 ,···,V

(p)
Tp
. WedenoteC=

{c1,c2,···,c|C|}asthesetoffaflflthedfiagnosfiscodesormedficafl
events,and|C|representsthenumberoffunfiquedfiagnosfiscodes.

EachvfisfitV
(p)
t fincfludesasubsetoffdfiagnosfiscodes,whfichfisde-

notedbyavectorx
(p)
t ∈{0,1}|C|.Thefi-theflementfinx

(p)
t fis1

fiffV
(p)
t contafinsdfiagnosfiscodecfi.Demographficaflfinfformatfionoff

patfientsfisaflsorecordedfforeachvfisfit,suchasgender,ethnficfityand

age.Foreachpatfient,weuseg(p)todenotehfis/herdemographficafl
finfformatfionattfimeTp.Forsfimpflficfity,wedropthesuperscrfipt(p)
whenfitfisunambfiguousfintheffoflflowfingsectfions.

3.2 BasficRfiskPredfictfionModefls

Inthfispaper,weseparateflyappflytwobasficdeepflearnfingmodefls
usedfforrfiskpredfictfion:Onefisaconvoflutfionaflneuraflnetwork
(CNN)wfitha1Dconvoflutfionaflflayerovertfime-orderedvfisfitsand
amaxpooflfingflayer,whfichhasbeenusedfinprevfiouswork[2,
3,5],andtheotherfisabasficflong-shorttermmemorynetwork
(LSTM)[15].
ThefinputoffthepredfictfivemodeflfistheEHRrecordsoffthep-th

patfient,denotedbyX(p)={x
(p)
t}
Tp
t=1∈R

Tp×|C|.Sfincethefinput

X(p)fistoosparseandwfithhfighdfimensfionaflfity,fitfisnaturaflto
flearnfitsflow-dfimensfionandmeanfingffuflembeddfings.Thus,we

firstembedthefinputxtfintovfisfit-fleveflrepresentatfionsvt∈R
kas

ffoflflows:

vt=Wvxt+bv, (1)

whereWv∈R
k×|C|andbv∈R

kareparameterstobeflearned,
andkfisthesfizeoffflatentrepresentatfions.Next,weprovfidethe
detafiflsoffthesetwopredfictfivemodefls.

CNNPredfictfiveModefl.Wefirstappflytheconvoflutfionaflopera-

tfiononflyoverthetemporafldfimensfionoffV(p)={v
(p)
t}
Tp
t=1∈R

Tp×k.
Inordertocapturethetemporafldependencfiesamongmufltfipflevfis-
fits,weuseacombfinatfionoffmfiflterswfithsdfifferentwfindowsfizes.
Letfldenotethesfizeoffatfimewfindow,andthenvt:t+fl−1represents

theconcatenatfionoffflvfisfitsffromvttovt+fl−1.AfiflterWff∈R
fl×k

fisappflfiedonthewfindowoffflvfisfitstoproduceanewffeaturefft∈R
wfiththeReLUactfivatfionffunctfionasffoflflows:

fft=ReLU(Wffvt:t+fl−1+bff),

wherebff∈Rfisabfiasterm,andReLU(ff)=max(ff,0).Thfisfifl-
terfisappflfiedtoeachpossfibflewfindowoffvfisfitsfinthewhoflede-
scrfiptfion{v1:fl,v2:fl+1,···,vTp−fl+1:Tp}togenerateaffeaturemap

ff∈RTp−fl+1asffoflflows:

ff=[ff1,ff2,···,ffTp−fl+1].

Toobtafinthemostfimportantffeature,maxpooflfingtechnfique[10]

fisusedovertheffeaturemapff,fi.e.,̂ff=max(ff).Wecanseethateach
fiflterproducesaffeature.Sfincewehavemfiflterswfithsdfifferent
wfindowsfizes,thefinaflvectorrepresentatfionoffthep-thpatfient
canbeobtafinedbyconcatenatfingaflfltheextractedffeatures,fi.e.,

z(p)∈Rms.
Ffinaflfly,affuflflyconnectedsofftmaxflayerfisappflfiedtoproduce

predfictfionprobabfiflfitfiesasffoflflows:

ŷp=sofftmax(Wyz
(p)+by), (2)

whereWy∈R
N×msandby∈R

Naretheflearnabfleparameters,
andNfisthenumberofftargetdfiseases.Inthfiswork,weffocuson
thebfinarypredfictfiontask,fi.e.,N=2.

LSTMPredfictfiveModefl.WeusethebasficLSTMunfit[15]finthe
predfictfivemodefl,whosebehavfiorfiscontroflfledbyasetoffthree
gates:finput,outputandfforgetgates.Thememoryunfitaccumuflates
theuseffuflfinfformatfionffromthefinputvtattfimetbasedonthe
vafluesoffthegates,andstoresthefinfformatfionfinfitsfinternaflstate.

Thefinafloutputz(p)ffromLSTMfisthevectorrepresentatfionoff
patfientp.Ffinaflfly,Eq.(2)fisusedfforpredfictfion.
LetθbethesetoffaflfltheparametersfintheCNN/LSTMmodefl,

andthepredfictfionprobabfiflfityvector̂ypcanaflsobedenotedby

modeflposterfiordfistrfibutfionP(yp|X
(p);θ),whereypfistheground

truth.Thecross-entropybetweenthegroundtruthypandthe
predfictfionprobabfiflfitfiesŷpfisusedtocaflcuflatethefloss.Thus,the
objectfiveffunctfionoffrfiskpredfictfionfistheaverageoffcross-entropy:

L(θ)=−
1

|P|

|P|

p=1

y⊤pflog(̂yp)+(1−yp)
⊤flog(1−ŷp). (3)

Thoughthepredfictfivemodeflshaveshownthefirsuperfiorabfiflfity
ffortherfiskpredfictfiontask,theyaflflfignorethefimportanceoffprfior
medficaflknowfledge.Forexampfle,fitfisknownthattheheartworks
harderthanfithastofiffthebfloodpressurefishfigh.Inotherwords,
hfighbfloodpressurefisanfimportantffactortojudgewhetherthe
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it is crucial to design a new framework for integrating priori medical
knowledge into risk prediction model.

3.3 Posterior Regularization
Posterior regularization [12] is proposed to incorporate indirect su-
pervision (i.e., priori medical knowledge) via structural constraints
on posterior distributions of latent variables. The goal of posterior
regularization is to restrict the space of model posteriors using
priori knowledge to guide the model towards desired parameter
distributions. Let q(yp ) denote the desired distribution of patient p.
The posterior regularized loss function is defined as

F (θ ,q) = L(θ ) + α
1
|P |

|P |∑
p=1

min
q∈Q

KL
(
q(yp )| |P(yp |X(p);θ )

)
, (4)

where α is a hyper-parameter to balance the preference between the
loss of predictive model (Eq. (3)) and posterior regularization, and
KL(·| |·) is the Kullback-Leibler divergence to measure the difference
between the desired distribution q(yp ) and the posterior distribu-
tion P(yp |X(p);θ ) of the predictive model. Q is a set of constraints
for posterior information and defined as:

Q = {q(yp ) : Eq [ϕ(X(p), yp )] ≤ b},

where ϕ(X(p), yp ) is the set of constraint features and b is the
(known) bound of constraint feature expectations. However, in
risk prediction task, it is hard to specify the value of b to effec-
tively bound the exceptions of constraint features. For example, the
risk factors of heart failure include high blood pressure, diabetes,
heart attack, and so on2. Even for the experienced doctors, they
hardly provide the exact bounds of different risk factors. The other
challenge is that the same risk factor may cause multiple diseases.
Taking diabetes as an example, it causes not only heart failure, but
also chronic kidney disease3. As the expectation of the same risk
factor causing different diseases may be different, it is even more
difficult to set different bound values for different diseases, and thus
directly applying such posterior regularization techniques may not
be practical.

4 RISK PREDICTION FRAMEWORKWITH
PRIORI MEDICAL KNOWLEDGE

To tackle the aforementioned challenges in Section 3, in this work,
we propose a novel framework PRIME that incorporates posterior
regularization technique [12] into risk prediction.We first introduce
the proposed framework and then present how to design constraint
features with priori medical knowledge for the target disease.

4.1 The Proposed Framework PRIME
Figure 1 shows the overview of the proposed framework PRIME
for the task of risk prediction. Given the input data X(p), to predict
its true label vector yp , we can use the predictive model to obtain
the prediction probability vector ŷp = P(yp |X(p);θ ). The main
objective of the proposed PRIME is to integrate the prior medical

2https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/
syc-20373142
3https://www.mayoclinic.org/diseases-conditions/chronic-kidney-disease/
symptoms-causes/syc-20354521

Constraint 

Feature Space

Risk 

Prediction 

Model

Input Data      

Loss

Figure 1: Overview of the Proposed Framework PRIME.

knowledge into the basic risk prediction model. To achieve this
goal, a desired distribution q(yp ) is introduced along with posterior
regularization technique. However, as we discussed in Section 3.3,
we cannot directly optimize Eq. (4) to obtain the optimal parameters
for risk prediction model. To solve the first challenge, that is how
to specify the bound b for different constraint features, we use a
log-linear model [22] to represent the desired distribution q(yp ).
The objective function can be rewritten as follows:

J(θ , Γ,W) = L(θ )+α
1
|P |

|P |∑
p=1

KL
(
ỹp | |P(yp |X(p);θ )

)
+βL′(Γ,W),

(5)
where the desired distribution ỹp = Q(yp |X(p); Γ,W) that encodes
priori medical knowledge is defined as follows:

Q(yp |X(p); Γ,W) =
exp{Γ · ϕ(X(p), yp ;W)}∑
y′p exp{Γ · ϕ(X(p), y′p ;W)}

, (6)

where Γ is the learnable confidence matrix for different constraint
feature categories according to prior medical knowledge, which
will be illustrated in Section 4.2. Introducing the parameter set W
into the constraint feature function makes the proposed model
successfully distinguish the difference among multiple pieces of
priori knowledge in the same category. In this way, we do not need
to manually specify the bound vector b. β is the hyper-parameter,
and L′(Γ,W) is the average cross entropy between the desired
distribution ỹp and the ground truth yp , which is defined as follows:

L′(Γ,W) = −
1
|P |

|P |∑
p=1

(
y⊤p log(ỹp ) + (1 − yp )⊤ log(1 − ỹp )

)
.

From Eq. (5), we can observe that the proposed approach is a
general framework for incorporating knowledge into the predic-
tive model, which can be applied to any prediction task in medical
domain, including, but not limited to, risk prediction, diagnosis
prediction and survivability prediction. Moreover, the flexibility of
log-linear models makes the proposed framework easily represent
the arbitrary priori knowledge as constraint features. Furthermore,
it is easy to optimize the objective function (Eq. (5)) with standard
stochastic gradient descent algorithms when we employ the differ-
entiable log-linear models. Finally, the design of the desired distri-
bution in Eq. (6) can successfully tackle the problem of manually
setting bound values for constraint features. The proposed PRIME
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canautomatficaflflyassfigndfifferentconfidencefleveflsfforthesame
constrafintffeaturewhenpredfictfingtherfiskoffdfifferentdfiseases.
Next,wewfiflflfintroducehowtodesfignconstrafintffeaturesto

fintegrateprfiorfimedficaflknowfledgefintothedesfireddfistrfibutfionffor
rfiskpredfictfionfindetafifl.

4.2 ConstrafintFeatureDesfign

Sfincedfifferentdfiseaseshavedfifferentrfiskffactors,wecannotuse
thesameconstrafintffeaturewfithprfiormedficaflknowfledgetopre-
dfictthesedfiseases.Fortunatefly,finmedficafldomafin,doctorshave
cflassfifiedrfiskffactorsfintofivemafincategorfies:patfientcharacter-
fistfics,underflyfingdfiseases,dfiseaseduratfion,genetficsandffamfifly
hfistory.Intheffoflflowfing,wefformaflflyprovfidethedesfignoffthese
constrafintffeatures.

PatfientCharacterfistfics
Inheaflthcare,fitfisnaturafltoconsfiderthecharacterfistficsoffpa-
tfientssuchasgender,ageandethnficfity,whenpredfictfingtherfisk
offdfiseases.Forexampfle,peopfleoffcertafinraces,fincfludfingBflacks,
Hfispanfics,AmerficanIndfiansandAsfian-Amerficans,areathfigherrfisk
offsufferfingtype2dfiabetes4.SfinceCOPDdeveflopssflowflyover
years,mostpeopfleareatfleast40yearsofldwhensymptomsbegfin5.
Thus,fitfisfimportanttodesfignconstrafintffeaturesfforpatfientchar-
acterfistfics.Inthfispaper,wemafinflyffocusontwocharacterfistficsoff
patfients:ethnficfityandage.

Gfiventhedemographficaflfinfformatfiong(p)=[д
(p)
e,д

(p)
a]offpa-

tfientpandthecorrespondfingflabeflyp,theffeatureonethnficfitycan
bedefinedasffoflflows:

ϕe(X
(p),yp)=

1 fiffд
(p)
e ∈E

0 otherwfise
,

whereEdenotesthesetoffracesreflatedtothepredfictfion.Sfince
thevaflueoffϕefisefither1or0,thustheethnficfityvectorϕe=[1,1]
or[0,0].Tomodeflthedfifferentfimportanceoncasesandcontrofls,
theconfidencevectorγefisfintroducedffortheconstrafintffeature
ethnficfity.
Formostoffdfiseases,therfiskfincreasesasthepatfientsgetoflder.

Thus,thecommonflyusedflogfistficffunctfionfisfintroducedtomodefl
theeffectoffageasffoflflows:

ϕa(X
(p),yp;w

(a)
y )= 1+exp{−w

(a)
y (д

(p)
a −ψ)}

−1
,

wherew
(a)
y ∈Rfisthedfiseasespecfificparametertomodeflthe

finfluenceoffagefforrfiskpredfictfion.Iffthedfiseasefisnotsensfitfive

toage,thenw
(a)
y → +∞.ψfisapredefinedscaflar.Inthfispaper,

weuseagegroupsfinsteadoffreaflagesoffpatfientsandsetψ=9
(fi.e.,theageffrom40to45).Thus,theageffeaturevectorϕa=

[ϕa(w
(a)
0),ϕa(w

(a)
1)],andγafisfitscorrespondfingconfidencevector.

UnderflyfingDfiseases
Underflyfingdfiseasesoffpatfientsarethekeyrfiskffactorsfforthe
predfictfion.Dfifferentunderflyfingdfiseasesmayhavedfifferentcontrfi-
butfionsfforthetargetdfiseasepredfictfion.Forexampfle,theunderfly-
fingdfiseasesoffheartffafiflurefincfludehfighbfloodpressure,coronary

4https://www.mayocflfinfic.org/dfiseases-condfitfions/dfiabetes/symptoms-causes/
syc-20371444
5https://www.mayocflfinfic.org/dfiseases-condfitfions/copd/symptoms-causes/
syc-20353679

arterydfisease,dfiabetes,andsoon.Iffthedfiagnosfiscodesabout
hfighbfloodpressureaflwaysappearfinapatfient’svfisfitfingrecords
comparedwfithotherdfiseases’codes,thentheprobabfiflfityoffhfigh
bfloodpressurecausfingheartffafiflurefishfigherthanthatoffother
underflyfingdfiseases.
Toffuflflymakeuseoffaflfltheunderflyfingdfiseases,wefirstobtafin

thesesdfiseasesfforeachrfiskpredfictfiontaskdenotedasU,and
thencaflcuflatetheffrequencyoffthoseunderflyfingdfiseasesfinpa-
tfientp’svfisfits,whfichfisrepresentedbyup.Thereasonfisthatthe
greatertheffrequency,thehfighertherfisk.Addfitfionaflfly,theeffect
offdfifferentunderflyfingdfiseasesfisdfifferentfforthefinafldfiseasepre-
dfictfion.Thereffore,theconstrafintffeaturesoffunderflyfingdfiseases
aredesfignedasffoflflows:

ϕu(X
(p),yp;w

(u)
y )=

1+exp(−w
(u)
y ·up)

−1
fiffsum(up)>0

0 fiffsum(up)=0
,

wherew
(u)
y ∈R|U|fisthefleanedparametertorepresentthedfiff-

fferenteffectoffdfifferentunderflyfingdfiseases,|U|fisthenumberoff
underflyfingdfiseases,andsum(up)fisthesumoffup.Theunderflyfing

dfiseasevectorfisϕu=[ϕu(w
(u)
0),ϕu(w

(u)
1)],andfitsfimportance

vectorfisγu.

DfiseaseDuratfion
Sfimfiflartotheffrequencyoffunderflyfingdfiseases,theduratfionoff
underflyfingdfiseasesfisanotherfimportffactorfforrfiskpredfictfion.Iffa
patfientphasbeendfiagnosedhfighbfloodpressurefforfiveyears,and
theotherpatfientp′hasthedfiseasefforonflyonemonth,thenthe
rfiskoffsufferfingthedfiseaseheartffafiflureonpatfientpfismuchhfigher
thanthatonpatfientp′.Inordertoobtafintheduratfionoffunderflyfing

dfiseases,wefirstfindthestarttfimet
(p)
d
offacertafinunderflyfing

dfiseasedffrompatfients’vfisfitfingrecords,andthencaflcuflatethe

duratfionusfingTp−t
(p)
d
.Ffinaflfly,theduratfionoffdfiseasesfisdenoted

asdp.Basedondp,theconstrafintffeaturesondfiseaseduratfionfis
definedasffoflflows:

ϕd(X
(p),yp;w

(d)
y )=

1+exp(−w
(d)
y ·dp)

−1
fiffsum(dp)>0

0 fiffsum(dp)=0
,

wherew
(d)
y ∈R

|U|fissfimfiflartow
(u)
y tomodeflthedfifferenceamong

underflyfingdfiseases,andϕd =[ϕd(w
(d)
0),ϕd(w

(d)
1)]wfithconfi-

dencevectorγd.

Genetfics&FamfiflyHfistory
Manydfiseasesarecausedbyabnormaflfitfiesfinanfindfivfiduafl’s
genome6.Forexampfle,theuncommongenetficdfisorderaflpha-1-
antfitrypsfindeficfiencyfisthecauseoffsomecasesoffCOPD.Todesfign
theconstrafintffeaturefforgenetfics,wefirstcoflflectasetoffgenetfic

dfisordersGwhficharereflatedtothetargetdfisease.LetC(p)denote

aflflthedfiagnosfiscodesfinpatfientp’svfisfitsX(p).Thevaflueoffcon-

strafintffeaturefis1asflongasthefintersectfionoffC(p)andGfisnot
empty.Thefformaflmathematficaflfformuflatfionfisgfivenasffoflflows:

ϕд(X
(p),yp)=

1 fiffC(p)∩G ∅

0 otherwfise
.
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Sfimfiflartotheconstrafintffeatureethnficfity,thevaflueoffϕдfis1or0.
Thus,ϕд=[0,0]or[1,1],andγдfistheconfidencevector.
Somedfiseasesarereflatedtothedfiseasehfistoryoffthewhofle

ffamfifly,suchaschronfickfidneydfisease.Wecoflflectthesetoffffam-
fiflyhfistorydfisordersH,andthenprovfidetheconstrafintffeature
ffunctfionasffoflflows:

ϕh(X
(p),yp)=

1 fiffC(p)∩H ∅

0 otherwfise
,

andϕh=[0,0]or[1,1,]wfiththeconfidencevectorγh.

Notethat(1)fintheproposedPRIMEfframework,theconfidence
matrfixΓandwefightsw ∈ Woffrfiskffactorsbeflongfingtodfiff-
fferentcategorfiescanbeflearnedautomatficaflfly.(2) Weusethe
wefightedcombfinatfionoffaflfltherfiskffactorstopredficttherfisk

offdfiseases,fi.e.,Γ·ϕ(X(p),yp;W) =γe⊙ϕe+γa⊙ϕa+γu⊙
ϕu+γd⊙ϕd+γд⊙ϕд+γh⊙ϕhfinEq.(6),where⊙fisthe
eflement-wfisemufltfipflficatfion.(3)Iffthepatfientpdoesnothaveany
underflyfingdfiseases,fi.e.,sum(up)=0,thedesfireddfistrfibutfion

Q(yp|X
(p);Γ,W) wfiflflbecfloseto[0.5,0.5],whfichcannotcorrectfly

representthereafldfistrfibutfion.Toavofidthfisphenomenon,wefforce

Q(yp|X
(p);Γ,W) =P(yp|X

(p);θ)whensum(up)=0.

4.3 Predfictfion

Inthetrafinfingprocess,ourgoaflfistoflearnasetoffparametersby
mfinfimfizfingtheobjectfiveffunctfionEq.(5),fi.e.,

θ̂,̂Γ,Ŵ =argmfin
θ,Γ,W

J(θ,Γ,W) .

Gfiventheflearnedparameters,wecanpredficttherfiskfforanunseen

patfientX(p)accordfingto

ŷp=argmaxP(yp|X
(p);̂θ). (7)

ThoughEq.(7)canmakepredfictfionsfforgfivenpatfients,fitfignores
theeffectoffprfiormedficaflknowfledge.Thus,weusetheffoflflowfing
fformuflatfiontopredficttherfiskoffpatfients:

ŷp=argmaxP(yp|X
(p);̂θ)+Q(yp|X

(p);̂Γ,Ŵ) . (8)

5 EXPERIMENTS

Toffafirflyevafluatetheeffectfivenessofftheproposedfframework
PRIME,threereaflEHRdatasetsareused,fincfludfingheartffafiflure,
COPDandchronfickfidneydfiseasecohorts.Theexperfimentaflresuflts
showthatfintegratfingprfiormedficaflknowfledgefindeedfimprovesthe
perfformanceoffonsetpredfictfion.Moreover,theproposedPRIME
fframeworkfisabfletoflearnthefimportanceoffdfifferentrfiskffactors
fforthefinaflpredfictfion.Next,westartthfissectfionbyfintroducfing
thedatasetsandexperfimentaflsettfings,andthenprovfidedetafifled
perfformancecomparfisonbetweentheproposedPRIMEandstate-
off-the-artapproaches.

5.1 Datasets

ThedatasetsareextractedffromareaflEHRdatabase,andthree
cohortsarefidentfified:heartffafiflure,COPDandchronfickfidney
dfisease.ThestatfistficsoffthesethreedatasetsareflfistedfinTabfle1.
Thegoafloffthfisworkfistopredfictwhetherapatfientfisffromthecase
orcontroflgroupasabfinarycflassfificatfiontask.Foreachdataset,we
firstfidentfiffyasetoffoptfionaflcasepatfientsaccordfingtothemedficafl

Tabfle1:StatfistficsoffDatasets.

Dataset HeartFafiflure COPD KfidneyDfisease

#offcases 2,403 4,807 3,201

#offcontrofls 5,168 11,487 7,020

#offvfisfits 247,792 518,996 345,676
Avg.#offvfisfitsperpatfient 32.73 31.85 33.82

#offunfiqueICD-9codes 4,130 5,132 4,714

Avg.#offcodespervfisfit 2.83 2.71 2.81

dfiagnosfisgufideflfines,andthendomafinexpertsheflpusconfirm
whetherthepatfientssufferthesedfiseases.Ffinaflfly,asetoffgroup
matchedcontroflsfiscoflflectedaccordfingtopatfientdemographfics
andcflfinficaflcharacterfistfics.Foreachcasepatfient,wedenotethe
dateoffdfiseaseconfirmatfion,fi.e.,theoperatfioncrfiterfiondate,then
trackbackffromthfisdate,hofldoffthevfisfitswfithfinthepredfictfion
wfindow(270days),andfinaflflyusetheremafinfingvfisfitsbefforethe
predfictfionwfindowasthepatfient’sfinputdata.Foreachcontrofl
patfient,wehofldofftheflastoneyear’svfisfitsandusetheremafinfing
vfisfitsasthefinputdata.WeremovetheICD-9codeswhfichappear
flessthan5tfimesfinthedatasets,andexcfludepatfientswhomade
flessthan5vfisfits.

5.2 ExperfimentaflSetup

Inthfissubsectfion,wefirstdescrfibethetradfitfionaflandstate-off-the-
artapproachesfforrfiskpredfictfionwhfichareusedasbaseflfines,and
thenfintroducethefimpflementatfiondetafifls.Ffinaflfly,weoutflfinethe
measuresusedfforevafluatfion.

BaseflfineApproaches
Tovaflfidatetheperfformanceofftheproposedfframeworkfforrfisk
predfictfiontask,wefimpflementtheffoflflowfingmethods:

•Tradfitfionaflcflassfificatfionapproaches.Wecomparetheproposed
PRIMEwfithflogfistficregressfion(LR),supportvectormachfine(SVM)
andrandomfforest(RF).Thefinputdatafistheffrequencyoffaflflthe
dfiagnosfiscodesappearedfinaflflthevfisfits.Whenfimpflementfing
theseapproacheswfithscfikfit-flearn7,weffoflflowthesamesettfingas
mentfionedfinprevfiouswork[2,3].

•Deepflearnfingapproaches.Weuseffourdeepflearnfingmodefls
asbaseflfines,fincfludfingtworecurrentneuraflnetworks(GRU[6]
andLSTM[15]),andtwopredfictfionapproaches:RETAIN[9]and
CNN[2,3,5].ForGRU,LSTMandRETAIN,wesetk=256fin
Eq.(1)andthehfiddensfizeas256.ForCNN,wesetthesfizeoff
fiflterwfindows(fl)ffrom2to5wfiths=100fifltermaps.Weaflso
usereguflarfizatfion(fl2normwfiththecoeficfient0.001)anddrop-out
strategfies(thedrop-outratefis0.5)fforaflfltheapproaches.

TheProposedApproaches
PRIMEfistheproposedfframeworkfforrfiskpredfictfion,whfichfinte-
gratesprfiormedficaflknowfledgewfithposterfiorreguflarfizatfiontech-
nfique.PRIMErandPRIMEcaretwofimpflementatfionsoffPRIME,
whfichuseLSTMandCNNasthebasficpredfictfivemodeflrespec-
tfivefly.ThesettfingsoffPRIMErandPRIMEcarethesameasthose
offLSTMandCNN.Besfides,wesetα=β=0.01fforPRIMEr,and
α=0.01andβ=0.1fforPRIMEc.PRIMEr−andPRIMEc−have
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the same settings with PRIMEr and PRIMEc except for the final
prediction step. PRIMEr− and PRIMEc− use Eq. (7), but PRIMEr
and PRIMEc apply Eq. (8) for the risk prediction.
Details of Designing Constraint Features
To clearly show the details of designing constraint features for each
prediction task, we first list all the underlying diseases used for
the three prediction tasks in Table 2. Next, we introduce how to
calculate the constraint features: underlying disease and disease du-
ration. For each kind of underlying diseases, if one of the diagnosis
codes appears in the patients’ visits, then the counter of this disease
adds 1. The duration of each underlying disease is calculated from
the first appeared date to the end and measured by months. If the
frequency of underlying diseases is smaller than 3, then we set it
as well as its duration as 0 in our experiments.

Table 2: Diagnosis Codes (ICD9) of Underlying Diseases. “∗”
means that all the codes in this diagnosis group are included.

Disease ICD-9 Codes

High Blood Pressure
401, 401.0, 401.1, 401.9, 402.0,
402.00, 402.1, 402.10, 402.9,
402.90

Coronary Artery Disease 414.00, 414.01, 414.0
Diabetes 250.∗
Congenital Heart Defects V13.65
Valvular Heart Disease 424.0

Alcohol Use 305.0, 305.00, 305.01,
305.02, 305.03

Smoking 305.1, V15.82, E869.4

Obesity 278, 278.0, 278.00, 278.01,
278.02, 278.03

Asthma 493.∗
Abnormal Kidney Structure 794.4
Exposure to dusts & Chemicals V87.2

The constraint features used in heart failure prediction task
include age, underlying diseases and their durations. The underlying
disease setU consists of high blood pressure, coronary artery disease,
diabetes, congenital heart defects, valvular heart disease, alcohol use,
smoking and obesity. The constraint features for predicting the
risk of COPD are age, genetics (the diagnosis code 273.4, i.e., G =
{273.4}), underlying diseases and durations. The underlying diseases
include smoking, asthma and exposure to dusts and chemicals. For the
task of kidney disease prediction, we use age, ethnicity, diseases of
family history, underlying diseases and their durations. Specifically,
ethnicity set E includes African-American, Native American and
Asian-American. The diagnosis codes about family history (i.e., H )
are V18.6, V18.61, V18.69. The underlying diseases are high blood
pressure, diabetes, smoking, obesity and abnormal kidney structure.
Implementation Details & Evaluation Strategies
We implement all the deep learning baselines and the proposed
framework PRIME with PyTorch 0.2.0. For training models, we
use Adadelta [30] with a mini-batch size of 50. We randomly di-
vide the datasets into the training, validation and testing set in
a 0.75:0.10:0.15 ratio. The validation set is used to select the best

values of parameters. We repeat all the approaches 10 times and
report the average performance.

We use F1 Score, Accuracy, and the area under the receiver oper-
ating characteristic curve (AUROC) as measures for comparing the
performance of all the methods in three risk prediction tasks.

5.3 Performance Evaluation
Table 3 shows the performance of all the approaches on all the
three real world medical datasets. We can observe that the proposed
approaches achieve the best performance compared with all the
baselines in terms of the values of all the measures.

On the Heart Failure dataset, the overall performance of tradi-
tional approaches LR, RF and SVM is worse than that of the deep
learning based approaches. This illustrates that employing deep
learning techniques to model the high dimensional and sparse EHR
data is effective for risk prediction task. In the four deep learn-
ing based baselines, GRU and LSTM perform better than RETAIN
and CNN. Since RETAIN applies attention mechanisms, training
RETAIN needs abundant EHR data. The size of the Heart Failure
dataset is relatively small, and thus the performance of RETAIN
is worse than that of GRU and LSTM. The advantage of CNN is
to capture the local temporal important features. However, heart
failure is a chronic disease, which needs to capture the longtime
characteristics of disease evolution. RNN based models can cor-
rectly recognize these features on the Heart Failure dataset, which
leads to better performance compared with CNN.

For the proposed four approaches, PRIMEr achieves the best per-
formance. We can observe that the performance of both PRIMEr
and PRIMEr− is better than that of the basic predictive model
LSTM. Similarly, the values of all the measures on both PRIMEc
and PRIMEc− are higher than those on CNN. These observations
strongly confirm that prior medical knowledge can help the predic-
tive models to improve the performance.

On the COPD dataset, the performance of RETAIN is better than
that of GRU and LSTM, which shows that the attention mechanism
starts to work. Among all the baselines, the performance of CNN is
the best. Even for the proposed PRIMEr and PRIMEr−, the values
on all the measures are smaller than those of CNN. The reason is
that unlike some diseases, COPD has a clear cause, which is directly
related to cigarette smoking. CNN has superior ability to capture
these local important features, i.e., the diagnosis codes about smok-
ing in visits. Thus, it achieves better performance compared with
other approaches. However, after integrating prior medical knowl-
edge using posterior regularization, i.e., the proposed approach
PRIMEc significantly improves over CNN. This again confirms that
taking prior medical knowledge into account is effective for risk
prediction task.

Since the characteristics of patients suffering kidney disease are
very clear, the traditional classification approach RF can achieve
comparable performance with deep learning based ones. Even on
the simple dataset, incorporating prior medical knowledge can still
improve the predictive performance. On the Kidney Disease dataset,
we also observe that the performance of the basic model LSTM is
comparable with that of the proposed PRIMEr . This is because we
do not tune the best values of the hyper-parameters α and β . These
two parameters are sightly sensitive to the dataset. Nevertheless,
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Table 3: Performance on the Three Real World Medical Datasets.

Model Heart Failure COPD Kidney Disease
AUROC F1 Score Accuracy AUROC F1 Score Accuracy AUROC F1 Score Accuracy

Traditional
Classification

LR 0.8810 0.8383 0.9048 0.8940 0.8559 0.9206 0.9147 0.8922 0.9335
RF 0.8755 0.8444 0.9137 0.8801 0.8478 0.9202 0.9235 0.9145 0.9491
SVM 0.8424 0.7734 0.8590 0.8400 0.7711 0.8715 0.8940 0.8545 0.9067

Deep
Learning

GRU 0.9047 0.8854 0.9357 0.9014 0.8772 0.9349 0.9263 0.9146 0.9485
RETAIN 0.8913 0.8661 0.9251 0.9110 0.8925 0.9431 0.9225 0.9133 0.9485
LSTM 0.9034 0.8827 0.9339 0.9041 0.8812 0.9370 0.9267 0.9164 0.9498
CNN 0.8994 0.8712 0.9260 0.9181 0.8968 0.9444 0.9284 0.9161 0.9491

This Work

PRIMEr− 0.9059 0.8881 0.9374 0.9048 0.8859 0.9399 0.9258 0.9107 0.9455
PRIMEc− 0.8944 0.8709 0.9278 0.9204 0.9005 0.9464 0.9331 0.9201 0.9511
PRIMEr 0.9126 0.8955 0.9410 0.9052 0.8868 0.9403 0.9276 0.9118 0.9459
PRIMEc 0.9070 0.8788 0.9295 0.9211 0.9014 0.9468 0.9362 0.9236 0.9530

the proposed PRIMEc outperforms other approaches on the Kidney
Disease dataset.

From Table 3, we can safely conclude that integrating prior med-
ical knowledge into existing risk prediction model can help it im-
prove the predictive performance. Moreover, utilizing posterior
regularization technique to model the prior medical knowledge
with risk prediction approach is effective and reasonable.

Table 4: Statistics of Constraint Features on Three Datasets.

Group Heart Failure COPD Kidney Disease
= 0 > 0 = 0 > 0 = 0 > 0

Case 424 1,979 3,033 1,774 588 2,613
Control 3,649 1,519 11,023 464 5,076 1,944
Sum 4,073 3,498 14,056 2,238 5,664 4,557

5.4 Importance of Constraint Features
The main contribution of this work is to introduce prior medical
knowledge into the predictive model. To model the prior knowl-
edge, posterior regularization technique is applied. The challenge of
posterior regularization is how to design constraint features, which
is introduced in Section 4.2. Next, we conduct experiments on the
constraint features to illustrate the reasonableness of the proposed
framework. We count four numbers in Table 4: The number of
patients in case/control group with sum(up ) = 0 and sum(up ) > 0.
We can observe that more than 50% patients have no constraint
features on underlying diseases and durations. Especially on the
COPD dataset, there are 86.3% patients without underlying diseases
in the constraint feature set (i.e., sum(up ) = 0). Thus, we cannot
directly use constraint features to predict the labels of patients.
However, even only using a small part of patients with constraint
features (i.e., sum(up ) > 0), the proposed framework can learn
better model parameters and achieve better performance compared
with the basic predictive models. This also can be observed from
Table 3. Thus, designing constraint features for risk prediction task
is necessary.

5.5 Constraint Feature Analysis
The advantage of the proposed PRIME is to automatically learn the
weights for different risk factors and constraint feature categories.
Next, we quantitatively show the weights learned by the proposed
framework and qualitatively illustrate the reasonableness of the
learned weights.

Confidence of Feature Categories. Figure 2 shows the normalized
confidence scores Γ learned by PRIMEr on the Heart Failure dataset,
where the normalizer is Softmax function. We can observe that the
six weights are different, and the weights on the risk prediction
are higher than those on the non-risk prediction. From Eq. (6), we
can observe that only according to the confidence matrix Γ, the
proposed model PRIMEr cannot determine the labels of patients.
This is because they are also related to the weights on the constraint
features.
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Figure 2: Confidence Matrix Learned by PRIMEr on the
Heart Failure Dataset.

Weights of Constraint Features. Figures 3 and 4 show the weights
learned by the proposed framework PRIMEr on the Heart Failure
dataset for the constraint features: underlying diseases and disease
duration respectively. From Figure 3(a), we can observe that for
the prediction of case patients, congenital heart defects, valvular
heart disease, alcohol use play important roles for the case patients’

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1917



1 2 3 4 5 6 7 8
0.115

0.12

0.125

0.13

Underlying Disease d

N
o
rm

a
li
z
e
d
W
e
ig
h
t

(a) w(u)
1 (Risk)

1 2 3 4 5 6 7 8
0.115

0.12

0.125

0.13

0.135

Underlying Disease d

N
o
rm

a
li
z
e
d
W
e
ig
h
t

(b) w(u)
0 (Non-risk)

Figure 3: LearnedWeights by PRIMEr for Underlying Diseases on the Heart Failure Dataset. X-axis represents different under-
lying diseases, which are in the order of 1-high blood pressure, 2-coronary artery disease, 3-diabetes, 4-congenital heart defects,
5-valvular heart disease, 6-alcohol use, 7-smoking and 8-obesity. Since the values of the learned weights may be negative, we
use softmax function to normalize the weight vector. Y-axis represents the normalized weights.
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Figure 4: Learned Weights by PRIMEr for Disease Duration on the Heart Failure Dataset.

prediction. Congenital heart defect8 is one or more abnormalities
in the heart’s structure that the patients are born with. One of
complications of congenital heart defects is heart failure. Valvular
heart disease9 may cause heart failure when one or more of the
valves do not open or close properly. Some studies [11] have been
shown that heavy drinking increases the risk of heart failure.

Figure 3(b) shows the weights of underlying diseases on the
control patients. The weight of high blood pressure, coronary artery
disease and diabetes is much higher than that of other risk factors.
It dose not mean that these three factors are not the risk factors
for the prediction of heart failure disease. The reason is that when
constructing the control patients for cases, we consider patients’
underlying diseases. Since these three diseases are common ones,
they all frequently appear in the visits of both case and control
patients.

For the learned weights for disease duration shown in Figure 4,
the overall trends are similar with those estimated for underly-
ing diseases. These two figures demonstrate that the proposed
framework PRIME can learn different weights for different risk
factors according to the characteristics of input data. In this way,
the proposed framework PRIME successfully tackles the drawback
of existing posterior regularization models [12, 17]. Due to the lim-
itation of space, we do not show the weights on the COPD and

8https://www.mayoclinic.org/diseases-conditions/adult-congenital-heart-disease/
symptoms-causes/syc-20355456
9https://www.mayoclinic.org/diseases-conditions/heart-valve-disease/
symptoms-causes/syc-20353727

Kidney dataset as the patients are similar with that in the weights
exhibited on the Heart Failure dataset.

6 DISCUSSIONS
This paper presents PRIME, a deep learning based framework for
risk prediction task. The proposed PRIME automatically incorpo-
rates discrete medical knowledge or rules into deep prediction
models using posterior regularization. With such a design, the pro-
posed framework achieves more accurate prediction results than
the state-of-the-art baselines.

It is worth mentioning that we do not explicitly perform
any missing value imputation for the input EHR data. Imputing
EHR data is challenging as EHR data are not missing at random
(NMAR) [18, 19, 23]. The proposed PRIME does not explicitly solve
the problem of missing values. However, it does implicitly reduce
the impact brought by missing values by employing the dropout
technique, which is essentially equivalent to the random remove of
some visits or codes. Thus, the proposed framework is more robust
to missing visits.

The limitation of this work is that the proposed PRIME is only ef-
fective for common diseases. For rare and emerging diseases, since
there is little medical knowledge about them, it is hard to incor-
porate any prior knowledge into deep learning predictive models.
Thus, the proposed PRIME may achieve similar performance to
the state-of-the-art baselines. In our future work, we will focus on
how to improve predictive performance of risk prediction for rare
diseases.
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7 CONCLUSIONS
In this paper, we propose a general risk prediction framework
PRIME, which can integrate prior medical knowledge into all
the existing predictive models to improve the predictive perfor-
mance. Specifically, we employ two state-of-the-art deep learning
architectures–recurrent neural networks (RNN) and convolutional
neural networks (CNN)–as the basic predictive models. To model
the discrete and heterogeneous prior medical knowledge, posterior
regularization technique is used. However, different from existing
posterior regularization, we use a log-linear model to estimate the
desired distributions of diseases. The benefit of the proposed ap-
proach is that it can automatically learn the weights for different
prior medical knowledge. We validate the proposed framework on
three real medical datasets. Experimental results show that the pro-
posed PRIME outperforms existing risk prediction models. Finally,
we qualitatively analyze the reasonableness of the weights learned
by the proposed PRIME.
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