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Abstract— Robotic pouring is an important step in improving
the safety, productivity and repeatability in the biotechnology
industry and generally increasing the effectiveness of robotics
in human based environments. In this work we present a
method to autonomously dispense a precise amount of fluid
using only visual feedback without using precision pouring
instruments such as pipettes, syringes or pourers. We model
circular and rectangular pouring container geometries. We
prove that for square containers we can control the flow by
only observing the fluid height in the receiving beaker. We show
a systematic approach using a hybrid control scheme that is
robust to the initial amount of fluid in the pouring container and
inconsistent flow. Specifically we present (a) a model for pouring
(b) a model based algorithm to drive a robot arm (c) visual
feedback for regulating the pouring rate. We demonstrate this
using the Rethink Robotics Sawyer manipulator and mvBluefox
MLC202bc camera.

I. INTRODUCTION

One of the main goals in robotics is to assist in repetitive,

laborious, and dangerous tasks. Precise pouring of fluids can

easily fall under each of these categories, examples being

manipulation of hazardous biological fluids, molten metal in

the casting industry, or even the assembly of buffers and

solvents in wet lab research. In each of these examples a

common requirement is that a specified amount of fluid be

poured with precision to a desired amount.

To achieve these precise motions required for pouring,

researchers have used learning models to perform reinforce-

ment and imitation learning to pour [1], [2], [3]. While

effective, limitations of these methods are the number of

trials required to learn the pouring task, reliance on empir-

ical results rather than on analytical guarantees of system

performance, and inability to generalize learned model.

One approach to perform smooth pouring is to minimize

sloshing of the liquid while pouring a predetermined tra-

jectory. Some research proves to suppress sloshing while

pouring using a hybrid shape approach which consists of

proportional gain, notch and a low pass filter [4], [5], [6], [7].

In this approach, the control input consists of feed forward

expression based on the proposed model, and the hybrid

shape to mitigate sloshing during the pour [6], [7], [8]. Noda

and Terashima tried to overcome the requirement for the

need of an analytical inverse of the dynamical function by

using a numerical look up table for the desired height [9]

and corresponding input. In the above model based examples

[8], [9] load cells were used to provide real time feedback

on poured fluid mass.
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Fig. 1: Experimental setup using the Rethink Robotics

Sawyer manipulator to pour precise amounts of water into a

beaker using vision for feedback control.

Vision is also used for real time feedback by detecting

how much fluid is currently in the pouring container, or in

transit. Mottaghi et al. present a method using learning to

estimate the volume of containers and the amount of fluid

inside them using vision [10]. Yamaguchi et al. present a

method using stereo vision and optical flow to track fluids

being poured during flight between containers [11]. The most

recent approach in [12] is the state of the art in liquid

perception because it tracks the liquid while it is poured as

well as the amount in the container using a recurrent neural

network. Compared to our approach [12] is superior in the

perception but more simplistic in the control and without

providing any analytical proof.

Our proposed method extends previous work in that it is

analytically based and we provide a closed form expression

for the control input using a hybrid controller and feedback

linearization. We also show that we are able to detect the

height of the fluid using vision, and due to our pouring

container design specifications, we only need to observe

along with the angle of the pouring container, the height

or mass of the fluid in the receiving container and its

derivative. By using a minimum jerk trajectory for the fluid

height, we are able to ensure smooth motion for our end-

effector and fluid height [13]. The rest of the paper is

organized as follows, Section II-A describes the general

pouring model. Section II-B presents our specific system

design and justification. Section II-C describes our method of

visual feedback to detect the fluid height. Section III shows

our results and discussion for implementing this method on

the Rethink Robotics Sawyer manipulator shown in Figure 1.





Fig. 4: We use the Rethink Robotics Sawyer manipulator

to precisely pour colored water into a beaker using visual

feedback from a mvBluefox MLC202bc camera.

directly related to these factors are the lip length LL,α(hL,α),
flow rate q(hL,α), dividing area As,α(θ), and volume below

the lip Vs,α(θ).
Considering three cases: a rectangular lip where the length

is constant, v-shaped lip that has an opening angle γ, and

circular lip shape, where the entire opening has a radius R,

the lip shape equations become

LL,α,rect(h) = LL,alpha (7)

LL,α,vshape(h) = 2h cos(
γ

2
) (8)

LL,α,circ(h) = 2
√

h(2R− h). (9)

The flow rate q for circular and rectangular lip geometries

are shown in (10), (11) and are found by integrating (6)
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2
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√
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Differentiating these flow rates with respect to time produces
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√
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Note that by substituting hL,α from (10) into (12) we can

express (12) as

ḣL,α =

(

2

3

)
1

3

L− 2

3 (2g)−
1

3 q−
1

3 q̇. (14)

For the dividing area As,α, we consider two cases: a square

and circular container. In both instances the cross sectional

area is constant in body frame zα. The dividing area As,α is

defined to consist of a major and minor axis a, b, where

rotation occurs about the minor axis b. In the case of a

circular container the area of an ellipse is πab, Hence the

respective areas are shown in (15), (16), where a′ is the

elongated axis as a function of the angle θ

As,α,circ = πa′b = πab sec(θ) (15)

As,α,rect = a′b = ab sec(θ), (16)

(a) (b)

Fig. 5: Robustness of our vision method to sloshing in fast

trajectories, tracking and foreground images. The height is

estimated as minimum of purple and white rings (K-means

cluster centers), in Figure 5a estimated height is the white

ring.

differentiation with respect to time produces

Ȧs,α,circ = πab tan(θ) sec(θ)ω (17)

Ȧs,α,rect = ab tan(θ) sec(θ)ω. (18)

The volume of fluid below the dividing surface Vs,α is shown

in (19) for rectangular geometry. Note that while other ge-

ometries can be found, this volume is straight forward. Using

the geometry notation shown in Figure 3, with container

width Wα, length lα, total height Hα

Vs,α,rect =

∫ lα

0

∫ H(y)

0

∫ Wα

0

dxdzdy

=

∫ l1

0

WαH(y)dy =

∫ l1

0

Wα(Hb − y tan(θ))dy

= WαHαlα − l2α
2
Wα tan(θ). (19)

The derivative with respect to time produces

V̇s,α,rect = − l2αWα

2
sec2(θ)ω. (20)

Given these parameterizations, we will now show that

the design configuration in Figure 3 allows for a concise

representation of the dynamical system in (5) in Proposition

(1).

Proposition 1: By using an open, rectangular pouring

container α as shown in Figure 3, and container β with

constant cross sectional area Aβ , we can represent (5) in

terms of only transient variables hβ , ḣβ , θ, ω.

Proof: Using equations (7), (10), (12), (14), (16), (18),



(20) assuming constant Aβ , (5) becomes
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(
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Solving for q̇ produces Equation (22)
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using the relation in (23) we obtain the relation between q̇

and ḧβ

q̇ = Aβ ḧβ . (23)

Substituting Equation (23) and q = Aβ ḣβ into Equation

(21) produces Equation (24) whose transient terms are only

hβ , ḣβ , θ, ω.
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We define Q1(θ), Q2(θ), Q3(θ)

Q1(θ) = −3
1

3L
2

3
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1
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which simplifies (24) to

ḧβ = Q1(θ)A
1

3

β ḣ
4

3

β +
(

Q2(θ)ḣβ +Q3(θ)A
− 2

3

β ḣ
1

3
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)
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With these design parameters we have derived a component

of the system dynamics, we now define the region on which

it is controllable and the hybrid controller used.

Theorem 1: For a experimental setup defined in Proposi-

tion 1, with system states
[

x1 x2 x3

]T
=
[

hβ ḣβ θ
]T

and input u = ω, there exists a hybrid control input that

allows for control of the system in the domain D : x3 ∈
(−π

2 ,
π
2 ) for states ~x0 starting in D.

Proof: The full system dynamics based on (28) is
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Fig. 6: Using background subtraction, Sobel gradient detec-

tion and K-means clustering (Figure 6a) we are able to track

the top of the fluid for feedback control. In Figure 6b the

goal was to pour 100ml.

which takes the general form ẋ = f(x)+g(x)u. To determine

the region on which this is feedback linearizable we must

determine the conditions of full rank for the matrix M

defined in (30), where adfg(x) represents the adjoint [f, g]
(lie bracket). And is also feedback linearizable if the span

M ’s vectors are involutive

M =
[

g(x) adfg(x) ad2fg(x)
]

. (30)

The matrix M has full rank when x2 6= 0, meaning the height

must be changing. Also we can see by inspection that g(x)
is only left invertible when x3 6= −π

2 or x3 6= π
2 . Hence we

propose the following hybrid controller

u =











g(x)†(τ − f(x)) x2 6= 0 and x3 ∈ (−π
2 ,

π
2 )

sgn(x3)δω x2 = 0 and x3 ∈ (−π
2 ,

π
2 )

0 x3 6∈ (−π
2 ,

π
2 ),

(31)

where the domain conditions here serve as hybrid control

guard and reset function constraints, and these functions are

an identity map. Using feedback linearization the system

reduces to a second order ordinary differential equation, and

solving for the desired state x1 will exponentially approach

the desired point also in D for positive proportional and

derivative gains Kp,Kd. We define the term τ to be this

input, and have it consist of a feedback and feed forward

term prescribed by the desired trajectory of x1(t)

τ = ẍ1,des +Kp(x1,des − x1) +Kd(ẋ1,des − ẋ1). (32)

The desired trajectory for the system is a minimum jerk

trajectory for the state x1 which defines ẍ1,des, ẋ1,des, x1,des

where ẍ1,des is the feed forward term. We define a smooth,

sigmoid trajectory for the fluid height by using a 5th order

polynomial. Such a polynomial with specified end points

characterizes a minimum jerk trajectory, and inherently

minimizes the change in accelerations while respecting the

boundary constraints. The specified endpoints are the initial

height and final height both with zero velocity and acceler-

ation. These boundary constraints fully define the trajectory

in closed form [13]. Therefore with (31), (32) we can track

the specified trajectory in domain D.








