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ABSTRACT Early diagnosis of gear transmission has been a significant challenge, because gear faults occur
primarily at microstructure or even material level but their effects can only be observed indirectly at a system
level. The performance of a gear fault diagnosis system depends significantly on the features extracted and
the classifier subsequently applied. Traditionally, fault-related features are extracted and identified based on
domain expertise through data preprocessing which are system-specific and may not be easily generalized.
On the other hand, although recently the deep neural networks based approaches featuring adaptive feature
extractions and inherent classifications have attracted attention, they usually require a substantial set of
training data. Aiming at tackling these issues, this paper presents a deep convolutional neural network-based
transfer learning approach. The proposed transfer learning architecture consists of two parts; the first part is
constructed with a pre-trained deep neural network that serves to extract the features automatically from the
input, and the second part is a fully connected stage to classify the features that needs to be trained using gear
fault experimental data. Case analyses using experimental data from a benchmark gear system indicate that
the proposed approach not only entertains preprocessing free adaptive feature extractions, but also requires

only a small set of training data.

INDEX TERMS Alexnet, deep convolutional neural network, gear fault diagnosis, transfer learning.

I. INTRODUCTION
Condition monitoring and fault diagnosis play essential role
in ensuring the safe and sustainable operations of modern
machinery systems. Gearbox, as one common component
used in those systems, is prone to fault condition or even
failure, because of the severe working condition with high
mechanical loading and typically long operational time. Cur-
rently, vibration signals are most widely used to infer the
health condition of gear system, because they contain rich
information and can be easily measured using off-the-shelf,
low-cost sensors. Indeed, gear vibration signals contain three
components: periodic meshing frequencies, their harmonics,
and random noise. For a healthy gear system, the mesh-
ing frequencies and their harmonics dominate the vibration
response. Fault conditions cause additional dynamic effects.
The practice of fault diagnosis of gear system using vibra-
tion signals has proved to be a very challenging subject. The
mainstream of gear condition monitoring is built upon various

feature extraction methods that are manual and empirical in
nature [1]-[3]. Generally, a certain signal processing tech-
nique is applied to vibration signals to identify fault-related
features that are selected based on engineering judgment.
Subsequently, a classifier is developed and applied to new sig-
nals to predict fault occurrence in terms of type and severity.
There have been extensive and diverse attempts in manually
and empirically identifying and extracting useful features
from gear vibration signals, which fall into three main cat-
egories: time-domain analysis [4], [5], frequency domain-
analysis [6]-[8] and time-frequency analysis [9]-[13].
Time-domain statistical approaches can capture the changes
in amplitude and phase modulation caused by faults [5], [14].
In comparison, spectrum analysis may extract the features
more easily to detect distributed faults with clear side-
bands [6], [8], [15]. To deal with noise and at the same
time utilize the transient components in vibration signals,
many efforts have focused on joint time-frequency domain
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analysis utilizing Wigner-Ville distribution [9], [16], short
time Fourier transform [10], [17], and various wavelet trans-
forms [11], [18]. The time-frequency distribution in such
analysis can in theory lead to rich analysis results regarding
the time- and frequency-related events in signals.

Although the manual and empirical methods of feature
extraction have seen various levels of successes, obviously
their effectiveness is hinged upon the specific features
adopted in the diagnostic analysis. It is worth emphasizing
that the choices of features as well as the often-applied sig-
nal preprocessing techniques are generally based on domain
expertise and subjective decisions on a specific gear system.
For example, while wavelet transforms have been popular
and it is well known that each wavelet coefficient can be
interpreted as the energy concentration at a specific time-
frequency point, it is evident from large amount of literature
that there does not seem to be a consensus on what kind
of wavelet to use for gear fault diagnosis. This should not
come as a surprise. On one hand gear faults occur primarily at
microstructure or even material level but their effects can only
be observed indirectly at a system level; consequently there
exists a many-to-many relationship between actual faults and
the observable quantifies (i.e., features) for a given gear
system [19]. On the other hand, different gear systems have
different designs which lead to very different dynamic char-
acteristics. As such, the result on features manually selected
and, to a large extent, the methodology employed to extract
these features for one gear system design may not be easily
extrapolated to a different gear system design.

Fundamentally, condition monitoring and fault diagno-
sis of gear systems belongs to the general field of pattern
recognition. The advancements in related algorithms along
with the rapid enhancement of computational power have
trigged the wide spread of machine learning techniques to
various applications. Most recently, deep neural network-
based methods are progressively being investigated. When
the parameters of a deep neural network are properly trained
by available data, representative features can be extracted in a
hierarchy of conceptual abstractions, which are free of human
interference compared to manual selection of features. Some
recent studies have adopted such type of approaches in gear
fault diagnosis, aiming at identifying features implicitly and
adaptively and then classifying damage/fault in an automated
manner with minimal tuning. For example, Zhang et al. [20]
developed a deep learning network for degradation pattern
classification and demonstrated the efficacy using turbofan
engine dataset. Li ef al. [21] proposed a deep random forest
fusion technique for gearbox fault diagnosis which achieves
97.68% classification accuracy. Weimer et al. [22] examined
the usage of deep convolutional neural network for indus-
trial inspection and demonstrated excellent defect detection
results. Ince er al. [23] developed a fast motor condition
monitoring system using a 1-D convolutional neural network
with a classification accuracy of 97.4%. Abdeljaber et al. [24]
performed real-time damage detection using convolutional
neural network and showcased satisfactory efficiency.
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Deep neural network is undoubtedly a powerful tool in
pattern recognition and data mining. As an end-to-end hierar-
chical system, it inherently blends the two essential elements
in condition monitoring, feature extraction and classification,
into a single adaptive learning frame. It should be noted
that the amount of training data required for satisfactory
results depends on many aspects of the specific problem
being tackled, such as the correctness of training samples,
the number of pattern classes to be classified, and the degree
of separation between different classes. In most machinery
diagnosis investigations, the lack of labeled training samples,
i.e., experiment data of known failure patterns, is a common
issue, because it is impractical to collect experimental data
of each failure type and especially severity for a machinery
system. To improve the performance given limited training
data, some recent studies have attempted to combine pre-
processing and data augmentation techniques, e.g., discrete
wavelet transform [25], antialiasing/decimation filter [23],
and wavelet packet transform [21], with neural networks for
fault diagnosis. Nevertheless, the preprocessing techniques
employed, which are subjected to selection based on domain
expertise, may negatively impact the objective nature of neu-
ral networks and to some extent undermines the usage of such
tools.

In this research, aiming at advancing the state-of-the-art,
we present a deep neural network-based transfer learning
approach utilizing limited time-domain data for gearbox
fault diagnosis. One-dimensional time-domain data of vibra-
tion responses related to gear fault patterns are converted
into graphical images as input. The approach inherits the
non-biased nature of neural networks that can avoid the
manual selection of features. Meanwhile, the issue of
limited data is overcome by formulating a new neural
network architecture that consists of two parts. Massive
image data (1.2 million) from ImageNet (http://www.image-
net.org/challenges/LSVRC/2010/) are used first to train an
original deep neural network model, denoted as neural net-
work A. The parameters of neural network A are trans-
ferred (copied) to the new architecture as the first part.
The second part of the architecture, an untrained neural
network B, accommodates the gear fault diagnosis task and
is further trained using experimentally generated gear fault
data. Unlike traditional neural networks, the training set of
transfer learning do not necessarily subordinate to the same
category or from the same physical background [26]. As to
be demonstrated later, with this new architecture, highly
accurate gear fault diagnosis can be achieved using limited
time-domain data directly without involving any subjective
preprocessing techniques to assist feature extraction. The rest
of this paper is organized as follows. In Section II, building
upon convolutional neural network and transfer learning, we
develop the specific architecture for gear fault diagnosis.
In Section III, experimental data are analyzed using the pro-
posed approach with uncertainties and noise; comparisons
with respect to different approaches are conducted as well.
Concluding remarks are summarized in Section I'V.
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Il. TRANSFER LEARNING FOR GEAR FAULT DIAGNOSIS
The proposed transfer learning approach is built upon deep
convolutional neural network. Deep neural networks have
enjoyed great success but require a substantial amount
of training instances for satisfactory performance. In this
section, for the sake of completeness in presentation we
start from the essential formulations of convolutional neu-
ral network and transfer learning, followed by the specific
architecture developed for gear fault diagnosis with limited
training data.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
Convolutional Neural Networks (CNNs) are a class of
biologically inspired neural networks featuring one or mul-
tiple convolutional layers that simulate human visual
system [27]. In recent years, due to the enhancement in
computational power and the dramatic increase in the amount
of data available in various applications, CNNs-based meth-
ods have shown significant improvements in performance
and thus have become the most popular class of approaches
for pattern recognition tasks such as image classifica-
tion [28], natural language processing [29], recommending
systems [30] and fault detection [23]. CNNs learn how to
extract and recognize characteristics of the target task by
combining and stacking convolutional layers, pooling layers
and fully connected layers in its architecture. Figure 1 illus-
trates a simple CNN with an input layer to accept input
images, a convolutional layer to extract features, a ReLU
layer to augment features through non-linear transformation,
a max pooling layer to reduce data size, and a fully connected
layer combined with a softmax layer to classify the input to
pre-defined labels. The parameters are trained through a train-
ing dataset and updated using back propagation algorithm to
reflect the features of the task that may not be recognized oth-
erwise. The basic mechanism of layers in CNNs is outlined
as follows.

1) CONVOLUTIONAL LAYER

Each feature map in the convolutional layer shown
in Figure 1 is generated by a convolution filter. Generally,
the input and convolution filters are tensors of size m X n
and p x g x K (K is the number of filter used), respectively.
Stride (i.e., step size of the filter sliding over input) is set
to 1 and padding (i.e., the number of rows and columns to
insert around the original input) is set to 0. The convolution

FIGURE 1. An example of convolutional neural network.
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operation can be expressed as,

P 4q
Ydi, do, k = Z Zxdli,dzj X fijk ey
i=0 j=0
where y, x and f denote the element in feature map, input and
convolution filter, respectively. f; ; x represents the element
on the i-th column and j-th row for filter k. yg, 4, x is the
element on the d;-th column and d;-th row of feature map k.
And xg4,;,4,j refers to the input element on the i-th column
and j-th row of the stride window specified by d; and d5.
Equation (1) gives a concise representation of the convolution
operation when the input is 2-demensional, and stride and
padding are 1 and 0. Higher dimension convolution oper-
ations can be conducted in a similar manner. To be more
evocative, suppose the input image can be represented by a
4 x 7 matrix and the convolution kernel is a 3 x 3 iden-
tity matrix. As we take kernel and stride it over the image
matrix, dot products are taken in each step and recorded in
a feature map matrix (Figure 2). Such operation is called
convolution. In CNNs, multiple convolution filters are used
in a convolutional layer, each acquiring a feature piece in its
own perspective from the input image specified by the filter
parameters. Regardless of what and where a feature appears
in the input, the convolutional layer will try to characterize it
from various perspectives that have been tuned automatically
by the training dataset.

FIGURE 2. lllustration of convolution operation.

2) RelU Layer

In CNNs, ReLU (rectified linear units) layers are commonly
used after convolutional layers. In most cases, the relationship
between the input and output is not linear. While the convo-
lution operation is linear, the ReL.U layer is designed to take
non-linear relationship into account, as shown in the equation
below,

y = max(0, y) @)

The ReLU operation is applied to each feature map and
returns an activation map (Figure 3). The depth of the
ReLU layer equals to that of the convolutional layer.

3) MAX POOLING LAYER
Max pooling down-samples a sub-region of the activation
map to its maximum value,

y= max Vi i 3)
YT Lziztr Ly=i<uy
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FIGURE 3. lllustration of ReLU and max pooling.

where Ly < i < Uy and L, < j < U, define the sub-
region. The max pooling layer not only makes the network
less sensitive to location changes of a feature but also reduces
the size of parameters, thus alleviates computational burden
and controls overfitting.

B. TRANSFER LEARNING

CNNs are powerful tools, and the performance can generally
be improved by up-scaling the CNN equipped. The scale of a
CNN concurs with the scale of the training dataset. Naturally,
the deeper the CNN, the more parameters need to be trained,
which requires a substantial amount of valid training samples.
Nevertheless, in gear fault diagnosis, the training data is not
as sufficient as that of data-rich tasks such as natural image
classification. In fact, it is impractical to collect physical
data from each failure type and especially severity since the
severity level is continuous in nature and there are infinitely
many possible fault profiles.

Figure 4 illustrates a representative relationship between
data size and performance for different learning methods.
While the performance of a large-scale CNN has the potential
to top other methods, it is also profoundly correlated with the
size of training data. Transfer learning, on the other hand,
is capable of achieving prominent performance commensu-
rate with large scale CNNs using only a small set of training
date [31], [32]. By applying knowledge and skills (in the form
of parameters) learned and accumulated in previous tasks
that have sufficient training data, transfer learning provides
a possible solution to improve the performance of a neural
network when applied to a novel task with small training
dataset. Classic transfer learning approaches transfer (copy)
the first n layers of a well-trained network to the target
network of layer m > n. Initially, the last (m — n) layers
of the target network are left untrained. They are trained

FIGURE 4. Learning methods: data size vs. performance.
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subsequently using the training data from the novel task. Let
the training datasets from the previous task Dpe and the novel
task Dpoy be represented as

Dpre = {Xpre’ Lpre} s Dnov = {Xnov, Lnov}

where X is the input and L is the output label. The
CNNs for both tasks can then be regarded as, Lpe =
CNNPI'C(XPI'C’ 0pre)’

(4a,b)

Linov = CNNiov(Xnov» Onov) (5a, b)

CNN operator denotes the mapping of a convolutional
neural network given parameters 6 from input to predicted
output L. The parameters of the previous task is trained
through

OE,re = argmin(Lpre — I:pre)

epre
= arg min(Lpre — CNNpre(Xpre, apre)) (6)
eprc
where %re stands for the parameters after training. There-

upon, the trained parameters of the first n layers can be
transferred to the new task as,

Onov(1:n) = 0pre(1 n) @)

The rest of the parameter can be trained using training sam-
ples from the novel task,

Orov(1 : m)/ = [Onov(1 : n)//’ Onov(n : m)/]
= arg min(Lnoy — CNNyoy (Xnov,
Onov(1:m)
X [Onov(1 : ”l)/s Onov(n : m)])) (®)

In Equation (8), by setting differential learning rates, the
parameters in the first n layers are fine-tuned as 6poy(1 : 1)’
using a smaller learning rate, and the parameters in the last
(m — n) layers are trained from scratch as @,oy(n : m)’. The
phrase ““differential learning rates” refers to different learn-
ing rates for different parts of the network during our training.
In general, the transferred layers (i.e., the first n layers) are
pre-trained to detect and extract generic features of inputs
which are less sensitivity to the domain of application. There-
fore, the learning rate for the transferred layers is usually
very small. In an extreme case where the learning rate for the
transferred layers is zero, the parameters in the first n layers
transferred are left frozen.

Therefore, the CNN used for the novel task for future fault
classification and diagnosis can be represented as,

CNNpov(Xnov, [Onov(l : ”)”’ 00v(n : m)/]) 9

where the parameters in the first n layers are first transferred
from a previous task. Meanwhile, as the last (m — n) layers
are trained using the training dataset of the novel task, the first

n layers are fine-tuned for better results.
0;10\/ = [Onov(1 : )", Onoy(n : m)'] (10)

Transfer learning becomes possible and promising because,
as has been discovered by recent studies, the layers at the
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convolutional stages (convolutional layers, ReLLU layers and
pooling layers) of the convolutional neural network trained
on large dataset indeed extract general features of inputs,
while the layers of fully connected stages (fully connected
layers, softmax layers, classification layers) are more specific
to task [33], [34]. Therefore, the n layers transferred to the
new task as a whole can be regarded as a well-trained feature
extraction tool towards similar tasks and the last few layers
serve as a classifier to be trained. Even with substantial train-
ing data, initializing with transferred parameters can improve
the performance in general [35].

In this research, transfer learning is implemented to gear-
box fault diagnosis. The CNN is well-trained in terms of
pulling characteristics from images. As illustrated in Figure 5,
the parameters in the convolutional stage, i.e., the parameters
used in the convolution filter, the ReL.U operator and the max
pooling operator are transferred to the fault diagnosis task.
The parameters used in the fully connected layer and the
softmax layers are trained subsequently using a small amount
of training data generated from gear fault experiments.

FIGURE 5. lllustration of transfer learning.

C. PROPOSED ARCHITECTURE
In this sub-section we present the proposed architecture.
In gear fault diagnosis, vibration responses are recorded using
accelerometers during gearbox operation. The time-domain
vibration signals can then be represented directly by 2D grey-
scale/true-color images (as shown in Figure 5) which serve as
inputs of the deep CNN. More details on image representation
of time-domain data will be provided in Section III.A. The
deep CNN adopted as the base architecture in this study
was originally proposed by Krizhevsky et al. [28] which is
essentially composed of five convolutional stages and three
fully connected stages (Figure 6). This base architecture
showed its extraordinary performance in Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) and has since
been repurposed for other learning tasks [31].

In the base architecture, the parameters are trained
using approximately 1.2 million human/software labeled
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FIGURE 6. Illustration of the transfer learning architecture.

3D true-color nature images from ImageNet Large Scale
Visual Recognition Challenge 2010 (http://www.image-
net.org/challenges/LSVRC/2010/). The trained parameters in
the first five stages are well-polished in characterizing high-
level abstractions of the input image and thus have the poten-
tial to be used for other tasks with image inputs. Meanwhile,
the last three stages are trained to nonlinearly combine the
high-level features. Although the images of vibration sig-
nals may look different from the images used to train the
original CNN, useful features can be extracted in a similar
manner as long as the CNN adopted is capable of identifying
high-level abstractions [35]. Stage 8 of the original archi-
tecture is configured for 1000 classes in the previous image
classification task. Therefore, the first seven stages of the
base architecture can be possibly transferred to facilitate gear
fault diagnosis. As discussed in Section I1.B, the first seven
stages indeed serve as a general well-trained tool for auto-
matic feature extraction. The more stages and layers used,
the higher level of features can be obtained. The final stage
is left to be trained as a classifier using the experimental data
specific to the fault diagnosis task. As specified in Table 1,
a total of 24 layers are used in the proposed architecture; the
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TABLE 1. Specifications of the proposed architecture.

Stage Layer Name Specifications
1 Convolutional 11x11x96
2 ReLU N/A
I (transferred) 3 Normalization 5 channels/element
4 Max pooling 3x3
5 Convolutional 5x5%256
6 ReLU N/A
2 (transferred) 7 Normalization 5 channels/element
8 Max pooling 3x3
9 Convolutional 3x3x384
3 (transferred) 10 ReLU N/A
11 Convolutional 3x3x384
4 (transferred) 2 ReLU N/A
13 Convolutional 3x3x256
5 (transferred) 14 ReLU N/A
15 Max pooling 3x3
16 Fully connected 4096
6 (transferred) 17 ReLU N/A
18 Dropout 50%
19 Fully connected 4096
7 (transferred) 20 ReLU N/A
21 Dropout 50%
22 Fully connected 9
8 (to be trained) 23 Softmax N/A
24 Classification Cross entropy

parameters and specifications used in the first 21 layers can
be transferred from the base architecture.

We observe Table 1. Overfitting of the learning model
is essentially controlled by the max pooling layers in
Stages 1, 2, and 5, and the dropout layers in Stages 6 and 7.
As explained in Section II.A, a max pooling layer not only
makes the network less sensitive to location changes of a
feature but also reduces the size of parameters. Therefore,
max pooling can reduce computational burden and control
overfitting. In our architecture, dropout layers are employed
after the ReLU layers in Stages 6 and 7. Because a fully
connected layer possesses a large number of parameters, it is
prone to overfitting. A simple and effective way to prevent
from overfitting is dropout [36]. In our study, individual
nodes are ‘“‘dropped out of” (temporarily removed from) the
net with probability 50% as suggested in [36]. Dropout can
be interpreted as a stochastic regularization technique which
not only decreases overfitting by avoiding training all nodes,
but also significantly improves training efficiency.

The loss function used is the cross-entropy function given
as follows,

E@®)=—LIn (CNN(X,0)) +y 0], = —LInL +y 0]
(1D

where |[|@], is a o normalization term which also
contributes to preventing the network from overfitting.
Equation (11) quantifies the difference between correct out-
put labels and predicted labels. And the loss is then back-
propagated to update the parameters using the stochastic
gradient descent (SGD) method [37] given as,

0iy1=0,—aVE®@®)+pO; —0;_1) (12)
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where « is the learning rate, i is the number of iteration, and
B stands for the contribution of previous gradient step. While
classical SGD and momentum SGD are frequently adopted in
training CNNs for their simplicity and efficiency, other tech-
niques, such as AdaGrad, AdaDelta or Adam [38] can also
be applied to carry out optimization of Equation (11). The
transferability of the base architecture and the performance
of the proposed architecture for gear fault diagnosis will be
investigated in the next section.

IIl. GEAR FAULT DIAGNOSIS IMPLEMENTATION AND
DEMONSTRATION

A. DATA ACQUISITION

Many types of faults and failure modes can occur to gear
transmission in various machinery systems. Vibration signals
collected from such a system are usually used to reveal its
health condition. In this research, experimental data are col-
lected from a benchmark two-stage gearbox with replaceable
gears as shown in Figure 7. The gear speed is controlled by
a motor. The torque is supplied by a magnetic brake which
can be adjusted by changing its input voltage. A 32-tooth
pinion and an 80-tooth gear are installed on the first stage
input shaft. The second stage consists of a 48-tooth pinion
and 64-tooth gear. The input shaft speed is measured by a
tachometer, and gear vibration signals are measured by an
accelerometer. The signals are recorded through a dSPACE
system (DS1006 processor board, dSPACE Inc.) with sam-
pling frequency of 20 KHz. As shown in Figure 8, nine
different gear conditions are introduced to the pinion on the
input shaft, including healthy condition, missing tooth, root
crack, spalling, and chipping tip with five different levels
of severity. The dynamic responses of a system involving
gear mechanism are angle-periodic. In reality, while gearbox
system is recorded in a fixed sampling rate, the time-domain
responses are generally not time-periodic due to speed varia-
tions under load disturbance, geometric tolerance, and motor
control error etc [13]. In order to solve the non-stationary
issue and eliminate the uncertainty caused by speed vary-
ing, here we apply the time synchronous averaging (TSA)
approach, where the time-even signals are resampled based
on the shaft speed measured by the tachometer and averaged
in angular domain. As TSA converts the signals from the
time-even representation to the angle-even representation,
it can significantly reduce the non-coherent components in
the system response. It is worth mentioning that TSA is

Tachometer

Motor N2
F Input Shaft
N3=48

Accelerometer T 7
Idle Shaft
Output Shaft N2 80 [I
Na—64 Brake

FIGURE 7. Gearbox system employed in experimental study.
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FIGURE 8. Nine pinions with different health conditions (five levels of
severity for chipping tip).

a standard, non-biased technique that can facilitate effective
pattern recognition of various datasets [13].

To proceed, in this research we adopt a preprocessing-free
approach to transform the vibration signals to images in order
to discover the 2D features of raw signals. As time domain
vibration signals have been cast into angle-even domain
for consistency as sample points (Figure 9(a)), the adjacent
data points are then connected in chronological sequence to

@ (b)

(©)

FIGURE 9. Construction of input for transfer leaning. (a) 875*656 image
representation of 3600 samples, (b) 875*656 image representation of the
samples connected, (c) 227#227 image representation of the samples
connected.
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generate a polyline. Figure 9(b) shows an example of such
polyline represented in an 875 x 656 image generated
by MATLAB plot function. The original matrix or image
representation of the vibration signal is then resized to
a 227 x 227 gray scale image using Bicubic interpola-
tion [39] as shown in Figure 9(c). There are 51,529 pixels per
image. Figure 10 showcases some example images generated
from angle-even vibration signals. For each gear condition,
104 signals are collected using the experimental gearbox sys-
tem. For each signal, 3,600 angle-even samples are recorded
in the course of four gear revolutions first for the case study
in Section III.C, and then down-sampled to 900 angle-even
points for the case study in Section III.D. Figure 10 shows
20 example signals of each type of gear condition where the
vertical axis is the acceleration of the gear (rad/s?) and the
horizontal axis corresponds to the 3,600 angel-even sampling
points. All the data used in this study is made public at
https://doi.org/10.6084/m9.figshare.6127874.v1.

B. SETUP OF CASE ILLUSTRATION AND COMPARISON

In this study, in order to highlight its effectiveness, the pro-
posed transfer learning approach is examined and compared
with two contemporary approaches. As indicated, the pro-
posed transfer learning approach does not rely on manual
selection of features, and we use this approach to analyze
the angle-even representation of the original time-domain
signals. The first approach adopted for comparison is a three-
stage (nine layers) CNN, thereafter referred to as local CNN,
which consists of two convolutional stages and a fully con-
nected stage and uses the angle-even representation of the
time-domain signals as inputs. Different from the proposed
approach, the local CNN will be only trained by the data
generated from gearbox experiments. The specifications are
the same as the stage 1, stage 2 and stage 8 given in Table 1.
The other approach adopted for comparison is based upon
manual identification/selection of features. In a recent inves-
tigation, it was recognized that the angle-frequency domain
synchronous analysis (AFS) can enhance significantly fault-
induced features in gearbox responses [13]. AFS resamples
the time-domain signal into angle-domain based on the speed
information collected from tachometer. The angle-domain
signal is then sliced into a series of segments every four gear
revolutions. Subsequently, angle-frequency analysis based on
short time Fourier Transform is carried out on each seg-
ment of the angle-domain signal. The resultant spectrogram
coefficients are then averaged to remove the noise and non-
coherent components. As such, the features related to the gear
health conditions are highly enhanced and a feature extraction
technique, i.e. Principal Component Analysis, is employed
to reduce the dimensionality. In this research, these low-
dimensional data extracted by AFS are imported into support
vector machine (SVM) for fault classification.

For the proposed transfer learning approach and the
locally-trained CNN approach (local CNN), mini-batch size
is setto 5, and 15 epochs are conducted meaning the training
datasets are used to train the neural net 15 times throughout.
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() (b)

(c) ()

(© ®

(® ()

(O]

FIGURE 10. Vibration signal examples under different gear health
conditions. Healthy, (b) Missing tooth, (c) Root crack, (d) Spalling,

(e) Chipping tip_5 (least severe), (f) Chipping tip_4, (g) Chipping tip_3,
(h) Chipping tip_2, (i) Chipping tip_1 (most severe).

The learning rate « is set to be le=* and le 2 for transferred
layers and non-transferred layers, respectively, following the
suggestion in [28]. The momentum S in Equation (12) is set
to 0.9 for transfer learning and 0.5 for local CNN. For the
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SVM approach based on manual feature selection, Gaussian
kernel is adopted. In the next two sub-sections, the relative
performance of the three approaches is highlighted as we
change the sampling frequency as well as the size of the
training dataset, i.e., the portion of measured gear vibration
signals used for training.

Neural networks are inherently parallel algorithms. There-
fore, graphical processing units (GPUs) are frequently
adopted as the execution environment to take advantage of
the parallelism natural of CNNs and expedite the classifi-
cation process. In this research, both CNNs are trained and
implemented using a single CUDA-enabled NVIDIA Quadro
M2000 GPU, while AFS-SVM approach is facilitated based
on an Intel Xenon E5-2640 v4 CPU.

C. CASE 1 - 3,600 SAMPLING POINTS WITH VARYING
TRAINING DATA SIZE

As mentioned in Section III.A, 104 vibration signals are gen-
erated for each gear condition. In the case studies, a portion
of the signals are randomly selected as training data while the
rest serves as validation data. To demonstrate the performance
of the proposed approach towards various data sizes, the size
of the training dataset ranges from 80% (83 training data per
condition, 83 x 9 data in total) to 2% (2 training data per
condition, 2 x 9 data in total) of all the 104 signals for each
health condition.

Table 2 shows the classification results where the mean
accuracy is the average of five training attempts. The clas-
sification accuracy is the ratio of the correctly classified
validation data to the total validation dataset. As illustrated
in Figure 11, the proposed transfer learning approach has
the best classification accuracy for all types of data size.
Even when only five vibration signals per condition are
selected for training, the proposed approach is able to achieve
an excellent 94.90% classification accuracy, which further
increases to 99%-100% when 10% and more training data are
used. On the other hand, while the performance of AFS-SVM
reaches the plateau (showing only minimal increments) after
20% date is used for training, the classification accuracy of
local CNN gradually increases with data size from 27.99% to
97.57% and surpasses AFS-SVM eventually when 80% data
is used for training, indicating the significance of the size
of training data in order to properly train a neural network.
Although the data size greatly affects the performance of
a CNN in the general sense, the proposed transfer learn-
ing architecture exhibits very high classification accuracy
because only one fully connected stage needs to be trained
locally, which notably lowers the standard of the data required
by a CNN in terms of achieving satisfactory outcome.

The average computational time consumed by each method
is reported in Table 3, which contains the portions used
for both training and classification. Generally speaking,
deep neural networks are more time consuming in training
compared to traditional approaches. The computational cost
per iteration of a mini-batch back-propagation is propor-
tional to the number of weights involved. And the overall
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TABLE 2. Classification results (3,600 sampling points).

TABLE 3. Computational time comparison (average of 5 attempts).

Method Transfer Local CNN AFS-SVM
learning Accuracy (%) Accuracy (%)
Training data Accuracy (%)
100 91.01 86.72
80% 100 Mean: 99.47 Mean: 88.62 Mean:
(83 per 100 100 97.35 97.57 87.80 87.48
condition) 100 100 87.26
100 100 86.99
100 90.48 87.30
60% 100 Mean: 97.62 Mean: 87.83 Mean:
(62 per 100 100 58.99 80.74 88.62 87.72
condition) 100 88.89 87.04
100 67.72 87.83
100 88.89 86.74
40% 100 Mean: 98.39 Mean: 86.38 Mean:
(42 per 100 100 44.44 76.63 85.84 86.67
condition) 100 62.72 87.99
100 83.69 86.38
100 61.31 86.48
20% 100 Mean: 72.56 Mean: 86.08 Mean:
(21 per 100 99.92 85.41 69.69 85.01 86.24
condition) 99.60 70.41 86.35
100 58.77 87.28
99.88 64.07 80.97
10% 98.23 | Mean: 57.09 Mean: 86.17 Mean:
(10 per 99.88 99.41 55.56 55.82 78.84 83.83
condition) 99.29 44.56 86.29
99.76 57.80 86.88
99.55 65.54 75.31
59 97.19 | Mean: 37.71 Mean: 84.85 Mean:
(5 per condition) 80.02 94.90 31.99 44.11 81.14 79.89
98.09 28.17 73.29
99.66 57.13 84.85
76.80 26.14 61.87
2% 73.31 Mean: 27.67 Mean: 73.97 Mean:
(2 per condition) 69.39 72.22 32.24 27.99 41.72 62.44
73.42 31.70 69.72
68.19 2222 64.92

FIGURE 11. Comparison of classification results when training data size
varies.

computational time is linearly proportional to the size of
the training data. As shown in Table 3, when the size of
training data is small (2%), the transfer learning approach not
only leads in accuracy, but also in computational efficiency
compared to AFS-SVM.

Figure 12 shows the convergent histories (mini-batch accu-
racy and mini-batch loss) of the proposed approach and
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Method Transfer learning | Local CNN AFS-SVM
raining data (sec) (sec) (sec)
80% 588.467 373.283 52.156
60% 453.063 284.445 50.581
40% 311.824 198.517 48.181
20% 167.406 108.909 48.046
10% 98.872 64.747 47.998
5% 66.152 42.800 47.846
2% 42.840 28.847 47.781

(a)

(b)

FIGURE 12. Convergent histories of transfer learning and local CNN
for 5% training data. (a) Accuracy, (b) Mini-batch loss.

local CNN when 5% data is used for training. As can be seen
from the comparisons, transfer learning gradually converges
in terms of both accuracy and loss as the training iterates
while local CNN inclines to ‘random walk’ due to insufficient
data. Compared with AFS-SVM, the proposed approach not
only excels in performance, but also requires no preprocess-
ing effort, which makes it more unbiased in feature extraction
and readily applicable to other fault diagnosis practices. The
proposed approach also shows satisfactory outcomes in the
regard of robustness. As demonstrated in Figure 13, it has
the smallest variance among all cases. On the other hand,
the performance of the under-trained local CNN oscillates the
most.

As mentioned in Section II.C, the parameters in the first
five convolutional stages of the original CNN are well-trained
in characterizing high-level abstractions while the last three
fully connected stages are trained to nonlinearly combine the
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TABLE 4. Classification results of transfer learnings (average

of 5 attempts).

Method Transfer Transfer Transfer
learning learning learning
(Stages 1-7) (Stages 1-6) (Stages 1-5)
Training data Accuracy (%) Accuracy (%) | Accuracy (%)
80% 100 100 100
60% 100 100 100
40% 100 100 99.97
20% 99.92 99.87 99.06
10% 99.41 99.28 72.50
5% 94.90 96.30 64.54
2% 72.22 72.98 4891
(a) (®)
(© (d)
(e ®

(g

FIGURE 13. Comparison of box plots of classification results when
training data size varies. (a) 2%, (b) 5%, (c) 10%, (d) 20%, (e) 40%,
() 60%, (g) 80%.

high-level features. Hence, it is recommended to repurpose
Stages 1 to 5 for novel tasks as to adaptively extract image
features. Whether to transfer Stages 6 and 7 remains optional
depending on the training data size. In our previous com-
parisons, only Stage 8 is reconstructed (from 1000 classes
to 9 classes) and trained using local dataset. Here, we also
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FIGURE 14. Feature maps extracted by 5 convolution layers of the
proposed transfer learning approach.

(a) (b)

FIGURE 15. Vibration signal of a spalling gear. (a) 3,600 sampling points,
(b) 900 sampling points.

compare the accuracy of the transfer learning approach when
different aggregates are transferred. As shown in Table 4,
transferring Stages 1 to 7 and transferring Stages 1 to 6
yield similar performances, which are better than transfer-
ring merely Stages 1 to 5 especially when data size is
small. Recall Table 1. Stage 6 contains 4096 more weighting
parameters, which apparently requires more training data to
fine-tune even though the feature extraction passage is well-
established. Moreover, transferring more layers may indeed
prevent the model from overfitting because the layers trans-
ferred are already extensively trained so the generalization
error is naturally reduced when the model is repurposed and
only a small portion is trained by a different set of data.

As discussed in Section II.B and Section II.C, the trans-
ferred stages of the proposed architecture tend to extract
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TABLE 5. Classification results (900 sampling points).

Method }::;Sliegr Local CNN AFS-SVM
0, 0,
Training data Accuracy (%) Accuracy (%) Accuracy (%)
100 85.26 74.07
80% 100 65.66 74.60
(83 per 100 Ml%%“' 71.32 1\74;*1‘; 75.13 1\74:2‘;
condition) 100 80.89 : 76.72 :
100 92.53 74.07
100 7725 75.40
60% 99.21 57.67 74.34
(62 per 99.74 1;4;1‘; 63.76 1\6/[3"38’;‘ 71.16 1\7/[36*;‘;'
condition) 98.68 : 7222 : 74.07 :
99.47 48.41 70.90
99.10 62.90 74.19
40% 99.10 74.91 72.94
(42 per 98.92 1\94;2‘; 56.63 1\54;*1‘(‘) 72.58 1\743“1‘;'
condition) 98.92 : 38.35 : 73.66 :
96.77 62.72 7222
9491 3427 70.15
20% 95.72 | 40.56 | 72.69 )
(21 per 92.77 1;[5838‘;' 44 .44 121/1;2% 68.41 1\7/10""(’)‘;
condition) 98.80 : 44.71 : 69.21 :
97.19 53.82 69.88
94.68 2778 68.20
10% 93.38 39.83 68.68
(10 per 90.07 ];4;;2‘ 46.57 T;A:‘;'E) 65.96 1\6/[761;
condition) 92.08 : 17.97 : 66.78 :
95.98 41.37 65.96
70.73 24.88 64.42
5% 86.65 Mean: 15.80 Mean: 62.96 Mean:
(5 per condition) | o012 | 8483 | 2320 | 2807 | 6386 | 6343
p 90.24 : 33.40 : 65.66 :
87.43 44.05 60.27
55.99 21.90 47.93
2% 3991 Mean: 17.43 Mean: 5730 Mean:
@ gitiony | 3596 | 011 | 222 | leas | 89 | 300
percondiion) ¢y 11 : 9.59 : 51.53 :
65.47 11.11 55.12

FIGURE 16. Classification results of the three methods after down
sampling.

the high-level abstract features of the input that cannot be
recognized otherwise, even if the input is different from that
of the previous task. Figure 14 gives an example of such
procedure by showing the feature maps generated in each
convolutional layer by the proposed architecture when it is
used to classify a gearbox vibration signal. It is seen that the
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(a) (b)

(© (d)

(® ®
(8

FIGURE 17. Box plots of classification results of the three methods after
down sampling. (a) 2%, (b) 5%, (c) 10%, (d) 20%, (e) 40%, (f) 60%,
(g) 80%.

abstraction level of the input image continuously escalates
from the 1% feature map to the 5" feature map. In general,
the number of convolutional stages equipped is correlated
with the level of abstraction the features can be represented
in CNNs. As demonstrated in this case study, the base archi-
tecture is indeed transferable towards gear fault diagnosis
tasks and the proposed approach performs well with raw
image signal inputs, which indicates the transferred layers
constructed in this study are generally applicable to represent
useful features of an input image in high-level abstraction.

D. CASE 2 - 900 SAMPLING POINTS WITH VARYING
TRAINING DATA SIZE

In Case 1, each vibration signal is composed of 3,600 angel-
even data points in the course of 4 gear revolutions. In some
practical fault diagnosis systems, however, the sampling rate
may be lower, which means that some features could have
been lost. To take this factor into consideration and further
examine the approach, we now down-sample the original
vibration signals to 900 angel-even data points (Figure 15)
and apply the same three methods for classification.
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Table 5 lists the comparison of the classification results
of the three methods with different training data sizes. Sim-
ilar to Case 1, the proposed transfer learning approach is
the best performer. Figure 16 illustrates the classification
results before and after down-sampling. While lowering the
sampling rate deteriorates the overall performance of all
approaches, each method exhibits the similar trend as seen
in Section III.C. For transfer learning, it starts with 60.11%
classification accuracy and reaches 95.88% when only 20%
of data is used as training data whilst the accuracies of local
CNN and AFS-SVM are 43.56% and 70.07%. Local CNN
performs better than AFS-SVM when 80% data is used for
training. Unlike AFS-SVM, the performance of local CNN
can be largely improved if significantly more training data
is incorporated because the parameters of lower stages can
be learned from scratch. Eventually, the performance of local
CNN could reach that of the transfer learning approach. Nev-
ertheless, for cases with limited data, the proposed transfer
learning approach has an extensive performance margin com-
pared to local CNN or other preprocessing-based shallow
learning methods such as AFS-SVM. Even with ample train-
ing data, initializing with transferred parameters can improve
the classification accuracy in general. Moreover, the proposed
approach requires no preprocessing. Similar to Case 1 in
Section III.C, the proposed approach is very robust especially
when 40% or more data is used for training (Figure 17).

IV. CONCLUDING REMARKS

In this research, a deep convolutional neural network-based
transfer learning approach is developed for deep feature
extraction and applied to gear fault diagnosis. This proposed
approach does not require manual feature extraction, and can
be effective even with a small set of training data. Experi-
mental studies are conducted using preprocessing free raw
vibration data towards gear fault diagnose. The performance
of the proposed approach is highlighted through varying the
size of training data. The classification accuracies of the
proposed approach outperform those of other methods such
as locally trained convolutional neural network and angle-
frequency analysis-based support vector machine by as much
as 50%. The achieved accuracy indicates that the proposed
approach is not only viable and robust, but also has the
potential to be applied to fault diagnosis of other systems.

REFERENCES

[1] D. Kang, Z. Xiaoyong, and C. Yahua, “The vibration characteristics of
typical gearbox faults and its diagnosis plan,” J. Vib. Shock, vol. 20, no. 3,
pp. 7-12, 2001.

[2] R. B. Randall, Vibration-Based Condition Monitoring: Industrial,
Aerospace and Automotive Applications. West Sussex, U.K.: Wiley, 2011.

[3] F. P. G. Marquez, A. M. Tobias, J. M. P. Pérez, and M. Papaelias, “Con-
dition monitoring of wind turbines: Techniques and methods,” Renew.
Energy, vol. 46, pp. 169-178, Oct. 2012.

[4] W. Zhou, T. G. Habetler, and R. G. Harley, “Bearing fault detection via
stator current noise cancellation and statistical control,” IEEE Trans. Ind.
Electron., vol. 55, no. 12, pp. 4260—4269, Dec. 2008.

[5] A.Parey and R. B. Pachori, *“Variable cosine windowing of intrinsic mode
functions: Application to gear fault diagnosis,” Measurement, vol. 45,
no. 3, pp. 415-426, 2012.

26252

[6]

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

T. Fakhfakh, F. Chaari, and M. Haddar, “Numerical and experimental
analysis of a gear system with teeth defects,” Int. J. Adv. Manuf. Technol.,
vol. 25, nos. 5-6, pp. 542-550, 2005.

D. Z. Li, W. Wang, and F. Ismail, “An enhanced bispectrum technique
with auxiliary frequency injection for induction motor health condition
monitoring,” IEEE Trans. Instrum. Meas., vol. 64, no. 10, pp. 2679-2687,
Oct. 2015.

W. Wen, Z. Fan, D. Karg, and W. Cheng, “Rolling element bearing
fault diagnosis based on multiscale general fractal features,” Shock Vib.,
vol. 2015, Jul. 2015, Art. no. 167902.

B. Tang, W. Liu, and T. Song, “Wind turbine fault diagnosis based on
Morlet wavelet transformation and Wigner—Ville distribution,” Renew.
Energy, vol. 35, no. 12, pp. 2862-2866, 2010.

F. Chaari, W. Bartelmus, R. Zimroz, T. Fakhfakh, and M. Haddar, ‘Gear-
box vibration signal amplitude and frequency modulation,” Shock Vib.,
vol. 19, no. 4, pp. 635-652, 2012.

R. Yan, R. X. Gao, and X. Chen, “Wavelets for fault diagnosis of rotary
machines: A review with applications,” Signal Process., vol. 96, pp. 1-15,
Mar. 2014.

X. Chen and Z. Feng, “Time-frequency analysis of torsional vibration
signals in resonance region for planetary gearbox fault diagnosis under
variable speed conditions,” IEEE Access, vol. 5, pp. 21918-21926, 2017.
S. Zhang and J. Tang, “Integrating angle-frequency domain synchronous
averaging technique with feature extraction for gear fault diagnosis,”
Mech. Syst. Signal Process., vol. 99, pp. 711-729, Jan. 2018.

C. Pachaud, R. Salvetat, and C. Fray, ““Crest factor and kurtosis contribu-
tions to identify defects inducing periodical impulsive forces,” Mech. Syst.
Signal Process., vol. 11, no. 6, pp. 903-916, 1997.

S. Qian and D. Chen, “Joint time-frequency analysis,” IEEE Signal Pro-
cess. Mag., vol. 16, no. 2, pp. 52-67, Mar. 1999.

N. Baydar and A. Ball, “A comparative study of acoustic and vibration
signals in detection of gear failures using Wigner—Ville distribution,”
Mech. Syst. Signal Process., vol. 15, no. 6, pp. 1091-1107, 2001.

W. Bartelmus and R. Zimroz, ““Vibration condition monitoring of planetary
gearbox under varying external load,” Mech. Syst. Signal Process., vol. 23,
no. 1, pp. 246-257, 2009.

J. Lin and M. J. Zuo, “Gearbox fault diagnosis using adaptive wavelet
filter,” Mech. Syst. Signal Process., vol. 17, no. 6, pp. 1259-1269, 2003.
Y. Lu, J. Tang, and H. Luo, “Wind turbine gearbox fault detection using
multiple sensors with features level data fusion,” J. Eng. Gas Turbines
Power, vol. 134, no. 4, p. 042501, 2012.

C. Zhang, J. H. Sun, and K. C. Tan, “Deep belief networks ensemble
with multi-objective optimization for failure diagnosis,” in Proc. IEEE Int.
Conf. Syst., Man, Cybern. (SMC), Oct. 2015, pp. 32-37.

C.Li,R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Visquez,
“Gearbox fault diagnosis based on deep random forest fusion of acous-
tic and vibratory signals,” Mech. Syst. Signal Process., vols. 7677,
pp. 283-293, Aug. 2016.

D. Weimer, B. Scholz-Reiter, and M. Shpitalni, “Design of deep con-
volutional neural network architectures for automated feature extraction
in Industrial inspection,” CIRP Ann.-Manuf. Technol., vol. 65, no. 1,
pp. 417420, 2016.

T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, ‘‘Real-time motor
fault detection by 1-D convolutional neural networks,” IEEE Trans. Ind.
Electron., vol. 63, no. 11, pp. 7067-7075, Nov. 2016.

0. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, “Real-
time vibration-based structural damage detection using one-dimensional
convolutional neural networks,” J. Sound Vib., vol. 388, pp. 154-170,
Feb. 2017.

N. Saravanan and K. I. Ramachandran, “Incipient gear box fault diagnosis
using discrete wavelet transform (DWT) for feature extraction and classifi-
cation using artificial neural network (ANN),” Expert Syst. Appl., vol. 37,
no. 6, pp. 4168-4181, 2010.

J. Yang, S. Li, and W. Xu, “Active learning for visual image classification
method based on transfer learning,” IEEE Access, vol. 6, pp. 187-198,
2018.

Y. Le Cun et al., “‘Handwritten digit recognition with a back-propagation
network,” in Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 396-404.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

Y. Kim. (2014). “Convolutional neural networks for sentence classifica-
tion.” [Online]. Available: https://arxiv.org/abs/1408.5882

VOLUME 6, 2018



P. Cao et al.: Preprocessing-Free Gear Fault Diagnosis Using Small Data sets

IEEE Access

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
music recommendation,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2643-2651.

C.-K. Shie, C.-H. Chuang, C.-N. Chou, M.-H. Wu, and E. Y. Chang,
“Transfer representation learning for medical image analysis,” in Proc.
37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2015,
pp. 711-714.

R. Zhang, H. Tao, L. Wu, and Y. Guan, “Transfer learning with neural
networks for bearing fault diagnosis in changing working conditions,”
IEEE Access, vol. 5, pp. 14347-14357, 2017.

M. D. Zeiler and R. Fergus. (2013). “Stochastic pooling for regularization
of deep convolutional neural networks.”” [Online]. Available: https://arxiv.
org/abs/1301.3557

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.
(2013). “OverFeat: Integrated recognition, localization and detection using
convolutional networks.” [Online]. Available: https://arxiv.org/abs/1312.
6229

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, ‘“How transferable are
features in deep neural networks?”” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 3320-3328.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proc. Int. Conf. Mach.
Learn., Feb. 2013, pp. 1139-1147.

D. P.Kingma and J. Ba. (2014). “Adam: A method for stochastic optimiza-
tion.” [Online]. Available: https://arxiv.org/abs/1412.6980

H. S. Prashanth, H. L. Shashidhara, and M. K. N. Balasubramanya, ‘“‘Image
scaling comparison using universal image quality index,” in Proc. Int.
Conf. Adv. Comput., Control, Telecommun. Technol. (ACT), Dec. 2009,
pp. 859-863.

PElI CAO received the B.S. degree in automa-
tion from Northwestern Polytechnical University,
Xi’an, China, in 2011. He is currently pursuing
the Ph.D. degree in mechanical engineering with
the University of Connecticut, Storrs, CT, USA.
His research interests include global optimization,
dynamic programming, statistical inference, lay-
out design, and machine learning.

VOLUME 6, 2018

SHENGLI ZHANG received the B.S. degree from
Northwestern Polytechnical University, Xi’an,
China, in 2009, the M.S. degree from Xi’an Jiao-
tong University, Xi’an, in 2012, and the Ph.D.
degree from the University of Connecticut, Storrs,
USA, in 2017, all in mechanical engineering.
After graduation, he joined Stanley Black &
Decker, Towson, MD, USA, as a CAE Engi-
neer, where he is involved in product development
and experimental data analysis as well as product
performance prediction and analytical dynamic analysis.

JIONG TANG (M’09) received the B.S. and M.S.
degrees in applied mechanics from Fudan Univer-
sity, China, in 1989 and 1992, respectively, and
the Ph.D. degree in mechanical engineering from
the Pennsylvania State University, USA, in 2001.
He was with the GE Global Research Center as a
Mechanical Engineer from 2001 to 2002. Then he
joined the Mechanical Engineering Department,
University of Connecticut, where he is currently a
Professor and the Director of Dynamics, Sensing,
and Controls Laboratory. His research interests include structural dynam-
ics and system dynamics, control, and sensing and monitoring. He cur-
rently serves as an Associate Editor for the IEEE/ASME TRANSACTIONS ON
MEcHATRONICS, and served as an Associate Editor for the IEEE TRANSACTIONS
ON INSTRUMENTATION AND MEASUREMENT from 2009 to 2012. He also served as
an Associate Editor for the ASME Journal of Vibration and Acoustics, and an
Associate Editor for the ASME Journal of Dynamic Systems, Measurement,
and Control.

26253



	INTRODUCTION
	TRANSFER LEARNING FOR GEAR FAULT DIAGNOSIS
	CONVOLUTIONAL NEURAL NETWORKS (CNNs)
	CONVOLUTIONAL LAYER
	ReLU Layer
	MAX POOLING LAYER

	TRANSFER LEARNING
	PROPOSED ARCHITECTURE

	GEAR FAULT DIAGNOSIS IMPLEMENTATION AND DEMONSTRATION
	DATA ACQUISITION
	SETUP OF CASE ILLUSTRATION AND COMPARISON
	CASE 1 – 3,600 SAMPLING POINTS WITH VARYING TRAINING DATA SIZE
	CASE 2 – 900 SAMPLING POINTS WITH VARYING TRAINING DATA SIZE

	CONCLUDING REMARKS
	REFERENCES
	Biographies
	PEI CAO
	SHENGLI ZHANG
	JIONG TANG


