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Abstract We systematically and quantitatively evaluate whether endoplasmic reticulum (ER)

proteostasis factors impact the mutational tolerance of secretory pathway proteins. We focus on

influenza hemaggluttinin (HA), a viral membrane protein that folds in the host’s ER via a complex

pathway. By integrating chemical methods to modulate ER proteostasis with deep mutational

scanning to assess mutational tolerance, we discover that upregulation of ER proteostasis factors

broadly enhances HA mutational tolerance across diverse structural elements. Remarkably, this

proteostasis network-enhanced mutational tolerance occurs at the same sites where mutational

tolerance is most reduced by propagation at fever-like temperature. These findings have important

implications for influenza evolution, because influenza immune escape is contingent on HA

possessing sufficient mutational tolerance to evade antibodies while maintaining the capacity to

fold and function. More broadly, this work provides the first experimental evidence that ER

proteostasis mechanisms define the mutational tolerance and, therefore, the evolution of secretory

pathway proteins.

DOI: https://doi.org/10.7554/eLife.38795.001

Introduction
Protein evolution is necessarily constrained by the inherent biophysical properties of polypeptide

sequences (Wylie and Shakhnovich, 2011; Wyganowski et al., 2013; Bloom and Glassman, 2009;

DePristo et al., 2005; Tokuriki and Tawfik, 2009a; Gong et al., 2013). Gene variants that encode

proteins unable to properly fold are selected against (Figure 1A) (Powers et al., 2009), irrespective

of any theoretically beneficial new function the encoded protein may otherwise have acquired

(Wylie and Shakhnovich, 2011; Wyganowski et al., 2013; Bloom and Glassman, 2009;

DePristo et al., 2005; Tokuriki and Tawfik, 2009a; Gong et al., 2013). Importantly, the consequen-

ces of amino acid substitutions for protein folding depend not just on inherent biophysical proper-

ties, but also on the environment in which the nascent chain attempts to fold. In cells, this

environment is defined most importantly by the proteostasis network, which consists of a subcellular

compartment-specific array of chaperones and quality control factors (Balch et al., 2008;

Wong et al., 2018; Hartl et al., 2011; Shoulders et al., 2013). These proteostasis factors assist
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client proteins in navigating complex folding landscapes (Wyganowski et al., 2013; Tokuriki and

Tawfik, 2009b), and are thus theoretically well-positioned to modulate the mutational landscape

accessible to evolving proteins (Figure 1B).

The proteostasis network consists of ~1000 factors involved in client protein folding, modification,

trafficking, and quality control. Yet, to date, virtually all studies experimentally examining evolution-

ary consequences of eukaryotic proteostasis network factors have focused on a single chaperone –

HSP90 (Geller et al., 2012; Rohner et al., 2013; Queitsch et al., 2002; Cowen and Lindquist,

2005; Geller et al., 2018; Sangster et al., 2008; Geiler-Samerotte et al., 2016). These focused

studies have shown that HSP90 can (1) buffer the phenotypic effects of standing genetic diversity

(Rohner et al., 2013; Queitsch et al., 2002; Sangster et al., 2008; Geiler-Samerotte et al., 2016)

and (2) potentiate the phenotypic effects of new mutations (Cowen and Lindquist, 2005;

Geller et al., 2018; Geiler-Samerotte et al., 2016), perhaps by facilitating protein folding and mini-

mizing aggregation (Geller et al., 2018). Looking beyond HSP90, we recently leveraged chemical

biology tools to demonstrate that other cytosolic proteostasis factors can also modulate protein evo-

lutionary trajectories and mutational tolerance (Phillips et al., 2017).

The potentially critical impact of the extensive endoplasmic reticulum (ER) proteostasis machinery

on the mutational tolerance and evolution of secretory pathway client proteins has remained unex-

plored. This gap in knowledge is important because roughly 1/3 of the proteome folds in the ER

(Wong et al., 2018). Moreover, thousands of mutations in ER client proteins cause hundreds of cur-

rently incurable diseases, ranging from neurodegenerative pathologies to the lysosomal storage dis-

orders and the collagenopathies (Balch et al., 2008). Additionally, viral membrane proteins often

fold in the ER and must rapidly evolve to escape host immune factors (Chen et al., 1995;

Daniels et al., 2003; Doud et al., 2017). Thus, understanding how ER chaperones influence the abil-

ity of client proteins to tolerate mutations and adapt to changing environments is essential as we

work to design effective therapies for these diseases.

Influenza hemagglutinin (HA) is a uniquely attractive model protein for systematically and quanti-

tatively evaluating whether and how ER proteostasis mechanisms impact client protein mutational

tolerance. The folding of HA is perhaps as well-delineated as for any other membrane protein, and

HA interacts extensively with components of the host cell’s ER proteostasis network (Chen et al.,

1995; Daniels et al., 2003; Sauter et al., 1992; Nakajima et al., 1986; Frabutt et al., 2018;

Hurtley et al., 1989; Hebert et al., 1997; Ueda and Sugiura, 1984; Skehel and Wiley, 2000;

Klein et al., 2018; Gamblin et al., 2004; Pankow et al., 2015). Co-translationally, HA is heavily N-

glycosylated and engages the ER’s lectin chaperones, calnexin and calreticulin, which increase HA’s

folding efficiency and prevent misfolding (Chen et al., 1995; Daniels et al., 2003; Hebert et al.,

Figure 1. The proteostasis boundary model for protein evolution. (A) The accessibility of protein evolutionary

intermediates is defined by protein stability, folding rate, and misfolding rate. Protein variants inside the boundary

are accessible (shaded in black), and those outside the boundary are inaccessible (shaded in red). Figure

generated using modified Mathematica macro from Powers et al (Powers et al., 2009). (B) In a biophysically

permissive environment, such as cells with elevated levels of proteostasis factors, the boundary may be shifted,

making otherwise non-functional variants accessible.

DOI: https://doi.org/10.7554/eLife.38795.002
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1997). During the folding process, HA also interacts with protein disulfide isomerases to form its six

disulfide bonds, as well as with binding immunoglobulin protein (BiP) and glucose-regulated protein

94 (GRP94), which are the ER homologs of HSP70 and HSP90, respectively (Daniels et al., 2003;

Hurtley et al., 1989). Together, these host ER chaperones and folding enzymes assist HA monomer

folding and prevent premature trimerization, ensuring that HA reaches its functional conformation or

otherwise is targeted for ER-associated degradation (Balch et al., 2008; Shoulders et al., 2013;

Frabutt et al., 2018).

Amino acid substitutions that impair HA stability, folding, or trafficking reduce HA fitness

(Bloom and Glassman, 2009; Hebert et al., 1997; Klein et al., 2018). ER proteostasis factors that

assist HA folding and trafficking are thus poised to modulate HA mutational tolerance (Figure 1B).

Because HA variant fitness is directly coupled to viral replication via HA’s role in host cell binding

and fusion (Sauter et al., 1992; Skehel and Wiley, 2000), we believed that we could apply a deep

mutational scanning strategy (Fowler and Fields, 2014) to quantitatively evaluate how ER proteosta-

sis impacts the fitness of all viable single amino acid HA variants. Specifically, we aimed to quantify

HA variant fitness by sequencing HA mutant viral libraries after selection in modified ER proteostasis

environments, an approach that is substantially more sensitive and higher-throughput than the alter-

native functional assays employed for deep mutational scanning of non-viral secretory pathway cli-

ents (Fowler and Fields, 2014).

In summary, HA is an attractive model secretory protein because HA folding is well-characterized,

HA interacts extensively with host ER proteostasis factors, and HA mutational tolerance can be com-

prehensively quantified by pairing deep mutational scanning with sequencing. Moreover, under-

standing factors that both constrain and enhance HA mutational tolerance has direct therapeutic

relevance. HA is the primary target of neutralizing antibodies (Doud et al., 2017), and influenza

immune escape is thus contingent on HA possessing sufficient mutational tolerance to acquire anti-

body resistance while still maintaining the capacity to fold and function. The potent impact of host

chaperones on viral evolutionary trajectories has only recently been realized (Phillips et al., 2017),

and it remains unknown whether, and to what degree, host proteostasis mechanisms impact viral

protein mutational tolerance.

Below, we integrate deep mutational scanning with small molecule control of ER proteostasis

environments to test the hypothesis that upregulating host ER proteostasis factors mitigates the fit-

ness consequences of otherwise biophysically deleterious amino acid substitutions in HA

(Figure 1B). We examine HA mutational tolerance in cells with basal versus upregulated levels of ER

proteostasis factors, both at normal body temperature and at an elevated, fever-like temperature.

We find that upregulation of the ER proteostasis machinery broadly enhances HA mutational toler-

ance, while increased temperature generally reduces HA mutational tolerance. Remarkably, the

same HA sites where variants are most commonly temperature-sensitive, and therefore most likely

to be biophysically problematic, are also the sites where variants benefit most from upregulation of

the host’s ER proteostasis machinery. Thus, enhanced host ER proteostasis mechanisms and

increased temperature modulate HA mutational tolerance in opposite directions, a finding with

important implications for influenza evolution. More broadly, this work provides the first experimen-

tal evidence that the composition of the ER proteostasis network can profoundly impact the muta-

tional tolerance and evolution of secretory pathway clients.

Results

Modulating ER proteostasis during influenza infection
The composition of the ER proteostasis network is regulated by a stress-responsive signaling path-

way termed the unfolded protein response (UPR). Under ER stress conditions, the UPR is activated

and the IRE1 and ATF6 signaling cascades upregulate distinct but overlapping sets of ER proteosta-

sis network components via the XBP1s and ATF6f transcription factors, respectively

(Shoulders et al., 2013). Here, we profiled HA mutational tolerance at both a normal (37˚C) and a

fever-like (39˚C) temperature in distinctive host ER proteostasis environments. ER proteostasis was

modulated either by inducing XBP1s alone or by inducing XBP1s in concert with ATF6f in a small

molecule-mediated, stress-independent manner in HEK293ATF6f/XBP1s cells using previously charac-

terized chemical genetic methods (Shoulders et al., 2013). In these cells, activation of tetracycline
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repressor-regulated XBP1s by the small molecule doxycycline induces the transcriptional response

downstream of IRE1, remodeling the ER proteostasis environment by enhancing transcript levels

of ~180 ER chaperones and quality control factors (Wong et al., 2018; Shoulders et al., 2013). Simi-

larly, induction of destabilized domain-regulated ATF6f by the small molecule trimethoprim in

HEK293ATF6f/XBP1s cells increases transcript expression of ~40 ER chaperones and quality control fac-

tors that are distinct from but partially overlapping with those regulated by XBP1s (Wong et al.,

2018; Shoulders et al., 2013). Concomitant induction of ATF6f and XBP1s creates a third, distinct

ER proteostasis environment, increasing expression of ~350 genes (Shoulders et al., 2013). We spe-

cifically assessed HA mutational tolerance in a basal ER proteostasis environment and in the two

most significantly remodeled proteostasis environments, activating XBP1s alone or simultaneously

activating XBP1s and ATF6f.

The media composition and treatment regimen for influenza propagation differed from the condi-

tions used in the original characterization of XBP1s and ATF6f/XBP1s activation in these cells, which

also was performed only at 37˚C (Shoulders et al., 2013). Hence, before quantifying HA mutational

tolerance in these distinctive cellular settings, we first comprehensively characterized each environ-

ment in the absence of an influenza infection using RNA-seq. We examined changes in ER and cyto-

solic proteostasis factor transcript expression (Figure 2), as well as global transcriptional changes to

assess any off-target transcriptional effects (Figure 2—figure supplement 1). Essentially all tran-

scripts upregulated in the original characterization of these cells (Shoulders et al., 2013) were also

upregulated in response to our modified treatment regimen (Figure 2—figure supplement 2). Likely

owing to the increased sensitivity of RNA-Seq compared to whole-genome arrays (Marioni et al.,

2008), we also observed upregulation of 201 transcripts upon XBP1s induction and 268 transcripts

upon ATF6f/XBP1s induction that were not observed to be significantly altered in the previous analy-

sis. Still, as expected (Shoulders et al., 2013), transcripts upregulated upon XBP1s and ATF6f/

XBP1s induction largely corresponded to secretory pathway and ER stress response genes (Fig-

ure 2—figure supplement 1 and Figure 2—source data 2).

Specifically, we found that XBP1s and ATF6f/XBP1s activation in HEK293ATF6f/XBP1s cells selec-

tively enhanced transcript expression of numerous ER proteostasis factors, including many known to

interact with HA, such as calnexin (CANX) (Chen et al., 1995; Daniels et al., 2003; Hebert et al.,

1997), calreticulin (CALR) (Chen et al., 1995; Daniels et al., 2003; Hebert et al., 1997), and mem-

bers of the protein disulfide isomerase family (PDI) (Figure 2A, top) (Daniels et al., 2003). Concomi-

tant induction of XBP1s and ATF6f revealed increased expression of ATF6f and ATF6f/XBP1s

targets, including BiP (HSPA5) and GRP94 (HSP90B1), respectively (Figure 2A, top). Stress-indepen-

dent activation of XBP1s or ATF6f/XBP1s did not significantly impact transcript levels of cytosolic

protein folding factors at either 37˚C or 39˚C, highlighting the selectivity of this approach for modu-

lating ER proteostasis (Figure 2A–B, bottom; Figure 2—figure supplement 1A–D). Increasing the

host cell temperature to 39˚C induced significantly fewer transcriptional changes than did activating

XBP1s or ATF6f/XBP1s. Increased temperature did result in mild induction of the heat shock

response, as expected (illustrated by elevated HSP70 (HSPA1A) levels in Figure 2C and Figure 2—

figure supplement 1E).

We next assessed whether induction of the host cell’s ER proteostasis network and increased

temperature altered host cell viability or prevented influenza propagation. First, we activated XBP1s

alone or with ATF6f at both 37˚C and 39˚C in the absence of influenza, and evaluated cell viability 72

hr later, corresponding to the duration of our intended drug pre-treatment and influenza infection.

Consistent with previous studies (Shoulders et al., 2013), these perturbations were not cytotoxic

(Figure 2—figure supplement 3A). Next, we evaluated whether influenza could propagate in these

remodeled host cells. Briefly, we infected cells in each pre-activated selection environment with

wild-type influenza A/WSN/1933 (the strain used throughout this work; hereafter referred to as influ-

enza) and titered the viral supernatant 48 hr post-infection using a TCID50 assay. Influenza growth

was moderately attenuated at increased temperature (Figure 2—figure supplement 3B), but was

still sufficient for performing selections and evaluating HA mutational tolerance by sequencing.

Finally, we evaluated whether our methods for perturbing ER proteostasis were functional during

an influenza infection cycle. Using qPCR, we found that XBP1s and ATF6f target genes were still

inducible by our chemical genetic methods in the presence of influenza, with only slightly attenuated

upregulation relative to a mock-infection (Figure 2—figure supplement 3C). This modest reduction

in chaperone transcript expression was likely caused by global suppression of host transcription by
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Figure 2. Induction of XBP1s and ATF6f/XBP1s is selective and does not globally induce stress responses. (A) Heat

map of selected transcript-level effects of upregulating ER folding machinery in HEK293ATF6f/XBP1s cells via XBP1s

or ATF6f/XBP1s at 37˚C, relative to a basal environment at 37˚C. (B) Heat map of selected transcript-level effects of

upregulating ER proteostasis machinery via XBP1s or ATF6f/XBP1s at 39˚C, relative to a basal environment at 39˚C.

(C) Heat map of selected transcript-level effects of increasing the temperature from 37˚C to 39˚C in a basal ER

proteostasis environment for 24 hr. Genes in A–C grouped by ER (top) or cytosolic (bottom) proteostasis networks,

and also based on functional classifications (Shoulders et al., 2013). For (A–B), tetracycline repressor-regulated

XBP1s was induced by treatment with 0.1 mg/mL doxycycline (24 hr); destabilized domain-regulated ATF6f was

induced by treatment with 1 mM trimethoprim (24 hr). Figure 2—figure supplement 1. Full transcriptome analysis

confirmed selectivity of XBP1s and ATF6f/XBP1s induction. Figure 2—figure supplement 2. Comparison of

HEKATF6f/XBP1s RNA-Seq characterization to previous whole-genome array characterization. Figure 2—figure

supplement 3. Methods to induce XBP1s and ATF6f/XBP1s did not cause cytotoxicity and were functional during

influenza infection. Figure 2—source data 1. Complete RNAseq differential expression analysis. Figure 2—

source data 2. Comparison of HEKATF6f/XBP1s characterization to previous characterization. Figure 2—source data

3. Fold-change of HSR and UPR targets during influenza infection.

DOI: https://doi.org/10.7554/eLife.38795.003

The following source data and figure supplements are available for figure 2:

Source data 1. Complete RNAseq differential expression analysis.

Figure 2 continued on next page
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influenza (Russell et al., 2018). However, overall our tools for modulating ER proteostasis factors

maintained efficacy during the course of an influenza infection.

Deep mutational scanning of HA in modulated ER proteostasis
environments
To systematically profile HA mutational tolerance in modulated ER proteostasis environments, we

employed deep mutational scanning (DMS), a method that couples saturating mutagenesis with fit-

ness measurements, thereby efficiently sampling amino acid sequence space (Doud et al., 2017;

Fowler and Fields, 2014; Doud and Bloom, 2016). We used biological triplicate HA viral mutant

libraries that were previously generated from independent HA plasmid libraries using cells with basal

levels of proteostasis factors at 37˚C (Doud and Bloom, 2016). The resulting HA mutant viral librar-

ies contained nearly all viable single amino acid HA variants (Doud and Bloom, 2016). Variant sensi-

tivity to ER proteostasis mechanisms was tested by simultaneously competing variants within each

viral library in host cells with modulated ER proteostasis environments. Each of these competitions

was carried out at both 37˚C and 39˚C, to impose additional biophysical selection pressure on HA

and to mimic elevated host body temperature during an influenza infection (Figure 3A).

We designed these DMS experiments to fully sample the library diversity whilst minimizing co-

infection and genetic hitchhiking. To achieve this goal, we infected cells in each pre-activated selec-

tion environment with 106 virions at an MOI of 0.01 infectious virion/cell. Following a 48 hr infection,

or about four replication cycles, we harvested viral RNA and prepared subamplicon sequencing

libraries for accurate variant frequency quantitation (Doud and Bloom, 2016). We then quantified

the differential selection (diffsel) for each mutation as the logarithm of its enrichment in the selection

condition relative to that of the mock-selection condition (e.g., Basal 39˚C relative to Basal 37˚C)

(Doud et al., 2017; Bloom, 2015). Hence, the wild-type residue at each site has a diffsel of zero, var-

iants with positive diffsel values are more fit in the selection condition than the mock condition rela-

tive to wild-type, and variants with negative diffsel values are less fit in the selection condition than

the mock condition relative to wild-type. The diffsel for variants across HA can be visualized with

sequence logo plots, where the size of the amino acid letter abbreviations is proportional to the

magnitude of the differential selection for that variant (Figure 3B) (Doud et al., 2017).

To decipher selection from the inherent experimental noise of batch competitions, we filtered the

DMS data to include only variants with robust differential selection across biological triplicates. Spe-

cifically, we limited our analyses to variants present in each pre-selection replicate viral library

(Figure 3C—Triplicate mutant libraries) that exhibited differential selection in the same direction

across biological triplicates. These criteria reduced experimental noise owing to differences in repli-

cate library composition, as well as uneven sampling and biased PCR amplification of low frequency

variants. This filtering predominantly excluded variants that were negligibly affected by the selection,

which often had slightly positive diffsel values in one replicate versus slightly negative diffsel values

in another replicate. These criteria also excluded strongly enriched or depleted variants that were

not present in triplicate pre-selection libraries and, less frequently, strongly enriched or depleted

variants that did not behave reproducibly across triplicate selections. Notably, the unfiltered

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.38795.007

Source data 2. Comparison of HEKATF6f/XBP1s characterization to previous characterization.

DOI: https://doi.org/10.7554/eLife.38795.008

Source data 3. Fold change of HSR and UPR targets during influenza infection.

DOI: https://doi.org/10.7554/eLife.38795.009

Figure supplement 1. Full transcriptome analysis confirmed selectivity of XBP1s and ATF6f/XBP1s induction.

DOI: https://doi.org/10.7554/eLife.38795.004

Figure supplement 2. Comparison of HEKATF6f/XBP1s RNA-Seq characterization to previous whole-genome array

characterization.

DOI: https://doi.org/10.7554/eLife.38795.005

Figure supplement 3. Methods to induce XBP1s and ATF6f/XBP1s are not cytotoxic and are functional during

influenza infection.

DOI: https://doi.org/10.7554/eLife.38795.006
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biological replicate diffsel values were strongly correlated across HA sites, with correlation coeffi-

cients ranging from R = 0.67–0.78 (Figure 3—source data 1 and Source data 1).

The filtered DMS data revealed that many HA variants were substantially depleted upon increas-

ing the temperature (Figure 4A; Figure 4—figure supplement 1). In contrast, many variants were

moderately enriched upon induction of ER proteostasis machinery (Figure 4B–E; Figure 4—figure

supplements 2–5). This result was consistent with our hypothesis, as we anticipated that increasing

the temperature would create a biophysically restrictive environment, reducing the fitness of HA var-

iants, whereas increasing levels of ER proteostasis factors would create a biophysically permissive

environment, enhancing the fitness of HA variants (Figure 1B).

To globally examine the relative enrichment of HA variants, we plotted HA mutant diffsel values

and examined the deviation of the distribution mean from zero, which indicates no differential selec-

tion (Figure 5A). This analysis confirmed that increased temperature indeed generally reduced

mutant HA viral growth, resulting in depletion (i.e., diffsel < 0) of 597 variants versus enrichment (i.

e., diffsel > 0) of only 361 variants, relative to wild-type HA (Figure 5A). Variant depletion at ele-

vated temperature could be explained by reduced variant folding rates and thus slower variant viral

growth, or perhaps by increased degradation. Although we do not observe upregulation of ER-asso-

ciated degradation factors at elevated temperature (Figure 2C and Figure 2—figure supplement

1E), it is certainly possible that HA variants engage degradation factors more at an elevated

temperature.

In contrast, induction of XBP1s alone or with ATF6f generally enhanced mutant HA viral growth at

both 37˚C and 39˚C, resulting in an overall enrichment of HA variants relative to wild-type HA

(Figure 5A). The enhanced variant growth upon XBP1s induction alone was quite similar to that of

simultaneous induction of XBP1s and ATF6f (Figure 5—figure supplement 1 and Figure 5—source

data 1), and is thus either predominantly caused by XBP1s, or by XBP1s-regulated factors that are

redundant with those regulated by ATF6f. In either case, variant enrichment upon induction of
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Figure 3. Deep mutational scanning of HA in modulated ER proteostasis environments. (A) Scheme for performing deep mutational scanning, and (B)

quantifying the differential selection (diffsel) for each mutant in the selection environments, which can be visualized on sequence logo plots. In A, XBP1s

or ATF6f/XBP1s were induced at either 37˚C or 39˚C for 16 hr prior to the selection, which consisted of a 48 hr infection. In B, fWT and fmut denote the

wild-type and mutant frequencies, respectively. (C) Percentage of amino acid space sampled by each replicate library prior to filtering, and the

percentage sampled by all three replicate mutant libraries. Figure 3—source data 1. Correlation coefficients for unfiltered absolute site differential

selection values between biological replicate selections.

DOI: https://doi.org/10.7554/eLife.38795.010

The following source data is available for figure 3:

Source data 1. Correlation coefficients for unfiltered absolute site differential selection values between biological replicate selections.

DOI: https://doi.org/10.7554/eLife.38795.011
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XBP1s or ATF6f/XBP1s is likely explained by upregulation of ER protein folding factors (Figure 2A–

B), while the lesser amount of variant depletion observed upon induction of XBP1s or ATF6f/XBP1s

may be attributed to upregulation of ER quality control and degradation factors (Figure 2A–B).

Importantly, we note that the enrichment and depletion of HA variants may also be caused by indi-

rect effects of inducing XBP1s or ATF6f/XBP1s and increasing temperature. For example, these per-

turbations could potentially impact the protein levels and activities of other host proteins that

engage HA, or perhaps differentially modulate viral growth kinetics.

Regardless of their precise origins, the generally opposing effects of increased temperature and

upregulated proteostasis machinery on mutant HA viral growth motivated examination of these

effects on individual HA variants. To this end, we determined the correlation between the average

diffsel values for increased temperature and upregulated ER proteostasis machinery for individual

HA variants (Figure 5B–C). This analysis revealed significant negative correlation between these

selection conditions, demonstrating that the HA variants most depleted upon increased temperature

corresponded to those most enriched upon induction of ER proteostasis factors.

Figure 4. HA variants were depleted at increased temperature but enriched upon XBP1s or ATF6f/XBP1s induction. Cropped sequence logo plots

show differential selection on HA at positions where variants were depleted upon increased temperature but enriched upon XBP1s and ATF6f/XBP1s

induction (based on sequential numbering of WSN HA). Size of amino acid abbreviation corresponds to magnitude of selection. Only variants behaving

consistently across biological triplicates are plotted; all selections are plotted on the same scale. Figure 4—figure supplement 1. Full WSN HA

sequence logo plot: Basal 39˚C vs. Basal 37˚C. Figure 4—figure supplement 2. Full WSN HA sequence logo plot: XBP1s 37˚C vs. Basal 37˚C.

Figure 4—figure supplement 3. Full WSN HA sequence logo plot: XBP1s 39˚C vs. Basal 39˚C. Figure 4—figure supplement 4. Full WSN HA

sequence logo plot: ATF6f/XBP1s 37˚C vs. Basal 37˚C. Figure 4—figure supplement 5. Full WSN HA sequence logo plot: ATF6f/XBP1s 39˚C vs. Basal

39˚C. Source data 1. Complete analysis of deep mutational scanning data.

DOI: https://doi.org/10.7554/eLife.38795.012

The following figure supplements are available for figure 4:

Figure supplement 1. Full WSN HA sequence logo plot: Basal 39˚C vs. Basal 37˚C.

DOI: https://doi.org/10.7554/eLife.38795.013

Figure supplement 2. Full WSN HA sequence logo plot: XBP1s 37˚C vs. Basal 37˚C.

DOI: https://doi.org/10.7554/eLife.38795.014

Figure supplement 3. Full WSN HA sequence logo plot: XBP1s 39˚C vs. Basal 39˚C.

DOI: https://doi.org/10.7554/eLife.38795.015

Figure supplement 4. Full WSN HA sequence logo plot: ATF6f/XBP1s 37˚C vs. Basal 37˚C.

DOI: https://doi.org/10.7554/eLife.38795.016

Figure supplement 5. Full WSN HA sequence logo plot: ATF6f/XBP1s 39˚C vs. Basal 39˚C.

DOI: https://doi.org/10.7554/eLife.38795.017

Phillips et al. eLife 2018;7:e38795. DOI: https://doi.org/10.7554/eLife.38795 8 of 23

Research article Biochemistry and Chemical Biology Evolutionary Biology

https://doi.org/10.7554/eLife.38795.012
https://doi.org/10.7554/eLife.38795.013
https://doi.org/10.7554/eLife.38795.014
https://doi.org/10.7554/eLife.38795.015
https://doi.org/10.7554/eLife.38795.016
https://doi.org/10.7554/eLife.38795.017
https://doi.org/10.7554/eLife.38795


Examination of variants and sites impacted most by host proteostasis
and temperature
The opposing fitness effects of proteostasis mechanisms and temperature in the DMS data sug-

gested that temperature-sensitive HA variants were most likely to be rescued by ER proteostasis fac-

tors. The potential implications of these opposing selection forces on HA motivated us to more

rigorously evaluate this behavior for individual HA variants. DMS batch competitions are inherently

noisy, largely owing to uneven sampling of library variants (Doud and Bloom, 2016). Hence, we per-

formed pairwise competitions between wild-type influenza and influenza encoding differentially

selected variants identified in the DMS. These competitions were performed in cells with either basal

or elevated levels of ER proteostasis factors, accessed by inducing XBP1s alone or in combination
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Figure 5. ER proteostasis mechanisms and temperature divergently impact HA variant viral growth. (A) Average differential selection (diffsel) for each

HA variant; the black line designates the mean of the distribution. Significance of deviation of the mean from zero (no differential selection) was tested

by a one-sample t-test; *** designates two-tailed p-values�0.001. Variant diffsel values are staggered about the x-axis to minimize overlap. The number

of variants with diffsel >0 and <0 is listed below each distribution. (B) Correlation for diffsel values for inducing XBP1s at 39˚C versus increasing the

temperature in basal cells (N = 271). (C) Correlation for diffsel values for inducing ATF6f/XBP1s at 39˚C versus increasing the temperature in basal cells

(N = 320). For (A–C), average diffsel values for variants behaving consistently across biological triplicates are plotted. For (B–C), Pearson correlation and

p-value from an F-test are shown. Figure 5—figure supplement 1. Induction of ATF6f/XBP1s and XBP1s similarly impact HA variant viral growth.

Figure 5—source data 1. Differential selection values for each selection, pre- and post-filtering.

DOI: https://doi.org/10.7554/eLife.38795.018

The following source data and figure supplement are available for figure 5:

Source data 1. Differential selection values for each selection, pre- and post-filtering.

DOI: https://doi.org/10.7554/eLife.38795.020

Figure supplement 1. Induction of ATF6f/XBP1s and XBP1s similarly impact HA variant viral growth.

DOI: https://doi.org/10.7554/eLife.38795.019
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with ATF6f, and at 37˚C and 39˚C (Figure 6A). We completed these pairwise competitions in biologi-

cal triplicate for nine variants that in the DMS exhibited the most divergent behavior upon induction

of XBP1s or ATF6f/XBP1s compared to increased temperature (A90D, K136N, S153E, K169G,

P175G, K176F, P228A, L456D, and L456R; based on sequential numbering of WSN HA sites). We

also included three synonymous negative controls (P175Psyn, P228Psyn, L456Lsyn), for which we

mutated the wild-type codon to a synonymous codon that was not differentially selected in the DMS

batch competition.

Comparison of the differential selection upon increased temperature with that upon XBP1s or

ATF6f/XBP1s induction in the pairwise competitions recapitulated the divergent behavior observed

in DMS for several individual HA variants. In particular, of the nine non-synonymous variants tested,

seven variants exhibited significantly different behavior upon increased temperature versus XBP1s or

ATF6f/XBP1s induction (Figure 6B—black; Figure 6—figure supplement 1A). This high rate of

reproducibility lends substantial credence to the overall DMS data set. We note that some discrep-

ancy between the DMS and pairwise competitions (Figure 6B—red; Figure 6—figure supplement

1B) is expected given the difference in wild-type frequencies between the DMS and pairwise com-

petitions and the inherent false discovery rate of high-throughput screens (Doud and Bloom, 2016).

As in the DMS (Figure 4), the pairwise diffsel upon increased temperature was overall more substan-

tial than that upon XBP1s or ATF6f/XBP1s induction, though XBP1s or ATF6f/XBP1s induction did

significantly impact the growth of K136N, P228A, and L456D (Figure 6—figure supplement 1A—

see asterisks above individual bars). Importantly, all of the synonymous variants displayed similarly

neutral behavior in the pairwise and DMS competitions (Figure 6B—gray; Figure 6—figure
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Figure 6. Divergent fitness effects revealed by DMS assessed by pairwise competitions. (A) Scheme for pairwise competition between wild-type HA

and mutant HA influenza. Detailed description of competition conditions in Figure 6—figure supplement 1. (B) The difference between the average

diffsel upon increased temperature (DT) and the average diffsel upon induction of XBP1s or ATF6f/XBP1s (DUPR) is plotted. This difference from the

pairwise competitions is plotted on the y-axis, with error bars representing SEM for biological triplicates, and the corresponding difference from the

DMS is plotted on the x-axis. Variants that validated (i.e., diffsel upon increased temperature was significantly different from that upon UPR induction in

both DMS and pairwise competitions) are in black; variants that did not validate are in red; synonymous (neutral) validated negative controls are in gray.

All non-synonymous variants are labeled. Figure 6—figure supplement 1. Individual pairwise competition diffsel values.

DOI: https://doi.org/10.7554/eLife.38795.021

The following figure supplement is available for figure 6:

Figure supplement 1. Individual pairwise competition diffsel values.

DOI: https://doi.org/10.7554/eLife.38795.022
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supplement 1C), indicating that the opposing nature of these selection pressures is unlikely to

reflect experimental noise.

Validation of the opposing effects of temperature and host ER proteostasis mechanisms on HA

variant growth in the pairwise competitions prompted us to further examine the properties of HA

sites most impacted by these selection environments. For HA variants present in each replicate

mutant library (Figure 3C––Mutant libraries 1–3), we summed the mutation differential selection val-

ues at each site to calculate the net site differential selection (net site diffsel), a measure of site muta-

tional tolerance, and averaged the net site diffsel values across the triplicate libraries (Source data

1). Consistent with the mutation diffsel values in Figure 5A, the net site diffsel values were nega-

tively skewed upon increased temperature, indicating reduced mutational tolerance, but positively
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Figure 7. XBP1s induction and temperature impacted HA mutational tolerance at sites across HA with diverse

functional and structural roles. (A) Average net site diffsel (sum of mutation diffsel values at a given site) is plotted

for increased temperature in a basal environment (blue) and upon induction of XBP1s at 39˚C (purple). Sites are

sorted by secondary structure, functional/structural role, conservation in H1 sequences, and surface accessibility

(buried residues are the 50% least surface-accessible sites). Select outliers are labeled. Means are represented by

black lines and significance of deviation from zero (no selection) was determined by a one-sample t-test and is

indicated above each distribution; *, **, and *** represent one-tailed p-values�0.05, 0.01, and 0.001, respectively;

ns corresponds to a p-value>0.05. (B) Average net site diffsel is plotted as a function of site conservation, where

x = 0 corresponds to a completely conserved site among 989 non-redundant human H1 sequences (1918–2008)

(Zhang et al., 2017). (C) Average net site diffsel is plotted as a function of site surface accessibility, where x = 0

corresponds to a buried residue (PDBID 1RVX [Gamblin et al., 2004]). Figure 7—figure supplement 1. ATF6f/

XBP1s induction and temperature impacted HA mutational tolerance at sites across HA with diverse functional and

structural roles. Figure 7—source data 1. Properties and differential selection for each site of HA.

DOI: https://doi.org/10.7554/eLife.38795.023

The following source data and figure supplement are available for figure 7:

Source data 1. Properties and differential selection for each site of HA.

DOI: https://doi.org/10.7554/eLife.38795.025

Figure supplement 1. ATF6f/XBP1s induction and temperature impacted HA mutational tolerance at sites across

HA with diverse functional and structural roles.

DOI: https://doi.org/10.7554/eLife.38795.024
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skewed upon induction of XBP1s, indicating enhanced mutational tolerance (Figure 7A). Next, we

sorted sites based on secondary structure to determine whether sites most affected by temperature

or XBP1s induction belonged to particular secondary structural elements. We found that sites distrib-

uted throughout all secondary structural elements had enhanced mutational tolerance upon XBP1s

induction, and that sites in strands and loops had particularly reduced mutational tolerance upon

increased temperature. Thus, these selection pressures broadly impact HA mutational tolerance

(Figure 7A; secondary structure).

We next plotted the net site diffsel values for sites essential for HA function and structure, to

determine if these sites were impacted by temperature or ER proteostasis factors. Receptor binding

sites had slightly, but significantly, enhanced mutational tolerance upon XBP1s induction, and were

unaffected by increased temperature. In contrast, the mutational tolerance at antigenic sites was

substantially impacted by both XBP1s induction and increased temperature (Figure 7A; functional/

structural role). Moreover, sites in N-glycosylation sequons and cysteine residues involved in disulfide

bonding, which engage glycoprotein chaperones and protein disulfide isomerases, respectively

(Chen et al., 1995; Daniels et al., 2003; Hebert et al., 1997), had enhanced mutational tolerance

upon XBP1s induction and reduced mutational tolerance upon increased temperature (Figure 7A;

glyc. sequon/disulfide bond). Some of these sites—discussed in more detail below—were among

the most affected by temperature and ER proteostasis factors.

Furthermore, we assessed whether ER proteostasis mechanisms and temperature differentially

impact HA mutational tolerance at sites based on evolutionary conservation and surface accessibility.

Specifically, we evaluated site conservation across 989 human H1 sequences from the Influenza

Research Database (Zhang et al., 2017). We considered completely conserved sites as conserved

and all other sites as variable, and plotted the net site diffsel values for conserved and variable sites

(Figure 7A; conservation), as well as the site conservation as a function of the net site diffsel

(Figure 7B). This analysis illustrated that temperature and XBP1s induction affected mutational toler-

ance at both variable and conserved sites (Figure 7A; conservation). However, the mutational toler-

ance at variable sites was more affected than at conserved sites, as indicated by the net site diffsel

values for conserved sites clustering near zero, whereas the net site diffsel values for variable sites

were more evenly distributed along the y-axis (Figure 7B). Still, the modest impact on conserved

sites suggested that host temperature and proteostasis mechanisms could modulate mutational tol-

erance at essentially any site in HA, regardless of the operating structural and functional constraints.

This conclusion is consistent with the distribution of net site diffsel values as a function of surface

accessibility, which revealed that mutational tolerance was impacted by XBP1s induction and tem-

perature at both buried and surface-exposed sites (Figure 7A; surface accessibility), though surface-

exposed sites were often more affected (Figure 7C). We note that, similar to the mutation diffsel

distributions (Figure 5A), the site diffsel distributions for ATF6f/XBP1s induction mirrored those for

XBP1s induction (Figure 7—figure supplement 1).

Finally, we examined the structural location of HA sites most impacted by host proteostasis mech-

anisms and temperature. Mapping net site diffsel values onto the HA crystal structure revealed that

these selection pressures affect the mutational tolerance of sites across HA (Figure 8; Figure 8—fig-

ure supplement 1 (ATF6f/XBP1s)). Many HA sites strongly impacted by host ER proteostasis factors

and temperature were in the globular head domain (Figure 8A). For example, K170, P175, and

K176 were among the most mutationally intolerant sites upon increased temperature and the most

mutationally tolerant sites upon induction of XBP1s or ATF6f/XBP1s (labeled in Figure 7A and Fig-

ure 7—figure supplement 1A). These sites are on the surface of the head domain (Figure 8A), in a

region where positively charged residues, such as K170 and K176, increase host receptor binding

and hinder antibody escape (Hensley et al., 2009). Additionally, the P175 site was the site most

affected by XBP1s and ATF6f/XBP1s activation (Figure 7A and Figure 7—figure supplement 1A).

Although P175 is a trans-proline in an unstructured coil, and is therefore less impactful than if found

in a region of defined HA secondary structure, its mutational tolerance upon XBP1s induction could

still be mediated by prolyl isomerase activity regulated by the UPR (Shoulders et al., 2013). Further-

more, several sites in the stem domain were strongly impacted by host ER proteostasis factors and

temperature. For instance, mutational tolerance at the N497 and T499 sites was considerably

reduced upon XBP1s induction, ATF6f/XBP1s induction, and upon increased temperature (Figure 8

and Figure 8—figure supplement 1), likely because these residues constitute an N-linked glycosyla-

tion sequon. N-Linked glycosylation directs the co- and post-translational folding pathways of HA.
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Removal of this glycosylation sequon may reduce the interaction of HA with the glycoprotein chaper-

ones calnexin and calreticulin, thereby hindering HA folding and trafficking (Daniels et al., 2003;

Hebert et al., 1997). Altogether, host ER proteostasis factors and temperature impact the muta-

tional tolerance at sites across the entire HA structure, irrespective of secondary structure and sur-

face accessibility. Sites that are especially affected contain wild-type residues that likely mediate

interactions between HA and host ER proteostasis factors.

Discussion
Our results demonstrate that host proteostasis capacity and host cell temperature critically impact

mutational tolerance across the entire HA protein. Activation of the XBP1s arm of the UPR globally

enhanced the mutational tolerance of HA, while increased host cell temperature globally reduced

the mutational tolerance of HA. Notably, the variants that were most enriched upon XBP1s induction

corresponded to those most depleted upon increased temperature. This anti-correlation indicates

that temperature-sensitive variants, which are likely biophysically deleterious relative to wild-type

HA, are most likely to be rescued by the ER proteostasis machinery.

These selection pressures exerted similar fitness effects across the entire HA protein, influencing

sites that differ in their secondary structure, surface accessibility, conservation in natural H1 sequen-

ces, and functional and structural roles. This impact is in stark contrast to selection pressures such as

immune escape or drug resistance, which typically select for variants at a few specific sites. Univer-

sally modulating HA mutational tolerance suggests that host temperature and ER proteostasis mech-

anisms can shift the distribution of fitness effects of mutations on HA, and therefore are likely to

broadly influence the accessibility of HA evolutionary trajectories. Because we observe a particularly

strong impact at antigenic sites in the HA head domain (Doud and Bloom, 2016), inhibition of ER

proteostasis mechanisms may limit the accessibility of antibody escape variants. This therapeutic
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Figure 8. Mutational tolerance at sites across the mature HA protein was impacted by XBP1s induction and increased temperature. (A) Average net site

diffsel values (which correspond to mutational tolerance) are mapped onto the HA crystal structure PDBID 1RVX (Gamblin et al., 2004), with select

outliers from Figure 7 labeled. (B) Cartoon representation of A displaying secondary structural elements. In A–B, negative net site diffsel values are

mapped in blue; positive net site diffsel values are mapped in red. Figure 8—figure supplement 1. Mutational tolerance at sites across the mature HA

protein was impacted by ATF6f/XBP1s induction and increased temperature.

DOI: https://doi.org/10.7554/eLife.38795.026

The following figure supplement is available for figure 8:

Figure supplement 1. Mutational tolerance at sites across the mature HA protein was impacted by ATF6f/XBP1s induction and increased temperature.

DOI: https://doi.org/10.7554/eLife.38795.027
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strategy is especially appealing because prior work has demonstrated that influenza infection can

induce the unfolded protein response and that ER proteostasis mechanisms are essential for influ-

enza propagation (Frabutt et al., 2018; Hassan et al., 2012).

Similar to previous studies on the role of HSP90 in the evolution of endogenous protein clients

(Cowen and Lindquist, 2005), our observations may derive from direct interactions between host

proteostasis components and HA, or as an indirect consequence of perturbing proteostasis. The

negative correlation we observe between upregulating ER proteostasis factors and increasing tem-

perature evidences the former, because variants with compromised fitness in a biophysically chal-

lenging environment are most impacted by the ER proteostasis machinery. Alternatively, ER

proteostasis factors and increased temperature may affect the kinetics of infection or expression of

third-party mediators that regulate HA function or fitness.

Irrespective of the precise mechanism, this study provides the first experimental evidence that ER

proteostasis factors define the mutational tolerance of a secretory pathway client protein, a phenom-

enon that likely extends far beyond HA and viral evolution. Prior to this work, chaperones known to

potentiate and buffer protein evolution were limited to cytosolic isoforms (Phillips et al., 2017),

largely of HSP90 (Rohner et al., 2013; Queitsch et al., 2002; Cowen and Lindquist, 2005;

Geller et al., 2018; Sangster et al., 2008; Geiler-Samerotte et al., 2016; Geller et al., 2007).

Here, we show that this role extends to ER chaperones and quality control machinery involved in the

folding and assembly of membrane and secretory proteins. We note that understanding the evolu-

tionary constraints of membrane and secretory proteins is critical, as they comprise highly significant

therapeutic targets, including collagen (DiChiara et al., 2016), G-protein coupled receptors

(Laschet et al., 2018), antibodies (Wong et al., 2018), and viral membrane proteins (Hurtley et al.,

1989). This work suggests that ER proteostasis mechanisms could be tuned to ameliorate protein-

misfolding diseases or prevent the development of antiviral resistance. Further investigation into the

impact of ER proteostasis factors on the mutational tolerance of additional secretory pathway client

proteins, as well as non-client proteins, will elucidate the underlying molecular details and the perva-

siveness of our findings.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Additional information

strain, strain
background
(Influenza A virus)

Influenza A/WSN/1933 PMID 27271655

genetic reagent
(Influenza A virus)

Influenza A/WSN/1933
Mutant Library 1

PMID 27271655

genetic reagent
(Influenza A virus)

Influenza A/WSN/1933
Mutant Library 2

PMID 27271655

genetic reagent
(Influenza A virus)

Influenza A/WSN/1933
Mutant Library 3

PMID 27271655

cell line
(Homo sapiens)

HEK293ATF6f/XBP1s PMID 23583182

recombinant
DNA reagent

pHW181-PB2 PMID 10801978 plasmid

recombinant
DNA reagent

pHW182-PB1 PMID 10801978 plasmid

recombinant
DNA reagent

pHW183-PA PMID 10801978 plasmid

recombinant
DNA reagent

pHW184-HA PMID 10801978 plasmid

recombinant
DNA reagent

pHW185-NP PMID 10801978 plasmid

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Additional information

recombinant
DNA reagent

pHW186-NA PMID 10801978 plasmid

recombinant
DNA reagent

pHW187-M PMID 10801978 plasmid

recombinant
DNA reagent

pHW188-NS1 PMID 10801978 plasmid

software,
algorithm

dms_tools PMID 25990960

Plasmids
The following plasmids were used for generating A/WSN/1933 influenza virus: pHW181-PB2,

pHW182-PB1, pHW183-PA, pHW184-HA, pHW185-NP, pHW186-NA, pHW187-M, and pHW188-

NS1 (Hoffmann et al., 2000).

Cell culture
HEK293ATF6f/XBP1s cells were cultured at 37˚C in a 5% CO2 atmosphere in DMEM (CellGro) supple-

mented with 10% fetal bovine serum (CellGro) and 1% penicillin/streptomycin/glutamine (CellGro).

Cells were generated from parental HEK293 cells (ATCC CRL-1573; authenticated by STR-profiling)

as previously described (Shoulders et al., 2013). Here, 1 mM TMP and 0.1 mg/mL doxycycline were

used to activate ATF6 and XBP1s, respectively. All cell lines were periodically tested for mycoplasma

using the MycoSensor PCR Assay Kit from Agilent (302109).

Influenza virus
All experiments were performed with influenza A/WSN/1933 (H1N1) HA viral mutant libraries

(Doud and Bloom, 2016). All infections were performed in WSN media (OptiMEM-I; Thermo Fisher

Scientific) supplemented with 0.5% heat-inactivated FBS, 0.3% BSA (Invitrogen), 100 U/mL of penicil-

lin and 100 mg/mL of streptomycin (Bio Whittaker), and 100 mg/mL of CaCl2); swapping the inoculum

with fresh WSN media 2 hr post-infection.

qPCR
HEK293ATF6f/XBP1s cells were seeded at 750,000 cells/well in a 12-well plate and treated with 0.01%

DMSO, 0.1 mg/mL doxycycline (Sigma), or 0.1 mg/mL doxycycline and 1 mM TMP (Alfa Aesar) for 24

hr, or 100 mM arsenite for 2 hr as a positive control for heat shock response activation or 10 mg/mL

tunicamycin for 6 hr as a positive control for unfolded protein response activation. To monitor chap-

erone levels during influenza infection, HEK293ATF6f/XBP1s cells were infected with influenza A/WSN/

1933 at an MOI of 1 for 8 hr to mimic the environment of a cell infected with a single influenza virion

as in the DMS. Cellular RNA was harvested using the Omega RNA Extraction kit with Homogenizer

Columns. 1 mg RNA was used to prepare cDNA using random primers (total reaction volume = 20

mL; Applied Biosystems High-Capacity Reverse Transcription kit). The reverse transcription reaction

was diluted to 80 mL with water, and 2 mL of each sample was used for qPCR with 2 � Sybr Green

(Roche) and primers for human RPLP2 (housekeeping gene), HSP70, HSP40, HSP90, ERDJ4, GRP94,

BIP, SEC24D, and influenza Matrix (primer sequences in Supplementary file 1). All gene transcript

levels were normalized to that of RPLP2, and the fold-change in expression relative to DMSO-

treated, mock-infected cells was calculated (Figure 2—figure supplement 3C; Figure 2—source

data 3). For qPCR of influenza-infected cells, a standard curve was prepared with a pDZ plasmid

backbone containing the Influenza PR8 M segment to determine influenza Matrix copy number,

which was used as a positive control for productive infection (Figure 2—source data 3).

RNA-seq
For the HEK293ATF6f/XBP1s cell line characterization, HEK293ATF6f/XBP1s cells were seeded at 750,000

cells/well in a 12-well plate and treated with 0.01% DMSO, 0.1 mg/mL doxycycline, or 0.1 mg/mL

doxycycline and 1 mM TMP for 24 hr, at either 37˚C or 39˚C. Cellular RNA was harvested using
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Qiagen RNeasy Plus Mini Kit with QIAshredder homogenization columns. RNA-Seq libraries were

prepared using the Kapa mRNA HyperPrep RNA-seq library construction kit system and were

sequenced on an Illumina HiSeq SE40.

RNA-seq analysis
Analyses were performed using tools and methods presented in Huang et al. (2009). Quality con-

trol: Reads were aligned against hg19 (Feb., 2009) using bwa mem v. 0.7.12-r1039 [RRID:SCR_

010910] with flags –t 16 –f and mapping rates, fraction of multiply-mapping reads, number of unique

20-mers at the 5´ end of the reads, insert size distributions and fraction of ribosomal RNAs were cal-

culated using bedtools v. 2.25.0 [RRID:SCR_006646] (Quinlan and Hall, 2010). In addition, each

resulting bam file was randomly down-sampled to a million reads, which were aligned against hg19

and read density across genomic features were estimated for RNA-Seq-specific quality control

metrics.

RNA-Seq mapping and quantitation: Reads were aligned against GRCh38/ENSEMBL 89 annota-

tion using STAR v. 2.5.3a with the following flags -runThreadN 8 –runMode alignReads –outFilter-

Type BySJout –outFilterMultimapNmax 20 –alignSJoverhangMin 8 –alignSJDBoverhangMin 1 –

outFilterMismatchNmax 999 –alignIntronMin 10 –alignIntronMax 1000000 –alignMatesGapMax

1000000 –outSAMtype BAM SortedByCoordinate –quantMode TranscriptomeSAM with –genomeDir

pointing to a 75nt-junction GRCh38 STAR suffix array (Dobin et al., 2013). Gene expression was

quantitated using RSEM v. 1.3.0 [RRID:SCR_013027] with the following flags for all libraries: rsem-

calculate-expression –calc-pme –alignments -p 8 –forward-prob 0 against an annotation matching

the STAR SA reference (Li and Dewey, 2011). Posterior mean estimates (pme) of counts and esti-

mated RPKM were retrieved.

Differential expression analysis: Treatments were compared against DMSO-treatment (Basal)

either at 37˚C or 39˚C for each condition (Figure 2; Figure 2—figure supplement 1; Figure 2—

source data 1). Briefly, differential expression was performed in the R statistical environment (R v.

3.4.0) using Bioconductor’s DESeq two package on the protein-coding genes only [RRID:SCR_

000154] (Love et al., 2014). Dataset parameters were estimated using the estimateSizeFactors(),

and estimateDispersions() functions; read counts across conditions were modeled based on a nega-

tive binomial distribution, and a Wald test was used to test for differential expression (nbinomWaldt-

est(), all packaged into the DESeq() function), using the treatment type as a contrast. Fold-changes

and p-values were reported for each protein-coding gene. Heat maps were generated in Spotfire

(Tibco), using a complete linkage function and the cosine correlation as distance metrics (Figure 2).

Comparison of upregulated genes in present study to previous study (Shoulders et al., 2013):

This analysis was performed to compare genes upregulated upon XBP1s and ATF6f/XBP1s induction

at 37˚C, relative to DMSO treatment at 37˚C. The analysis was restricted to genes with clear repre-

sentation in both the whole-genome array (Shoulders et al., 2013) and the RNA-Seq annotation

(n = 13058). Transcripts detected by the two methods were matched based on an Affymetrix probe

ID for the whole-genome array and an ENSEMBL ID based on DAVID v6.8 for the RNA-Seq

(Huang et al., 2009). Residual unmatched transcripts were matched based on NCBI IDs, and finally

based on gene names (correcting for updates in official gene symbols between annotations). Both

datasets were filtered applying a 2-fold change cutoff and an FDR of 0.05. The resulting overlap is

presented in Figure 2—figure supplement 2. The genes for each subset of the Venn Diagram (Fig-

ure 2—figure supplement 2) are listed in Figure 2—source data 2. For each subgroup, ENSEMBL

identities were retrieved for each gene and used in the DAVID online Gene Ontology environment

(Huang et al., 2009) to call enriched functional categories against the background of 13058 genes

jointly called across both RNA quantification methods (Figure 2—source data 2).

Cell growth assay
HEK293ATF6f/XBP1s cells were seeded at 750,000 cells/well in poly-D-lysine (Sigma)-coated (0.05 mg/

mL in PBS, 37˚C for 15 min) 12-well plates and pre-treated with 0.01% DMSO, 0.1 mg/mL doxycy-

cline, or 0.1 mg/mL doxycycline and 1 mM TMP, and placed at either 37˚C or 39˚C. To mimic the

infection conditions, the cellular growth media was replaced with WSN media supplemented with

0.01% DMSO, 0.1 mg/mL doxycycline, or 0.1 mg/mL doxycycline and 1 mM TMP 16 hr post-treat-

ment, returning plates to either 37˚C or 39˚C. 48 hr after the mock infection, the media was replaced
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with WSN media containing 50 mM resazurin sodium salt (Sigma). After 4 hr of incubation, 100 mL of

media was used to quantify resorufin fluorescence (excitation 530 nm; emission 590 nm) using a

Take-3 plate reader (BioTeK) (Figure 2—figure supplement 3A).

Influenza infection in modified host cell environments
HEK293ATF6f/XBP1s cells were seeded at 750,000 cells/well in poly-D-lysine-coated 12-well plates and

treated with 0.01% DMSO, 0.1 mg/mL doxycycline, or 0.1 mg/mL doxycycline and 1 mM TMP, at

either 37˚C or 39˚C, for 16 hr. To assess viral growth in each selection condition, pre-treated cells

were infected with influenza A/WSN/1933 at an MOI of 0.01 virions/cell for 48 hr, at either 37˚C or

39˚C, to mimic DMS and pairwise competition conditions. Viral supernatant was harvested 48 hr

post-infection and titered using a TCID50 assay (Figure 2—figure supplement 3B).

Deep mutational scanning
We employed three biological replicate viral libraries that were previously generated from three

independently prepared HA mutant plasmid libraries (Doud and Bloom, 2016). HEK293ATF6f/XBP1s

cells were plated in poly-D-lysine-coated 15 cm plates at a density of 50 � 106 cells per dish; 8 hr

after plating, cells were treated with 0.01% DMSO, 0.1 mg/mL doxycycline, or 0.1 mg/mL doxycycline

and 1 mM TMP for 16 hr, at either 37˚C or 39˚C. 16 hr after treatment, 1 � 106 Infectious virions

(determined using a TCID50 assay) from each viral library were used to infect two 15 cm plates in

each condition at an MOI of 0.01 virions/cell. In addition, one 15 cm plate at both 37˚C and 39˚C

was either mock infected (negative control) or infected with wild-type virus. For infection, the cellular

growth medium was replaced with WSN media containing a mutant virus library, wild-type virus, or

no virus for mock infection. After 2 hr, the inoculum was replaced with fresh WSN media containing

0.01% DMSO, 0.1 mg/mL doxycycline, or 0.1 mg/mL doxycycline and 1 mM TMP. 48 hr post-infection,

the viral supernatant was harvested, centrifuged at 1000 � g for 5 min to remove cell debris, and

stored at –80˚C. To extract viral RNA from the viral supernatant, the supernatant was thawed and

virions were concentrated by ultracentrifugation, spinning at 25,000 rpm for 2 hr at 4˚C (SW 32 Ti

swinging bucket rotor, Beckman Coulter). The supernatant was then decanted, and the virion pellet

was resuspended in 140 mL QIAgen Viral RNA Buffer AVL. Viral RNA was then extracted using a QIA-

gen Viral RNA mini kit, per the manufacturer’s instructions, changing collection tubes at each step.

Viral RNA was reverse transcribed using the AccuScript High Fidelity first strand cDNA synthesis kit

(Agilent) using 5’-WSN-HA and 3’-WSN-HA primers (primer sequences in Supplementary file 1). At

least 106 HA molecules were PCR-amplified for preparation of subamplicon sequencing libraries, as

previously described (Doud and Bloom, 2016), to ensure sufficient sampling of viral library diversity.

Briefly, this sequencing library preparation method appends unique, random barcodes and part of

the Illumina adapter to HA subamplicon molecules. In a second round of PCR, the complexity of the

uniquely barcoded subamplicons was controlled to be less than the sequencing depth, and the

remainder of the Illumina adapter is appended (Doud and Bloom, 2016). The resulting libraries

were sequenced on an Illumina HiSeq 2500 in rapid run mode with 2 � 250 bp paired-end reads.

Deep mutational scanning data analysis
The software dms_tools (http://jbloomlab.github.io/dms_tools/) (Bloom, 2015) was used to align

reads to the Influenza A/WSN/1933 HA reference sequence, count amino acid variants across HA,

and calculate the differential selection for each variant between two selection conditions, as previ-

ously described (Doud et al., 2017). Briefly, reads were trimmed, aligned to the Influenza A/WSN/

1933 reference sequence, and read pairs were quality filtered by discarding read pairs with low-qual-

ity sites in the barcode region of either read, in addition to read pairs with more than 7.5% low qual-

ity sites. The remaining read pairs were sorted by barcode and barcodes with less than two read

pairs were discarded. For each remaining barcode, mutation calls were only made when greater

than 75% of reads concurred (Doud and Bloom, 2016; Bloom, 2015). For each sample, the numbers

of read pairs, barcoded read pairs, and reads per barcode are reported in Source data 1 (see sam-

ple _summarystats.txt) and the sequencing data analyses are available at https://github.com/

amphilli/HA_DMS_2018 (copy archived at https://github.com/elifesciences-publications/amphilli/

HA_DMS_2018). For evaluating mutation differential selection, variants not present in each replicate

starting library were removed from the analysis and were subsequently filtered for variants that
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incurred selection of the same sign across biological triplicates (Figure 5—source data 1). The muta-

tion differential selection values for these filtered variants were visualized on sequence logo plots,

made using dms_tools (Figure 4; Figure 4—figure supplements 1–5) (Doud et al., 2017;

Bloom, 2015). Correlation between mutation differential selection values across selection conditions

was determined using linear regression using Graph Pad Prism software, reporting Pearson correla-

tion coefficients (Figure 5B–C; Figure 5—figure supplement 1). For each site in HA, the net site dif-

ferential selection (net site diffsel) was calculated by summing the mutation differential selection

values separately for each replicate starting library, excluding mutation differential selection values

for variants that were not present in the respective starting library. These replicate net site diffsel val-

ues were then then averaged and sorted by HA secondary structure, relative surface accessibility

(Gamblin et al., 2004; Joosten et al., 2011), receptor binding and antigenic sites (Doud and

Bloom, 2016), N-glycosylation sequons and disulfide bond sites (Chen et al., 1995; Daniels et al.,

2003; Hebert et al., 1997), and natural HA site conservation (Zhang et al., 2017) (Figure 7; Fig-

ure 7—figure supplement 1; Figure 7—source data 1). HA secondary structure and relative surface

accessibility were determined using DSSP (Joosten et al., 2011; Kabsch and Sander, 1983) based

on the HA crystal structure (PDBID 1RVX) (Gamblin et al., 2004). In Figure 7A, sites designated bur-

ied were the 50% least surface-accessible sites; sites designated exposed were the 50% most sur-

face-accessible sites. Receptor binding and antigenic sites were classified as in Doud et al, and

included sites nearby antigenic sites (Doud and Bloom, 2016). Natural HA site conservation was

based on 989 non-redundant human H1 sequences preceding the 2009 H1N1 pandemic, accessed

from the NIAID Influenza Research Database (accessed Jan. 10th, 2018) (Zhang et al., 2017). Site

entropies were calculating using the Influenza Research Database SNP Analysis Tool (Zhang et al.,

2017), and were normalized to a scale of 0–100, with a site entropy of 100 representing the most

variable site in HA and 0 representing the most conserved site (Figure 7B). In Figure 7A, sites desig-

nated conserved had a site entropy of zero; all other sites were designated as variable. The net site

differential selection values were mapped onto the HA crystal structure (PDBID 1RVX)

(Gamblin et al., 2004) using PyMOL (DeLano, 2002) (Figure 8; Figure 8—figure supplement 1).

Data availability
FASTQ files for DMS sequencing are available in the Sequence Read Archive under accession num-

ber SRP149672. The deep mutational scanning data analyses are available at https://github.com/

amphilli/HA_DMS_2018, and is also available in Source data 1. All mutation differential selection val-

ues from deep mutational scanning (pre- and post-filtering) are available in Figure 5—source data

1. The complete RNAseq data are available from GEO under accession number GSE115168.

Infectious viral titering via tissue culture infectious dose (TCID50) assay
10-Fold dilutions of each virus were prepared in quadruplicate in 96-well plates. 5,000 MDCK-SIAT1

cells were then added to each well and incubated at 37˚C for 72 hr, after which the wells were

scored for the presence of cytopathic effect. The dilutions of virus displaying cytopathic effect in the

MDCK-SIAT1 cells were then used to calculate the TCID50/mL using https://github.com/jbloomlab/

reedmuenchcalculator as described by Thyagarajan and Bloom (Thyagarajan and Bloom, 2014),

where virions/mL = 0.69*TCID50/mL.

Reverse genetics pairwise viral competitions
HA mutant-encoding plasmids were prepared by introducing point mutations into the pHW184-HA

plasmid using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent 200522). Mutant viruses

were generated from plasmids by transfecting a co-culture of 2.5 � 104 MDCK-SIAT1 and 3 � 105

HEK 293 T cells, as previously described (Hoffmann et al., 2000), followed by titering using the

TCID50 assay. For each competition, HEK293ATF6f/XBP1s cells were plated in poly-D-lysine-coated 24-

well dishes at 3.5 � 105 cells/well and treated 8 hr later with 0.01% DMSO, 0.1 mg/mL doxycycline,

or 0.1 mg/mL doxycycline and 1 mM TMP at either 37˚C or 39˚C. 24 hr after plating, cells were

infected with a 1:1 mixture of wild-type and mutant viruses at an MOI of 0.01 virions/cell in biological

triplicate under conditions identical to that of the deep mutational scanning experiment. After 2 hr,

the inoculum was replaced with fresh WSN media supplied with 0.01% DMSO, 0.1 mg/mL doxycy-

cline, or 0.1 mg/mL doxycycline and 1 mM TMP. 48 hr post-infection, infectious supernatant was

Phillips et al. eLife 2018;7:e38795. DOI: https://doi.org/10.7554/eLife.38795 18 of 23

Research article Biochemistry and Chemical Biology Evolutionary Biology

https://github.com/amphilli/HA_DMS_2018
https://github.com/amphilli/HA_DMS_2018
https://github.com/jbloomlab/reedmuenchcalculator
https://github.com/jbloomlab/reedmuenchcalculator
https://doi.org/10.7554/eLife.38795


harvested, centrifuged at 1000 � g for 5 min to remove cell debris, and stored at –80˚C. Viral RNA

was extracted from 140 mL infectious supernatant using the QIAamp Viral RNA Mini kit and at least

106 HA molecules were reverse transcribed using SuperScript III Reverse Transcriptase (Thermo

Fisher Scientific) with 5’-WSN-HA and 3’-WSN-HA primers (Supplementary file 1). The dsDNA was

purified twice using 0.9 � AMPure XP beads (Beckman Coulter) and quantified using a Quant-iT

PicoGreen assay (Life Technologies). Illumina NexteraXT sequencing libraries were prepared using a

Mosquito HTS liquid handler (TTP Labtech) and sequenced on an Illumina HiSeq with 50 bp single-

end reads.

Pairwise competition sequencing data analysis
To overcome biases in read mapping from consecutive, multi-nucleotide sequence variants, mapping

target sequences were generated for each Influenza A/WSN/1933 HA variant. Briefly, regions flank-

ing the variant (given the experimental read length) would be identified, relevant groups of bases

substituted with their engineered variants, and the rest of the sequence substituted with ‘N’ in order

to maintain the sequence position of said variants, thus generating sets of ‘pseudo-haplotypes’.

Sequencing reads were aligned to the wild-type Influenza A/WSN/1933 HA sequence and the set of

pseudo-haplotypes using bwa mem (v. 0.7.12-r1039) (arXiv:1303.3997), with flag –t 16, and sorted

and indexed bam files were generated using samtools (v 1.3) (Li et al., 2009). These bam files were

processed using samtools mpileup with flags –excl-flags 2052, -d 30000000 and the same reference

sequences used for mapping (Sievers et al., 2011). Allele counts at each position of the wild-type

and pseudo-haplotype sequences were summed and reported along the wild-type Influenza A/

WSN/1933 HA sequence for each sample for calculation of variant frequencies. The change in variant

frequency upon selection was normalized to that of wild-type, thus providing diffsel values on the

same scale as the DMS competition (Figure 6B; Figure 6—figure supplement 1).

Statistics
All experiments were performed in biological triplicate with replicates defined as independent

experimental entireties (i.e., from plating the cells to acquiring the data). For deep mutational scan-

ning, each biological replicate mutant viral library was prepared from independently generated

mutant plasmid libraries, as previously reported (Doud and Bloom, 2016). Differential selection val-

ues from deep mutational scanning, as well as selection values from pairwise competitions, were

tested for significance of deviation from zero (wild-type behavior), using a one-sample t-test in

Graph Pad Prism (Figure 5A; Figure 6—figure supplement 1). Differential selection values from

pairwise competitions were compared between selection conditions by a Student’s t-test (Figure 6—

figure supplement 1). Correlation between diffsel values was determined by linear regression using

Graph Pad Prism software, reporting Pearson correlation coefficients and p-values from F-tests, test-

ing significance of slope deviating from zero (Figure 5B–C; Figure 5—figure supplement 1). Corre-

lation between site diffsel values (N = 565) was determined by linear regression using Pandas

Python package, reporting Pearson correlation coefficients (Figure 3—source data 1). For DMS

mutational tolerance analyses, statistical significance of the deviation of the mean of the net site diff-

sel distribution from zero (wild-type behavior) was tested by a Student’s t-test; one-tailed p-values

are reported, to assess whether the net site diffsel distributions for XBP1s and ATF6f/XBP1s induc-

tion are significantly greater than zero, and whether the net site diffsel distribution for increased

temperature is significantly less than zero (Figure 7A; Figure 7—figure supplement 1; Figure 7—

source data 1).
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