
 1

Abstract—In recognizing urgent needs in fast calculation of AC

power flow (PF) problems, PF computation has been explored

under different parallel computing platforms. Specifically, block

bordered diagonal form (BBDF) method has been widely studied

to permute linear equations in PF calculations into BBDF form

for facilitating parallel computation. However, determining an

optimal network segmentation scheme that leads to the best

speed-up ratio of BBDF based parallel PF is challenging. As a first

contribution, this paper proposes a node-tearing based approach

to determine optimal network segmentation scheme, which lever-

ages sizes of subnetworks and the coordination network to achieve

the best speedup ratio of BBDF based parallel PF calculation. In

addition, a fine-grained fully parallel PF approach is proposed to

further enhance parallel performance, in which all three key steps

of the Newton-Raphson (NR) based PF calculation are implement-

ed in parallel. Studies illustrate effectiveness of the proposed

network segmentation method and fully parallel PF approach.

Index Terms—Block bordered diagonal form, Newton-Raphson

algorithm, parallel computation, power flow.

I. INTRODUCTION

C power flow (PF) analysis, which calculates steady-state

status of the entire power grid with respect to given

generation/load settings and network parameters, plays an

essential role in many power system applications. Indeed, it is

routinely utilized by system operators to analyze steady-state

impacts prior to applying new settings and/or control strategies

[1]. In addition, PF can evaluate impacts of variations of loads

and network structures on system security, providing valuable

information for designing future expansions of power systems

[2]. Moreover, PF is also a key building block in short-circuit

analysis and transient stability study [1]-[3], to name a few.

Mathematically, PF analysis is essentially to solve a system

of nonlinear equations with the same number of variables [1]-

[6]. Gauss-Seidel (GS) [1], [7], Newton-Raphson (NR) [1]-[2],

[7]-[8], and fast decoupled power flow (FDPF) [4], [7] are

among three widely used techniques in solving PF problems.

(i) GS method iteratively calculates phasor voltages of PQ

and PV buses using nodal admittance/impedance matrix and

voltage values estimated from previous iteration, until a

converged phasor voltage solution is achieved. Compared to

nodal admittance matrix, using nodal impedance matrix could

achieve better convergence performance, at the cost of a higher

memory requirement due to its full-rank matrix nature [7].

(ii) NR method iteratively calculates a system of linear

equations Ax=b, which is derived via Taylor series expansion

as an approximation of original non-linear PF equations, until a

This work was supported in part by the U.S. National Science Foundation

grants PFI:BIC-1534035 and CNS-1647135. X. Su and T. Liu are with the

School of Electrical Engineering and Information, Sichuan University,

Chengdu, 610065, China (e-mails: xsu@clarkson.edu, tqliu@scu.edu.cn). L.

Wu is with the ECE Department, Clarkson University, Potsdam, NY, 13699,

USA (e-mail: lwu@clarkson.edu).

converged phasor voltage solution is achieved. Jacobian matrix

A and vector b are iteratively updated according to solutions of

previous NR iteration. A is usually nonsingular and sparse [1].

(iii) FDPF further simplifies Jacobian matrix calculation of NR

method by taking advantage of relationship between real/

reactive power and voltage magnitude/angle. It can reduce per-

iteration computing time and memory usage of PF analysis [4].

It is noteworthy that since the three algorithms use same

nodal real/reactive power mismatch equations, their final PF

solutions are expected to be the same. On the other hand, FDPF

can provide approximate PF solutions much faster and in turn is

of great benefit for contingency analysis, while NR presents a

more stable convergence characteristic with fewer iterations.

This paper focuses on the NR method.

With the advanced development and wide deployment of

monitor and control technologies in power systems, interests in

fast simulation of large-scale power systems have been

stimulated [1], [3]-[4], [7], [9]-[10]. Indeed, a scalable and

computationally efficient PF algorithm is of significant

importance to many applications that are built on top of it. For

instance, online static security assessment involves extensive

PF analysis with respect to individual contingency scenarios,

while fast PF calculation is key to meeting the stringent time

requirement of this type of time-consuming online applications

[3]. Under this environment, parallel computation is considered

as an important technique for improving computational

efficiency of PF analysis, with special focuses on identifying

inherent parallelism of PF (especially parallelly solving Ax=b

in each NR iteration) and exploring different parallel

computing platforms. Specifically, iterative approach and block

bordered diagonal form (BBDF) method are among commonly

used parallel techniques for calculating a system of linear

equations Ax=b in PF analysis.

(i) Iterative approach starts with an initial guess of state

variables x, and then performs a series of updates to gradually

improve approximation accuracy. Iterative approach includes

preconditioned conjugate gradient (PCG), bi-conjugate

gradient stabilized (BiCGStab), and generalized minimal

residual (GMREs) methods [4], [11], among others. A salient

feature of iterative methods is that solution to Ax=b can be

obtained without calculating the inverse of high-dimension

Jacobian matrix A . Indeed, its solution is derived by

multiplication and inner product operations of relevant matrices

and vectors, which can be implemented in parallel to further

enhance the entire computational performance [4]. However,

convergence of iterative methods highly depends on spectrum

or condition number of A matrix [11].

(ii) BBDF method [7] is designed to split an original network

into one coordination network and multiple independent

subnetworks that can be calculated in parallel to accelerate

computation. In BBDF, state variables of individual

subnetworks are independent from each, and only coupled with

the coordination network. Thus, once state variables of the

Fine-Grained Fully Parallel Power Flow Calculation by

Incorporating BBDF Method into A Multi-Step NR Algorithm
Xueneng, Su, Student Member, IEEE, Tianqi Liu, Senior Member, IEEE, and Lei Wu, Senior Member, IEEE

A

 2

coordination network are calculated, state variables of

individual subnetworks can be subsequently conducted in

parallel. Based on how subnetworks are created, BBDF can be

categorized into node-tearing (i.e., creating subnetworks by

removing certain nodes), branch-cutting (i.e., generating

subnetworks by removing certain branches), and hybrid-

dividing methods (i.e., considering both nodes and branches)

[7]-[8], [12]-[13]. Specifically, different from node-tearing

approach, Jacobian matrices of subnetworks derived from

branch-cutting method could be singular. Moreover, branch-

cutting method usually takes longer computational time

because of relatively higher-dimension Jacobian matrices of

subnetworks, and could be ineffective if nodal power injections

instead of nodal current injections are given. In addition, hybrid

approach is attractive when only certain nodal phasor voltages

and branch power flows are of concern.

Both methods have been applied in literature [2], [4], [12]-

[14] to calculate PF problems in parallel. In [2], GPU-based

parallel implementations of GS, NR, and FDPF approaches

combined with Gauss elimination were compared, with

speedup ratios of 0.05x, 1.74x, and 1.30x, respectively.

Reference [14] discussed a GPU-based parallel BiCGStab

algorithm, with a speedup ratio of 2.1x. In [4], a PCG based

parallel FDPF approach was implemented with GPUs, with

speedup ratio of up to 2.86x. Moreover, reference [12]

discussed a node-tearing network partitioning strategy, which

could derive a relatively small coordination network while the

other important prerequisite of similar-sized subnetworks has

been neglected. Reference [13] further extended [12] to analyze

impacts of different network division patterns on acceleration

efficiency of parallel PF calculation.

In addition, iterative method usually requires hundreds of

cores to achieve a noticeable computational improvement.

However, its performance may be unstable and additional time-

consuming procedures, e.g., Cholesky preconditioner and

incomplete-LU, have to be applied [3], [15], especially when

Jacobian matrix is ill-conditioned. In comparison, BBDF based

parallel PF calculation is relatively robust. Moreover, among

alternative approaches within BBDF, node-tearing method

usually presents a better computational performance and has

been widely implemented in many applications such as parallel

PF calculation [12] and parallel transient analysis [16]. For

these reasons, this paper studies a node-tearing based BBDF

method for calculating PF problem in parallel.

Indeed, computational performance of BBDF based NR

method for parallel PF calculation is affected by several major

factors. Specifically, a key to enhancing BBDF performance is

a small coordination network and multiple equally-sized

subnetworks, which are viewed as two criteria for assessing

quality of network segmentation schemes in BBDF calculation.

However, to our best knowledge, studies that simultaneously

pursue these two criteria are rather rare, while [12]-[13] and

[16] mainly focus on identifying a relatively minimal

coordination network but the other important prerequisite of

equally-sized subnetworks has been neglected. Moreover, most

BBDF based parallel PF studies in literatures [12]-[13] focus on

computing Ax=b in parallel, while potentials for calculating

other key steps of PF analysis in parallel, namely forming nodal

power mismatch vectors and updating Jacobian matrix A, have

been neglected. In fact, as shown in Table I, these two steps

spend considerable efforts, about 20% and 38% of the total PF

calculation time as compared to 39% for solving Ax=b .

Detailed information of these five test systems can be referred

to in [17]-[18]. As a result, further exploring parallel

implementations of these two important steps would be

beneficial in improving acceleration performance of the entire

PF calculation. It is noteworthy that for the sake of fair

comparison between the proposed approach and conventional

parallel PF methods in literature [12]-[13] while also focusing

on fully exploiting BBDF’s power in all three key steps of NR

based PF calculation, computational times listed in Table I are

retrieved as a base case via our own codes, in which all steps of

PF are implemented in sequential while no advanced

technologies (i.e., sparse technique and vectorization

parallelization) are utilized. Indeed, this is also the reason why

third-party APIs or libraries (e.g., Intel MKL and

ArrayFire3.5.1) are not used to solve linear equations.

TABLE I COMPUTATIONAL TIME OF DIFFERENT STEPS IN PF (UNIT: MS/%)

System
Admittance

Matrix

Nodal Injection

Vector

Jacobi

Matrix

Ax=b

Solution
Others

1354pegase

e
100/0.53% 4220/22.26% 7000/36.92% 7560/39.88% 79/0.42%

2383wp 408/0.79% 10900/21.01% 19547/37.67% 21010/40.49% 22/0.04%

2736sp 726/1.06% 13972/20.38% 26990/39.38% 26797/39.10% 58/0.08%

2869pegase 708/0.82% 19846/22.96% 33239/38.46% 32059/37.10% 572/0.66

%% 3012wp 787/0.94% 16985/20.39% 32065/38.50% 32628/39.17% 825/0.99

%

This paper proposes a fine-grained fully parallel PF

calculation to enhance its computational performance, by

incorporating node-tearing based BBDF into NR method while

also implementing three major PF calculation steps in a parallel

manner. Specifically, a node-tearing based network division

approach is explored to derive a minimal coordination network

as well as multiple independent subnetworks whose sizes are

relatively close. Moreover, in order to further boost up parallel

efficiency, the proposed method explores inherent parallelism

of three major steps of PF calculation, including the formation

of nodal power mismatch vector, the update of Jacobian matrix,

and the computation of system of linear equations.

Major contributions of the paper include:

(i) A node-tearing based approach is proposed to determine

optimal network segmentation scheme, which leverages sizes

of subnetworks and the coordination network to achieve the

best speedup ratio of parallel PF calculation.

(ii) A fully parallel PF calculation approach is explored, which

considers parallel implementation of the three key steps in

BBDF based NR method. Specifically, two alternative ways for

conducting parallel computation of nodal power mismatch

vectors and Jacobian matrices with different granularities are

investigated. In comparison, parallel calculation potentials of

these two key steps have been largely neglected in literature.

(iii) A fine-grained parallel implementation for computing state

variables of the coordination network is studied. Specifically,

different from conventional BBDF based approach that first

computes state variables of the coordination network in a single

thread and then calculates state variables of individual

subnetworks in parallel [7], the idea of BBDF on parallelly

calculating subnetworks is further extended to compute state

variables of the coordination network in parallel. This would

further significantly enhance computational performance.

The remainder of this paper is organized as follows. Section

II describes PF problem and conventional BBDF based parallel

PF computation. Node-tearing based network segmentation

 3

approach and details of the proposed fine-grained fully parallel

PF are presented in Section III. Section IV discusses numerical

studies, and Section V concludes the paper.

II. PF PROBLEM AND BBDF-BASED PARALLEL COMPUTATION

A. Power Flow Problem

For an N-bus system, PF calculation is represented as in (1).

P̂m-Vm ∑ Vn(Gmn cos δmn+Bmn sin δmn)=0N
n=1 , m=1, ⋯ , N-1 (1a)

Q̂
m

-Vm ∑ Vn(Gmn sin δmn-Bmn cos δmn)N
n=1 =0, m=1, ⋯ , Z (1b)

where nodes {1,⋯, Z} are PQ buses, nodes {Z+1,⋯,N-1} are

PV buses, and node N is the reference bus; P̂m /Q̂
m

 is given

active/reactive power injection of node m; Vm /Vn is voltage

magnitude of node m/n; δmn is voltage phase angle difference

between nodes m and n; (Gmn+jBmn) is the (m, n)th element of

nodal admittance matrix in rectangular coordinates.

Nonlinear PF equations (1) can be solved via NR algorithm,

which iteratively computes (2)-(4) until real and reactive power

mismatches ∆Pm
k and ∆Q

m

k are smaller than a predefined

threshold (i.e., 10-6p.u. is used in this paper). Specifically, (2a)/

(2b) calculates nodal active/reactive power mismatch with

respect to state variable solutions in iteration k, and (3)-(4)

update state variables by solving Taylor series expansion-based

linearization form of the original PF equations. Elements of

Jacobian matrix Jk in iteration k are defined as in (5)-(6).

∆Pm
k =P̂m-Vm

k ∑ Vn
k(Gmn cos δmn

k +Bmn sin δmn
k),N

n=1 m=1,⋯,N-1 (2a)

∆Q
m

k =Q̂
m

-Vm
k ∑ Vn

k(Gmn sin δmn
k -Bmn cos δmn

k)N
n=1 ,m=1,⋯,Z (2b)

∆Sk= [
∆Pk

∆Qk] = [Hk Mk

Kk Lk
] [

∆δk

∆Vk Vk⁄
]= Jk∆Xk (3)

Xk+1 = [δ
k+1

Vk+1
] = [δ

k

Vk
] + [∆δk

∆Vk
]=Xk + ∆Xk (4)

Hmn
k = ∂∆Pm

k ∂δn
k⁄ =-Vm

k Vn
k(Gmn sin δmn

k -Bmn cos δmn
k), m≠n (5a)

Mmn
k =Vn

k∂∆Pm
k ∂Vn

k⁄ =-Vm
k Vn

k(Gmn cos δmn
k +Bmn cos δmn

k), m≠n (5b)

Kmn
k = ∂ΔQ

m

k ∂δn
k⁄ =Vm

k Vn
k(Gmn cos δmn

k +Bmn sin δmn
k), m≠n (5c)

Lmn
k =Vn

k∂∆Q
m

k
∂Vn

k⁄ =-Vm
k
Vn

k(Gmn sin δmn
k -Bmn cos δmn

k), m≠n (5d)

Hmm
k = ∂∆Pm

k ∂δm
k =Vm

k ∑ Vn
k(Gmn sin δmn

k -Bmn cos δmn
k)N

n=1,n≠m⁄

 (6a)

Mmm
k =Vm

k ∂∆Pm
k ∂Vm

k⁄ =-Vm
k ∑ Vn

k(Gmn cos δmn
k +Bmn sin δmn

k)N
n=1,n≠m

 -2GmmVm
k Vm

k , (6b)

Kmm
k = ∂ΔQ

m

k ∂δm
k ⁄ =-Vm

k ∑ Vn
k(Gmn cos δmn

k +Bmn sin δmn
k)N

n=1,n≠m

 (6c)

Lmm
k =Vm

k ∂∆Q
m

k ∂Vm
k⁄ =-Vm

k ∑ Vn
k(Gmn sin δmn

k -Bmn cos δmn
k)N

n=1,n≠m

 +2BmmVm
k Vm

k , (6d)

B. BBDF-Based Parallel Computation of PF Problems

According to [7], [12]-[13], a straightforward way to

implement parallel PF calculation is to solve linear equations

(3) in a parallel manner. Specifically, (3) can be represented in a

BBDF form (7) by dividing the original network into W

subnetworks and one coordination network t , where ΔXw =

[Δδw
T ΔVw

T]T is state variable vector of the wth subnetwork.

[

ΔS1

⋮
ΔSW

ΔSt

] = [

J11 0 0 J1t

0 ⋱ 0 ⋮
0 0 JWW JWt

Jt1 ⋯ JtW Jtt

] [

ΔX1

⋮
ΔXW

ΔXt

] (7)

By observing that individual subnetworks are independent

from each other and only coupled with the coordination

network, (7) can be calculated by computing smaller-scale

linear equations (8) and (9) in a queue. Equation (8) calculates

ΔXt of the coordination network, then ΔXw of each subnetwork

can be computed via (9) in parallel using solution of ΔXt from

(8). Moreover, (8) involves the inverse of a large diagonal

block matrix, which is equivalent to inversing individual small

block submatrices. This can further convert (8) into a simplified

equivalent form (10).

{Jtt- [
Jt1

⋮
JtW

]

T

[
J11 0 0

0 ⋱ 0

0 0 JWW

]

-1

[
J1t

⋮
JWt

]} ΔXt=

 ΔSt- [
Jt1

⋮
JtW

] [
J11 0 0

0 ⋱ 0

0 0 JWW

]

-1

[
ΔS1

⋮
ΔSW

] (8)

ΔXw=Jww
-1 ΔSw-Jww

-1 JwtΔXt, w=1, ⋯ ,W (9)

(Jtt- ∑ JtwJww
-1W

w=1 Jwt)ΔXt=ΔSt- ∑ JtwJww
-1W

w=1 ΔSw (10)

III. THE PROPOSED FINE-GRAINED FULLY PARALLEL PF

This section first discusses a node-tearing based approach to

identify optimal network segmentation scheme, followed by

parallel implementations of the three key steps of BBDF based

NR method for PF calculation.

A. Node-Tearing Based Network Segmentation Approach

In this section, the fast-splitting method [19]-[20], a

community-identification approach in complex network theory,

is first adopted to identify a limited number of weak edges that

can divide an original network into one coordination network

and several independent subnetworks following the BBDF

form. However, sizes of derived subnetworks may not be

necessarily close. Thus, we propose a node-tearing based

network segmentation approach by including two additional

steps: transfer to node-tearing based segmentation while using

weak edges, and further combining certain subnetworks to

balance sizes of subnetworks. The goal is to leverage sizes of

subnetworks and the coordination network to achieve the best

acceleration performance of parallel PF calculation.

A.1 Rank Edges According to Edge-Clustering Coefficient

Fast-splitting approach uses edge-clustering coefficient to

identify weak edges among communities [20]. Specifically,

edge-clustering coefficient Cij,g of an edge (i,j) connecting

communities i and j is defined in [20] as the number of g-sided

polygons Zij.g over the total number of possible g-sided

polygons containing this edge [20]. The total number of

possible g-sided polygons containing edge (i,j) can be

calculated as min [di-1,dj-1], where di/dj is degree of node i/j.

However, a potential issue with this definition is that when

Zij.g is zero, Cij,g is always zero regardless of di and dj. To solve

this issue, the modified edge-clustering coefficient (11) is

adopted in this paper [20]. In addition, quadrilateral is usually

considered to be the most appropriate and effective option for

calculating this coefficient [19], i.e., g=4.

Cij.g
' =(Zij.g+1)/(min [di-1,dj-1]) (11)

Consequently, all edges in a network can be ranked in a list

based on their edge-clustering coefficients as follows, while

those with relatively small Cij.g
' are regarded as weak edges.

(i) Initialize the list of edges as null;

(ii) Calculate edge-clustering coefficients of all edges in the

 4

current network topology;

(iii) Add the edge with the smallest edge-clustering coefficient

into the list, and remove it from the current network topology;

(iv) Repeat above Steps (ii)-(iii) until all edges of the original

network are removed.

A.2 Transfer to Node-Tearing Based Segmentation

Edges ranked via edge-clustering coefficients could be used

successively to divide an original network into one

coordination network and several independent subnetworks

following the BBDF form. This network segmentation

approach is referred to as branch-cutting based method [7].

However, it is recognized that Jacobian matrices of

subnetworks generated via this method might be singular.

Thus, we further discuss a procedure to transfer branch-cutting

based splitting to node-tearing based segmentation.

Fig. 1 is used to illustrate the idea. Adopting fast-splitting

method to the orignal network Fig. 1a, edges (1,5) and (2,5) are

identified as the top two weak edges. Figs. 1b and 1c show two

possible node-tearing based transformations using these two

weak edges. By contrast, Fig. 1c derives a smaller coordination

network (i.e., 1 node versus 2 nodes in Fig. 1b) and subnet-

works of more consistent sizes (i.e., 4/4 versus 2/5 in Fig. 1b).

(b)

1

2

3

4

5

6

7

8

(a)

9

1

2
3

4

5

6

7

8

9

(c)

1

2

3

4

5

6

7
9

8

Fig. 1 Transfer from cutting-branches to torn-nodes.

Based on above observations, the following procedure is

used to guide tranformation from branch-cutting based splitting

to node-tearing based segmentation:

(i) Set initial torn-node collection (denoted as coList) as null

and initial edge list as the one obtained from Section III.A.1.

Initialize index k=1.

(ii) Select the kth edge from edge list (denote its two nodes as i

and j) to conduct node-tearing based segmentation. That is, we

remove this edge from the current network topology, and

calculate partial node adjacency degrees of the two nodes as

(1k(i)+1k+1(i)) and (1k(j)+1k+1(j)) [13]. 1k(i) is an indicator

function, which is equal to 1 if node i is a terminal node of edge

𝑘 and 0 otherwise. Then, the following processes are executed:

(ii.1) If node adjacency degrees of the two nodes are not

equal, the node with a larger adjacency degree is regarded as

a potential torn node, set k=k+2, and go to Step (iii);

(ii.2) Otherwise, check whether removing node i/j from

the current network will introduce new islanding nodes,

 If neither of the two nodes introduces new islanding

nodes, randomly select one as a potential torn node, set

k=k+1, and go to Step (iii);

 If one introduces new islanding nodes, regard the other

as a potential torn node, set k=k+1, and go to Step (iii);

 If both introduce new isolate nodes, set k=k+1, and go

back to Step (ii);

(iii) If the torn node identfied in Step (ii) is already contained in

coList, go back to Step (ii);

(iv) Use depth-first algorithm (DFS) [21] to derive preliminary

network division pattern (denoted as Nt=[Nt1 Nt2 … NtS] ,

where S is the number of subnetworks);

(v) If size of the largest subnetwork is no larger than a

prespecified threshold (denoted as Nρ, where N is number of

nodes in the original network and ρ represents a ratio in size of

the largest subnetwork to the orginal network), all torn-nodes

and the corresponding network segmentation scheme are

identified; Otherwise, go back to Step (ii).

A.3 An Optimization Based Approach to Further Balance Sizes

of Subnetworks

It is expected that a preferable network segmentation scheme

would induce a relatively minimal coordination network

together with a set of equally-sized subnetworks [7]. The

former is granted via the approach discussed in Sections

III.A.1-III.A.2, while the latter has been largely neglected. That

is, sizes of subnetworks Nt derived from Section III.A.2 may be

diverse rather than close to the expected value Nρ.

In this section, based on the preliminary division pattern Nt

derived in Section III.A.2, we intend to further combine certain

smaller subnetworks to generate S'=round((N-nt) Nρ⁄) new

subnetworks so that difference between sizes of new

subnetworks and the expected value Nρ is minimized. This can

be modelled as a nonlinear integer problem (12)-(13). Equation

(12), similar to standard deviation, quantitatively characterizes

dispersed degree among sizes of new subnetworks and the

expected value Nρ.

F= min {√∑ (∑ 𝒙𝑖,𝑗 ∙ Nt𝑖
𝑆
𝑖=1 − 𝑁𝜌)

2𝑆′
𝑗=1 (S'-1)⁄ } (12)

∑ xi,j
S'
j=1 = 1, ∀xi,j∈{0,1} (13)

Where binary variable xi,j indicates if an original subnetwork i

is contained in a new subnetwork j, for i=1,⋯,S and j=1,⋯,S'.

The nonlinear integer problem (12)-(13) can be solved by

various algorithms, such as branch-and-bound [22], particle

swarm optimization (PSO) [23]-[24], and genetic algorithm

(GA) [24]. Here, PSO with random inertial weight (RIW-PSO)

is applied. Detailed setting on parameters used in RIW-PSO of

this paper can be referred to in [24]. Indeed, the family of

inertial weight based PSO methods includes three major

branches: linearly-decreasing inertial weight based PSO

(LS-PSO), self-adaptive inertial weight based PSO (SA-PSO),

and RIW-PSO. As compared to the other two, RIW-PSO

algorithm presents better convergence statistics, i.e., smaller

number of iterations and lower probability of trapping into local

optimum [24].

B. A Fine-Grained Fully Parallel PF Calculation

Using the optimal network segmentation scheme derived

from Section III.A, this section focuses on parallel

implementations of three key steps of the BBDF based NR

method for PF calculation. More details can be found in [25].

B.1 Parallel Formation of Nodal Power Mismatch Vectors

For a node-tearing based network segmentation scheme,

nodal power mismatch vectors of individual subnetworks can

be formed independently. That is, for the wth subnetwork, its

nodal power mismatch vector ΔSw=[ΔPw; ΔQ
w

] = [ΔPw,1; ⋯;

ΔPw,npw
;ΔQ

w,1
;⋯ ;ΔQ

w,npqw
] only relies on state variables of

this subnetwork and the coordination network, where np
w

 is

total number of PQ & PV nodes and npq
w

 is number of PQ

nodes in the wth subnetwork. Thus, once state variables of the

coordination network are calculated, multiple threads can be

executed in parallel to calculate nodal power mismatch vectors

 5

of individual networks.

Indeed, there are two alternative ways to conduct parallel

calculation of nodal power mismatch vectors. The first one is to

create (W+1) threads and calculate ΔSw w=1,⋯,W of

individual subnetworks and ΔSt of the coordination network in

parallel, which is referred to as PI-NPM-1. A more fine-grained

one is to create 2(W+1) threads and calculate ΔPw and ΔQ
w

w=1,⋯,W of individual subnetworks as well as ΔPt and ΔQ
t
 of

the coordination network in parallel, which is referred to as

PI-NPM-2. Case studies will evaluate whether exploring

additional independency of ΔPw and ΔQ
w

 could further

enhance computational performance.

B.2 Parallel Computation of Jacobian Matrices

In each NR iteration, the coordination network and idividual

subnetworks recalculate corresdponing Jacobian matrices

included in (9)-(10) using updated state variable solutions.

Specifically, for the wth subnetwork, two Jacobian matrices are

calculated, i.e., Jww=[∂Pw/∂w ∂Pw/∂Vw; ∂Qw/∂w ∂Qw/∂Vw] and

Jwt=[∂Pw/∂t ∂Pw/∂Vt; ∂Qw/∂t ∂Qw/∂Vt]. In addition, the

coordination network calculates one Jacobian matrix

Jtt=[∂Pt/∂t ∂Pt/∂Vt; ∂Qt/∂t ∂Qt/∂Vt] and W Jacobian matrices

Jtw=[∂Pt/∂w ∂Pt/∂Vw; ∂Qt/∂w ∂Qt/∂Vw] for w=1,⋯,W.

Jacobian matrices of individual subnetworks and the

coordination network can also be computated in parallel.

Likewise, there are two ways to calculate Jacobian matrices in a

parallel manner. A coarse-grained scheme is to create (W+1)

threads to calculate {Jww, Jwt} w=1,⋯,W of individual

subnetworks and {Jt1, … ,JtW, Jtt} for the coordination network.

On the other hand, it is noteworthy that there are W Jww

matrices, W Jwt matrices, W Jtw matrices, and one Jtt. Thus, a

more fine-grained parallel way is to create (3W+1) threads and

assign individual Jacobian matrices Jww, Jwt, Jtw, and Jtt onto

distinct processing units, which could further enhance

utilization of available computing resources and accelerate

Jacobian matrix formulation at smaller granularity. These two

schemes, respectively termed as PI-JM-1 and PI-JM-2, will be

quantitatively analyzed in numerical cast studies.

B.3 Parallel Calculation of Linear Equations

It is noticed that a major computational burden of (9) for

each subnetwork comes from Jww
-1 Jwt , while (10) calculates

summation of JtwJww
-1 Jwt for all subnetworks. Thus,

computational complexity of (10) is analogous to, if not more

than, total complexity of (9) for all W subnetworks. However,

when applying BBDF to calculate PF in parallel, a widely used

approach is to first compute (10) for the coordination network

and then calculate (9) of individual subnetworks in parallel

[12]. That is, although (10) for the coordination network is

computational expensive, its potential parallel computation

capability has not been fully explored.

This section further explores parallel computation of (10) for

the coordination network. Specifically, W threads are first

created to parallelly calculate JtwJww
-1 Jwt and JtwJww

-1 ΔSw of

individual subnetworks, and then (10) is solved for updating

coordination network’s state vector ΔXt. Moreover, for each of

the W threads, intermedia result JtwJww
-1 is first computed,

which can be used to calculate both JtwJww
-1 Jwt and JtwJww

-1 ΔSw.

After that, (9) of individual subnetworks are computed in

parallel. Computational performance of the above parallel

approach, referred to as PA-2-BBDF, will be compared with

conventional sequential method without BBDF

(CSM-NBBDF), sequential method applied in conjunction with

BBDF (SM-BBDF), and BBDF based parallel approach in [12]

(PA-1-BBDF) in the case study section.

Indeed, linear equations associated with individual

subnetworks can be directly solved via mainstream libraries

such as Intel MKL, Eigen, ArrayFire, and KLU from

SuiteSparse. However, for the purpose of fully exploiting

BBDF’s power in all three key steps of the NR based PF

calculation and further conducting a fair comparison with other

BBDF based parallel approach in literature [12], BBDF, instead

of those libraries, is adopted to solve linear equations

associated with each network.

C. Procedure of the Proposed Parallel PF Implementation

Detailed procedure of the proposed fully parallel PF

implementation, along with the determination of optimal

threshold ρ, are summarized as following:

(i) Initialization

 Initialize range of the network segmentation threshold

ρ∈[ρ
l
, ρ

u
] and a step λ for discretizing the range, i.e.,

different values of ρ in {ρ
l
,ρ

l
+λ,⋯, ρ

u
} will be evaluated.

Initialize PF convergence criteria tol.

(ii) For each ρ value, conduct the following studies:

a) Network Segmentation

(a.1) Rank all edges using the fast-splitting algorithm;

(a.2) Transfer from branch-cutting based splitting to

node-tearing based segmentation;

(a.3) Combine certain subnetworks to further balance

sizes of subnetworks.

b) Full Parallel PF Calculation

(b.1) I nitialize voltage magnitiutes of PQ nodes, and

voltage phase angles of PQ and PV nodes;

(b.2) Form nodal power mismatch vectors in parallel, and

record the maximum power mismatch value ΔPQmax;

 If ΔPQmax is less than tol , final PF solution is

obtained. Record current ρ as well as related

calculation time;

 Otherwise, update Jacobian matrices in parallel,

calculate the solution to Ax=b in parallel to compute

state vectors, and go back to Step (b.2).

(iii) Retrieve Optimal Threshold

Compare calculation time associated with individual ρ

values to identify the optimal threshold that corresponds to

the best speedup ratio.

D. Computational Complexity of the Proposed PF Approach

Reference [10] revealed that computational burdens of

CSM-NBBDF and CM-BBDF mainly come from calculating

solution to Ax=b, and their computational complexities are

O(N3) and O(Nwmax
3) where N and Nwmax are sizes of Jacobian

matrices associated with the original network and the largest

subnetwork involved in the BBDF method.

Moreover, as the major difference between PA-1-BBDF and

the proposed PA-2-BBDF lies in whether state vector of the

coordination network is updated in parallel, total computational

requirements of PA-1-BBDF and PA-2-BBDF are termed as

∑ (N
w

3
+2NtNw

2 -NtNw+2NwNt
2-Nt

2)+N
t

3
+W

w=1 (Ns
3+2NtNs

2-NtNs) and

 6

Ns
3+2NtNs

2-NtNs+2NsNt
2-Nt

2+Nt
3+Ns

3+2NtNs
2-NtNs where Ns =

max{N1,…,NW} . That is, computational complexities of

PA-1-BBDF and PA-2-BBDF are both O(Nwmax
3). However,

although computational complexities of the three approaches

SM-BBDF, PA-1-BBDF, and PA-2-BBDF theoretically are the

same, their actual computational needs differ significantly by

considering actual numbers of subnetworks and low-order

terms, i.e., ∑ (2N
w

3
+4NtNw

2 +2NwNt
2)+N

t

3W
w=1 , ∑ (N

w

3
+2NtNw

2W
w=1

-NtNw+2NwNt
2-Nt

2)+Nt
3+(Ns

3+2NtNs
2-NtNs) , and Ns

3+2NtNs
2-

NtNs+2NsNt
2-Nt

2+Nt
3 + Ns

3+2NtNs
2-NtNs. Consequently, as will

be observed in numerical studies, acceleration performance of

PA-2-BBDF would apparently outperform the other two.

IV. NUMERICAL STUDIES

This section uses the five power systems listed in Table I,

together with several other benchmark systems, to illustrate

effect of the proposed fine-grained fully parallel PF approach.

Impacts of different network segmentation schemes and full

parallel of all three key steps in the BBDF based NR method on

speedup ratio and parallel efficiency of PF calculation are

quantitatively analyzed. All case studies are carried out on a

Windows 10 64-bits server with two 8-core Intel Xeon 2.1Ghz

CPUs and 64 GB memory, and the program is implemented in

C# language through IDE VS 2015 Enterprise and Task Parallel

Library (TPL). If not mentioned otherwise, all 32 logical cores

are used for parallel PF calculation.

A. The 1354pegase System

A.1 Associated BBDF Form of the 1354pegase System

Using the threshold of ρ=0.08 (impact of ρ on efficiency of

PF calculation will be analyzed in Section IV.A.3, while Fig. 4

in Section IV.A.3 shows that 0.08 derives the best speedup ratio

for this system), BBDF-form Jacobian matrix of this system is

depicted in Fig. 2. Specifically, the original network is divided

into 11 subnetworks and 1 coordination network (denoted as

“11+1”), in which the largest/smallest subnetwork contains

123/108 nodes and the coordination network includes 126

nodes, all less than 10% of nodes in the original network. That

is, sizes of all 11 subnetworks are close and the number of

torn-nodes is also relatively small, which are two important

factors for assessing quality of network segmentation schemes.

Fig. 2 BBDF-Form Jacobian matrix of the 1354pegase system.

Fig. 3 shows convergence performance of the RIW-PSO

based optimal network segmentation with threshold of ρ=0.08.

The optimal network segmentation scheme is obtained after

106 iterations in about 997s. This computational time is

significantly longer than PF calculations, which is mainly

caused by repeated time-consuming DFS process in the node-

tearing based segmentation approach to search for division

patterns after each new torn-node is identified. Indeed, time and

space complexities of DFS are Ο(V+E) and Ο(V2) for a graph

with V nodes and E edges [21]. It is worth mentioning that for a

given network topology, because optimal network

segmentation only needs to be executed offline once while

online PF calculations are usually executed routinely.

Consequently, as will be observed in following case studies,

such a time-consuming offline optimal network segmentation

process is worthwhile as it could significantly enhance

acceleration performance of parallel PF calculations.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40 F

iter

Fig. 3 Convergence performance of RIW-PSO based optimal network

segmentation with ρ=0.08.

A.2 Speedup Ratio Improvement of the Three Key Steps in PF

The optimal network segmentation scheme presented in

above Section IV.A.1 is used in this section. Table II shows

computational performance of sequential and two parallel

strategies to form nodal power mismatch vectors and update

Jacobian matrices. It is noteworthy that PF of this system

converges in 6 NR iterations, and final ΔPQmax of individual

iterations for both sequential and parallel approaches are the

same as [34.25 5.63 0.25 0.65e10-2 0.79e10-4 0.13e10-9], which

verifies solution accuracy of the proposed approaches. In

addition, times reported in Table II are total time of all

iterations. Results show that parallel calculation could reduce

computation time of forming nodal power mismatch vectors by

about one order of magnitude, while about 3-5 times for

Jacobian matrix calculation. Specifically, with the fine-grained

parallel computation strategies PI-NPM-2 and PI-JM-2,

speedup ratios of the two steps are about 11.05 and 4.83.

TABLE II SPEEDUP RATIOS OF THE FIRST TWO STEPS IN PF CALCULATION
Approach Process Time (ms) Speedup Ratio

Sequential
Form nodal power mismatch vector 4220 -

Update Jacobian matrices 7000 -

PI-NPM-1 Form nodal power mismatch vector 527 8.01

PI-JM-1 Update Jacobian matrices 1970 3.55

PI-NPM-2 Form nodal power mismatch vector 382 11.05

PI-JM-2 Update Jacobian matrices 1450 4.83

Table III further shows computational time of various

approaches for calculating Ax=b. Although both CSM-NBBDF

and SM-BBDF are implemented in sequential, SM-BBDF

takes about 1611ms shorter than CSM-NBBDF. The reason is

that computational complexity of conventional NR and BBDF

are respectively Ο(N3) and O(Nwmax
3) [10]. This indeed is a

salient feature of BBDF over conventional NR for speeding up

calculation. Moreover, PA-2-BBDF is about 2 times faster than

 7

PA-1-BBDF, which reveals that parallel computation of (10)

for the coordination network could further enhance acceleration

performance of PF computation.

TABLE III SPEEDUP RATIOS FOR SOLVING LINEAR EQUATIONS

Approach CSM-NBBDF SM-BBDF PA-1-BBDF PA-2-BBDF

Total Time (ms) 7560 5949 3242 1384

Speedup Ratio - 1.27 2.33 5.46

A.3 The Determination of Optimal Threshold

This section further explores impact of different ρ values,

and consequently different network segmentation schemes, on

computational performance of the proposed parallel PF.

Optimal threshold refers to the one with the best speedup ratio.

It is noteworthy that optimal threshold is system specific, while

once the network segmentation pattern is fixed, optimal

threshold remains the same with respect to different load levels.

Reference [7] suggests that a proper threshold could be within

the range of [0.02, 0.4]. Fig. 4 shows speedup ratios of the

entire PF calculation against different ρ values in [0.02, 0.4]

with a step of 0.02. Two extreme ρ values of 0.01 and 0.95 are

also studied to evaluate impact of extreme settings on parallel

PF. As for the RIW-PSO algorithm, number of swarms is set to

50 and maximum number of iterations is 200 [24].

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

1

2

3

4

5

6

7
Speedup Ratio



Fig. 4 Speedup ratios with respect to different thresholds.

Fig. 4 shows that speedup ratio first increases with the

increase in ρ. While after reaching the peak speedup ratio of

5.89 with ρ of 0.08, it gradually decreases. The reason of a

rapid increase of speedup ratio in the first phase is that: as ρ

gradually increases, (i) size of the coordination network

decreases, and computation time for solving its state vector via

(10) is reduced; and (ii) number of subnetworks also decreases,

which in turn reduces communication burden between the

coordination network and subnetworks Specifically, when ρ

takes values of 0.01, 0.02, 0.04, 0.06, and 0.08, sizes of the

coordination network respectively are 375, 354, 197, 153, and

126, while numbers of subnetworks respectively are 71, 37, 21,

15, and 11. On the other hand, when ρ is within the range of

[0.10, 0.95], size of the coordination network varies between

122 (for ρ of 0.10) and 17 (for ρ of 0.95), and number of

subnetworks ranges from 9 (for ρ of 0.10) to 1 (for ρ of 0.95).

Specifically, with a larger ρ , both size of the coordination

network and number of subnetworks are reduced, which

consequently lead to shorter computational time for solving the

coordination network and lower communication overhead

between the coordination network and subnetworks. However,

as scales of subnetworks are much larger (i.e., ranges from 150

to 1337 versus from 20 to 123 with ρ of [0.01, 0.08]),

computational times for subnetworks are significantly longer.

In turn, after reaching the peak at ρ of 0.08, speedup ratio

gradually reduces when ρ further increases.

In summary, Fig. 4 clearly shows that size of the

coordination network and subnetworks’ expected size Nρ are

two key factors that could impact computational performance

of parallel PF. Specifically, a larger size of the coordination

network corresponds to a longer computational time of the

coordination network, while calculation time of individual

subnetworks are shorter because of their smaller sizes. On the

other hand, when individual subnetworks’ expected size

decreases with a smaller ρ, the number of subnetworks and

consequently communication overhead between the

coordination network and subnetworks are larger, although

computational time of individual subnetworks is shorter. As

shown in Fig. 4, these two values are tightly coupled, and the

optimal speedup ratio of 5.89 is reached with ρ of 0.08 to

leverage the two.

B. Extensive Studies on Other Systems

This section conducts additional studies including: (i) the

proposed approach is compared with other traditional

segmentation approaches [12], [25]; (ii) parallel PF study is

further evaluated via six systems, including 2383wp, 2736sp,

2869pegase, 3012wp, IEEE 30-bus, and 300-bus, which are

respectively indexed as 2-7, with 1354pegase indexed as 1.

B.1 Comparison with Other Segmentation Approaches

The proposed approach is compared with two segmentation

approaches in [12], [26] via 300-bus and 25-bus systems. Table

IV reveals that differences in numbers of nodes contained in the

largest and smallest subnetworks from the proposed approach

are smaller (i.e., 2/0 versus 57/5). In addition, computational

time of the approach in [26] is about two times of the proposed

approach. These studies clearly show advantages of the

proposed network segmentation approach.

TABLE IV COMPARISON OF DIFFERENT SEGMENTATION APPROACHES

System
300-bus 25-bus

Proposed [12] Proposed [26]

Pattern 4+1 4+1 3+1 3+1

Number

 of nodes

The largest subnetwork 65 98 7 10

The smallest subnetwork 63 41 7 5

Computational time (s) 0.18 N/A 0.068 0.13

B.2 Optimal Network Segmentation Schemes

Following the similar idea in Section III.A.3 for the

1354pegase system, Table V shows optimal network

segmentation schemes of these six systems that would derive

the best speedup ratio. Specifically, sizes of coordination

networks for the six systems are respectively 7.05%, 12.28%,

11.36%, 9.99%, 16.67%, and 14.67% of their original

networks. In addition, differences in sizes of the largest and the

smallest subnetworks are 24, 19, 13, 16, 2, and 2 nodes, which

are respectively about 1.01%, 0.69%, 0.45%, 0.53%, 6.67%,

and 0.67% of their original networks. These values indicate that

the two objectives of BBDF are well satisfied. Moreover,

optimal thresholds for the six systems are 0.12, 0.1, 0.1, 0.08,

0.2, and 0.24, respectively.

TABLE V OPTIMAL DIVISION PATTERNS

System 2 3 4 5 6 7

Pattern 8+1 9+1 9+1 11+1 4+1 4+1

Number

of

nodes

Coordination network 168 336 326 301 5 44

The largest subnetwork 292 280 292 257 7 65

The smallest subnetwork 268 261 279 241 5 63

Optimal objective value of (12) 12.26 10.77 7.31 7.81 1.01 9.27

B.3 Acceleration Performance of Individual Systems

 8

Fig. 5 shows separate speedup ratios of the three key steps

via the proposed parallel computation against corresponding

sequential calculations. Due to space limitation, we take nodal

power mismatch vector for the detailed discussion. Fig. 5

indicates that speedup ratios respectively are 11.05, 10.63,

10.95, 12.33, and 12.26 for systems 1-5, which correspond to

90.95%, 90.59%, 90.87%, 91.89%, and 91.85% reduction in

time as compared to their sequential correspondences. This

clearly shows significance and necessity in conducting parallel

formation of nodal power mismatch vectors, similar as the

other two major steps.

11.05
10.63 10.95

12.33 12.26

4.83
5.57 5.76 5.70

7.24

5.46

6.63

4.50 4.45

5.49

0

2

4

6

8

10

12

14

16

18

System 5System 4System 2 System 3

 First Step: Forming Nodal Power Mismatch Vector In Parallel

 Second Step: Calculating Jacobian Matrix In Parallel

 Third Step: Solving Ax=b In Parallel

Speedup Ratio

System 1
Fig. 5 Separate speedup ratios of the three key steps for systems.

Fig. 5 also reveals that for all five systems, parallel

implementations of nodal power mismatch vector present the

highest speedup ratio, while the other two are at similar level.

Here, we use the 3012wp system for a detailed discussion.

Specifically, for the 3012wp system with the optimal network

segmentation scheme of “11+1”, 12/12 threads are executed to

form nodal active/reactive power mismatch vectors, 11/11/11/1

threads are built to calculate Jww/Jwt/Jtw/Jtt, and 11/11 threads

are created to compute state vectors of the coordination

network/individual subnetworks. In this case, as 34 threads are

deployed for calculating Jacobian matrices in parallel while

only 11 threads are used for solving Ax=b, we may expect that

speedup ratio of calculating Jacobian matrices is the highest.

However, because of additional communication overhead for

transferring data between the main thread and individual

sub-threads [27], magnitutes of speedup ratios of the three key

steps are significantly different. Maximum data exchange

between main thread and corresponding sub-threads in each

main PF calculation step is listed in Table VI, where data are

expressed in double-precision floating-point format. As shown

in Table VI, maximum data exchange for calculating nodal

active power mismatch vectors is far lower than the other two

steps (i.e., 2,400 bytes for nodal active power mismatch vector

versus 2,163,200 bytes for Jacobian matrices and 5,953,088 for

Ax=b). In this case, although the total number of threads for

forming nodal power mismatch vectors is 24, less than that used

for calculating Jacobian matrices, acceleration performance is

higher due to its relatively smaller data exchange, three orders

of magnitude lower than those of the other two steps.

TABLE VI MAXIMUM DATA EXCHANGE AMONG THREATS IN 3012WP SYSTEM
Main PF Calculation Steps Maximum Data Exchange Bytes

Nodal active power injection dPt 2,400

Nodal Reactive power injection dQt 1,848

Jacobian matrix Jtt 2,163,200

Ax=b Subnetwork J1010,J10t,dS10,dXt 3,931,328

Ax=b Cooperate network Jt10,J1010,J10t,dS10 5,953,088

Fig. 6 further shows speedup ratios of PF calculations, by

comparing cases when parallel computation is implemented on

only one of the three key steps versus all three steps. As shown

in Fig. 6, implementing parallel calculation on only one step of

PF calculation may not achieve good enough computational

gains. Taking the 3012wp system as an example, speedup ratio

achieved by implementing parallel computing for all three steps

is 7.08, compared to 1.23, 1.50, and 1.47 for solely one step.

This clearly shows advantage of the proposed fully parallel PF

calculation approach over conventional parallel PF studies

[12]-[13], which have neglected potential benefits by further

conducting parallel calculation on nodal power mismatch

vectors and Jacobian matrices. Moreover, although Fig. 5

shows that forming nodal power mismatch vectors has the

highest speedup ratio among the three steps, its contribution to

boosting up the entire PF parallel performance is rather limited,

i.e., 1.23 versus 1.50 for Jacobian matrices and 1.47 for Ax=b.

The reason is that forming nodal power mismatch vectors only

takes about 20% of the total PF calculation time.

1.25 1.24 1.23 1.27 1.231.41 1.45 1.48 1.46 1.501.48 1.52 1.44 1.40 1.47

5.89

6.73

5.74 5.90

7.08

0

1

2

3

4

5

6

7

8

9

10

11

System 5System 4System 3System 2System 1

 First Step: Forming Nodal Power Mismatch Vector In Parallel

 Second Step: Calculating Jacobian Matrix In Parallel

 Third Step: Solving Ax=b In Parallel

 All Steps Implemented In Parallel

Speedup Ratio

Fig. 6 The whole speedup ratios of each portion implemented in parallel.

B.4 Tradeoff Between Sequential and Proposed Approaches

This section details the tradeoff between sequential and the

proposed parallel PF approaches. Fig. 7 shows total

computational time of the two approaches on various systems.

It indicates that the proposed approach is more computationally

efficient for larger systems. However, for small-scale systems

like the 30-bus system, time consumed by the proposed

approach is 44ms, about 4 times larger than the sequential one.

The reason is that although parallel implementation improves

calculation performance, it also introduces more time to create/

destroy threads, which potentially limits theoretical

accelerating advantage of the proposed approach, especially for

small-scale systems.

100

80

60

40 System 6

System 5System 4System 3System 2System 1System 6

 Sequential Time

 Parallel Time

Time (10
3
ms)

System 7

20

0

50

100

Fig.7 Comparison between sequential and the proposed PF approaches.

Our extensive tests show that average time to create one

threat via TPL is about 3ms. Thus, total time of creating all

parallel threads to compute the 30-bus system is about 43ms,

much higher than total commutation time of 9ms for the

sequential approach. In comparison, the proposed approach

stands out for large-scale systems, namely, speedup ratios of

the other six systems are 1.72, 5.89, 6.73, 5.74, 5.90, and 7.08.

 9

Thus, the proposed parallel approach would be more beneficial,

especially for systems of extremely larger scales.

B.5 Discussion on Speedup Ratios and Parallel Efficiency

To further test overall performance of the proposed fully

parallel PF approach, relationship between speedup ratio/

parallel efficiency and number of processors is explored.

Parallel efficiency [3] is calculated as sequential calculation

time over the product of computation time consumed in parallel

and the total number of involved processors.

Fig. 8 shows the relationship between speedup ratio/parallel

efficiency and number of processors for the 2383WP system, in

which CSM-NBBDF is considered as the base case. All parallel

computational time reported in Fig. 8 is average time of 100

tests to mitigate side effects of other potential tasks running on

the same computer. Fig. 8 shows that speedup ratio gradually

approaches to its saturation state of 6.73, when the number of

processors exceeds 25. That is, when the number of processers

is larger than that of maximum parallel tasks (which is 25 from

Table V), acceleration effects becomes saturate. Fig. 8 also

shows that parallel efficiency presents a decreasing trend

against number of processors. The reason is that, with a larger

number of processors, workload processed by individual

processors is smaller and consequently parallel efficiency will

gradually decrease.

Fig. 8 Relationship between speedup ratio/parallel efficiency and number of

processors for 2383WP system.

V. CONCLUSION

This paper proposes a fine-grained fully parallel PF approach

to enhance the computational performance, by incorporating

node-tearing based BBDF into NR method while also

implementing three major PF calculation steps in parallel.

Extensive simulation results show that:

(i) The proposed network segmentation method can derive

proper network partition schemes with relatively equally-sized

subnetworks and a small-sized coordination network, which

would help enhance performance of parallel PF calculation;

(ii) The idea of BBDF on parallelly calculating subnetworks is

further extended to compute state vector of the coordination

network in parallel, which is of significant benefit in improving

acceleration performance;

(iii) Implementing parallel computation on all three key steps

of PF calculation could achieve the best computational gains.

In summary, this work demonstrates significant computa-

tional benefits of the proposed fine-grained fully parallel PF

approach. If embedded into other power system applications

such as static security assessment that require repeated PF

computations, a significant computational improvement could

be expected. Future work will target on further improving

computational performance of the network segmentation

approach, and on integrating sparsity approach, vectorization

parallelization [7], and GPU technique to further accelerate

parallel PF calculation.

REFERENCES

[1] V. Roberge, M. Tarbouchi, and F. Okou, “Parallel power flow on graphics

processing units for concurrent evaluation of many networks,” IEEE

Trans. Smart Grid, vol. 8, no. 4, pp. 1639-1648, Jul. 2017.

[2] C. Guo, B. Jiang, H. Yuan, Z. Yang, L. Wang, and S. Ren, “Performance

comparisons of parallel power flow solvers on GPU system,” in 2012

IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications Performance, pp. 232-239, 2012.

[3] D. Chen, H. Jiang, Y. Li, and D. Xu, “A two-layered parallel static

security assessment for large-scale grids based on GPU,” IEEE Trans.

Smart Grid, vol. 8, no. 3, pp. 1396-1405, May 2017.

[4] X. Li, F. Li, H. Yuan, H. Cui, and Q. Hu, “GPU-based fast decoupled

power flow with preconditioned iterative solver and inexact Newton

method,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2695-2703, Jul.

2017.

[5] L. Ao, B. Cheng, and F. Li, “Research of power flow parallel computing

based on MPI and PQ decomposition method,” in 2010 International

Conference on Electrical and Control Engineering (ICECE), pp.

2925-2928, 2010.

[6] Y. Li, F. Li, and W. Li, “Parallel power flow calculation based on

multi-port inversed matrix method,” in 2010 International Conference on

Power System Technology Parallel, pp. 1-6, 2010.

[7] B. Zhang and S. Chen, Advanced Power System Network Analysis.

Tsinghua University Press, Beijing, 1996.

[8] B. Zhang, N. Xiang, and S. Wang, “Unified piecewise solution of

power-system networks combining both branch cutting and node

tearing,” Int. J. Electr. Power Energy Syst., vol. 11, no. 4, pp. 283-288,

Oct. 1989.

[9] R. Green, L. Wang, and M. Alam, “Applications and trends of high

performance computing for electric power systems: Focusing on smart

grid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 922-931, Jun. 2013.

[10] T. Yang, W. Xiang, H. Wang, and H. Pen, “An algorithm for solving the

block bordered diagonal form of electrical power system in data center,”

Proc. CSEE, vol. 35, no. 3, pp. 512-518, Feb. 2015.

[11] NVIDIA, CUDA Toolkit Document 2017. [Online]. Available:

http://docs.nvidia.com/cuda/incomplete-lu-cholesky/index.html.

[12] L. Wan, Y. Chen, and J. Chen, “Node migration based optimized network

partitioning strategy for power system parallel computation,” Power Syst.

Technol., vol. 31, no. 11, pp. 42-48, Jun. 2007.

[13] L. Wan and Y. Chen, “Stabilized border matrix newton parallel load flow

method,” High Volt. Eng., vol. 33, no. 4, pp. 106-109, Apr. 2007.

[14] N. Garcia, “Parallel power flow solutions using a biconjugate gradient

algorithm and a Newton method: A GPU-based approach,” Power Energy

Soc. Gen. Meet. 2010 IEEE, pp. 25-29, Jul. 2010.

[15] Y. Saad, Parallel Iterative Methods for Sparse Linear Systems 2nd ed.

Philadelphia, PA, USA: SIAM, 2001.

[16] J. Shu, W. Xue, and W. Zheng, “A parallel transient stability simulation

for power systems,” IEEE Trans. Power Syst., vol. 20, no. 4, pp.

1709-1717, Nov. 2005.

[17] R. Zimmerman, C. Murillo-Sánchez, and R. Thomas, “MATPOWER:

Steady-state operations, planning, and analysis tools for power systems

research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp.

12-19, Feb. 2011.

[18] C. Murillo-Sanchez, R. Zimmerman, C. Anderson, and R. Thomas,

“Secure planning and operations of systems with stochastic sources,

energy storage, and active demand,” IEEE Trans. Smart Grid, vol. 4, no.

4, pp. 2220-2229, Dec. 2013.

[19] X. Wang, X. Li, and G. Chen, Complex Network Theory and

Applications. Beijing, Tsinghua University Press, 2006.

[20] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,

“Defining and identifying communities in networks,” Prob. Natl. Acad.

Sci, vol. 101, pp. 2658-2663, 2004.

[21] T. Cormen, C. Leiserson, R. Riverst, and C. Stein, Introduction to

Algorithms. MIT Press, 2001.

[22] J. Clausen, “Branch and bound algorithms-principles and examples,”

Dep. Comput. Sci. Univ., pp. 1-30, 1999.

[23] W. Dong and M. Zhou, “A supervised learning and control method to

improve particle swarm optimization algorithms,” IEEE Trans. Syst.

Man, Cybern. Syst., vol. 47, no. 7, pp. 1135-1148, Jul. 2017.

[24] F. Gao,Intelligent Algorithm Super Learning Manual. Posts&Telecom

Press, Beijing, 2014.

4 8 12 16 20 24 28 32

1

2

3

4

5

6

7

8
 Speedup Ratio

 Parallel Efficiency

Processor (#)

1

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Parallel EfficiencySpeedup Ratio

 10

[25] http://people.clarkson.edu/~lwu/data/PF/Supp_Material_Parallel_PF.pdf.
[26] A.S.Vincentelli, L.O. Chua, and L.K. Chen, “An efficient heuristic cluster

algorithm for tearing large-scale networks,” IEEE Trans. Circuits Syst.,
vol. 24, no. 12, pp. 709-717, Dec. 1977.

[27] Microsoft .Net. Managed Threading, 2017. [Online]. Available:

https://docs.microsoft.com/zh-cn/dotnet/opbuildpdf/standard/threading/t

oc.pdf?branch=live.

BIOGRAPHIES

Xueneng Su (S’17) received the B.S. degree in electrical engineering from

Sichuan University, Chengdu, China in 2014, where he is currently working

toward the Ph.D. degree.

He has been a visiting Ph.D. student at Clarkson University, Potsdam, NY,

USA since 2017. His research interests include parallel computing and its

application on power systems.

Tianqi Liu (SM’16) received the B.S. and the M.S. degrees from Sichuan

University, Chengdu, China, in 1982 and 1986, respectively, and the Ph.D.

degree from Chongqing University, Chongqing, China, in 1996, all are in

Electrical Engineering. Currently, she is a professor in school of electrical

engineering and information at Sichuan University. Her main research interests

are power system analysis and stability control, HVDC, optimal operation,

dynamic security analysis, dynamic State Estimation and load forecast.

Lei Wu (SM’13) received the B.S. degree in electrical engineering and the

M.S. degree in systems engineering from Xi’an Jiaotong University, Xi’an,

China, in 2001 and 2004, respectively, and the Ph.D. degree in electrical

engineering from Illinois Institute of Technology (IIT), Chicago, IL, USA, in

2008. From 2008 to 2010, he was a Senior Research Associate with the Robert

W. Galvin Center for Electricity Innovation, IIT. He worked as summer

Visiting Faculty at NYISO in 2012. Currently, he is an Associate Professor

with the Electrical and Computer Engineering Department, Clarkson

University, Potsdam, NY, USA. His research interests include power systems

operation and planning, energy economics, and community resilience

microgrid.

