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Abstract—Wireless sensor networks have become integral com-
ponents of the monitoring systems for critical infrastructures
such as the power grid or residential microgrids. Therefore,
implementation of robust Intrusion Detection Systems (IDS) at
the sensory data aggregation stage has become of paramount
importance. Key performance targets for IDS in these environ-
ments involve accuracy, precision, and the receiver operating
characteristics which is a function of the sensitivity and the ratio
of false alarms. Furthermore, the interplay between machine
learning and networked systems has led to promising opportuni-
ties, particularly for the system level security of wireless sensor
networks. Pursuant to these, in this paper, we propose Adaptively
Supervised and Clustered Hybrid IDS (ASCH-IDS) for wirelessly
connected sensor clusters that monitor critical infrastructures.
The proposed ASCH-IDS mechanism is built on a hybrid IDS
framework, and transforms the previous work by continuously
monitoring the behavior of the receiver operating characteristics,
and adaptively directing the incoming packets at a sensor cluster
towards either misuse detection or anomaly detection module.
We evaluate the proposed mechanism by introducing real attack
data sets into simulations, and show that our proposal performs at
98.9% detection rate and approximately 99.80% overall accuracy
to detect known and unknown malicious behavior in the sensor
network.

Index Terms—Anomaly detection, misuse detection, intrusion
detection, machine learning, wireless sensor networks, clustering

I. INTRODUCTION

W ITH the wide usage and deployment of Wireless Sen-
sor Networks (WSNs) and their integration with the

Internet of Things concept, WSNs have been recognized as
robust tools to meet the requirements for monitoring critical
infrastructures such as smart grid, smart micro-grid, and/or
production/manufacturing assets. WSNs employ various types
of sensors, i.e., thermal and magnetic which help in moni-
toring the different aspect of systems such as pressure and
temperature [1], [2]. In long term and continuous monitoring
of these critical infrastructures, detection of malicious traffic
activity (i.e. intrusion) has become of paramount importance.

Majority of the existing intrusion detection solutions rely on
various data mining methods. These models have been verified
to be very effective [3] [4] [5]. Although there has been
remarkable progress in Intrusion Detection and Prevention
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research, sensor networks monitoring critical infrastructures
are still vulnerable to unknown attacks.

In this paper, we aim to address detection of known and
unknown intrusive behavior at the sensory data aggregation
stage of WSN-based critical infrastructure monitoring systems.
To this end, we propose an adaptive intrusion detection system
(Adaptive-IDS), namely Adaptively Supervised and Clustered
Hybrid Intrusion Detection System (ASCH-IDS) to classify
the aggregated data. In ASCH-IDS, data gathered by sensors is
directed into two machine learning-based subsystems namely
misuse detection subsystem and anomaly detection subsystem.
The former is effective in the detection of known attacks
whereas the latter is effective in detecting unknown attacks.
The Misuse Detection Subsystem (MDS) runs a random
forest-based classifier to detect known attacks. The classifier
basically compares the upcoming sensed traffic to attack
patterns that are known from the training data to identify
intrusive behavior. The Anomaly Detection Subsystem (ADS),
on the other hand, employs an Enhanced-DBSCAN classifier
to detect unknown attacks by comparing sensed data to normal
patterns in training data-set. The key question here is the
following: How to decide the destination subsystem for an
aggregated data stream? Can a probabilistic routing scheme
be used for forwarding the data to one of these subsystems
for analysis. In our proposed solution (i.e., ASCH-IDS), we
address these issues by adaptive supervision of our previously
proposed Clustered Hierarchical Hybrid-Intrusion Detection
System (CHH-IDS) [6]. The proposed scheme continuously
keeps track of the Receiver Operating Characteristics (ROC)
in each subsystem, and based on the improvement/degradation
of the ROC behavior, it adaptively adjusts the proportion of
aggregated data forwarded to one of the two subsystems.
Our simulations on real attack data demonstrates up to 99%
detection rate and up to 99.80% overall accuracy.

The rest of the paper is organized as follows: Section II
provides a background and related work to motivate the pro-
posed research. Section III presents the proposed ASCH-IDS
methodology. Section IV presents the performance evaluation
and relevant discussions on the proposal. Finally, the paper is
concluded with future directions in Section V.

II. RELATED WORK

As an example to WSN-based critical infrastructure moni-
toring scenario, effective IDS solutions against energy theft in
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the power grid have been proposed by introducing WSN-based
Advanced Metering Infrastructure (AMI) monitoring, and they
have led to significant amount of dollar savings [7]. In a similar
scenario, where an island of microgrid is monitored by a
WSN, communication blackouts may occur among the sensors
due to cyber attacks to the communication infrastructure [8].
Although there have been promising solutions against cyber
attacks, it is worth noting that in critical infrastructures WSNs
are deployed to monitor both cyber and physical infrastruc-
tures. For instance power sensors can be used to monitor and
control a residential microgrid [9]. A grand challenge in such
setting is the small size battery limitation of voltage sensors
[10]. Although these challenges read sustainability issues,
the integration of WSNs into a critical infrastructure such
as a residential microgrid, introduces vulnerabilities for the
cyber and physical infrastructures in the presence of malicious
attacks. Therefore, while aggregating the data reported by a
number of sensors, an effective IDS has to be implemented
that can protect the aggregated data from both known and
unknown attacks.

The primary goal of any IDS is to detect abnormal activity
and raise an alarm in order to secure the network [11].
Computational intelligence, including machine learning, fuzzy
logic and artificial neural networks, has been an effective
tool for the recognition of abnormal activities in network
traffic [12]–[14]. Basically, the objective of an IDS is to
distinguish regular behavior from intrusive behavior via binary
classification. Adaptive techniques for IDS have also been
considered to improve classification accuracy. The authors in
[15] presented a fully IDS validation process by using the
adaptive and automated testing paradigm. As another example
of an adaptive IDS, the study in [16] proposed the real time
Adaptive Model Generation (AMG) architecture to implement
data mining-based IDSs. In [17], the authors proposed a
methodology of anomaly-based IDS which used the game
theoretical approach. They designed a lightweight anomaly
detection technique by achieving a trade-off between detection
rate, energy consumption, and false positive rates [17].

To the best of our knowledge, an adaptive-IDS solution
for WSN-based monitoring applications to deal with both
known and unknown intruders remains an open issue. In
our proposed scheme, ASCH-IDS, we present a dynamic
adjustment methodology for the proportion of the sensed data
directed to the anomaly and misuse subsystems.

III. ADAPTIVELY SUPERVISED AND CLUSTERED HYBRID
IDS (ASCH-IDS)

The proposed IDS framework for WSNs builds on our
previous proposal, Clustered Hierarchical Hybrid-IDS (CHH-
IDS) [6], which is illustrated in a minimalist way in Fig. 1.
Table I presents the notation used in the description of the
proposed framework, ASCH-IDS, as well as its predecessor,
CHH-IDS.

A. The predecessor method: CHH-IDS

The predecessor, CHH-IDS operates on a clustered WSN
that consists of N clusters each of which is made up of

C sensor nodes. In each cluster, a Cluster Head (CH) is
responsible for aggregating the data forwarded by the sensor
nodes. Upon aggregation of the sensed data, the cluster head
forwards the data to a central server where the IDS is actually
deployed.

TABLE I
NOTATIONS USED IN ASCH-IDS SYSTEM MODEL

Notation Description
N Number of clusters
C Number of sensor nodes in each cluster
S Sensor Node
TP True Positive
FP False Positive
TN True Negative
FN False Negative

Si Index of a sensor node in a cluster, i ∈ {0, 1, , , c−1}
Tagg Aggregator trust value
Tn
agg Trust evaluation between the aggregator and node n
dn Degree of node n
∆n Degree difference of node n
SRSSn Sum of received signal strength of node n
τn Cumulative duration of node n being cluster head
Tn Trust value for node n
Mn Mobility factor of node n
Wn Combined weight of node n
w1 Weight factor for node n degree difference
w2 Weight factor for SRSSn

w3 Weight factor for node mobility
w4 Weight factor for node cumulative time

M1(ti) True positive to False positive ratio at time ti for
ADSs

M2(ti) True positive to False positive ratio at time ti for
MDSs

M1(4t) True positive to False positive ratio with time differ-
ence 4t for ADSs

M2(4t) True Positive to False Positive ratio with time differ-
ence 4t for MDSs

4t Time difference between (ti+1 − ti)
TP1(ti), TP2(ti) True Positive of ADSs and MDSs respectively at time

t1
FP1(ti), FP2(ti) False Positive of ADSs and MDSs respectively at time

t1
α Weight of the previous ROC characteristics in the

evaluation of M1(ti) and M2(ti)
I(ti) M1(ti)/M2(ti)
4R Adjustment (incremental/decremental) value for the

proportion of sensed data forwarded to a subsystem
Ra(ti) Proportion of incoming data directed to ADSs at ti
Rm(ti) Proportion of incoming data directed to MDSs at ti

As its predecessor CHH-IDS, ASCH-IDS, as well, adopts
the weighted cluster head selection algorithm [18], in which
the cluster head is selected based on the comparison of each
sensor weight with the other nodes inside its cluster. In the
weighted cluster head selection procedure, each sensor is
assigned a weight which is a function of its degree, Received
Signal Strength (RSS), and mobility. The selection method
goes through the following steps: i) Find the node degree dn
of each sensor, node degree refers to the number of neigh-
boring sensors. ii) Calculate the degree of difference ∆n, iii)
Compute the sum of RSS for node n (SRSSn), iv) Compute
the mobility factor of each sensor node (Mn), v) Compute
the cumulative time, τn which denotes the time passed since
n has been appointed as a cluster head (cumulative time),
and vi) Compute the combined sensor weight (Wn). The
combined node weight equation is represented in (1) below



where w1, w2, w3, w4 are the weighing factors for the system
parameters.

Wn = w1∆n+
w2

|1/SRSSn|
+ w3Mn + w4τn (1)

In the equation, ∆n = |dn − δ|, dn is the degree of node
n which refers to its neighbors, δ refers to the number of
nodes that a cluster head can handle while ∆n is the degree-
difference of node n and |1/SRSSn| is the normalized RSS
sum. Each sensor estimates its own weight, broadcasts it with
its ID and compares it to neighbors’ weight. The node with
the minimum weight is chosen as the cluster head [18].

B. Data aggregation procedure

In CHH-IDS [6], each cluster head aggregates the sensory
data from the other sensors in its corresponding cluster and
sends the aggregated data to the centralized sink. The data
aggregation method in [19] had been used in CHH-IDS.
The data aggregation method measures the aggregator’s trust
score based on the trust score of each sensor along with the
trust evaluation between the aggregator and the sensors [19].
We used the function in (2) [19] in CHH-IDS in order to
calculate the trust score of CHs which are represented as
the aggregators. In the equation, Tagg is trust value of the
aggregator, Tn is the trust value of node n, and Tn

agg is the
trust evaluation between the aggregator and node n.

Tagg =
(
∑n−1

n=0(Tn + 1) · Tn
agg)∑n−1

n=0(Tn + 1)
(2)

In CHH-IDS, the aggregated traffic undergoes two parallel
intrusion detection subsystems, namely the ADSs for the
unknown attacks and the MDSs for the known ones, which
refers to a hybrid system. ADSs of the CHH-IDS runs the
Enhanced-Density Based Spatial Clustering of Applications
with Noise (E-DBSCAN) algorithm. DBSCAN is a density
clustering algorithm in which it studies clusters as dense areas
of objects in the data space that are divided by areas of low
density objects [20]. MDSs in CHH-IDS uses the Random
Forest algorithm as a controlled classification method which
works in two phases; the training and the classification phases
[21]. It is basically a classification algorithm consists of tree-
structured classifiers collection where each tree sends a unit
vote for the most common class at each input [22].

C. Proposed Methodology

ASCH-IDS aims to keep track of the changes in the receiver
operating characteristics of the misuse and anomaly detection
subsystems, and adaptively adjusts the proportion of the sensed
data forwarded to one of these two subsystems. The True
Positive (TP) to False Positive (FP) ratios for ADSs and MDSs
at time ti are denoted by M1(ti) and M2(ti) as shown in Eqs.
(3)-(4) below.

M1(ti) =
TP 1(ti)

FP 1(ti)
(3)

M2(ti) =
TP 2(ti)

FP 2(ti)
(4)

Fig. 1. A minimalist illustration of the system model. The cluster head
aggregates sensed data from sensor cluster nodes. The aggregated data is
distributed between the anomaly detection and misuse detection subsystems
that.

Fig. 2. ASCH-IDS Flowchart for a single decision making process.

As ASCH-IDs is proposed for real time operation, the
TP/FP ratio is kept track as a running average value with time
steps (4t) as shown in Eqs. (5)-(6). It is worth noting that
4t=ti+1 − ti.

M1(4t) =
TP 1(4t)
FP 1(4t)

(5)

M2(4t) =
TP 2(4t)
FP 2(4t)

(6)



When the ROC behavior of the two subsystems during the time
step 4t is obtained, the overall ROC behavior per subsystem
can be calculated as a weighted sum of the current overall
ROC behavior and the behavior during the time step as shown
in Eqs. (7) and (8) shown below. In the equations, the α
parameter denotes the weight of the overall TP/FP value that
has been calculated so far and the TP/FP value during the time
step (4t) where ti+1 = ti +4t as described before.

M1(ti+1) = αM1(ti) + (1− α)M1(4t) (7)

M2(ti+1) = αM2(ti) + (1− α)M2(4t) (8)

Besides the ROC behavior in each subsystem, ASCH-IDS
also keeps track of the relative running average ROC behavior
of the two subsystems at any time ti. To this end, an indicator
I(ti) is introduced as shown in Eq.(9).

I(ti) =
M1(ti)

M2(ti)
(9)

The relative ROC behavior of the two subsystems is utilized in
the decision of forwarding aggregated sensory data as follows:
At time ti, if I(ti) > I(ti−1), ASCH-IDS interprets this situa-
tion as better performing of the anomaly detection subsystem
when compared to the performance of the misuse detection
subsystem. Thus, increasing the sensed data proportion on
the anomaly detection subsystem is expected to be beneficial
for improving the overall performance. On the other hand,
if I(ti) < I(ti−1), ASCH-IDS interprets the situation as
better performing of the misuse detection subsystem when
compared to the anomaly detection subsystem. In this case, the
intuition is that increasing the data proportion on the misuse
detection subsystem will help the IDS system improve the
overall performance. For instance, if I(ti+1) > I(ti), the
ASCH-IDS is to increase the proportion of sensory data on
M1 and decrease on M2 such as: Ra(ti+1) = Ra(ti) +4R
and Rm(ti+1) = Rm(ti) − 4R as formulated in Eqs. (10)-
(11) where 4R represents the proportional adjustment of
sensor data for each subsystem. An overview of these steps
is presented in detail in the flowchart in Fig. 2. It is worth
noting that the flowchart presents the flow of a continuous
decision procedure to adjust the sensory data proportion on
each subsystem.

Ra(ti+1) = Ra(ti)±4R (10)

Rm(ti+1) = Rm(ti)±4R (11)

IV. PERFORMANCE EVALUATION

We evaluate the performance of ASCH-IDS to demonstrate
the performance improvement of the adaptive IDS solution
over its predecessor CHH-IDS in terms of accuracy and
detection rates. To this end, we use the Network Simulator
version 3 (NS-3) [23] with the simulation settings described in
Section IV-A. In Section IV-B, we present performance results
in terms of accuracy, detection rate, ROC, and precision-to-
recall characteristics.

A. Simulation Settings

In the simulation environment, we simulate a WSN of
20 sensors that communicate via the Hierarchical-Dynamic
Source Routing (H-DSR) protocol. The sensors are grouped
in 4 clusters that spread out in a 100m x 100m area. We
repeat each scenario 10 times, and in the figures, we present
the average of ten runs with 95% confidence level. Table II
lists a detailed presentation of the simulation settings.

TABLE II
SIMULATION SETTINGS

Simulation parameter Value
Number of nodes 20
Routing protocol H-DSR
Number of clusters 4
Simulation time 600s
Packet size 250 bytes
Trust range [0,1]
Operational area 100m x 100m
Communication range 100m
Attack Types DoS,Probe,U2R,R2L
4R 0.03,0.05,0.1,0.15,0.20 and 0.25
α 0.7
INIT 0.5
DoS Attacks Smurf, land, pod, Neptune,

teardrop, back
Probe Attacks Nmap, portsweep, satan, ipsweep
U2R Attacks Perl, rootkit, buffer overflow, load-

module
R2L Attacks Imap, guess passwd, multihop,

phf,ftp write, spy, warezmaster,
warezclient

The Knowledge Discovery in Data mining (KDD) CUP
1999 Data-set is used to validate the efficiency of the proposed
ASCH-IDS system on the simulated WSN [24] [2]. The KDD
CUP 1999 ID data-set helps in evaluating different IDSs
methodologies. Attacks are considered under four categories as
follows: Denial of Service (DoS), Probe, User to Root (U2R),
and Remote to Local (R2L) attacks.

The KDD CUP 1999 ID data-set consists of three compo-
nents, which are presented in detail in Table III. The 10%
of KDD data-set is employed for the purpose of training,
it covers 22 attack types and represent a sub-set version of
the whole KDD data-set. On the other hand, the Corrected
KDD data-set provides a data-set with different distributions
other than the 10% KDD and whole KDD. The Corrected
KDD dataset covers 14 additional attacks. The analysis of the
ASCH-IDS is performed on the 10% KDD data-set since the
10% KDD works as a training set. To perform the experiments
successfully, KDD CUP 1999 data-set containing connection
records with variable distribution of attacks and normal classes
are used in the proposed ASCH-IDS. In addition, the testing
data-set proportion is different than the training data-set as
well as the test data-set includes some types of attacks not in
the training data-set.

B. Numerical Results

Accuracy (AR) refers to the ratio of the correctly classified
occurrences, which are represented by True Positive (TP ) and
True Negative (TN) as shown in Eq. (12) where FN and FP
are the False Negative and False Positive cases respectively.



TABLE III
KDD DATA SET DESCRIPTION [2]

KDD Data set DoS Probe U2R R2L
10% KDD 391458 4107 52 1126

Corrected KDD 229853 4166 70 16347
Whole KDD 3883370 41102 52 1126

AR =
TP + TN

TP + TN + FP + FN
(12)

AR has been traced for different scenarios in order to expect
the system performance with different data rates as shown
in Fig. 3. Fig. 3 illustrates the AR values for the anomaly
detection subsystem, misuse detection subsystem, CHH-IDS
and the ASCH-IDS. As seen in the figure, the proposed
adaptive methodology results in the highest AR of 99.76%.
The anomaly decision subsystem achieves better AR since the
misuse detection subsystem achieves the least AR. The best
AR was achieved by incrementing the data proportion on the
anomaly detection subsystem as well as with decrementing the
sensory data proportion on misuse detection subsystem with
rate of 4R = 0.25%.

Fig. 3. Accuracy rates of CHH-IDS under fixed 0.75-0.25, 0.25-0.75 and 0.5-
0.5 Ra − Rm distribution for Anomaly and Misuse Detection Subsystems
(ADS)(MDS), compared to ASCH-IDS with 4R = 0.25. By keeping track
of the ROC in the anomaly and misuse detection subsystems to adaptively
adjust the proportion of sensory data, ASCH-IDS improves the accuracy
significantly.

Detection Rate (DR) represents the ratio of sensor behavior
that is truly recognized as intrusive. In other words, it repre-
sents the True Positive (TP ) ratio as shown in Eq. (13) where
FP refers to False Positive. DR for different data proportions
scenarios has been traced in order to expect the system per-
formance with them as shown in Fig.(4). Fig. 4 illustrates the
DRs for the anomaly detection subsystem, misuse detection
subsystem, CHH-IDS and the proposed Adaptive-CHH-IDS.
The proposed ASCH-IDS – as a result of the adaptive decision
making by tracking the ROC behavior in each subsystem –
leads to the highest DR in detecting the intrusive behavior
sensors when compared to each of the individual anomaly
detection subsystem and misuse detection subsystem.

DR =
TP

TP + FP
(13)

Fig. 4. Detection rates of CHH-IDS under fixed 0.75-0.25, 0.25-0.75 and 0.5-
0.5 Ra − Rm distribution for Anomaly and Misuse Detection Subsystems
(ADS)(MDS), compared to ASCH-IDS with 4R = 0.25. By keeping track
of ROC in the anomaly and misuse detection subsystems to adaptively
adjust the proportion of sensory data, ASCH-IDS improves the detection rate
significantly. .

Another conclusion that can be made from Fig. 4 is that
the DR performance decreases by incrementing the data
proportion on the anomaly detection subsystem as well as by
decrementing the directed data proportion on misuse detection
subsystem.

Receiver Operating Characteristic (ROC) curve charac-
terizes the relationship between TP (Sensitivity) and FP
(1-Specificity) for diverse cut-off points. Sensitivity versus
specificity adjustment performance denoted by the area under
the curve such that better performance is represented by larger
area. ROC curves have been plotted for different scenarios in
order to test the system performance with different propor-
tional adjustment of sensor data as shown in Fig. 5. According
to ROC curves, setting 4R at 0.25, the overall performance
can be improved effectively.

Fig. 5. ROC curve for different 4R. Area under the curve is the largest
when 4R is set to 0.25.

Precision-Recall rate curve is presented in Fig. 6 where
recall and precision are formulated as TP/(TP + FN) and
TP/(TP +FP ), respectively. High recall and high precision
are required to achieve high performance. Therefore the closer
the precision-recall rate to one, the better the system perfor-
mance [25]. Figure 6 shows that ASCH-IDS with 4R = 0.25
achieves a relatively high precision to recall ratio compared
to other proportional adjustment of sensor data (i.e. other
4R values). Therefore, setting 4R at 0.25 achieves highly
effective performance with a recall of 99.8%, and a precision
of 90.1%.



Fig. 6. Precision - Recall for different 4R
V. CONCLUSION

We have proposed Adaptively Supervised and Intrusion-
Aware Data Aggregation for Wireless Sensor Clusters in
Critical Infrastructures. The proposed scheme is called Adap-
tively Supervised Clustered and Hierarchical IDS (ASCH-
IDS). ASCH-IDS adopts the previously proposed Clustered
Hybrid and Hierarchical IDS (CHH-IDS) which consists of
Misuse and Anomaly Detection subsystems. ASCH-IDS dy-
namically adjusts the proportions of sensory data directed to
the ADS and MDS based on an indicator that keeps track of the
receiver operating characteristic (ROC) behavior in each sub-
system. The predecessor, CHH-IDS exhibits a detection rate
and accuracy trade-off depending on the sensor data proportion
forwarded to one of the two subsystems. The proposed ASCH-
IDS undertook the intrusion problem by using adaptation
strategy using different data proportions on ADS and MDS
to detect dynamically known and unknown intrusions via
unsupervised and supervised machine learning techniques,
respectively. Thus, the adjustment on the data proportions
lead to adapting the probability of calling supervised (or
unsupervised) learning to detect intrusive behavior. We have
evaluated the performance of ASCH-IDS through simulations
and demonstrated that the proposed method performs with
≈ 99% detection rate and ≈ 99.80% accuracy in the presence
of known and unknown malicious behavior in the WSN.
Furthermore, we have pursued an empirical study on the
ROC curve of the ASCH-IDS under various step values to
increment/decrement the sensory data on a subsystem. We
have shown that setting the incremental/decremental step value
aggressively to 25% can ensure the best performance.

We are currently working on the implementation of fast
optimization models to find the optimal sensory data dis-
tribution between the subsystems under varying conditions.
Furthermore, we are investigating the impact of heterogeneous
cluster sizes on the performance of our proposed solution.
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