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ABSTRACT

The goal of diagnosis prediction task is to predict the future health
information of patients from their historical Electronic Healthcare
Records (EHR). The most important and challenging problem of di-
agnosis prediction is to design an accurate, robust and interpretable
predictive model. Existing work solves this problem by employing
recurrent neural networks (RNNs) with attention mechanisms, but
these approaches suffer from the data sufficiency problem. To ob-
tain good performance with insufficient data, graph-based attention
models are proposed. However, when the training data are suffi-
cient, they do not offer any improvement in performance compared
with ordinary attention-based models. To address these issues, we
propose KAME, an end-to-end, accurate and robust model for pre-
dicting patients’ future health information. KAME not only learns
reasonable embeddings for nodes in the knowledge graph, but also
exploits general knowledge to improve the prediction accuracy with
the proposed knowledge attention mechanism. With the learned
attention weights, KAME allows us to interpret the importance
of each piece of knowledge in the graph. Experimental results on
three real world datasets show that the proposed KAME signifi-
cantly improves the prediction performance compared with the
state-of-the-art approaches, guarantees the robustness with both
sufficient and insufficient data, and learns interpretable disease
representations.
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1 INTRODUCTION

Achieving precision medicine and improving care for individual
patients are the overall objective for healthcare providers and re-
searchers. Mining the massive and diverse Electronic Healthcare
Records (EHR) provides the possibility to accomplish this goal,
which attracts considerable attention. In particular, predicting the
future diagnoses based on patient’s historical sequential EHR data,
i.e., diagnosis prediction, has been an intriguing yet challenging
topic. The main challenge of diagnosis prediction task comes from
the temporal, high dimensional and noisy EHR data. As a result,
robust predictive models are necessary to achieve accurate predic-
tions.

Recently, deep learning techniques have been adopted for diag-
nosis prediction tasks [9-11, 23, 33]. Med2Vec [9] generates low-
dimensional representations of medical codes (i.e., diagnosis codes,
procedure codes, and medication codes), but doses not consider the
temporal nature of EHR data. To model the sequential relations
among medical codes, state-of-the-art approaches have broadly ap-
plied recurrent neural networks (RNNs) [10, 11, 23, 33]. RETAIN [11]
applies an RNN with reverse time ordered EHR sequences, which
can reasonably interpret the contribution of each medical code ap-
peared in the previous visits for the current prediction. Dipole [23]
employs bidirectional recurrent neural networks (BRNNs) with dif-
ferent attention mechanisms, which significantly improves the pre-
dictive performance. However, training the aforementioned models
with a high accuracy typically requires large amounts of data. In
addition, some medical codes of rare diseases may infrequently
appear in the EHR data. A more challenging task is how to train a
robust prediction model with these rare codes.

To solve this challenge, GRAM [10] exploits medical ontologies
and graph-based attention mechanism to learn robust medical code
representations. GRAM can alleviate the difficulties of learning
embeddings for rare medical codes with their ancestors to guarantee
the predictive performance when there are not enough EHR data
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to train deep learning models. However, when sufficient training
data are available, each medical code can learn a satisfactory vector
representation only from EHR data. In such a case, GRAM has
relatively comparable performance with other RNN variants such
as Dipole. Therefore, designing a robust predictive model is essential
for diagnosis prediction task.

Furthermore, GRAM uses the hierarchy information for learning
the representations of medical codes, then employs these embed-
dings to learn the representations of visits, and finally makes pre-
dictions with visit representations. In the whole process, medical
ontology information is only used when learning code represen-
tations, which implicitly affects the final predictions. We believe
that directly exploiting medical knowledge in the whole pre-
diction process (i.e., learning code representations, generating visit
embeddings and making predictions), should help the predictive
models to improve the accuracy and provide better interpretation.

To tackle all the aforementioned challenges and problems, in this
paper, we propose a novel, accurate and robust knowledge-based
attention model (KAME) for predicting patients’ future diagnoses,
which exploits medical knowledge in the whole prediction process.
Specifically, KAME first uses a given medical ontology (i.e., knowl-
edge graph), such as Clinical Classifications Software (CCS)! or
the International Classification of Diseases (ICD)?, to learn the
representations of medical codes and obtain the embeddings of
medical codes’ ancestors. Next, the learned medical code represen-
tations are used to embed each input visit into a low dimensional
visit-level vector, and then it is fed into an RNN to generate the
hidden state representation. The hidden state representation is used
to calculate knowledge attention weights with the transformed
ancestor embeddings in the knowledge graph. Here the embeddings
of ancestors contain the general information of medical codes, i.e.,
high-level knowledge of the medical graph. KAME then generates a
new knowledge vector from the relevant high-level knowledge
weighted by the corresponding knowledge attention weights. The
combination of the hidden state at time t and the computed knowl-
edge vector is fed into a softmax layer to predict patient’s diagnoses
at time ¢ + 1.

We experimentally demonstrate that the proposed KAME
achieves significantly higher prediction accuracy compared with
the state-of-the-art approaches in diagnosis prediction, using three
real world medical datasets. We then quantitatively analyze the
effectiveness of the proposed KAME with sufficient and insufficient
data respectively. Moreover, a case study is conducted to illustrate
the interpretability and reasonableness of the designed knowledge
attention mechanism in predicting patient future diagnoses. Finally,
qualitative analysis demonstrates that KAME learns interpretable
representations of medical codes. In summary, our main contribu-
tions are as follows:

e We propose KAME, an end-to-end, accurate and robust
model to accurately predict patients’ future visit informa-
tion with medical ontologies, which explicitly makes use of
medical knowledge in the whole prediction process.

Ihttps://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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e We design a novel knowledge-level attention mechanism,
which significantly helps the proposed KAME to improve
the predictive performance.

e We empirically show that the proposed KAME has strong
robustness and outperforms existing methods in diagnosis
prediction on three real world datasets.

e We qualitatively demonstrate the interpretability of the
learned representations of medical codes and qualitatively
validate the reasonableness of the designed knowledge at-
tention mechanism.

The rest of this paper is organized as follows: We first introduce
the details of the proposed KAME in Section 2. In Section 3, experi-
ments are conducted to validate the effectiveness of the proposed
KAME. We then summarize the related literatures in Section 4.
Finally, conclusions of this work are presented in Section 5.

2 METHODOLOGY

In this section, we first introduce the structure of EHR data and
medical ontology, and then define some notations. Finally, we de-
scribe the details of the proposed knowledge-based attention model
KAME.

2.1 Basic Notations

We denote the set of medical codes from the EHR data as
1,2, ,C|c| € C, and |C]| is the number of unique medical codes.
P denotes the number of patients in the EHR data. For the p-th
patient who has T®) visit records, his/her clinical records can be
represented by a sequence of visits V1, Vp, - - -, Vi - Each visit V;
contains a subset of medical codes (V; C C), and is denoted by a
binary vector x; € {0, l}lcl, where the i-th element is 1 if V; con-
tains the medical code c;. For simplicity, we drop the superscript
(p) when it is unambiguous.

A medical ontology G contains the hierarchy of various medical
concepts with the parent-child relationship, which is a directed
acyclic graph (DAG) and referred to as knowledge graph in this
paper. The nodes of G include leaves and their ancestors. Each leaf
node is a medical code in C, and each ancestor node belongs to the
set N = {ny,ng,-- ,n‘N|}, where |N/| is the number of ancestor
codes in G. The ancestors of the leaf node c¢; are represented by
q(ci), which consists of all the intermediate nodes of the path from
root of G to leaf c;. For each visit x;, it contains multiple medical
codes, and Q; denotes the union of g(c;) for each of the medical
code c; in x;. Similar to V;, Q; can also be represented by a binary
vector f; € {0,1} IN1, where the Jj-th element is 1 if Q contains the
ancestor code n;.

With the above notations, the inputs of the proposed KAME
model are a medical knowledge graph G, a time-ordered sequence
of each patient visits x1, X, - - - ,X7_1, and a time-ordered sequence
of medical code ancestors in patient visits f1, fa, - - - , f7_;. For the
t-th visit, we aim to predict the next visit information. Thus, the
outputs are xp,X3,- - ,XT.

2.2 The Proposed Model KAME

Figure 1 shows the overview of the proposed KAME. Using the
given knowledge graph G, we can obtain the embedding matrix M
of medical codes and the matrix A of ancestor code embeddings
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with graph-based attention mechanism [10]. Given the t-th visit
information of a patient X;, it is embedded into a vector represen-
tation v; with the learned M. The embedded vector v; is fed into a
Recurrent Neural Network (RNN), which produces a hidden state
h¢ as the representation of the ¢-th visit. With the corresponding
ancestor set f; for the t-th visit, the learned ancestor embedding
matrix A can be mapped into a new matrix, called latent knowledge
embeddings denoted by Lf via a function 6. Along with h; and L,
we are able to generate a knowledge vector k; using a knowledge-
based attention mechanism, which will be detailed in the following
sections. From the hidden state h; and the knowledge vector k;, a
knowledge attentional vector s; can be obtained, which is used to
predict the information of the (t + 1)-th visit, i.e., ¥;. It is obvious
that the proposed model can be trained end-to-end.

Knowledge Graph Embedding

In order to learn reasonable and correct representations of medical
codes, we employ the state-of-the-art graph embedding approach
GRAM [10]. Through balancing the ontology information in rela-
tion to the data volume, GRAM can learn the robust representations
even when the data volume is constrained.

In the knowledge graph G, each medical code or leaf node c;
has a basic learnable embedding vector ¢; (1 < i < |C|), and each
ancestor code nj also has an embedding vector aj (1 < j < |N]).
The final embedding vector of the i-th medical code denoted as
m; can be obtained by combining the basic embedding e; and its
ancestors via graph-based attention mechanism. The details can be
found in [10].

By concatenating the vector representation my, mz, - -+ ,m|¢| of
all the medical codes, GRAM generates the embedding matrix M €
RAXICI , where d is the dimensionality size and m; is the i-th column
of M. GRAM only uses the medical code embeddings M in the final
prediction and ignores the ancestor code information. Actually, the
ancestor codes contain general or coarse-grained information about
the medical codes, which may help the predictive model to improve
the prediction performance. Thus, the proposed KAME not only
generates the medical code embeddings M € R4%IC| but also the
ancestor code embeddings A € R4%IN| \where each ancestor code
embedding vector a; is the i-th column of A. The ancestor code
embeddings A will be used in the knowledge attention layer as
shown in Figure 1.

Visit Embedding

Given the t-th visit information x; € {0, 1} €1, the vector represen-
tationv; € R9 is obtained by multiplying medical code embeddings
M with one-hot vector x; as follows:

v; = tanh(Mx;). (1)
Recurrent Neural Networks

Recurrent Neural Networks (RNNs) provide a very efficient and
elegant way of modeling sequential healthcare data [10, 11, 23, 33].
Note that we use “RNNs” to denote any Recurrent Neural Network
variants, such as Long-Short Term Memory (LSTM) [16] and Gated
Recurrent Unit (GRU) [8]. In our implementation, we use GRU to
adaptively capture dependencies among patient visit information.
A GRU has two gates, a reset gate r and an update gate z. The
reset gate r determines the combination of the new input and the
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previous memory, which allows the hidden layer to drop irrelevant
information. The update gate z controls how much information
should be kept around from the previous hidden state. Accordingly,
the mathematical formulation of GRU can be described as follows:

Zt = a{sz{- +Uzhs 1 + bz)s
r; = o(Wyve +Urhy 1 +by),

h; = tanh(Wj,v; + 17 o Uph,_y + by), @

hf =Zt Oh{-_1+(1—2;}0fl;.

In these equations, o denotes the element-wise multiplication, () is
the activation function, z; € RY is the update gate at time t, r; € RY
is the reset gate at time t, ﬁf € RY represents the intermediate
memory, h; € RY is the hidden state, and g is the dimensionality
of hidden states. Matrices W, € R9%d W, € R9xd W, c R9%d,
U, € R9%9 U, € R9%9, Uy € R9%9 and vectors b, € R9,b, € RY,
by, € RY are parameters to be learned.

Knowledge-based Attention Mechanism
The benefit of employing the medical knowledge graph G is not
only to learn the robust vector representations of medical codes,
but also learn the coarse-grained information of ancestor codes.
Correct vector representations of medical codes can help RNN to
generate the accurate vector representation for next visit, i.e., the
hidden state hy. Moreover, the embeddings of ancestor codes A
contain the relevant high-level medical code information, which
provides additional features for the learning model. With hy and A,
it is expected that the predictive model can improve its performance
on the task of future diagnosis prediction.

Now, we describe the details of computing the knowledge atten-
tion representations. We first map the ancestor embeddings A to
space L € RI¥INI a5 follows:

L! = frn(WiApn +by), (3)

where LY, € RY is the n-th column of L?, f; is the n-th element
of the one-hot ancestor vector f;, Wj. € R9%d and by € RY are
parameters to be learned. In such a way, L? encodes the relevant
high-level knowledge of the previous visit.

Next, we compute the knowledge vector k; by combining L*
and h;. In particular, we propose a knowledge based attention
mechanism to compute k; as follows:

%

ki = ) arlf,

n=1 (4)
st. agp=20,n=1---,|N|

where aty, is the attention weight on the embedding L when
calculating k¢. The attention weight in Eq. (4) is calculated by the
following Softmax function,
exp(h]L})
n = IR i’ ®
Zj:l exp(hr Lj)

Knowledge-based Diagnosis Prediction
Given the knowledge vector k; and the current hidden state h;, we
employ a simple concatenation layer to combine the information
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Figure 1: The Proposed KAME Model.

from both vectors to generate a knowledge attentional vector s; €
R?9 as follows:

st = [he; ke]. (6)
Therefore, s; contains both information from previous visits and
the relevant high-level knowledge from G. s¢ is fed through the
softmax layer to produce the (t + 1)-th visit information defined as:

¥t = Softmax(Ws; + bc), (7)
where W € RICIX2g anq b € RIC! are the learnable parameters.

Objective Function

Based on Eq. (7), we use the cross-entropy between the ground
truth visit y; and the predicted visit ¥ to calculate the loss for each
patient from all the timestamps as follows:

L(x1,xz,--- ,x736,6,--- ,f7)
, I

= 1 > (T log(§) + (1 - y0) log(1 ~ 1))
t=1

®)

Note that in our implementation, we take the average of the individ-
ual cross entropy error for multiple patients. Algorithm 1 describes
the overall training procedure of the proposed KAME.

REMARK. The proposed KAME is the generalization of the state-
of-the-art diagnosis prediction model GRAM [10]. When removing
the proposed knowledge-based attention component (i.e., deleting k¢ ),
then the proposed KAME is reduced to GRAM.

3 EXPERIMENTS

In this section, we conduct experiments on three real world medical
claim datasets to evaluate the performance of the proposed KAME.
Compared with the state-of-the-art predictive models, KAME yields
better performance on different evaluation strategies.

3.1 Data Description

The real world datasets used in this experiments are the Medicaid
dataset, the Diabetes dataset and the MIMIC-III dataset.

Medicaid Dataset
The Medicaid dataset consists of insurance claims over the years
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Algorithm 1 KAME Optimization Algorithm.

1: Randomly initialize basic embedding matrix of medical codes
E = {e; }Ell, embedding matrix of ancestor codes A, attention
parameter used in GRAM A, RNN parameter €, latent knowl-
edge embedding parameters W and by, softmax parameters
W, and b;

2. repeat

X « random patient from dataset

for visit V; in X do
for medical code c; in V; do

Refer G to find c;’s ancestors g(c;);

Update Q; according to g(c;);

Obtain the medical code representation m;;
end for
Obtain the ancestor code representations A;
Calculate the visit embedding v; according to Eq. (1);
Compute the hidden state h; according to Eq. (2);
Calculate the knowledge vector k; according to Eq. (3)
and (4);
Obtain the knowledge attentional vector s; according to
Eq. (6);
Make prediction ¥ using Eq. (7);

end for

Calculate the prediction loss £ using Eq. (8);

Update parameters according to the gradient of £;

19: until convergence

b A

11:
12:
13:

14:

2011 and 2012, which has 99, 159 patients and 2, 034, 485 visits. The
patient visits were grouped by week [23], and we chose patients
who made at least ten visits.

Diabetes Dataset

The Diabetes dataset is a subset of the Medicaid dataset, corre-
sponding to patients who have been diagnosed with diabetes (i.e.,
Medicaid members who have the ICD9 diagnosis code 250.xx in
their claims). There are 17, 584 patients with 466, 024 visits.
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MIMIC-III Dataset

The MIMIC-III dataset is a publicly available EHR dataset, which
consists of medical records of 7,499 intensive care unit (ICU) pa-
tients over 11 years. For the MIMIC-III dataset, we chose the patients
who made at least two visits.

We choose these three representative datasets to extensively
evaluate different aspects of the models: (1) The number of patients
and visits in the Medicaid dataset is big enough to validate the
performance of the proposed KAME with long visit records. (2) The
MIMIC-IIT dataset consists of very short visits, and the number of
patients is small. With this dataset, we can validate the performance
of KAME with insufficient training data. (3) The number of patients
and visits in the Diabetes dataset is smaller than that of the Med-
icaid dataset and bigger than that of the MIMIC-III dataset. This
dataset is used to validate the performance of all the state-of-the-art
diagnosis prediction approaches on a specific disease. With these
three different types of datasets, we can fully and correctly validate
the performance of all the diagnosis prediction approaches.

The goal of diagnosis prediction task is to predict the diagnosis
information of the next visit. In the experiments, we aim to predict
diagnosis categories instead of the real diagnosis codes. Predicting
category information not only improves the training speed and pre-
dictive performance, but also guarantees the sufficient granularity
of all the diagnoses [10, 23]. We use the nodes in the second hierar-
chy of the ICD9 codes? as the category labels, such as the category
label of diagnosis code “250.1: Diabetes with ketoacidosis” is “Dis-
eases of other endocrine glands (249-259)”. Actually, the hierarchy
of CCS* can also be used as category labels [10]. These two kinds
of grouping methods can obtain similar predictive performance.
Table 1 lists more details about the three datasets.

Table 1: Statistics of the Medicaid Dataset, the Diabetes
Dataset and the MIMIC-III Dataset.

Dataset Medicaid Diabetes MIMIC-III
# of patients 99,159 17,584 7,499

# of visits 2,034,485 466,024 19,911
Avg. # of visits per patient 20.52 26.50 2.66

# of unique ICD9 codes 9,701 7,437 4,880
Avg. # of ICD9 codes per visit 2.78 3.39 13.06
Max # of ICD9 codes per visit 41 37 39

# of category codes 157 155 171
Avg. # of category codes per visit 2.30 2.92 10.16
Max # of category codes per visit 23 22 30

3.2 Experimental Setup

In this subsection, we first introduce the state-of-the-art approaches
for diagnosis prediction task in healthcare, and then outline the
measures used for predictive performance evaluation. Finally, we
describe the implementation details.

Baseline Approaches
To validate the predictive performance of the proposed approach

Shttp://www.icd9data.com
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KAME, we compare it with the following four state-of-the-art ap-
proaches:

GRAM [10]. GRAM is the first work that uses a medical knowl-
edge graph to learn the medical code representations and predict
the future visit information with recurrent neural networks. A time-
ordered visit sequence X1, X3, - - - , X7 is first transformed into visit
vectors by the medical code embedding matrix M, and then visit
vectors are fed to the GRU with a single hidden layer, which in turn
predict the future visit information.

Dipole [23]. Dipole uses bidirectional recurrent neural networks
and three attention mechanisms to predict patient visit informa-
tion, which can achieve the best performance compared with other
diagnosis prediction models. In the experiments, the attention mech-
anism we selected is the local-based one. A time-ordered visit se-
quence X1, X2, - - - , X7 is first embedded into visit vectors by a mul-
tilayer perceptron (MLP) with the rectified linear unit (ReLU), and
then visit vectors are fed to the bidirectional GRUs. Finally, the
concatenated outputs from GRUs with attention mechanism are
used to generate latent vectors to make the predictions with a single
softmax layer.

RNN+. RNN+ adds location-based attention model into RNN [23].
The difference between RNN+ and Dipole is that RNN+ only uses
one directional GRU to make the prediction.

RNN. We directly embed visit information x; into the vector
representation v;, and then feed this embedding to the GRU. The
hidden state h; produced by the GRU is used to predict the (¢ +1)-th
visit information.

Note that Med2Vec [9] and RETAIN [11] are not listed as base-
lines in the following experiments because the performance of these
two approaches is worse than that of Dipole [23]. Med2Vec focuses
on the learning of medical code representations, and RETAIN aims
to interpret the prediction results with a two-level attention model.

Evaluation Measures

We evaluate the performance for all the diagnosis predication ap-
proaches from two aspects: visit-level and code-level evaluation.
Thus, the evaluation measures are the same: visit-level precision@k
and codel-level accuracy@k.

For the visit-level evaluation, visit-level precision@k is defined
as the correct medical codes in top k divided by min(k, |y;|), where
|y¢| is the number of category labels in the (¢ +1)-th visit. We report
the average values of visit-level precision@k in the experiments.

In the code-level evaluation, given a visit V; which contains
multiple category labels, if the target label is in the top k guesses,
then we get 1 and 0 otherwise. Thus, codel-level accuracy@k is
defined by the number of correct label predictions divided by the
total number of label predictions.

We vary k from 5 to 30. Visit-level precision@k aims to evalu-
ate the coarse-grained performance, and codel-level accuracy@k
is proposed to evaluate the fine-grained performance. For all the
measures, the greater values, the better performance.

Implementation Details
As in [10], we also use CCS-multi-level diagnoses hierarchy® as the
knowledge graph. We implement all the approaches with Theano

Shttps://www.hcup-us.ahrg.gov/toolssoftware/ccs/AppendixCMultiDX. txt
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Table 2: The Accuracy@k of Diagnosis Prediction Task.

Visit-Level Precision@k

Code-Level Accuracy@k

Dataset Model
5 10 15 20 25 30 5 10 15 20 25 30

KAME 0.6107 0.7475 0.8168 0.8606 0.8920 0.9154 0.5461 0.7037 0.7808 0.8305 0.8667 0.8940

GRAM 05832 0.7189 0.7902 0.8367 0.8717 0.8976  0.5279 0.6842 0.7630 0.8146 0.8528 0.8819

Medicaid Dip0|e 0.5943 0.7226 0.7892  0.8340 0.8680 0.8942 0.5406 0.6903 0.7637 0.8130 0.8503 0.8791
RNN+ 05964 0.7210 0.7919 0.8397 0.8746 0.9011 0.5402 0.6867 0.7642 0.8166 0.8550  0.8845

RNN 0.5448 0.6737 0.7503 0.8036 0.8433 0.8740 0.4914 0.6370 0.7200 0.7782 0.8222 0.8564

KAME 0.5881 0.7313 0.8054 0.8523 0.8859 0.9107 0.5147 0.6939 0.7779 0.8293 0.8666 0.8949

GRAM 05596 0.7048 0.7822 0.8326 0.8684 0.8962 0.4958 0.6776 0.7617 0.8158 0.8546  0.8848

Diabetes Dip0|e 0.5697 0.7015 0.7765 0.8267 0.8640 0.8921 0.5110 0.6771 0.7585 0.8120 0.8520 0.8824
RNN+ 05680 0.7007 0.7769 0.8279 0.8649 0.8943 0.5086 0.6740 0.7569 0.8118 0.8519  0.8838

RNN 0.5515 0.6851 0.7639 0.8179 0.8575 0.8877 0.4984 0.6611 0.7459 0.8024 0.8445 0.8765

KAME 0.7103 0.6568 0.6967 0.7562 0.8091 0.8470 0.3167 0.5100 0.6379 0.7240 0.7862 0.8303

GRAM  0.6998 0.6447 0.6847 0.7439 0.8007 0.8424 0.3123 0.5026 0.6296 0.7142 0.7798  0.8266

MIMIC-III Dip0|e 0.6220 0.5839 0.6310 0.6953 0.7556 0.8059 0.2774 0.4556  0.5801 0.6671 0.7354  0.7902
RNN+ 0.6158 0.5803 0.6243 0.6912 0.7542 0.8017 0.2760 0.4548 0.5751 0.6647 0.7350 0.7867

RNN 0.6580 0.6186 0.6637 0.7254 0.7836 0.8272 0.2941 0.4836 0.6106 0.6961 0.7629 0.8119

0.9.0 [37]. For training models, we use Adadelta [42] with a min-
batch of 50 patients. We randomly divide the datasets into the
training, validation and testing sets based on the number of patients
in a 0.75:0.10:0.15 ratio. The validation set is used to determine
the best values of parameters in the 100 training iterations. The
regularization (I norm with the coefficient 0.001) and the drop-out
strategies (the drop-out rate is 0.5) are used for all the approaches.
In order to fairly compare the performance, we set the same d = 128
and g = 128 for all the baselines and the proposed KAME.

3.3 Results of Diagnosis Prediction

Table 2 shows both the visit-level precision and code-level accuracy
of the proposed KAME and baselines with different k’s on three
real world datasets for diagnosis predication task. From Table 2, we
can observe that the performance of the proposed KAME, including
both visit-level precision and code-level accuracy, is better than
that of all the baselines on the three datasets.

On the Medicaid dataset, compared with GRAM, the visit-level
precision improves 4.7% and code-level accuracy improves 3.4%
when k = 5. These results suggest that adding knowledge attention
layer when predicting diagnoses is effective. Comparably, Dipole
and RNN+ do not use external knowledge in the diagnosis predic-
tion task. They directly learn the medical code embeddings from
the input data with location-based attention mechanism. Compared
with GRAM, the performance of both Dipole and RNN+ is better.
The results also suggest that with sufficient data, even without ex-
ternal knowledge, attention-based models can still learn reasonable
medical code embeddings to make accurate predictions. However,
compared with the proposed KAME, the precision and accuracy of
these two approaches are lower, which again confirms that consid-
ering general or high-level information can improve the prediction
performance. The performance of RNN is the worst since this
approach does not use any attention mechanism or external knowl-
edge. The visit-level precision and code-level accuracy of KAME
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increase 12.1% and 11.1% respectively compared with RNN when
k =5.

On the Diabetes dataset, the proposed KAME still outperforms
all the state-of-the-art diagnosis prediction approaches. Compared
with the Medicaid dataset, the data are relatively insufficient in the
Diabetes dataset. Thus, the performance (both visit-level precision
and code-level accuracy) of GRAM is competitive to that of RNN+
and Dipole, but still worse than that of KAME. This shows that
the performance of models with knowledge graph is comparable to
models with attention mechanisms on the Diabetes dataset.

Since the number of visits for each patient on the MIMIC-III
dataset is much smaller than that on the Medicaid and Diabetes
dataset, the data are significantly insufficient, i.e., less labels are ob-
served in the training data. On this insufficient dataset, KAME still
outperforms all the baselines. In the four baselines, GRAM achieves
the best performance, which shows that employing knowledge
graph is effective with significant data insufficiency. The precision
and accuracy of both Dipole and RNN+ are lower than those of
RNN. This demonstrates that training attention models on the pre-
vious visits needs more data. However, instead of adding attention
mechanisms on the past visits, the proposed KAME aims to ex-
tract knowledge from the given knowledge graph with attention
mechanism.

As expected, the values of precision and accuracy increase with
larger k values, except the visit-level precision on the MIMIC III
dataset. The reason is that there are some labels without sufficient
training data, and they obtain lower probabilities in the predictions
compared with those well trained. Thus, for the visits that contain
some labels without sufficient training data, the number of correct
predictions when k is 10 or 15 may be the same with that when
k = 5. However, they are divided by a bigger min(k, |y;|), which
leads to the observation that the average performance is worse
than that with k = 5. All the results in Table 2 can significantly
and strongly validate the robustness of KAME on different types of
datasets.
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Figure 2: Code-Level Accuracy@20 of Diagnosis Prediction on the MIMIC-III Dataset.
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Figure 4: Code-Level Accuracy@20 of Diagnosis Prediction on the Medicaid Dataset.

3.4 Data Sufficiency Analysis

In order to analyze the influence of data sufficiency on the pre-
dictions, we conduct the following experiments on the MIMIC-III,
Diabetes and Medicaid datasets, respectively. We first rank all the
category labels appeared in the training set based on their fre-
quency, and then divide them into four groups: 0-25, 25-50, 50-75
and 75-100. The category labels in the 0-25 group are the most rare
ones in the training set, while the labels in the 75-100 group are the
most common ones. Finally, we calculate the accuracy of labels in
each group. Figures 2, 3 and 4 show the code-level accuracy@20 on
the MIMIC-III, Diabetes and Medicaid datasets, respectively. X-axis
denotes all the approaches, and Y-axis is the average accuracy of
the approaches. Note that similar results can be obtained when
k = 5,10, 15, 25 or 30.

From Figure 2, we can observe that the accuracy of the pro-
posed KAME is higher than that of baselines in the groups 25-50,
50-75 and 75-100. For the group 0-25, GRAM outperforms other
approaches, which shows that with insufficient data, GRAM still
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learns reasonable medical code embeddings to improve the predic-
tions. Similar observations also can be found in other groups, i.e.,
the performance of GRAM is better than that of other baselines.

On the other hand, when the training data on the Diabetes and
Medicaid datasets is sufficient, the proposed KAME still significantly
outperforms baselines in the groups 0-25, 25-50 and 50-75. Espe-
cially in the group 0-25 on the Medicaid dataset, GRAM achieves
the highest average accuracy among baselines that is 0.0561, but the
accuracy of KAME is 0.2543, which improves 353.3%. This results
demonstrates the effectiveness of the proposed knowledge-based at-
tention mechanism with insufficient training EHR data. As shown
in Figures 3 and 4, the difference of average accuracy between
GRAM and attention-based models drops, i.e., RNN+ and Dipole,
which shows that the attention mechanism starts to play a more
important role under sufficient data. These observation also can be
found in Table 2.

From Figures 2, 3 and 4, we can conclude that through adopting
the medical knowledge graph, the proposed KAME uses knowledge-
based attention mechanism in the prediction step, which infers the
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general knowledge information to improve the predictive perfor-
mance. Thus, the final prediction performance of KAME is better
than that of baselines as shown in Table 2.

3.5 Case Study for Knowledge Attention

To demonstrate the additional benefits of applying the proposed
knowledge attention mechanism in diagnosis prediction task, we
analyze the attention weights learned from the proposed approach
KAME with two examples from the MIMIC-III dataset shown in
Table 3. In Table 3, the first column represents the medical codes of
the t-th visit, the second column denotes the knowledge (i.e., the
ancestors of the medical codes in V;) with high attention weights
which are calculated by Eq. (5), and the third column is the (¢ + 1)-th
visit’s medical codes. We intend to show the relationships between
the knowledge attention weights and the predictions.

In the first example, we can observe that the knowledge “Coro-
nary atherosclerosis” has the highest attention weight, which is
related to heart disease. This potentially helps the model to pre-
dict (“Other complications due to other cardiac device, implant, and
graft (996.72)) at the (¢ + 1)-th visit. The second example shows
that the proposed KAME can calculate the correct attention weight
with the knowledge (“Secondary malignancies”) in the knowledge
graph, which makes KAME predict “Secondary malignant neoplasm
of pleura (197.2)” and “Secondary malignant neoplasm of retroperi-
toneum and peritoneum (197.6)” with high confidence.

This case study demonstrates that we can learn an accurate at-
tention weight for each piece of knowledge, and the experimental
results in Section 3.3 also illustrate that learning over the knowl-
edge graph with the proposed knowledge attention mechanism can
significantly improve the performance of the diagnosis prediction
task in healthcare.

3.6 Interpretable Representation Analysis

To qualitatively demonstrate the interpretability of the learned
medical code representations by all the predictive models on the
Diabetes dataset, we randomly select 2000 medical codes and then
plot on a 2-D space with t-SNE [26] shown in Figure 5. Each dot
represents a diagnosis code. The color of the dots represents the
highest or first disease categories in CCS multi-level hierarchy.
Ideally, the dots with the same color should be in the same cluster,
and there are margins among different clusters.

From Figure 5, we can observe that KAME and GRAM learn
interpretable disease representations that are in accord with the
hierarchies of the given knowledge graph G. In addition, the pre-
dictive performance of KAME is much better than that of GRAM
shown in Table 2, which proves that the proposed knowledge at-
tention mechanism does not affect the interpretability of medical
codes. In addition, it significantly improves the prediction accuracy.
Figure 5(c), 5(d) and 5(e) confirm that without knowledge graph,
simply using the co-occurrence or supervised predictions cannot
easily learn interpretable representations.

4 RELATED WORK

In this section, we review the work about mining electronic health-
care records with deep learning techniques, especially for diagnosis
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prediction. We then introduce some work on attention mechanism
and graph representation learning.

4.1 Deep Learning for EHR Data

Gaining knowledge from the massive EHRs [25, 27, 31, 34, 35, 41, 43]
is a hot research topic in healthcare informatics. Recently, deep
learning techniques have shown their superior ability for mining
EHR data. Recurrent neural networks (RNNs) can be used for di-
agnosis classification [20], patient subtyping [3], modeling disease
progression [30], and mining time series healthcare data with miss-
ing values [6, 21]. Convolutional neural networks (CNNs) are used
for predicting unplanned readmission [28] and risk [7, 24] with
EHRSs. Stacked denoising autoencoders (SDAs) are employed to de-
tect the characteristic patterns of physiology in clinical time series
data [5].

Diagnosis prediction is one of the important tasks in EHR data
mining, which aims to predict the future visit information according
to historical visit records of patients. Med2Vec [9] is an unsuper-
vised method for learning the representations of medical codes,
which can be used to predict the future visit information. How-
ever, this method ignores long-term dependencies of medical codes
among visits. RETAIN [11] is an interpretable predictive model,
which employs a reverse time attention mechanism in an RNN for
binary prediction task. Dipole [23] applies bidirectional recurrent
neural networks (BRNNs) and attention mechanisms to predict
patient visit information. GRAM [10] is a graph-based attention
model for healthcare representation learning, which uses medical
ontologies to learn robust representations and an RNN to model
patient visits.

Among the aforementioned predictive models, GRAM is the
most relevant model to our proposed KAME. Actually, KAME is a
generalization of GRAM. Compared with GRAM, KAME not only
uses graph-based attention model to learn medical representations,
but also employs knowledge-based attention mechanism to generate
knowledge vectors and makes predictions according to the learned
knowledge vectors to improve the predictive performance.

4.2 Attention & Graph Representation

Attention-based neural networks have been successfully used in
many tasks [1, 2, 12, 15, 18, 22, 39, 40], such as neural machine
translation [2, 22], computer vision [40], speech recognition [12]
and healthcare [10, 11, 23, 33]. In healthcare, most of existing work
aims to learn attention weights between the current visit and all the
previous ones, or medical codes and their ancestors. However, the
proposed KAME calculates attention weights between knowledge
graph and the current visit. The goal of KAME is to learn general or
high-level knowledge representations to help the final predictions.

Learning the representations of graphs is a hot research
topic which motivates various methods, such as DeepWalk [29],
Node2Vec [14], LSHM [17], LINE [36], Metapath2Vec [13], and
Struc2Vec [32]. All the aforementioned models focus on learning
good representations for graph data, while the proposed KAME is
a diagnosis predictive model, and we aim to improve the predictive
performance with the given knowledge graph as supplementary
information.
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Table 3: Case Study for the Proposed Knowledge Attention Mechanism.

Visit ¢

Knowledge and Attention Weight ‘

Visit ¢t +1

Acute myocardial infarction of other anterior
wall, initial episode of care (410.11)
Coronary atherosclerosis of native coronary
artery (414.01)

Pure hypercholesterolemia (272.0)

Coronary atherosclerosis (0.5968)
Coronary atherosclerosis and other
heart disease (0.236)

Acute myocardial infarction (0.0919)
Hypopotassemia (0.0220)

Diseases of the heart (0.0126)

Other complications due to other

cardiac device, implant, and graft (996.72)
Coronary atherosclerosis of native coronary
artery (414.01)

Acute myocardial infarction of other anterior
wall, initial episode of care (410.11)
Hypopotassemia (276.8)

Other specified diseases of pericardium (423.8)
Malignant neoplasm of upper lobe,

bronchus or lung (162.3)

Esophageal reflux (530.81)

Polyneuropathy due to drugs (357.6)

Injury due to war operations by

guided missile (E993.1)

Secondary malignancies (0.9777)
Neoplasms (0.0223)

Secondary malignant neoplasm of pleura
(197.2)

Secondary malignant neoplasm of
retroperitoneum and peritoneum (197.6)
Malignant neoplasm of other parts

of bronchus or lung (162.8)
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Figure 5: t-SNE Scatterplots of Medical Codes Learned by Predictive Models on the Diabetes dataset.

Knowledge graph representation learning is relevant to the pro-
posed model, but they are totally different. The goal of knowledge
graph representation learning is to learn the representations of
nodes, entities and relations, such as TransE [4], TransH [38] and
TransR [19]. These approaches are used for link prediction or en-
tity classification. The proposed KAME is different from them in
that it aims to design intuitive attention mechanisms on the given
knowledge graph and learn meaningful and interpretable medical
code representations for making accurate predictions.

5 CONCLUSIONS

Diagnosis prediction is a core task in healthcare informatics. The
state-of-the-art diagnosis prediction approaches employ recurrent
neural networks to model sequential EHR data and adopt attention
mechanisms to improve the prediction accuracy and interpretabil-
ity. However, these models suffer from the problem of robustness
for different types of data and ignore the importance of employ-
ing general knowledge in the medical ontologies to improve the
predictive performance.

In this paper, we propose a new diagnosis prediction model,
named KAME, which can fully utilize the information of medical
ontologies to improve the prediction accuracy. By learning from
the given knowledge graph, KAME not only obtains the accurate
embeddings of medical codes, but also directly derives the general
knowledge from the ancestor codes. With the learned medical code
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embeddings and RNNs, KAME can remember the hidden informa-
tion of all the previous visits. Through calculating attention weights
between the hidden information and the general knowledge, KAME
can obtain a novel knowledge vector, which largely helps the pre-
dictive model to improve the performance. Moreover, the learned
attention weights allow us to reasonably interpret the importance
of each piece of knowledge. Experimental results on three real
world medical datasets prove the effectiveness and robustness of
the proposed KAME for diagnosis prediction task. An experiment
is conducted to show that the proposed KAME outperforms base-
lines with both sufficient and insufficient data. The representations
of medical codes are visualized to illustrate the interpretability of
KAME. Finally, a case study demonstrates the reasonableness of
the proposed knowledge-based attention mechanism.
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