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Abstract—In recognizing urgent needs in fast calculation of AC
power flow (PF) problems, PF computation has been explored
under different parallel computing platforms. Specifically, block
bordered diagonal form (BBDF) method has been widely studied
to permute linear equations in PF calculations into BBDF form
for facilitating parallel computation. However, determining an
optimal network segmentation scheme that leads to the best
speed-up ratio of BBDF based parallel PF is challenging. As a first
contribution, this paper proposes a node-tearing based approach
to determine optimal network segmentation scheme, which lever-
ages sizes of subnetworks and the coordination network to achieve
the best speedup ratio of BBDF based parallel PF calculation. In
addition, a fine-grained fully parallel PF approach is proposed to
further enhance parallel performance, in which all three key steps
of the Newton-Raphson (NR) based PF calculation are implement-
ed in parallel. Studies illustrate effectiveness of the proposed
network segmentation method and fully parallel PF approach.

Index Terms—Block bordered diagonal form, Newton-Raphson
algorithm, parallel computation, power flow.

1. INTRODUCTION

C power flow (PF) analysis, which calculates steady-state
status of the entire power grid with respect to given
generation/load settings and network parameters, plays an
essential role in many power system applications. Indeed, it is
routinely utilized by system operators to analyze steady-state
impacts prior to applying new settings and/or control strategies
[1]. In addition, PF can evaluate impacts of variations of loads
and network structures on system security, providing valuable
information for designing future expansions of power systems
[2]. Moreover, PF is also a key building block in short-circuit
analysis and transient stability study [1]-[3], to name a few.
Mathematically, PF analysis is essentially to solve a system
of nonlinear equations with the same number of variables [1]-
[6]. Gauss-Seidel (GS) [1], [7], Newton-Raphson (NR) [1]-[2],
[7]-[8], and fast decoupled power flow (FDPF) [4], [7] are
among three widely used techniques in solving PF problems.

(1) GS method iteratively calculates phasor voltages of PQ
and PV buses using nodal admittance/impedance matrix and
voltage values estimated from previous iteration, until a
converged phasor voltage solution is achieved. Compared to
nodal admittance matrix, using nodal impedance matrix could
achieve better convergence performance, at the cost of a higher
memory requirement due to its full-rank matrix nature [7].

(i) NR method iteratively calculates a system of linear
equations Ax=b, which is derived via Taylor series expansion
as an approximation of original non-linear PF equations, until a
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converged phasor voltage solution is achieved. Jacobian matrix
A and vector b are iteratively updated according to solutions of
previous NR iteration. A is usually nonsingular and sparse [1].

(ii1) FDPF further simplifies Jacobian matrix calculation of NR
method by taking advantage of relationship between real/
reactive power and voltage magnitude/angle. It can reduce per-
iteration computing time and memory usage of PF analysis [4].

It is noteworthy that since the three algorithms use same
nodal real/reactive power mismatch equations, their final PF
solutions are expected to be the same. On the other hand, FDPF
can provide approximate PF solutions much faster and in turn is
of great benefit for contingency analysis, while NR presents a
more stable convergence characteristic with fewer iterations.
This paper focuses on the NR method.

With the advanced development and wide deployment of
monitor and control technologies in power systems, interests in
fast simulation of large-scale power systems have been
stimulated [1], [3]-[4], [7], [9]-[10]. Indeed, a scalable and
computationally efficient PF algorithm is of significant
importance to many applications that are built on top of it. For
instance, online static security assessment involves extensive
PF analysis with respect to individual contingency scenarios,
while fast PF calculation is key to meeting the stringent time
requirement of this type of time-consuming online applications
[3]. Under this environment, parallel computation is considered
as an important technique for improving computational
efficiency of PF analysis, with special focuses on identifying
inherent parallelism of PF (especially parallelly solving Ax=b
in each NR iteration) and exploring different parallel
computing platforms. Specifically, iterative approach and block
bordered diagonal form (BBDF) method are among commonly
used parallel techniques for calculating a system of linear
equations Ax=b in PF analysis.

(1) Iterative approach starts with an initial guess of state
variables x, and then performs a series of updates to gradually
improve approximation accuracy. Iterative approach includes
preconditioned conjugate gradient (PCG), bi-conjugate
gradient stabilized (BiCGStab), and generalized minimal
residual (GMREs) methods [4], [11], among others. A salient
feature of iterative methods is that solution to Ax=b can be
obtained without calculating the inverse of high-dimension
Jacobian matrix A . Indeed, its solution is derived by
multiplication and inner product operations of relevant matrices
and vectors, which can be implemented in parallel to further
enhance the entire computational performance [4]. However,
convergence of iterative methods highly depends on spectrum
or condition number of A matrix [11].

(ii) BBDF method [7] is designed to split an original network
into one coordination network and multiple independent
subnetworks that can be calculated in parallel to accelerate
computation. In BBDF, state variables of individual
subnetworks are independent from each, and only coupled with
the coordination network. Thus, once state variables of the



coordination network are calculated, state wvariables of
individual subnetworks can be subsequently conducted in
parallel. Based on how subnetworks are created, BBDF can be
categorized into node-tearing (i.e., creating subnetworks by
removing certain nodes), branch-cutting (i.e., generating
subnetworks by removing certain branches), and hybrid-
dividing methods (i.e., considering both nodes and branches)
[71-[8], [12]-[13]. Specifically, different from node-tearing
approach, Jacobian matrices of subnetworks derived from
branch-cutting method could be singular. Moreover, branch-
cutting method usually takes longer computational time
because of relatively higher-dimension Jacobian matrices of
subnetworks, and could be ineffective if nodal power injections
instead of nodal current injections are given. In addition, hybrid
approach is attractive when only certain nodal phasor voltages
and branch power flows are of concern.

Both methods have been applied in literature [2], [4], [12]-
[14] to calculate PF problems in parallel. In [2], GPU-based
parallel implementations of GS, NR, and FDPF approaches
combined with Gauss elimination were compared, with
speedup ratios of 0.05x, 1.74x, and 1.30x, respectively.
Reference [14] discussed a GPU-based parallel BiCGStab
algorithm, with a speedup ratio of 2.1x. In [4], a PCG based
parallel FDPF approach was implemented with GPUs, with
speedup ratio of up to 2.86x. Moreover, reference [12]
discussed a node-tearing network partitioning strategy, which
could derive a relatively small coordination network while the
other important prerequisite of similar-sized subnetworks has
been neglected. Reference [13] further extended [12] to analyze
impacts of different network division patterns on acceleration
efficiency of parallel PF calculation.

In addition, iterative method usually requires hundreds of
cores to achieve a noticeable computational improvement.
However, its performance may be unstable and additional time-
consuming procedures, e.g., Cholesky preconditioner and
incomplete-LU, have to be applied [3], [15], especially when
Jacobian matrix is ill-conditioned. In comparison, BBDF based
parallel PF calculation is relatively robust. Moreover, among
alternative approaches within BBDF, node-tearing method
usually presents a better computational performance and has
been widely implemented in many applications such as parallel
PF calculation [12] and parallel transient analysis [16]. For
these reasons, this paper studies a node-tearing based BBDF
method for calculating PF problem in parallel.

Indeed, computational performance of BBDF based NR
method for parallel PF calculation is affected by several major
factors. Specifically, a key to enhancing BBDF performance is
a small coordination network and multiple equally-sized
subnetworks, which are viewed as two criteria for assessing
quality of network segmentation schemes in BBDF calculation.
However, to our best knowledge, studies that simultaneously
pursue these two criteria are rather rare, while [12]-[13] and
[16] mainly focus on identifying a relatively minimal
coordination network but the other important prerequisite of
equally-sized subnetworks has been neglected. Moreover, most
BBDF based parallel PF studies in literatures [12]-[13] focus on
computing Ax=b in parallel, while potentials for calculating
other key steps of PF analysis in parallel, namely forming nodal
power mismatch vectors and updating Jacobian matrix A, have
been neglected. In fact, as shown in Table I, these two steps
spend considerable efforts, about 20% and 38% of the total PF

calculation time as compared to 39% for solving Ax=b.
Detailed information of these five test systems can be referred
to in [17]-[18]. As a result, further exploring parallel
implementations of these two important steps would be
beneficial in improving acceleration performance of the entire
PF calculation. It is noteworthy that for the sake of fair
comparison between the proposed approach and conventional
parallel PF methods in literature [12]-[13] while also focusing
on fully exploiting BBDF’s power in all three key steps of NR
based PF calculation, computational times listed in Table I are
retrieved as a base case via our own codes, in which all steps of
PF are implemented in sequential while no advanced
technologies (i.e., sparse technique and vectorization
parallelization) are utilized. Indeed, this is also the reason why
third-party APIs or libraries (e.g., Intel MKL and
ArrayFire3.5.1) are not used to solve linear equations.

TABLE I COMPUTATIONAL TIME OF DIFFERENT STEPS IN PF (UNIT: MS/%)
Ax=b

Jacobi

Matrix Solution
7000/36.92% 7560/39.88% 79/0.42%
19547/37.67% 21010/40.49% 22/0.04%
26990/39.38% 26797/39.10% 58/0.08%
33239/38.46% 32059/37.10% 572/0.66
32065/38.50% 32628/39.17% 825/0.99

Admittance Nodal Injection
Matrix Vector

1354pegase 100/0.53%  4220/22.26%
2383wp  408/0.79% 10900/21.01%
2736sp  726/1.06% 13972/20.38%
2869pegase 708/0.82% 19846/22.96%
3012wp  787/0.94% 16985/20.39%

System Others

This paper proposes a fine-grained fully parallel PF
calculation to enhance its computational performance, by
incorporating node-tearing based BBDF into NR method while
also implementing three major PF calculation steps in a parallel
manner. Specifically, a node-tearing based network division
approach is explored to derive a minimal coordination network
as well as multiple independent subnetworks whose sizes are
relatively close. Moreover, in order to further boost up parallel
efficiency, the proposed method explores inherent parallelism
of three major steps of PF calculation, including the formation
of nodal power mismatch vector, the update of Jacobian matrix,
and the computation of system of linear equations.

Major contributions of the paper include:

(i) A node-tearing based approach is proposed to determine
optimal network segmentation scheme, which leverages sizes
of subnetworks and the coordination network to achieve the
best speedup ratio of parallel PF calculation.

(i1) A fully parallel PF calculation approach is explored, which
considers parallel implementation of the three key steps in
BBDF based NR method. Specifically, two alternative ways for
conducting parallel computation of nodal power mismatch
vectors and Jacobian matrices with different granularities are
investigated. In comparison, parallel calculation potentials of
these two key steps have been largely neglected in literature.

(i) A fine-grained parallel implementation for computing state
variables of the coordination network is studied. Specifically,
different from conventional BBDF based approach that first
computes state variables of the coordination network in a single
thread and then calculates state variables of individual
subnetworks in parallel [7], the idea of BBDF on parallelly
calculating subnetworks is further extended to compute state
variables of the coordination network in parallel. This would
further significantly enhance computational performance.

The remainder of this paper is organized as follows. Section
II describes PF problem and conventional BBDF based parallel
PF computation. Node-tearing based network segmentation



approach and details of the proposed fine-grained fully parallel
PF are presented in Section III. Section IV discusses numerical
studies, and Section V concludes the paper.

II. PF PROBLEM AND BBDF-BASED PARALLEL COMPUTATION
A.  Power Flow Problem

For an N-bus system, PF calculation is represented as in (1).

-Von XNV, (G, €OS 8, By, 5i0 D) =0, m=1, -+, N-1(1a)
Q -V, ¥V v, (G,,sind,,-B,, cosd,,) =0, m=1,--,Z (1b)
where nodes {1,---, Z} are PQ buses, nodes {Z+1,---,N-1} are
PV buses, and node N is the reference bus; T’m/Qm is given

active/reactive power injection of node m; V,,/V, is voltage
magnitude of node m/n; é,,, is voltage phase angle difference
between nodes m and n; (G,,,+jB,,,) is the (m, n)" element of
nodal admittance matrix in rectangular coordinates.

Nonlinear PF equations (1) can be solved via NR algorithm,
which iteratively computes (2)-(4) until real and reactive power
mismatches AP, and AQf‘n are smaller than a predefined

threshold (i.e., lO'6p.u. is used in this paper). Specifically, (2a)/
(2b) calculates nodal active/reactive power mismatch with
respect to state variable solutions in iteration k, and (3)-(4)
update state variables by solving Taylor series expansion-based
linearization form of the original PF equations. Elements of
Jacobian matrix J* in iteration k are defined as in (5)-(6).
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B. BBDF-Based Parallel Computation of PF Problems

According to [7], [12]-[13], a straightforward way to
implement parallel PF calculation is to solve linear equations
(3) in a parallel manner. Specifically, (3) can be represented in a
BBDF form (7) by dividing the original network into W
subnetworks and one coordination network #, where AX,, =

[A6,7 AV, 71" is state variable vector of the w subnetwork.
ASST [ 0 0 J,1[AX,
. 0 - 0 : : )
asy|=lo 0 3 34|lax,
AS, I Jw I 1LAX,

By observing that individual subnetworks are independent
from each other and only coupled with the coordination

network, (7) can be calculated by computing smaller-scale
linear equations (8) and (9) in a queue. Equation (8) calculates
AX, of the coordination network, then AX,, of each subnetwork
can be computed via (9) in parallel using solution of AX, from
(8). Moreover, (8) involves the inverse of a large diagonal
block matrix, which is equivalent to inversing individual small
block submatrices. This can further convert (8) into a simplified
equivalent form (10).
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III. THE PROPOSED FINE-GRAINED FULLY PARALLEL PF

This section first discusses a node-tearing based approach to
identify optimal network segmentation scheme, followed by
parallel implementations of the three key steps of BBDF based
NR method for PF calculation.

A. Node-Tearing Based Network Segmentation Approach

In this section, the fast-splitting method [19]-[20], a
community-identification approach in complex network theory,
is first adopted to identify a limited number of weak edges that
can divide an original network into one coordination network
and several independent subnetworks following the BBDF
form. However, sizes of derived subnetworks may not be
necessarily close. Thus, we propose a node-tearing based
network segmentation approach by including two additional
steps: transfer to node-tearing based segmentation while using
weak edges, and further combining certain subnetworks to
balance sizes of subnetworks. The goal is to leverage sizes of
subnetworks and the coordination network to achieve the best
acceleration performance of parallel PF calculation.

A.1 Rank Edges According to Edge-Clustering Coefficient

Fast-splitting approach uses edge-clustering coefficient to
identify weak edges among communities [20]. Specifically,
edge-clustering coefficient C;;, of an edge (i,/) connecting
communities i and j is defined in [20] as the number of g-sided
polygons Z;, over the total number of possible g-sided
polygons containing this edge [20]. The total number of
possible g-sided polygons containing edge (i,j) can be
calculated as min [d;-1,d;-1], where d;/d; is degree of node i/;.

However, a potential issue with this definition is that when
Z;j 4 18 zero, Cy; 4 is always zero regardless of d; and d;. To solve
this issue, the modified edge-clustering coefﬁ01ent (11) is
adopted in this paper [20]. In addition, quadrilateral is usually
considered to be the most appropriate and effective option for
calculating this coefficient [19], i.e., g=4.

Cijg=(Z;j g+ 1)/(min [d;-1,d;-1]) (11)

Consequently, all edges in a network can be ranked in a list
based on their edge- clustering coefficients as follows, while
those with relatively small C,j ¢ are regarded as weak edges.

(1) Initialize the list of edges as null;
(i1) Calculate edge-clustering coefficients of all edges in the



current network topology;

(iii) Add the edge with the smallest edge-clustering coefficient
into the list, and remove it from the current network topology;
(iv) Repeat above Steps (ii)-(iii) until all edges of the original
network are removed.

A.2 Transfer to Node-Tearing Based Segmentation

Edges ranked via edge-clustering coefficients could be used
successively to divide an original network into one
coordination network and several independent subnetworks
following the BBDF form. This network segmentation
approach is referred to as branch-cutting based method [7].
However, it is recognized that Jacobian matrices of
subnetworks generated via this method might be singular.
Thus, we further discuss a procedure to transfer branch-cutting
based splitting to node-tearing based segmentation.

Fig. 1 is used to illustrate the idea. Adopting fast-splitting
method to the orignal network Fig. 1a, edges (1,5) and (2,5) are
identified as the top two weak edges. Figs. 1b and 1c show two
possible node-tearing based transformations using these two
weak edges. By contrast, Fig. 1c¢ derives a smaller coordination
network (i.e., 1 node versus 2 nodes in Fig. 1b) and subnet-
works of more consistent sizes (i.e., 4/4 versus 2/5 in Fig. 1b).

Fig. 1 Transfer from cutting-branches to torn-nodes.

Based on above observations, the following procedure is
used to guide tranformation from branch-cutting based splitting
to node-tearing based segmentation:

(1) Set initial torn-node collection (denoted as coList) as null
and initial edge list as the one obtained from Section III.A.1.
Initialize index A=1.
(ii) Select the k™ edge from edge list (denote its two nodes as i
and ) to conduct node-tearing based segmentation. That is, we
remove this edge from the current network topology, and
calculate partial node adjacency degrees of the two nodes as
(lk(z’)-i-lkﬂ (i)) and (lk(/')-ﬁ-lkﬂ(j)) [13]. 1,(?) is an indicator
function, which is equal to 1 if node i is a terminal node of edge
k and 0 otherwise. Then, the following processes are executed:
(ii.1) If node adjacency degrees of the two nodes are not
equal, the node with a larger adjacency degree is regarded as
a potential torn node, set k~=k+2, and go to Step (iii);
(ii.2) Otherwise, check whether removing node i/j from
the current network will introduce new islanding nodes,
o If neither of the two nodes introduces new islanding
nodes, randomly select one as a potential torn node, set
k=k+1, and go to Step (iii);
o [f one introduces new islanding nodes, regard the other
as a potential torn node, set &=k+1, and go to Step (iii);
o If both introduce new isolate nodes, set k=k+1, and go
back to Step (ii);
(iii) If the torn node identfied in Step (ii) is already contained in
colList, go back to Step (ii);
(iv) Use depth-first algorithm (DFS) [21] to derive preliminary
network division pattern (denoted as Nt=[Nt; Nt, ... Ntg],
where S is the number of subnetworks);
(v) If size of the largest subnetwork is no larger than a

prespecified threshold (denoted as Np, where N is number of
nodes in the original network and p represents a ratio in size of
the largest subnetwork to the orginal network), all torn-nodes
and the corresponding network segmentation scheme are
identified; Otherwise, go back to Step (ii).

A.3 An Optimization Based Approach to Further Balance Sizes
of Subnetworks

It is expected that a preferable network segmentation scheme
would induce a relatively minimal coordination network
together with a set of equally-sized subnetworks [7]. The
former is granted via the approach discussed in Sections
III.A.1-1I1.A.2, while the latter has been largely neglected. That
is, sizes of subnetworks Nt derived from Section II1I.A.2 may be
diverse rather than close to the expected value Np.

In this section, based on the preliminary division pattern NVt
derived in Section II1.A.2, we intend to further combine certain
smaller subnetworks to generate S'=round((N-n,)/Np) new
subnetworks so that difference between sizes of new
subnetworks and the expected value Np is minimized. This can
be modelled as a nonlinear integer problem (12)-(13). Equation
(12), similar to standard deviation, quantitatively characterizes
dispersed degree among sizes of new subnetworks and the
expected value Np.

F=min {\/ }?;1(22‘9:1 xij - Nty — Np)z/(S,-l)} (2

Yix; =1, vx;€{0,1} (13)
Where binary variable x;; indicates if an original subnetwork i
is contained in a new subnetwork j, for i=1,---,§ and j=1,---,S".

The nonlinear integer problem (12)-(13) can be solved by
various algorithms, such as branch-and-bound [22], particle
swarm optimization (PSO) [23]-[24], and genetic algorithm
(GA) [24]. Here, PSO with random inertial weight (RIW-PSO)
is applied. Detailed setting on parameters used in RIW-PSO of
this paper can be referred to in [24]. Indeed, the family of
inertial weight based PSO methods includes three major
branches: linearly-decreasing inertial weight based PSO
(LS-PS0), self-adaptive inertial weight based PSO (SA-PSO),
and RIW-PSO. As compared to the other two, RIW-PSO
algorithm presents better convergence statistics, i.e., smaller
number of iterations and lower probability of trapping into local
optimum [24].

B. A Fine-Grained Fully Parallel PF Calculation

Using the optimal network segmentation scheme derived
from Section III.A, this section focuses on parallel
implementations of three key steps of the BBDF based NR
method for PF calculation. More details can be found in [25].

B.1 Parallel Formation of Nodal Power Mismatch Vectors
For a node-tearing based network segmentation scheme,
nodal power mismatch vectors of individual subnetworks can
be formed independently. That is, for the w subnetwork, its
nodal power mismatch vector ASW=[APW; AQW] =[AP, ;-
APW,npw;AQw’l;--- ;AQW’npqw] only relies on state variables of
this subnetwork and the coordination network, where np is

total number of PQ & PV nodes and npg, is number of PQ

nodes in the w subnetwork. Thus, once state variables of the
coordination network are calculated, multiple threads can be
executed in parallel to calculate nodal power mismatch vectors



of individual networks.

Indeed, there are two alternative ways to conduct parallel
calculation of nodal power mismatch vectors. The first one is to
create (W+1) threads and calculate AS,, w=1,--\W of
individual subnetworks and AS, of the coordination network in
parallel, which is referred to as PI-NPM-1. A more fine-grained
one is to create 2(//+1) threads and calculate AP, and AQ
w=1,--,W of individual subnetworks as well as AP, and AQ, of
the coordination network in parallel, which is referred to as
PI-NPM-2. Case studies will evaluate whether exploring
additional independency of AP, and AQ could further
enhance computational performance.

B.2 Parallel Computation of Jacobian Matrices

In each NR iteration, the coordination network and idividual
subnetworks recalculate corresdponing Jacobian matrices
included in (9)-(10) using updated state variable solutions.
Specifically, for the w subnetwork, two Jacobian matrices are
calculated, i.e., J,,,=[OP/08, OP\,/OV\y; 0Q./08, 0Q,,/0V,] and
Jw=[0P./O& OP,/OVy; 00./06, 0Q./0V;]. In addition, the
coordination network calculates one Jacobian matrix
J,=[0P/0&, OP/OVy;, 0Q/08, 0Q//0V,] and W Jacobian matrices
Jw=[OP/D8, OP/OV,y; 0Q,/0, 0Q/OV,,] for w=1,---, W.

Jacobian matrices of individual subnetworks and the
coordination network can also be computated in parallel.
Likewise, there are two ways to calculate Jacobian matrices in a
parallel manner. A coarse-grained scheme is to create (W+1)
threads to calculate {Jyw, Jw} w=1,- W of individual
subnetworks and {J, ... ,Ju, J,} for the coordination network.
On the other hand, it is noteworthy that there are W J.
matrices, W J,,, matrices, W J,, matrices, and one J,. Thus, a
more fine-grained parallel way is to create (3/+1) threads and
assign individual Jacobian matrices Jyw, Jws, Jav, and J, onto
distinct processing units, which could further enhance
utilization of available computing resources and accelerate
Jacobian matrix formulation at smaller granularity. These two
schemes, respectively termed as PI-JM-1 and PI-JM-2, will be
quantitatively analyzed in numerical cast studies.

B.3 Parallel Calculation of Linear Equations

It is noticed that a major computational burden of (9) for
each subnetwork comes from J;! J,,, while (10) calculates
summation of J, J:1J,, for all subnetworks. Thus,
computational complexity of (10) is analogous to, if not more
than, total complexity of (9) for all W subnetworks. However,
when applying BBDF to calculate PF in parallel, a widely used
approach is to first compute (10) for the coordination network
and then calculate (9) of individual subnetworks in parallel
[12]. That is, although (10) for the coordination network is
computational expensive, its potential parallel computation
capability has not been fully explored.

This section further explores parallel computation of (10) for
the coordination network. Specifically, W threads are first
created to parallelly calculate J,,J;..J,, and J,,J;),AS, of
individual subnetworks, and then (10) is solved for updating
coordination network’s state vector AX,. Moreover, for each of
the W threads, intermedia result J, J;!, is first computed,
which can be used to calculate both J,, J;. J,, and J, J;L AS.,.
After that, (9) of individual subnetworks are computed in
parallel. Computational performance of the above parallel

approach, referred to as PA-2-BBDF, will be compared with
conventional sequential method without BBDF
(CSM-NBBDF), sequential method applied in conjunction with
BBDF (SM-BBDF), and BBDF based parallel approach in [12]
(PA-1-BBDF) in the case study section.

Indeed, linear equations associated with individual
subnetworks can be directly solved via mainstream libraries
such as Intel MKL, Eigen, ArrayFire, and KLU from
SuiteSparse. However, for the purpose of fully exploiting
BBDEF’s power in all three key steps of the NR based PF
calculation and further conducting a fair comparison with other
BBDF based parallel approach in literature [12], BBDF, instead
of those libraries, is adopted to solve linear equations
associated with each network.

C. Procedure of the Proposed Parallel PF Implementation

Detailed procedure of the proposed fully parallel PF
implementation, along with the determination of optimal
threshold p, are summarized as following:

(1) Initialization
Initialize range of the network segmentation threshold
pElp,p,] and a step 4 for discretizing the range, ie.,
different values of p in {pl,p /AN pu} will be evaluated.
Initialize PF convergence criteria fol.
(i1) For each p value, conduct the following studies:
a) Network Segmentation
(a.1) Rank all edges using the fast-splitting algorithm;
(a.2) Transfer from branch-cutting based splitting to
node-tearing based segmentation;
(a.3) Combine certain subnetworks to further balance
sizes of subnetworks.
b) Full Parallel PF Calculation
(b.1) Initialize voltage magnitiutes of PQ nodes, and
voltage phase angles of PQ and PV nodes;
(b.2) Form nodal power mismatch vectors in parallel, and
record the maximum power mismatch value APQ™;
e If APQ™ is less than fol, final PF solution is
obtained. Record current p as well as related
calculation time;
e Otherwise, update Jacobian matrices in parallel,
calculate the solution to Ax=b in parallel to compute
state vectors, and go back to Step (b.2).
(iii) Retrieve Optimal Threshold
Compare calculation time associated with individual p
values to identify the optimal threshold that corresponds to
the best speedup ratio.

D. Computational Complexity of the Proposed PF Approach

Reference [10] revealed that computational burdens of
CSM-NBBDF and CM-BBDF mainly come from calculating
solution to Ax=b, and their computational complexities are
ON*) and OV ,.,,) where N and Nymax are sizes of Jacobian
matrices associated with the original network and the largest
subnetwork involved in the BBDF method.

Moreover, as the major difference between PA-1-BBDF and
the proposed PA-2-BBDF lies in whether state vector of the
coordination network is updated in parallel, total computational
requirements of PA-1-BBDF and PA-2-BBDF are termed as

W (N2 A2N,No-N, N, +2N,, N -N; Y+N+ (N:+2N,N2-N,N,) and



N+2NN*-NNA2NN>-N>+N+N+2NN>-N,N, where N, =
max{N,,....,Ny} . That is, computational complexities of
PA-1-BBDF and PA-2-BBDF are both O(N2,,.x). However,
although computational complexities of the three approaches
SM-BBDF, PA-1-BBDF, and PA-2-BBDF theoretically are the
same, their actual computational needs differ significantly by
considering actual numbers of subnetworks and low-order
terms, i.e., Y1 2N +HANNA+2NNI+N, , T (N +2N,N;,
NN F2INNENDENHNH2NNG-NN) - and - N+2NN; -
NN A2N,N*-N*+N? + N>+2N,N*-N,N,. Consequently, as will
be observed in numerical studies, acceleration performance of
PA-2-BBDF would apparently outperform the other two.

IV. NUMERICAL STUDIES

This section uses the five power systems listed in Table I,
together with several other benchmark systems, to illustrate
effect of the proposed fine-grained fully parallel PF approach.
Impacts of different network segmentation schemes and full
parallel of all three key steps in the BBDF based NR method on
speedup ratio and parallel efficiency of PF calculation are
quantitatively analyzed. All case studies are carried out on a
Windows 10 64-bits server with two 8-core Intel Xeon 2.1Ghz
CPUs and 64 GB memory, and the program is implemented in
C# language through IDE VS 2015 Enterprise and Task Parallel
Library (TPL). If not mentioned otherwise, all 32 logical cores
are used for parallel PF calculation.

A. The 1354pegase System
A.1 Associated BBDF Form of the 1354pegase System

Using the threshold of p=0.08 (impact of p on efficiency of
PF calculation will be analyzed in Section IV.A.3, while Fig. 4
in Section IV.A.3 shows that 0.08 derives the best speedup ratio
for this system), BBDF-form Jacobian matrix of this system is
depicted in Fig. 2. Specifically, the original network is divided
into 11 subnetworks and 1 coordination network (denoted as
“11+1”), in which the largest/smallest subnetwork contains
123/108 nodes and the coordination network includes 126
nodes, all less than 10% of nodes in the original network. That
1s, sizes of all 11 subnetworks are close and the number of
torn-nodes is also relatively small, which are two important
factors for assessing quality of network segmentation schemes.
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Fig. 2 BBDF-Form Jacobian matrix of the 1354pegase system.

Fig. 3 shows convergence performance of the RIW-PSO
based optimal network segmentation with threshold of p=0.08.

The optimal network segmentation scheme is obtained after
106 iterations in about 997s. This computational time is
significantly longer than PF calculations, which is mainly
caused by repeated time-consuming DFS process in the node-
tearing based segmentation approach to search for division
patterns after each new torn-node is identified. Indeed, time and
space complexities of DFS are O(V+E) and O(V?) for a graph
with ¥ nodes and £ edges [21]. It is worth mentioning that for a
given network topology, because optimal network
segmentation only needs to be executed offline once while
online PF calculations are usually executed routinely.
Consequently, as will be observed in following case studies,
such a time-consuming offline optimal network segmentation
process is worthwhile as it could significantly enhance
acceleration performance of parallel PF calculations.

40

30

20

1 1 1 1 1 1 1 1 1 fter
o L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 200
Fig. 3 Convergence performance of RIW-PSO based optimal network

segmentation with p=0.08.

A.2 Speedup Ratio Improvement of the Three Key Steps in PF

The optimal network segmentation scheme presented in
above Section IV.A.1 is used in this section. Table II shows
computational performance of sequential and two parallel
strategies to form nodal power mismatch vectors and update
Jacobian matrices. It is noteworthy that PF of this system
converges in 6 NR iterations, and final APQ™ of individual
iterations for both sequential and parallel approaches are the
same as [34.25 5.63 0.25 0.65e¢102 0.79¢10* 0.13¢10°°], which
verifies solution accuracy of the proposed approaches. In
addition, times reported in Table II are total time of all
iterations. Results show that parallel calculation could reduce
computation time of forming nodal power mismatch vectors by
about one order of magnitude, while about 3-5 times for
Jacobian matrix calculation. Specifically, with the fine-grained
parallel computation strategies PI-NPM-2 and PI-JM-2,
speedup ratios of the two steps are about 11.05 and 4.83.

TABLE Il SPEEDUP RATIOS OF THE FIRST TWO STEPS IN PF CALCULATION

Approach Process Time (ms) Speedup Ratio

Sequential Form nodal power mismatch vector 4220 -
Update Jacobian matrices 7000 -
PI-NPM-1 Form nodal power mismatch vector 527 8.01
PI-JM-1 Update Jacobian matrices 1970 3.55
PI-NPM-2 Form nodal power mismatch vector 382 11.05
PI-JM-2 Update Jacobian matrices 1450 4.83

Table III further shows computational time of various
approaches for calculating Ax=>b. Although both CSM-NBBDF
and SM-BBDF are implemented in sequential, SM-BBDF
takes about 1611ms shorter than CSM-NBBDF. The reason is
that computational complexity of conventional NR and BBDF
are respectively O(N°) and O(N> ;) [10]. This indeed is a
salient feature of BBDF over conventional NR for speeding up
calculation. Moreover, PA-2-BBDF is about 2 times faster than



PA-1-BBDF, which reveals that parallel computation of (10)
for the coordination network could further enhance acceleration
performance of PF computation.

TABLE III SPEEDUP RATIOS FOR SOLVING LINEAR EQUATIONS

Approach CSM-NBBDF SM-BBDF PA-1-BBDF PA-2-BBDF
Total Time (ms) 7560 5949 3242 1384
Speedup Ratio - 1.27 2.33 5.46

A.3 The Determination of Optimal Threshold

This section further explores impact of different p values,
and consequently different network segmentation schemes, on
computational performance of the proposed parallel PF.
Optimal threshold refers to the one with the best speedup ratio.
It is noteworthy that optimal threshold is system specific, while
once the network segmentation pattern is fixed, optimal
threshold remains the same with respect to different load levels.
Reference [7] suggests that a proper threshold could be within
the range of [0.02, 0.4]. Fig. 4 shows speedup ratios of the
entire PF calculation against different p values in [0.02, 0.4]
with a step of 0.02. Two extreme p values of 0.01 and 0.95 are
also studied to evaluate impact of extreme settings on parallel
PF. As for the RIW-PSO algorithm, number of swarms is set to
50 and maximum number of iterations is 200 [24].
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Fig. 4 Speedup ratios with respect to different thresholds.

Fig. 4 shows that speedup ratio first increases with the
increase in p. While after reaching the peak speedup ratio of
5.89 with p of 0.08, it gradually decreases. The reason of a
rapid increase of speedup ratio in the first phase is that: as p
gradually increases, (i) size of the coordination network
decreases, and computation time for solving its state vector via
(10) is reduced; and (ii) number of subnetworks also decreases,
which in turn reduces communication burden between the
coordination network and subnetworks Specifically, when p
takes values of 0.01, 0.02, 0.04, 0.06, and 0.08, sizes of the
coordination network respectively are 375, 354, 197, 153, and
126, while numbers of subnetworks respectively are 71, 37, 21,
15, and 11. On the other hand, when p is within the range of
[0.10, 0.95], size of the coordination network varies between
122 (for p of 0.10) and 17 (for p of 0.95), and number of
subnetworks ranges from 9 (for p of 0.10) to 1 (for p of 0.95).
Specifically, with a larger p, both size of the coordination
network and number of subnetworks are reduced, which
consequently lead to shorter computational time for solving the
coordination network and lower communication overhead
between the coordination network and subnetworks. However,
as scales of subnetworks are much larger (i.e., ranges from 150
to 1337 versus from 20 to 123 with p of [0.01, 0.08)]),
computational times for subnetworks are significantly longer.
In turn, after reaching the peak at p of 0.08, speedup ratio
gradually reduces when p further increases.

In summary, Fig. 4 clearly shows that size of the

coordination network and subnetworks’ expected size Np are
two key factors that could impact computational performance
of parallel PF. Specifically, a larger size of the coordination
network corresponds to a longer computational time of the
coordination network, while calculation time of individual
subnetworks are shorter because of their smaller sizes. On the
other hand, when individual subnetworks’ expected size
decreases with a smaller p, the number of subnetworks and
consequently communication overhead between the
coordination network and subnetworks are larger, although
computational time of individual subnetworks is shorter. As
shown in Fig. 4, these two values are tightly coupled, and the
optimal speedup ratio of 5.89 is reached with p of 0.08 to
leverage the two.

B.  Extensive Studies on Other Systems

This section conducts additional studies including: (i) the
proposed approach is compared with other traditional
segmentation approaches [12], [25]; (ii) parallel PF study is
further evaluated via six systems, including 2383wp, 2736sp,
2869pegase, 3012wp, IEEE 30-bus, and 300-bus, which are
respectively indexed as 2-7, with 1354pegase indexed as 1.

B.1 Comparison with Other Segmentation Approaches

The proposed approach is compared with two segmentation
approaches in [12], [26] via 300-bus and 25-bus systems. Table
IV reveals that differences in numbers of nodes contained in the
largest and smallest subnetworks from the proposed approach
are smaller (i.e., 2/0 versus 57/5). In addition, computational
time of the approach in [26] is about two times of the proposed
approach. These studies clearly show advantages of the
proposed network segmentation approach.

TABLE IV COMPARISON OF DIFFERENT SEGMENTATION APPROACHES

System 300-bus 25-bus
Proposed [12] Proposed [26]
Pattern 4+1 4+1 3+1 3+1
Number The largest subnetwork 65 98 7 10
of nodes The smallest subnetwork 63 41 7 5
Computational time (s) 0.18 N/A 0.068 0.13

B.2 Optimal Network Segmentation Schemes

Following the similar idea in Section III.LA.3 for the
1354pegase system, Table V shows optimal network
segmentation schemes of these six systems that would derive
the best speedup ratio. Specifically, sizes of coordination
networks for the six systems are respectively 7.05%, 12.28%,
11.36%, 9.99%, 16.67%, and 14.67% of their original
networks. In addition, differences in sizes of the largest and the
smallest subnetworks are 24, 19, 13, 16, 2, and 2 nodes, which
are respectively about 1.01%, 0.69%, 0.45%, 0.53%, 6.67%,
and 0.67% of their original networks. These values indicate that
the two objectives of BBDF are well satisfied. Moreover,
optimal thresholds for the six systems are 0.12, 0.1, 0.1, 0.08,
0.2, and 0.24, respectively.

TABLE V OPTIMAL DIVISION PATTERNS
System 2 3 4 5 6 7
Pattern 8+1  9+1 9+1 11+1 4+1 4+1
Number  Coordination network 168 336 326 301 5 44
of The largest subnetwork 292 280 292 257 7 65
nodes The smallest subnetwork 268 261 279 241 5 63
Optimal objective value of (12)  12.26 10.77 7.31 7.81 1.01 9.27

B.3 Acceleration Performance of Individual Systems



Fig. 5 shows separate speedup ratios of the three key steps
via the proposed parallel computation against corresponding
sequential calculations. Due to space limitation, we take nodal
power mismatch vector for the detailed discussion. Fig. 5
indicates that speedup ratios respectively are 11.05, 10.63,
10.95, 12.33, and 12.26 for systems 1-5, which correspond to
90.95%, 90.59%, 90.87%, 91.89%, and 91.85% reduction in
time as compared to their sequential correspondences. This
clearly shows significance and necessity in conducting parallel
formation of nodal power mismatch vectors, similar as the
other two major steps.

First Step: Forming Nodal Power Mismatch Vector In Parallel
Second Step: Calculating Jacobian Matrix In Parallel
Third Step: Solving Ax=b In Parallel
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Fig. 5 Separate speedup ratios of the three key steps for systems.

Fig. 5 also reveals that for all five systems, parallel
implementations of nodal power mismatch vector present the
highest speedup ratio, while the other two are at similar level.
Here, we use the 3012wp system for a detailed discussion.
Specifically, for the 3012wp system with the optimal network
segmentation scheme of “11+1”, 12/12 threads are executed to
form nodal active/reactive power mismatch vectors, 11/11/11/1
threads are built to calculate J,/J,/Jn/Jy, and 11/11 threads
are created to compute state vectors of the coordination
network/individual subnetworks. In this case, as 34 threads are
deployed for calculating Jacobian matrices in parallel while
only 11 threads are used for solving Ax=b, we may expect that
speedup ratio of calculating Jacobian matrices is the highest.
However, because of additional communication overhead for
transferring data between the main thread and individual
sub-threads [27], magnitutes of speedup ratios of the three key
steps are significantly different. Maximum data exchange
between main thread and corresponding sub-threads in each
main PF calculation step is listed in Table VI, where data are
expressed in double-precision floating-point format. As shown
in Table VI, maximum data exchange for calculating nodal
active power mismatch vectors is far lower than the other two
steps (i.e., 2,400 bytes for nodal active power mismatch vector
versus 2,163,200 bytes for Jacobian matrices and 5,953,088 for
Ax=b). In this case, although the total number of threads for
forming nodal power mismatch vectors is 24, less than that used
for calculating Jacobian matrices, acceleration performance is
higher due to its relatively smaller data exchange, three orders
of magnitude lower than those of the other two steps.

TABLE VI MAXIMUM DATA EXCHANGE AMONG THREATS IN 3012WP SYSTEM

Main PF Calculation Steps Maximum Data Exchange Bytes
Nodal active power injection dpP, 2,400
Nodal Reactive power injection dQ, 1,848

Jacobian matrix Ju 2,163,200

Ax=b Subnetwork Jmm,J[(mdSm,d){, 3,931,328

Ax=b Cooperate network Ji0.d1010,d10,d810 5,953,088

Fig. 6 further shows speedup ratios of PF calculations, by
comparing cases when parallel computation is implemented on

only one of the three key steps versus all three steps. As shown
in Fig. 6, implementing parallel calculation on only one step of
PF calculation may not achieve good enough computational
gains. Taking the 3012wp system as an example, speedup ratio
achieved by implementing parallel computing for all three steps
is 7.08, compared to 1.23, 1.50, and 1.47 for solely one step.
This clearly shows advantage of the proposed fully parallel PF
calculation approach over conventional parallel PF studies
[12]-[13], which have neglected potential benefits by further
conducting parallel calculation on nodal power mismatch
vectors and Jacobian matrices. Moreover, although Fig. 5
shows that forming nodal power mismatch vectors has the
highest speedup ratio among the three steps, its contribution to
boosting up the entire PF parallel performance is rather limited,
i.e., 1.23 versus 1.50 for Jacobian matrices and 1.47 for Ax=b.
The reason is that forming nodal power mismatch vectors only
takes about 20% of the total PF calculation time.
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Fig. 6 The whole speedup ratios of each portion implemented in parallel.

B.4 Tradeoff Between Sequential and Proposed Approaches

This section details the tradeoff between sequential and the
proposed parallel PF approaches. Fig. 7 shows total
computational time of the two approaches on various systems.
It indicates that the proposed approach is more computationally
efficient for larger systems. However, for small-scale systems
like the 30-bus system, time consumed by the proposed
approach is 44ms, about 4 times larger than the sequential one.
The reason is that although parallel implementation improves
calculation performance, it also introduces more time to create/
destroy threads, which potentially limits theoretical
accelerating advantage of the proposed approach, especially for
small-scale systems.
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Fig.7 Comparison between sequential and the proposed PF approaches.

System 4

Our extensive tests show that average time to create one
threat via TPL is about 3ms. Thus, total time of creating all
parallel threads to compute the 30-bus system is about 43ms,
much higher than total commutation time of 9ms for the
sequential approach. In comparison, the proposed approach
stands out for large-scale systems, namely, speedup ratios of
the other six systems are 1.72, 5.89, 6.73, 5.74, 5.90, and 7.08.



Thus, the proposed parallel approach would be more beneficial,
especially for systems of extremely larger scales.

B.5 Discussion on Speedup Ratios and Parallel Efficiency

To further test overall performance of the proposed fully
parallel PF approach, relationship between speedup ratio/
parallel efficiency and number of processors is explored.
Parallel efficiency [3] is calculated as sequential calculation
time over the product of computation time consumed in parallel
and the total number of involved processors.

Fig. 8 shows the relationship between speedup ratio/parallel
efficiency and number of processors for the 2383WP system, in
which CSM-NBBDF is considered as the base case. All parallel
computational time reported in Fig. 8 is average time of 100
tests to mitigate side effects of other potential tasks running on
the same computer. Fig. 8 shows that speedup ratio gradually
approaches to its saturation state of 6.73, when the number of
processors exceeds 25. That is, when the number of processers
is larger than that of maximum parallel tasks (which is 25 from
Table V), acceleration effects becomes saturate. Fig. 8 also
shows that parallel efficiency presents a decreasing trend
against number of processors. The reason is that, with a larger
number of processors, workload processed by individual
processors is smaller and consequently parallel efficiency will
gradually decrease.
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V. CONCLUSION

This paper proposes a fine-grained fully parallel PF approach
to enhance the computational performance, by incorporating
node-tearing based BBDF into NR method while also
implementing three major PF calculation steps in parallel.
Extensive simulation results show that:

(i) The proposed network segmentation method can derive
proper network partition schemes with relatively equally-sized
subnetworks and a small-sized coordination network, which
would help enhance performance of parallel PF calculation;
(i) The idea of BBDF on parallelly calculating subnetworks is
further extended to compute state vector of the coordination
network in parallel, which is of significant benefit in improving
acceleration performance;

(ii1) Implementing parallel computation on all three key steps
of PF calculation could achieve the best computational gains.

In summary, this work demonstrates significant computa-
tional benefits of the proposed fine-grained fully parallel PF
approach. If embedded into other power system applications
such as static security assessment that require repeated PF
computations, a significant computational improvement could
be expected. Future work will target on further improving
computational performance of the network segmentation

approach, and on integrating sparsity approach, vectorization
parallelization [7], and GPU technique to further accelerate
parallel PF calculation.
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