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Abstract—In recognizing urgent needs in fast calculation of AC 

power flow (PF) problems, PF computation has been explored 

under different parallel computing platforms. Specifically, block 

bordered diagonal form (BBDF) method has been widely studied 

to permute linear equations in PF calculations into BBDF form 

for facilitating parallel computation. However, determining an 

optimal network segmentation scheme that leads to the best 

speed-up ratio of BBDF based parallel PF is challenging. As a first 

contribution, this paper proposes a node-tearing based approach 

to determine optimal network segmentation scheme, which lever- 

ages sizes of subnetworks and the coordination network to achieve 

the best speedup ratio of BBDF based parallel PF calculation. In 

addition, a fine-grained fully parallel PF approach is proposed to 

further enhance parallel performance, in which all three key steps 

of the Newton-Raphson (NR) based PF calculation are implement- 

ed in parallel. Studies illustrate effectiveness of the proposed 

network segmentation method and fully parallel PF approach. 

Index Terms—Block bordered diagonal form, Newton-Raphson 

algorithm, parallel computation, power flow. 

I. INTRODUCTION 

C power flow (PF) analysis, which calculates steady-state 

status of the entire power grid with respect to given 

generation/load settings and network parameters, plays an 

essential role in many power system applications. Indeed, it is 

routinely utilized by system operators to analyze steady-state 

impacts prior to applying new settings and/or control strategies 

[1]. In addition, PF can evaluate impacts of variations of loads 

and network structures on system security, providing valuable 

information for designing future expansions of power systems 

[2]. Moreover, PF is also a key building block in short-circuit 

analysis and transient stability study [1]-[3], to name a few. 

Mathematically, PF analysis is essentially to solve a system 

of nonlinear equations with the same number of variables [1]- 

[6]. Gauss-Seidel (GS) [1], [7], Newton-Raphson (NR) [1]-[2], 

[7]-[8], and fast decoupled power flow (FDPF) [4], [7] are 

among three widely used techniques in solving PF problems. 

(i) GS method iteratively calculates phasor voltages of PQ 

and PV buses using nodal admittance/impedance matrix and 

voltage values estimated from previous iteration, until a 

converged phasor voltage solution is achieved. Compared to 

nodal admittance matrix, using nodal impedance matrix could 

achieve better convergence performance, at the cost of a higher 

memory requirement due to its full-rank matrix nature [7]. 

(ii) NR method iteratively calculates a system of linear 

equations Ax=b, which is derived via Taylor series expansion 

as an approximation of original non-linear PF equations, until a 
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converged phasor voltage solution is achieved. Jacobian matrix 

A and vector b are iteratively updated according to solutions of 

previous NR iteration. A is usually nonsingular and sparse [1]. 

(iii) FDPF further simplifies Jacobian matrix calculation of NR 

method by taking advantage of relationship between real/ 

reactive power and voltage magnitude/angle. It can reduce per- 

iteration computing time and memory usage of PF analysis [4]. 

It is noteworthy that since the three algorithms use same 

nodal real/reactive power mismatch equations, their final PF 

solutions are expected to be the same. On the other hand, FDPF 

can provide approximate PF solutions much faster and in turn is 

of great benefit for contingency analysis, while NR presents a 

more stable convergence characteristic with fewer iterations. 

This paper focuses on the NR method. 

With the advanced development and wide deployment of 

monitor and control technologies in power systems, interests in 

fast simulation of large-scale power systems have been 

stimulated [1], [3]-[4], [7], [9]-[10]. Indeed, a scalable and 

computationally efficient PF algorithm is of significant 

importance to many applications that are built on top of it. For 

instance, online static security assessment involves extensive 

PF analysis with respect to individual contingency scenarios, 

while fast PF calculation is key to meeting the stringent time 

requirement of this type of time-consuming online applications 

[3]. Under this environment, parallel computation is considered 

as an important technique for improving computational 

efficiency of PF analysis, with special focuses on identifying 

inherent parallelism of PF (especially parallelly solving Ax=b 

in each NR iteration) and exploring different parallel 

computing platforms. Specifically, iterative approach and block 

bordered diagonal form (BBDF) method are among commonly 

used parallel techniques for calculating a system of linear 

equations Ax=b in PF analysis. 

(i) Iterative approach starts with an initial guess of state 

variables x, and then performs a series of updates to gradually 

improve approximation accuracy. Iterative approach includes 

preconditioned conjugate gradient (PCG), bi-conjugate 

gradient stabilized (BiCGStab), and generalized minimal 

residual (GMREs) methods [4], [11], among others. A salient 

feature of iterative methods is that solution to Ax=b can be 

obtained without calculating the inverse of high-dimension 

Jacobian matrix A . Indeed, its solution is derived by 

multiplication and inner product operations of relevant matrices 

and vectors, which can be implemented in parallel to further 

enhance the entire computational performance [4]. However, 

convergence of iterative methods highly depends on spectrum 

or condition number of A matrix [11]. 

(ii) BBDF method [7] is designed to split an original network 

into one coordination network and multiple independent 

subnetworks that can be calculated in parallel to accelerate 

computation. In BBDF, state variables of individual 

subnetworks are independent from each, and only coupled with 

the coordination network. Thus, once state variables of the 
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coordination network are calculated, state variables of 

individual subnetworks can be subsequently conducted in 

parallel. Based on how subnetworks are created, BBDF can be 

categorized into node-tearing (i.e., creating subnetworks by 

removing certain nodes), branch-cutting (i.e., generating 

subnetworks by removing certain branches), and hybrid- 

dividing methods (i.e., considering both nodes and branches) 

[7]-[8], [12]-[13]. Specifically, different from node-tearing 

approach, Jacobian matrices of subnetworks derived from 

branch-cutting method could be singular. Moreover, branch- 

cutting method usually takes longer computational time 

because of relatively higher-dimension Jacobian matrices of 

subnetworks, and could be ineffective if nodal power injections 

instead of nodal current injections are given. In addition, hybrid 

approach is attractive when only certain nodal phasor voltages 

and branch power flows are of concern. 

Both methods have been applied in literature [2], [4], [12]- 

[14] to calculate PF problems in parallel. In [2], GPU-based 

parallel implementations of GS, NR, and FDPF approaches 

combined with Gauss elimination were compared, with 

speedup ratios of 0.05x, 1.74x, and 1.30x, respectively. 

Reference [14] discussed a GPU-based parallel BiCGStab 

algorithm, with a speedup ratio of 2.1x. In [4], a PCG based 

parallel FDPF approach was implemented with GPUs, with 

speedup ratio of up to 2.86x. Moreover, reference [12] 

discussed a node-tearing network partitioning strategy, which 

could derive a relatively small coordination network while the 

other important prerequisite of similar-sized subnetworks has 

been neglected. Reference [13] further extended [12] to analyze 

impacts of different network division patterns on acceleration 

efficiency of parallel PF calculation. 

In addition, iterative method usually requires hundreds of 

cores to achieve a noticeable computational improvement. 

However, its performance may be unstable and additional time- 

consuming procedures, e.g., Cholesky preconditioner and 

incomplete-LU, have to be applied [3], [15], especially when 

Jacobian matrix is ill-conditioned. In comparison, BBDF based 

parallel PF calculation is relatively robust. Moreover, among 

alternative approaches within BBDF, node-tearing method 

usually presents a better computational performance and has 

been widely implemented in many applications such as parallel 

PF calculation [12] and parallel transient analysis [16]. For 

these reasons, this paper studies a node-tearing based BBDF 

method for calculating PF problem in parallel. 

Indeed, computational performance of BBDF based NR 

method for parallel PF calculation is affected by several major 

factors. Specifically, a key to enhancing BBDF performance is 

a small coordination network and multiple equally-sized 

subnetworks, which are viewed as two criteria for assessing 

quality of network segmentation schemes in BBDF calculation. 

However, to our best knowledge, studies that simultaneously 

pursue these two criteria are rather rare, while [12]-[13] and 

[16] mainly focus on identifying a relatively minimal 

coordination network but the other important prerequisite of 

equally-sized subnetworks has been neglected. Moreover, most 

BBDF based parallel PF studies in literatures [12]-[13] focus on 

computing Ax=b in parallel, while potentials for calculating 

other key steps of PF analysis in parallel, namely forming nodal 

power mismatch vectors and updating Jacobian matrix A, have 

been neglected. In fact, as shown in Table I, these two steps 

spend considerable efforts, about 20% and 38% of the total PF 

calculation time as compared to 39% for solving Ax=b . 

Detailed information of these five test systems can be referred 

to in [17]-[18]. As a result, further exploring parallel 

implementations of these two important steps would be 

beneficial in improving acceleration performance of the entire 

PF calculation. It is noteworthy that for the sake of fair 

comparison between the proposed approach and conventional 

parallel PF methods in literature [12]-[13] while also focusing 

on fully exploiting BBDF’s power in all three key steps of NR 

based PF calculation, computational times listed in Table I are 

retrieved as a base case via our own codes, in which all steps of 

PF are implemented in sequential while no advanced 

technologies (i.e., sparse technique and vectorization 

parallelization) are utilized. Indeed, this is also the reason why 

third-party APIs or libraries (e.g., Intel MKL and 

ArrayFire3.5.1) are not used to solve linear equations.  

TABLE I COMPUTATIONAL TIME OF DIFFERENT STEPS IN PF (UNIT: MS/%) 

System 
Admittance 

Matrix 

Nodal Injection 

Vector 

Jacobi  

Matrix 

Ax=b  

Solution 
Others 

1354pegase

e 
100/0.53% 4220/22.26% 7000/36.92% 7560/39.88% 79/0.42% 

2383wp 408/0.79% 10900/21.01% 19547/37.67% 21010/40.49% 22/0.04% 

2736sp 726/1.06% 13972/20.38% 26990/39.38% 26797/39.10% 58/0.08% 

2869pegase 708/0.82% 19846/22.96% 33239/38.46% 32059/37.10% 572/0.66

%% 3012wp 787/0.94% 16985/20.39% 32065/38.50% 32628/39.17% 825/0.99

% 

This paper proposes a fine-grained fully parallel PF 

calculation to enhance its computational performance, by 

incorporating node-tearing based BBDF into NR method while 

also implementing three major PF calculation steps in a parallel 

manner. Specifically, a node-tearing based network division 

approach is explored to derive a minimal coordination network 

as well as multiple independent subnetworks whose sizes are 

relatively close. Moreover, in order to further boost up parallel 

efficiency, the proposed method explores inherent parallelism 

of three major steps of PF calculation, including the formation 

of nodal power mismatch vector, the update of Jacobian matrix, 

and the computation of system of linear equations.  

Major contributions of the paper include: 

(i) A node-tearing based approach is proposed to determine 

optimal network segmentation scheme, which leverages sizes 

of subnetworks and the coordination network to achieve the 

best speedup ratio of parallel PF calculation. 

(ii) A fully parallel PF calculation approach is explored, which 

considers parallel implementation of the three key steps in 

BBDF based NR method. Specifically, two alternative ways for 

conducting parallel computation of nodal power mismatch 

vectors and Jacobian matrices with different granularities are 

investigated. In comparison, parallel calculation potentials of 

these two key steps have been largely neglected in literature. 

(iii) A fine-grained parallel implementation for computing state 

variables of the coordination network is studied. Specifically, 

different from conventional BBDF based approach that first 

computes state variables of the coordination network in a single 

thread and then calculates state variables of individual 

subnetworks in parallel [7], the idea of BBDF on parallelly 

calculating subnetworks is further extended to compute state 

variables of the coordination network in parallel. This would 

further significantly enhance computational performance. 

The remainder of this paper is organized as follows. Section 

II describes PF problem and conventional BBDF based parallel 

PF computation. Node-tearing based network segmentation 



 3 

approach and details of the proposed fine-grained fully parallel 

PF are presented in Section III. Section IV discusses numerical 

studies, and Section V concludes the paper. 

II. PF PROBLEM AND BBDF-BASED PARALLEL COMPUTATION 

A. Power Flow Problem 

For an N-bus system, PF calculation is represented as in (1). 

P̂m-Vm ∑ Vn(Gmn cos δmn+Bmn sin δmn)=0N
n=1 , m=1, ⋯ , N-1 (1a) 

Q̂
m

-Vm ∑ Vn(Gmn sin δmn-Bmn cos δmn)N
n=1 =0, m=1, ⋯ , Z (1b) 

where nodes {1,⋯, Z} are PQ buses, nodes {Z+1,⋯,N-1} are 

PV buses, and node N is the reference bus; P̂m /Q̂
m

 is given 

active/reactive power injection of node m; Vm /Vn  is voltage 

magnitude of node m/n; δmn is voltage phase angle difference 

between nodes m and n; (Gmn+jBmn) is the (m, n)th element of 

nodal admittance matrix in rectangular coordinates. 

Nonlinear PF equations (1) can be solved via NR algorithm, 

which iteratively computes (2)-(4) until real and reactive power 

mismatches ∆Pm
k  and ∆Q

m

k  are smaller than a predefined 

threshold (i.e., 10-6p.u. is used in this paper). Specifically, (2a)/ 

(2b) calculates nodal active/reactive power mismatch with 

respect to state variable solutions in iteration k, and (3)-(4) 

update state variables by solving Taylor series expansion-based 

linearization form of the original PF equations. Elements of 

Jacobian matrix Jk in iteration k are defined as in (5)-(6). 

∆Pm
k =P̂m-Vm

k ∑ Vn
k(Gmn cos δmn

k +Bmn sin δmn
k ),N

n=1    m=1,⋯,N-1 (2a) 

∆Q
m

k =Q̂
m

-Vm
k ∑ Vn

k(Gmn sin δmn
k -Bmn cos δmn

k )N
n=1 ,m=1,⋯,Z (2b) 

∆Sk= [
∆Pk

∆Qk] = [Hk Mk

Kk Lk
] [

∆δk

∆Vk Vk⁄
]= Jk∆Xk (3) 

Xk+1 = [δ
k+1

Vk+1
] = [δ

k

Vk
] + [∆δk

∆Vk
]=Xk + ∆Xk (4) 

Hmn
k = ∂∆Pm

k ∂δn
k⁄ =-Vm

k Vn
k(Gmn sin δmn

k -Bmn cos δmn
k ),    m≠n (5a) 

Mmn
k =Vn

k∂∆Pm
k ∂Vn

k⁄ =-Vm
k Vn

k(Gmn cos δmn
k +Bmn cos δmn

k ),  m≠n (5b) 

Kmn
k = ∂ΔQ

m

k ∂δn
k⁄ =Vm

k Vn
k(Gmn cos δmn

k +Bmn sin δmn
k ),    m≠n (5c) 

Lmn
k =Vn

k∂∆Q
m

k
∂Vn

k⁄ =-Vm
k
Vn

k(Gmn sin δmn
k -Bmn cos δmn

k ),  m≠n (5d) 

Hmm
k = ∂∆Pm

k ∂δm
k =Vm

k ∑ Vn
k(Gmn sin δmn

k -Bmn cos δmn
k )N

n=1,n≠m⁄   

                                                                                     (6a) 

Mmm
k =Vm

k ∂∆Pm
k ∂Vm

k⁄ =-Vm
k ∑ Vn

k(Gmn cos δmn
k +Bmn sin δmn

k )N
n=1,n≠m   

                                        -2GmmVm
k Vm

k ,                                      (6b) 

Kmm
k = ∂ΔQ

m

k ∂δm
k  ⁄ =-Vm

k ∑ Vn
k(Gmn cos δmn

k +Bmn sin δmn
k )N

n=1,n≠m  

 (6c) 

Lmm
k =Vm

k ∂∆Q
m

k ∂Vm
k⁄ =-Vm

k ∑ Vn
k(Gmn sin δmn

k -Bmn cos δmn
k )N

n=1,n≠m   

                                      +2BmmVm
k Vm

k ,                            (6d) 

B. BBDF-Based Parallel Computation of PF Problems 

According to [7], [12]-[13], a straightforward way to 

implement parallel PF calculation is to solve linear equations 

(3) in a parallel manner. Specifically, (3) can be represented in a 

BBDF form (7) by dividing the original network into W 

subnetworks and one coordination network t , where ΔXw =

[Δδw
T ΔVw

T ]T is state variable vector of the wth subnetwork.  

[

ΔS1

⋮
ΔSW

ΔSt

] = [

J11 0 0 J1t

0 ⋱ 0 ⋮
0 0 JWW JWt

Jt1 ⋯ JtW Jtt

] [

ΔX1

⋮
ΔXW

ΔXt

] (7) 

By observing that individual subnetworks are independent 

from each other and only coupled with the coordination 

network, (7) can be calculated by computing smaller-scale 

linear equations (8) and (9) in a queue. Equation (8) calculates 

ΔXt of the coordination network, then ΔXw of each subnetwork 

can be computed via (9) in parallel using solution of ΔXt from 

(8). Moreover, (8) involves the inverse of a large diagonal 

block matrix, which is equivalent to inversing individual small 

block submatrices. This can further convert (8) into a simplified 

equivalent form (10). 

{Jtt- [
Jt1

⋮
JtW

]

T

[
J11 0 0

0 ⋱ 0

0 0 JWW

]

-1

[
J1t

⋮
JWt

]} ΔXt=  

                               ΔSt- [
Jt1

⋮
JtW

] [
J11 0 0

0 ⋱ 0

0 0 JWW

]

-1

[
ΔS1

⋮
ΔSW

]              (8) 

ΔXw=Jww
-1 ΔSw-Jww

-1 JwtΔXt,    w=1, ⋯ ,W (9) 

(Jtt- ∑ JtwJww
-1W

w=1 Jwt)ΔXt=ΔSt- ∑ JtwJww
-1W

w=1 ΔSw (10) 

III. THE PROPOSED FINE-GRAINED FULLY PARALLEL PF 

This section first discusses a node-tearing based approach to 

identify optimal network segmentation scheme, followed by 

parallel implementations of the three key steps of BBDF based 

NR method for PF calculation. 

A. Node-Tearing Based Network Segmentation Approach 

In this section, the fast-splitting method [19]-[20], a 

community-identification approach in complex network theory, 

is first adopted to identify a limited number of weak edges that 

can divide an original network into one coordination network 

and several independent subnetworks following the BBDF 

form. However, sizes of derived subnetworks may not be 

necessarily close. Thus, we propose a node-tearing based 

network segmentation approach by including two additional 

steps: transfer to node-tearing based segmentation while using 

weak edges, and further combining certain subnetworks to 

balance sizes of subnetworks. The goal is to leverage sizes of 

subnetworks and the coordination network to achieve the best 

acceleration performance of parallel PF calculation. 

A.1 Rank Edges According to Edge-Clustering Coefficient 

Fast-splitting approach uses edge-clustering coefficient to 

identify weak edges among communities [20]. Specifically, 

edge-clustering coefficient Cij,g  of an edge (i,j)  connecting 

communities i and j is defined in [20] as the number of g-sided 

polygons Zij.g  over the total number of possible g-sided 

polygons containing this edge [20]. The total number of 

possible g-sided polygons containing edge (i,j)  can be 

calculated as min [di-1,dj-1], where di/dj is degree of node i/j.  

However, a potential issue with this definition is that when 

Zij.g is zero, Cij,g is always zero regardless of di and dj. To solve 

this issue, the modified edge-clustering coefficient (11) is 

adopted in this paper [20]. In addition, quadrilateral is usually 

considered to be the most appropriate and effective option for 

calculating this coefficient [19], i.e., g=4.  

Cij.g
' =(Zij.g+1)/(min [di-1,dj-1]) (11) 

Consequently, all edges in a network can be ranked in a list 

based on their edge-clustering coefficients as follows, while 

those with relatively small Cij.g
'  are regarded as weak edges. 

(i) Initialize the list of edges as null; 

(ii) Calculate edge-clustering coefficients of all edges in the 
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current network topology; 

(iii) Add the edge with the smallest edge-clustering coefficient 

into the list, and remove it from the current network topology; 

(iv) Repeat above Steps (ii)-(iii) until all edges of the original 

network are removed. 

A.2 Transfer to Node-Tearing Based Segmentation 

Edges ranked via edge-clustering coefficients could be used 

successively to divide an original network into one 

coordination network and several independent subnetworks 

following the BBDF form. This network segmentation 

approach is referred to as branch-cutting based method [7]. 

However, it is recognized that Jacobian matrices of 

subnetworks generated via this method might be singular. 

Thus, we further discuss a procedure to transfer branch-cutting 

based splitting to node-tearing based segmentation. 

Fig. 1 is used to illustrate the idea. Adopting fast-splitting 

method to the orignal network Fig. 1a, edges (1,5) and (2,5) are 

identified as the top two weak edges. Figs. 1b and 1c show two 

possible node-tearing based transformations using these two 

weak edges. By contrast, Fig. 1c derives a smaller coordination 

network (i.e., 1 node versus 2 nodes in Fig. 1b) and subnet- 

works of more consistent sizes (i.e., 4/4 versus 2/5 in Fig. 1b).  
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Fig. 1 Transfer from cutting-branches to torn-nodes. 

Based on above observations, the following procedure is 

used to guide tranformation from branch-cutting based splitting 

to node-tearing based segmentation: 

(i) Set initial torn-node collection (denoted as coList) as null 

and initial edge list as the one obtained from Section III.A.1. 

Initialize index k=1. 

(ii) Select the kth edge from edge list (denote its two nodes as i 

and j) to conduct node-tearing based segmentation. That is, we 

remove this edge from the current network topology, and 

calculate partial node adjacency degrees of the two nodes as 

(1k(i)+1k+1(i)) and (1k(j)+1k+1(j)) [13]. 1k(i) is an indicator 

function, which is equal to 1 if node i is a terminal node of edge 

𝑘 and 0 otherwise. Then, the following processes are executed: 

(ii.1) If node adjacency degrees of the two nodes are not 

equal, the node with a larger adjacency degree is regarded as 

a potential torn node, set k=k+2, and go to Step (iii); 

(ii.2) Otherwise, check whether removing node i/j from 

the current network will introduce new islanding nodes, 

 If neither of the two nodes introduces new islanding 

nodes, randomly select one as a potential torn node, set 

k=k+1, and go to Step (iii); 

 If one introduces new islanding nodes, regard the other 

as a potential torn node, set k=k+1, and go to Step (iii); 

 If both introduce new isolate nodes, set k=k+1, and go 

back to Step (ii);  

(iii) If the torn node identfied in Step (ii) is already contained in 

coList, go back to Step (ii); 

(iv) Use depth-first algorithm (DFS) [21] to derive preliminary 

network division pattern (denoted as Nt=[Nt1 Nt2 … NtS] , 

where S is the number of subnetworks); 

(v) If size of the largest subnetwork is no larger than a 

prespecified threshold (denoted as Nρ, where N is number of 

nodes in the original network and ρ represents a ratio in size of 

the largest subnetwork to the orginal network), all torn-nodes 

and the corresponding network segmentation scheme are 

identified; Otherwise, go back to Step (ii). 

A.3 An Optimization Based Approach to Further Balance Sizes 

of Subnetworks 

It is expected that a preferable network segmentation scheme 

would induce a relatively minimal coordination network 

together with a set of equally-sized subnetworks [7]. The 

former is granted via the approach discussed in Sections 

III.A.1-III.A.2, while the latter has been largely neglected. That 

is, sizes of subnetworks Nt derived from Section III.A.2 may be 

diverse rather than close to the expected value Nρ. 

In this section, based on the preliminary division pattern Nt 

derived in Section III.A.2, we intend to further combine certain 

smaller subnetworks to generate S'=round( (N-nt) Nρ⁄ )  new 

subnetworks so that difference between sizes of new 

subnetworks and the expected value Nρ is minimized. This can 

be modelled as a nonlinear integer problem (12)-(13). Equation 

(12), similar to standard deviation, quantitatively characterizes 

dispersed degree among sizes of new subnetworks and the 

expected value Nρ. 

F= min {√∑ (∑ 𝒙𝑖,𝑗 ∙ Nt𝑖
𝑆
𝑖=1 − 𝑁𝜌)

2𝑆′
𝑗=1 (S'-1)⁄ } (12) 

∑ xi,j
S'
j=1 = 1,   ∀xi,j∈{0,1} (13) 

Where binary variable xi,j indicates if an original subnetwork i 

is contained in a new subnetwork j, for i=1,⋯,S and j=1,⋯,S'. 

The nonlinear integer problem (12)-(13) can be solved by 

various algorithms, such as branch-and-bound [22], particle 

swarm optimization (PSO) [23]-[24], and genetic algorithm 

(GA) [24]. Here, PSO with random inertial weight (RIW-PSO) 

is applied. Detailed setting on parameters used in RIW-PSO of 

this paper can be referred to in [24]. Indeed, the family of 

inertial weight based PSO methods includes three major 

branches: linearly-decreasing inertial weight based PSO 

(LS-PSO), self-adaptive inertial weight based PSO (SA-PSO), 

and RIW-PSO. As compared to the other two, RIW-PSO 

algorithm presents better convergence statistics, i.e., smaller 

number of iterations and lower probability of trapping into local 

optimum [24]. 

B. A Fine-Grained Fully Parallel PF Calculation 

Using the optimal network segmentation scheme derived 

from Section III.A, this section focuses on parallel 

implementations of three key steps of the BBDF based NR 

method for PF calculation. More details can be found in [25]. 

B.1 Parallel Formation of Nodal Power Mismatch Vectors 

For a node-tearing based network segmentation scheme, 

nodal power mismatch vectors of individual subnetworks can 

be formed independently. That is, for the wth subnetwork, its 

nodal power mismatch vector ΔSw=[ΔPw; ΔQ
w

] = [ΔPw,1; ⋯; 

ΔPw,npw
;ΔQ

w,1
;⋯ ;ΔQ

w,npqw
]  only relies on state variables of 

this subnetwork and the coordination network, where np
w

 is 

total number of PQ & PV nodes and npq
w

 is number of PQ 

nodes in the wth subnetwork. Thus, once state variables of the 

coordination network are calculated, multiple threads can be 

executed in parallel to calculate nodal power mismatch vectors 
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of individual networks. 

Indeed, there are two alternative ways to conduct parallel 

calculation of nodal power mismatch vectors. The first one is to 

create (W+1)  threads and calculate ΔSw  w=1,⋯,W  of 

individual subnetworks and ΔSt of the coordination network in 

parallel, which is referred to as PI-NPM-1. A more fine-grained 

one is to create 2(W+1) threads and calculate ΔPw  and ΔQ
w

 

w=1,⋯,W of individual subnetworks as well as ΔPt and ΔQ
t
 of 

the coordination network in parallel, which is referred to as 

PI-NPM-2. Case studies will evaluate whether exploring 

additional independency of ΔPw  and ΔQ
w

 could further 

enhance computational performance. 

B.2 Parallel Computation of Jacobian Matrices 

In each NR iteration, the coordination network and idividual 

subnetworks recalculate corresdponing Jacobian matrices 

included in (9)-(10) using updated state variable solutions. 

Specifically, for the wth subnetwork, two Jacobian matrices are 

calculated, i.e., Jww=[∂Pw/∂w ∂Pw/∂Vw; ∂Qw/∂w ∂Qw/∂Vw] and 

Jwt=[∂Pw/∂t ∂Pw/∂Vt; ∂Qw/∂t ∂Qw/∂Vt]. In addition, the 

coordination network calculates one Jacobian matrix 

Jtt=[∂Pt/∂t ∂Pt/∂Vt; ∂Qt/∂t ∂Qt/∂Vt] and W Jacobian matrices 

Jtw=[∂Pt/∂w ∂Pt/∂Vw; ∂Qt/∂w ∂Qt/∂Vw] for w=1,⋯,W. 

Jacobian matrices of individual subnetworks and the 

coordination network can also be computated in parallel. 

Likewise, there are two ways to calculate Jacobian matrices in a 

parallel manner. A coarse-grained scheme is to create (W+1) 

threads to calculate {Jww, Jwt} w=1,⋯,W  of individual 

subnetworks and {Jt1, … ,JtW, Jtt} for the coordination network. 

On the other hand, it is noteworthy that there are W  Jww 

matrices, W Jwt matrices, W Jtw matrices, and one Jtt. Thus, a 

more fine-grained parallel way is to create (3W+1) threads and 

assign individual Jacobian matrices Jww, Jwt, Jtw, and Jtt onto 

distinct processing units, which could further enhance 

utilization of available computing resources and accelerate 

Jacobian matrix formulation at smaller granularity. These two 

schemes, respectively termed as PI-JM-1 and PI-JM-2, will be 

quantitatively analyzed in numerical cast studies. 

B.3 Parallel Calculation of Linear Equations 

It is noticed that a major computational burden of (9) for 

each subnetwork comes from Jww
-1 Jwt , while (10) calculates 

summation of JtwJww
-1 Jwt  for all subnetworks. Thus, 

computational complexity of (10) is analogous to, if not more 

than, total complexity of (9) for all W subnetworks. However, 

when applying BBDF to calculate PF in parallel, a widely used 

approach is to first compute (10) for the coordination network 

and then calculate (9) of individual subnetworks in parallel 

[12]. That is, although (10) for the coordination network is 

computational expensive, its potential parallel computation 

capability has not been fully explored. 

This section further explores parallel computation of (10) for 

the coordination network. Specifically, W  threads are first 

created to parallelly calculate JtwJww
-1 Jwt  and JtwJww

-1 ΔSw  of 

individual subnetworks, and then (10) is solved for updating 

coordination network’s state vector ΔXt. Moreover, for each of 

the W  threads, intermedia result JtwJww
-1  is first computed, 

which can be used to calculate both JtwJww
-1 Jwt and JtwJww

-1 ΔSw. 

After that, (9) of individual subnetworks are computed in 

parallel. Computational performance of the above parallel 

approach, referred to as PA-2-BBDF, will be compared with 

conventional sequential method without BBDF 

(CSM-NBBDF), sequential method applied in conjunction with 

BBDF (SM-BBDF), and BBDF based parallel approach in [12] 

(PA-1-BBDF) in the case study section. 

Indeed, linear equations associated with individual 

subnetworks can be directly solved via mainstream libraries 

such as Intel MKL, Eigen, ArrayFire, and KLU from 

SuiteSparse. However, for the purpose of fully exploiting 

BBDF’s power in all three key steps of the NR based PF 

calculation and further conducting a fair comparison with other 

BBDF based parallel approach in literature [12], BBDF, instead 

of those libraries, is adopted to solve linear equations 

associated with each network. 

C. Procedure of the Proposed Parallel PF Implementation 

Detailed procedure of the proposed fully parallel PF 

implementation, along with the determination of optimal 

threshold ρ, are summarized as following: 

(i) Initialization 

 Initialize range of the network segmentation threshold 

ρ∈[ρ
l
, ρ

u
]  and a step λ  for discretizing the range, i.e., 

different values of ρ in {ρ
l
,ρ

l
+λ,⋯, ρ

u
} will be evaluated. 

Initialize PF convergence criteria tol. 

(ii) For each ρ value, conduct the following studies: 

a) Network Segmentation 

(a.1) Rank all edges using the fast-splitting algorithm; 

(a.2) Transfer from branch-cutting based splitting to 

node-tearing based segmentation; 

(a.3) Combine certain subnetworks to further balance 

sizes of subnetworks. 

b) Full Parallel PF Calculation 

(b.1) I nitialize voltage magnitiutes of PQ nodes, and 

voltage phase angles of PQ and PV nodes; 

(b.2) Form nodal power mismatch vectors in parallel, and 

record the maximum power mismatch value ΔPQmax; 

 If ΔPQmax  is less than tol , final PF solution is 

obtained. Record current ρ  as well as related 

calculation time; 

 Otherwise, update Jacobian matrices in parallel, 

calculate the solution to Ax=b in parallel to compute 

state vectors, and go back to Step (b.2). 

(iii) Retrieve Optimal Threshold 

Compare calculation time associated with individual ρ 

values to identify the optimal threshold that corresponds to 

the best speedup ratio. 

D. Computational Complexity of the Proposed PF Approach 

Reference [10] revealed that computational burdens of 

CSM-NBBDF and CM-BBDF mainly come from calculating 

solution to Ax=b, and their computational complexities are 

O(N3) and O(Nwmax
3 ) where N and Nwmax are sizes of Jacobian 

matrices associated with the original network and the largest 

subnetwork involved in the BBDF method. 

Moreover, as the major difference between PA-1-BBDF and 

the proposed PA-2-BBDF lies in whether state vector of the 

coordination network is updated in parallel, total computational 

requirements of PA-1-BBDF and PA-2-BBDF are termed as 

∑ (N
w

3
+2NtNw

2 -NtNw+2NwNt
2-Nt

2)+N
t

3
+W

w=1 (Ns
3+2NtNs

2-NtNs) and 
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Ns
3+2NtNs

2-NtNs+2NsNt
2-Nt

2+Nt
3+Ns

3+2NtNs
2-NtNs  where Ns = 

max{N1,…,NW} . That is, computational complexities of 

PA-1-BBDF and PA-2-BBDF are both O(Nwmax
3 ). However, 

although computational complexities of the three approaches 

SM-BBDF, PA-1-BBDF, and PA-2-BBDF theoretically are the 

same, their actual computational needs differ significantly by 

considering actual numbers of subnetworks and low-order 

terms, i.e., ∑ (2N
w

3
+4NtNw

2 +2NwNt
2)+N

t

3W
w=1 , ∑ (N

w

3
+2NtNw

2W
w=1  

-NtNw+2NwNt
2-Nt

2)+Nt
3+(Ns

3+2NtNs
2-NtNs) , and Ns

3+2NtNs
2- 

NtNs+2NsNt
2-Nt

2+Nt
3 + Ns

3+2NtNs
2-NtNs. Consequently, as will 

be observed in numerical studies, acceleration performance of 

PA-2-BBDF would apparently outperform the other two. 

IV. NUMERICAL STUDIES 

This section uses the five power systems listed in Table I, 

together with several other benchmark systems, to illustrate 

effect of the proposed fine-grained fully parallel PF approach. 

Impacts of different network segmentation schemes and full 

parallel of all three key steps in the BBDF based NR method on 

speedup ratio and parallel efficiency of PF calculation are 

quantitatively analyzed. All case studies are carried out on a 

Windows 10 64-bits server with two 8-core Intel Xeon 2.1Ghz 

CPUs and 64 GB memory, and the program is implemented in 

C# language through IDE VS 2015 Enterprise and Task Parallel 

Library (TPL). If not mentioned otherwise, all 32 logical cores 

are used for parallel PF calculation. 

A. The 1354pegase System 

A.1 Associated BBDF Form of the 1354pegase System 

Using the threshold of ρ=0.08 (impact of ρ on efficiency of 

PF calculation will be analyzed in Section IV.A.3, while Fig. 4 

in Section IV.A.3 shows that 0.08 derives the best speedup ratio 

for this system), BBDF-form Jacobian matrix of this system is 

depicted in Fig. 2. Specifically, the original network is divided 

into 11 subnetworks and 1 coordination network (denoted as 

“11+1”), in which the largest/smallest subnetwork contains 

123/108 nodes and the coordination network includes 126 

nodes, all less than 10% of nodes in the original network. That 

is, sizes of all 11 subnetworks are close and the number of 

torn-nodes is also relatively small, which are two important 

factors for assessing quality of network segmentation schemes. 

  
Fig. 2 BBDF-Form Jacobian matrix of the 1354pegase system. 

Fig. 3 shows convergence performance of the RIW-PSO 

based optimal network segmentation with threshold of ρ=0.08. 

The optimal network segmentation scheme is obtained after 

106 iterations in about 997s. This computational time is 

significantly longer than PF calculations, which is mainly 

caused by repeated time-consuming DFS process in the node- 

tearing based segmentation approach to search for division 

patterns after each new torn-node is identified. Indeed, time and 

space complexities of DFS are Ο(V+E) and Ο(V2) for a graph 

with V nodes and E edges [21]. It is worth mentioning that for a 

given network topology, because optimal network 

segmentation only needs to be executed offline once while 

online PF calculations are usually executed routinely. 

Consequently, as will be observed in following case studies, 

such a time-consuming offline optimal network segmentation 

process is worthwhile as it could significantly enhance 

acceleration performance of parallel PF calculations. 
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Fig. 3 Convergence performance of RIW-PSO based optimal network 

segmentation with ρ=0.08. 

A.2 Speedup Ratio Improvement of the Three Key Steps in PF 

The optimal network segmentation scheme presented in 

above Section IV.A.1 is used in this section. Table II shows 

computational performance of sequential and two parallel 

strategies to form nodal power mismatch vectors and update 

Jacobian matrices. It is noteworthy that PF of this system 

converges in 6 NR iterations, and final ΔPQmax of individual 

iterations for both sequential and parallel approaches are the 

same as [34.25 5.63 0.25 0.65e10-2 0.79e10-4 0.13e10-9], which 

verifies solution accuracy of the proposed approaches. In 

addition, times reported in Table II are total time of all 

iterations. Results show that parallel calculation could reduce 

computation time of forming nodal power mismatch vectors by 

about one order of magnitude, while about 3-5 times for 

Jacobian matrix calculation. Specifically, with the fine-grained 

parallel computation strategies PI-NPM-2 and PI-JM-2, 

speedup ratios of the two steps are about 11.05 and 4.83. 

TABLE II SPEEDUP RATIOS OF THE FIRST TWO STEPS IN PF CALCULATION 
Approach Process Time (ms) Speedup Ratio 

Sequential 
Form nodal power mismatch vector 4220 - 

Update Jacobian matrices 7000 - 

PI-NPM-1 Form nodal power mismatch vector 527 8.01 

PI-JM-1 Update Jacobian matrices 1970 3.55 

PI-NPM-2 Form nodal power mismatch vector 382 11.05 

PI-JM-2 Update Jacobian matrices 1450 4.83 

Table III further shows computational time of various 

approaches for calculating Ax=b. Although both CSM-NBBDF 

and SM-BBDF are implemented in sequential, SM-BBDF 

takes about 1611ms shorter than CSM-NBBDF. The reason is 

that computational complexity of conventional NR and BBDF 

are respectively Ο(N3)  and O(Nwmax
3 )  [10]. This indeed is a 

salient feature of BBDF over conventional NR for speeding up 

calculation. Moreover, PA-2-BBDF is about 2 times faster than 
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PA-1-BBDF, which reveals that parallel computation of (10) 

for the coordination network could further enhance acceleration 

performance of PF computation.  

TABLE III SPEEDUP RATIOS FOR SOLVING LINEAR EQUATIONS 

Approach CSM-NBBDF SM-BBDF PA-1-BBDF PA-2-BBDF 

Total Time (ms) 7560 5949 3242 1384 

Speedup Ratio - 1.27 2.33 5.46 

A.3 The Determination of Optimal Threshold 

This section further explores impact of different ρ values, 

and consequently different network segmentation schemes, on 

computational performance of the proposed parallel PF. 

Optimal threshold refers to the one with the best speedup ratio. 

It is noteworthy that optimal threshold is system specific, while 

once the network segmentation pattern is fixed, optimal 

threshold remains the same with respect to different load levels. 

Reference [7] suggests that a proper threshold could be within 

the range of [0.02, 0.4]. Fig. 4 shows speedup ratios of the 

entire PF calculation against different ρ values in [0.02, 0.4] 

with a step of 0.02. Two extreme ρ values of 0.01 and 0.95 are 

also studied to evaluate impact of extreme settings on parallel 

PF. As for the RIW-PSO algorithm, number of swarms is set to 

50 and maximum number of iterations is 200 [24]. 
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Fig. 4 Speedup ratios with respect to different thresholds. 

Fig. 4 shows that speedup ratio first increases with the 

increase in ρ. While after reaching the peak speedup ratio of 

5.89 with ρ of 0.08, it gradually decreases. The reason of a 

rapid increase of speedup ratio in the first phase is that: as ρ 

gradually increases, (i) size of the coordination network 

decreases, and computation time for solving its state vector via 

(10) is reduced; and (ii) number of subnetworks also decreases, 

which in turn reduces communication burden between the 

coordination network and subnetworks Specifically, when ρ 

takes values of 0.01, 0.02, 0.04, 0.06, and 0.08, sizes of the 

coordination network respectively are 375, 354, 197, 153, and 

126, while numbers of subnetworks respectively are 71, 37, 21, 

15, and 11. On the other hand, when ρ is within the range of 

[0.10, 0.95], size of the coordination network varies between 

122 (for ρ  of 0.10) and 17 (for ρ  of 0.95), and number of 

subnetworks ranges from 9 (for ρ of 0.10) to 1 (for ρ of 0.95). 

Specifically, with a larger ρ , both size of the coordination 

network and number of subnetworks are reduced, which 

consequently lead to shorter computational time for solving the 

coordination network and lower communication overhead 

between the coordination network and subnetworks. However, 

as scales of subnetworks are much larger (i.e., ranges from 150 

to 1337 versus from 20 to 123 with ρ  of [0.01, 0.08]), 

computational times for subnetworks are significantly longer. 

In turn, after reaching the peak at ρ  of 0.08, speedup ratio 

gradually reduces when ρ further increases. 

In summary, Fig. 4 clearly shows that size of the 

coordination network and subnetworks’ expected size Nρ are 

two key factors that could impact computational performance 

of parallel PF. Specifically, a larger size of the coordination 

network corresponds to a longer computational time of the 

coordination network, while calculation time of individual 

subnetworks are shorter because of their smaller sizes. On the 

other hand, when individual subnetworks’ expected size 

decreases with a smaller ρ, the number of subnetworks and 

consequently communication overhead between the 

coordination network and subnetworks are larger, although 

computational time of individual subnetworks is shorter. As 

shown in Fig. 4, these two values are tightly coupled, and the 

optimal speedup ratio of 5.89 is reached with ρ  of 0.08 to 

leverage the two. 

B. Extensive Studies on Other Systems 

This section conducts additional studies including: (i) the 

proposed approach is compared with other traditional 

segmentation approaches [12], [25]; (ii) parallel PF study is 

further evaluated via six systems, including 2383wp, 2736sp, 

2869pegase, 3012wp, IEEE 30-bus, and 300-bus, which are 

respectively indexed as 2-7, with 1354pegase indexed as 1. 

B.1 Comparison with Other Segmentation Approaches 

The proposed approach is compared with two segmentation 

approaches in [12], [26] via 300-bus and 25-bus systems. Table 

IV reveals that differences in numbers of nodes contained in the 

largest and smallest subnetworks from the proposed approach 

are smaller (i.e., 2/0 versus 57/5). In addition, computational 

time of the approach in [26] is about two times of the proposed 

approach. These studies clearly show advantages of the 

proposed network segmentation approach. 

TABLE IV COMPARISON OF DIFFERENT SEGMENTATION APPROACHES 

System 
300-bus 25-bus 

Proposed [12] Proposed [26] 

Pattern 4+1 4+1 3+1 3+1 

Number  

 of nodes 

The largest subnetwork 65 98 7 10 

The smallest subnetwork 63 41 7 5 

Computational time (s) 0.18 N/A 0.068 0.13 

B.2 Optimal Network Segmentation Schemes 

Following the similar idea in Section III.A.3 for the 

1354pegase system, Table V shows optimal network 

segmentation schemes of these six systems that would derive 

the best speedup ratio. Specifically, sizes of coordination 

networks for the six systems are respectively 7.05%, 12.28%, 

11.36%, 9.99%, 16.67%, and 14.67% of their original 

networks. In addition, differences in sizes of the largest and the 

smallest subnetworks are 24, 19, 13, 16, 2, and 2 nodes, which 

are respectively about 1.01%, 0.69%, 0.45%, 0.53%, 6.67%, 

and 0.67% of their original networks. These values indicate that 

the two objectives of BBDF are well satisfied. Moreover, 

optimal thresholds for the six systems are 0.12, 0.1, 0.1, 0.08, 

0.2, and 0.24, respectively. 

TABLE V OPTIMAL DIVISION PATTERNS 

System 2 3 4 5 6 7 

Pattern 8+1 9+1 9+1 11+1 4+1 4+1 

Number  

of  

nodes 

Coordination network 168 336 326 301 5 44 

The largest subnetwork 292 280 292 257 7 65 

The smallest subnetwork 268 261 279 241 5 63 

Optimal objective value of (12) 12.26 10.77 7.31 7.81 1.01 9.27 

B.3 Acceleration Performance of Individual Systems 
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Fig. 5 shows separate speedup ratios of the three key steps 

via the proposed parallel computation against corresponding 

sequential calculations. Due to space limitation, we take nodal 

power mismatch vector for the detailed discussion. Fig. 5 

indicates that speedup ratios respectively are 11.05, 10.63, 

10.95, 12.33, and 12.26 for systems 1-5, which correspond to 

90.95%, 90.59%, 90.87%, 91.89%, and 91.85% reduction in 

time as compared to their sequential correspondences. This 

clearly shows significance and necessity in conducting parallel 

formation of nodal power mismatch vectors, similar as the 

other two major steps. 
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Fig. 5 Separate speedup ratios of the three key steps for systems. 

Fig. 5 also reveals that for all five systems, parallel 

implementations of nodal power mismatch vector present the 

highest speedup ratio, while the other two are at similar level. 

Here, we use the 3012wp system for a detailed discussion. 

Specifically, for the 3012wp system with the optimal network 

segmentation scheme of “11+1”, 12/12 threads are executed to 

form nodal active/reactive power mismatch vectors, 11/11/11/1 

threads are built to calculate Jww/Jwt/Jtw/Jtt, and 11/11 threads 

are created to compute state vectors of the coordination 

network/individual subnetworks. In this case, as 34 threads are 

deployed for calculating Jacobian matrices in parallel while 

only 11 threads are used for solving Ax=b, we may expect that 

speedup ratio of calculating Jacobian matrices is the highest. 

However, because of additional communication overhead for 

transferring data between the main thread and individual 

sub-threads [27], magnitutes of speedup ratios of the three key 

steps are significantly different. Maximum data exchange 

between main thread and corresponding sub-threads in each 

main PF calculation step is listed in Table VI, where data are 

expressed in double-precision floating-point format. As shown 

in Table VI, maximum data exchange for calculating nodal 

active power mismatch vectors is far lower than the other two 

steps (i.e., 2,400 bytes for nodal active power mismatch vector 

versus 2,163,200 bytes for Jacobian matrices and 5,953,088 for 

Ax=b). In this case, although the total number of threads for 

forming nodal power mismatch vectors is 24, less than that used 

for calculating Jacobian matrices, acceleration performance is 

higher due to its relatively smaller data exchange, three orders 

of magnitude lower than those of the other two steps. 

TABLE VI MAXIMUM DATA EXCHANGE AMONG THREATS IN 3012WP SYSTEM 
Main PF Calculation Steps Maximum Data Exchange Bytes 

Nodal active power injection dPt 2,400 

Nodal Reactive power injection dQt 1,848 

Jacobian matrix Jtt 2,163,200 

Ax=b Subnetwork J1010,J10t,dS10,dXt 3,931,328 

Ax=b Cooperate network Jt10,J1010,J10t,dS10 5,953,088 

Fig. 6 further shows speedup ratios of PF calculations, by 

comparing cases when parallel computation is implemented on 

only one of the three key steps versus all three steps. As shown 

in Fig. 6, implementing parallel calculation on only one step of 

PF calculation may not achieve good enough computational 

gains. Taking the 3012wp system as an example, speedup ratio 

achieved by implementing parallel computing for all three steps 

is 7.08, compared to 1.23, 1.50, and 1.47 for solely one step. 

This clearly shows advantage of the proposed fully parallel PF 

calculation approach over conventional parallel PF studies 

[12]-[13], which have neglected potential benefits by further 

conducting parallel calculation on nodal power mismatch 

vectors and Jacobian matrices. Moreover, although Fig. 5 

shows that forming nodal power mismatch vectors has the 

highest speedup ratio among the three steps, its contribution to 

boosting up the entire PF parallel performance is rather limited, 

i.e., 1.23 versus 1.50 for Jacobian matrices and 1.47 for Ax=b. 

The reason is that forming nodal power mismatch vectors only 

takes about 20% of the total PF calculation time. 
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Fig. 6 The whole speedup ratios of each portion implemented in parallel. 

B.4 Tradeoff Between Sequential and Proposed Approaches 

This section details the tradeoff between sequential and the 

proposed parallel PF approaches. Fig. 7 shows total 

computational time of the two approaches on various systems. 

It indicates that the proposed approach is more computationally 

efficient for larger systems. However, for small-scale systems 

like the 30-bus system, time consumed by the proposed 

approach is 44ms, about 4 times larger than the sequential one. 

The reason is that although parallel implementation improves 

calculation performance, it also introduces more time to create/ 

destroy threads, which potentially limits theoretical 

accelerating advantage of the proposed approach, especially for 

small-scale systems. 
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Fig.7 Comparison between sequential and the proposed PF approaches. 

Our extensive tests show that average time to create one 

threat via TPL is about 3ms. Thus, total time of creating all 

parallel threads to compute the 30-bus system is about 43ms, 

much higher than total commutation time of 9ms for the 

sequential approach. In comparison, the proposed approach 

stands out for large-scale systems, namely, speedup ratios of 

the other six systems are 1.72, 5.89, 6.73, 5.74, 5.90, and 7.08. 
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Thus, the proposed parallel approach would be more beneficial, 

especially for systems of extremely larger scales. 

B.5 Discussion on Speedup Ratios and Parallel Efficiency  

To further test overall performance of the proposed fully 

parallel PF approach, relationship between speedup ratio/ 

parallel efficiency and number of processors is explored. 

Parallel efficiency [3] is calculated as sequential calculation 

time over the product of computation time consumed in parallel 

and the total number of involved processors. 

Fig. 8 shows the relationship between speedup ratio/parallel 

efficiency and number of processors for the 2383WP system, in 

which CSM-NBBDF is considered as the base case. All parallel 

computational time reported in Fig. 8 is average time of 100 

tests to mitigate side effects of other potential tasks running on 

the same computer. Fig. 8 shows that speedup ratio gradually 

approaches to its saturation state of 6.73, when the number of 

processors exceeds 25. That is, when the number of processers 

is larger than that of maximum parallel tasks (which is 25 from 

Table V), acceleration effects becomes saturate. Fig. 8 also 

shows that parallel efficiency presents a decreasing trend 

against number of processors. The reason is that, with a larger 

number of processors, workload processed by individual 

processors is smaller and consequently parallel efficiency will 

gradually decrease. 

 
Fig. 8 Relationship between speedup ratio/parallel efficiency and number of 

processors for 2383WP system. 

V. CONCLUSION 

This paper proposes a fine-grained fully parallel PF approach 

to enhance the computational performance, by incorporating 

node-tearing based BBDF into NR method while also 

implementing three major PF calculation steps in parallel. 

Extensive simulation results show that:  

(i) The proposed network segmentation method can derive 

proper network partition schemes with relatively equally-sized 

subnetworks and a small-sized coordination network, which 

would help enhance performance of parallel PF calculation; 

(ii) The idea of BBDF on parallelly calculating subnetworks is 

further extended to compute state vector of the coordination 

network in parallel, which is of significant benefit in improving 

acceleration performance;  

(iii) Implementing parallel computation on all three key steps 

of PF calculation could achieve the best computational gains. 

In summary, this work demonstrates significant computa- 

tional benefits of the proposed fine-grained fully parallel PF 

approach. If embedded into other power system applications 

such as static security assessment that require repeated PF 

computations, a significant computational improvement could 

be expected. Future work will target on further improving 

computational performance of the network segmentation 

approach, and on integrating sparsity approach, vectorization 

parallelization [7], and GPU technique to further accelerate 

parallel PF calculation. 
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