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Abstract—The amount of connected devices has been growing
tremendously over the past decade. These connected devices
range from the traditional smart phones to electrical appli-
ances, solar panels, converters, electric vehicles and wearables.
Satisfying their connectivity demand is adding pressure to
the wireless networks which are already pressed with serving
their bandwidth-hungry mobile users. LTE Unlicensed (LTE-U)
aims to exploit the unlicensed spectrum to offload mobile user
(LTE users) traffic, increase capacity, and hence improve the
user/device experience in an era of inflated demand. Meanwhile,
WiFi is the dominant technology operating at the unlicensed
spectrum. Therefore, LTE-U needs to ensure the performance of
WiFi users do not degrade as LTE users offload their traffic.
In this paper, we propose a Q-learning based medium access
approach to enhance the Listen Before Talk (LBT) mechanism of
LTE-U. Q-learning based LBT helps with the co-existence issue by
enhancing the performance of WiFi users at times when LTE-U
users try to access the unlicensed bands. Our results show that the
proposed Q-learning based LBT reduces the end-to-end delay of
WiFi users in the order of several tens of seconds in comparison to
the standard LBT implementation. It also increases the delivery
success rate of WiFi traffic by up to 71%.

Index Terms—Medium access, Listen before talk (LBT), LTE-
U, Q-learning.

I. INTRODUCTION

User expectations from wireless networks are constantly in-
creasing. However, the capacity of wireless networks is limited
due to the scarce spectrum resources. Mobile applications on
smart devices along with the addition of Internet of Things
(IoT) devices increase the demand for high data rates, low
delay and better coverage. Even though cellular networks are
traditionally designed for mobile outdoor users and wireless
personal area networks (WLANSs) are for satisfying the high
bandwidth demand of indoor stationary users, recently there
is growing interest for adoption of Long Term Evolution
(LTE) cellular technology in WLANs. LTE Unlicensed (LTE-
U) technology aims to seamlessly persist indoors and make use
of the unlicensed bands by allowing LTE users to offload their
traffic to the global Industrial, Scientific and Medical (ISM)
channel at 5GHz. Since WiFi has long been the dominating
technology for WLANSs and a primary user in the ISM band,
LTE-U base stations are expected to co-exist with WiFi access
points.

LTE-U exploits the Listen-Before-Talk (LBT) mechanism
for channel access where the transmitter first senses the
medium and transmits only if the medium is idle, i.e. other
LTE or WiFi devices are not transmitting. This mechanism has
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been defined in 3GPP release 13 for random channel access of
Licensed Assisted Access (LAA) [1]. LAA aims to enhance
LTE performance by carrier aggregation in the downlink by
combining the unlicensed spectrum with the licensed LTE
bands. LTE-U adopts the LBT mechanism of LAA but the
major concern for LTE-U is the co-existence of LTE users with
the WiFi users. The existing LBT mechanism is designed in
such a way that LTE users defer transmission if the channel
is busy. Thus, LTE avoids dominating the unlicensed band.
However, there is still room for improvement in spectrum
sharing, in particular by learning the deferring behavior.

In this paper, we propose a Q-learning based LBT mech-
anism that aims to improve the performance of WiFi traf-
fic while still giving LTE traffic a reasonable amount of
bandwidth. Our technique uses a Q-table to store the defer
period of an LTE user. The defer period is increased using
a reward mechanism when WiFi users experience increase in
backoffs. According to this reward, the Q-table is updated.
The reward function seeks to reward higher defer periods for
LTE traffic for the benefit of the overall WiFi performance. In
our simulations, we show that the proposed Q-learning based
LBT scheme significantly improves the end-to-end delay and
delivery success rate of WiFi. This comes with a tradeoff in
LTE performance. We also evaluate the impact of contention
window (CW) on the performance and further show that both
WiFi and LTE can perform better at CW = 30 rather than the
default CW set to 15.

The paper is organized as follows: Section II provides
background on related studies. Section III presents the system
model and the proposed Q-Learning based LBT mechanism. In
Section IV, we show the performance of our proposed scheme
and conclude the paper in Section V.

II. RELATED WORK

There is a growing interest from the academia and the
industry for LTE-U technology. MulteFire Alliance provides
an LTE-U solution which aims to provide LTE-like perfor-
mance with the WiFi-like simple deployments [2]. The major
challenge is the coexistence and fairness issues between LTE
and WiFi. In [3], a relay-based communication scheme is
proposed in which LTE would announce its presence when it
would like to use the unlicensed spectrum. In [4], the authors
replace LBT with a Q-learning based carrier selection and
discontinuous transmission mechanism. Meanwhile, in [5], the
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authors tune the contention window to achieve fair spectrum
sharing between LTE and WiFi as well as for fair service
differentiation. Furthermore, reinforcement learning has been
used for resource allocation in LTE-U in [6]. The authors
propose a new LTE-U frame structure where blank sub-frames
are allocated using Q-learning. Reinforcement learning has
been also used for LAA where the authors use a time duplex
modulation assuming the IEEE 802.11n beacon transmission
mechanism [7]. In our work, we use LBT mechanism and
enhance it by learning the defer durations. We use the existing
frame structures with minimal changes to the standard. We also
evaluate the impact of contention window on the performance
of our proposed scheme.

III. PROPOSED SCHEME
A. System model

The network consists of one LTE access point and one
WiFi access point which share the ISM band at SGHz. Dyrg
denotes the set of LTE users with the number of LTE users
given as |Dyrg|= Nrre. Dwip: denotes the set of WiFi users
with the number of WiFi users given by | D fi|= Ny, ¢i. Each
nrre € Diprge accesses the unlicensed spectrum using the
Q-learning based LBT mechanism. Each n.,;¢; € D, uses
the CSMA/CA medium access mechanism of IEEE 802.11.
According to LBT, each nypg first senses the medium and
transmits only if the medium is idle which is also called as
Clear Channel Assessment (CCA). The LTE device is assumed
to have an access manager object that can listen for WiFi users’
state transitions and that can observe WiFi backoffs.

B. Q-learning based LBT Mechanism

The proposed scheme uses Q-learning to adaptively learn
the user traffic on the unlicensed spectrum and coordinate the
access of LTE and WiFi users. The goal is to schedule LTE
traffic such that the performance of WiFi users is not degraded
while LTE users maintain acceptable access to the medium.

The first step of the Q-learning based LBT mechanism is
the initialization of the Q-table with state-action pairs which
are randomly generated defer periods for LTE base station
(eNodeB-eNB). In LBT, the defer period is defined as the
duration an eNB waits after a successful CCA. At each
iteration of the learning stage, a value from the Q-table is
picked for deferring LTE transmission while observing the
backoff for WiFi. If the selected value increases the backoff
for WiFi, then a larger defer period is set using the reward
function. The Q-table is updated as follows [8]:

Qls,a] « (1—a)Qls,a] +a{R(s,a,s") +v(maz,Q[s',a'])}

Here, s and s’ denote the current and new states while a and
a’ denote the current and new actions, respectively. « is the
learning rate and +y is the discount rate. R(s, a, s’) defines the
reward received for the transition from the state s to the new
state s’ by executing the action a. The proposed scheme only
impacts the medium access mechanism of LTE. The reward
for LTE devices increase, if their defer time is increased when
the observed backoff of WiFi is increasing. This means if WiFi

is experiencing higher backoffs, LTE devices are given larger
defer times so that they would yield to WiFi traffic.

The performance of the proposed scheme is compared
with the existing LBT mechanism. In the LBT mechanism
originally designed for LAA [9], a transmitter first performs
CCA. If during the CCA, the medium is sensed busy, an
extended CCA (ECCA) is invoked where the channel is
monitored for multiples of the CCA time [10]. This allows
the traditional LBT to yield to WiFi however it does not
observe the performance of the WiFi and learn from the traffic
conditions unlike the proposed scheme.

IV. PERFORMANCE EVALUATION

We present the performance of our reinforcement learning
based technique in terms of end-to-end delay and packet
delivery success. We compare our scheme with the existing
LBT mechanism which is referred to as the *Base scheme’ in
the plots. The simulations are conducted using NS3 network
simulator [11]. N7 and Ny, y; vary between 1 and 10. The
energy detection threshold is set to -72dB according to LAA
specifications [12]. The rest of the simulation settings are given
in Table I. We provide the averaged results of 5 runs with 95%
confidence intervals. The training period of Q-learning is set to
1000 iterations. The presented results are the following 1000
iterations after the training period.

TABLE 1
SIMULATION SETTINGS.

LTE Base station transmit/receive antenna gain 5dB

WiFi Base station transmit/receive antenna gain 3 dB
LTE Base station transmit power 18 dBm
WiFi Base station transmit power 14 dBm

Base station noise figure 5 dB

User equipment transmit/receive antenna gain 0 dB
LTE User equipment transmit power 18 dBm
WiFi User equipment transmit power 14 dBm
User equipment noise figure 9 dBm

Propagation Loss Model Log Distance

Energy Detection Threshold -72.0 dB

Contention window size 15,30

Transport protocol UDP

Traffic Type Constant Bitrate

In Fig. 1, we provide the end-to-end delay for varying
number of LTE and WiFi users. In these simulations, each
set of runs include equal number of LTE and WiFi users with
a mixture ratio of 1:1. Base WiFi and Base LTE show the
performance of WiFi and LTE users under the existing LBT
mechanism, respectively. The contention window is set 15
which is the default setting. Our results show that the proposed
Q-learning based LBT scheme is able to reduce the delay
of WiFi users significantly in most cases. This comes with
a tradeoff for LTE users in particular for Nyrp < 14. Since
LTE users are considered as secondary users of the unlicensed
spectrum, the Q-learning algorithm makes them yield to WiFi
users. When Nprp > 14, the two schemes converge in
performance because the network reaches saturation. In Fig.
2, we increase the contention window (CW) size to 30, to
observe its impact on end-to-end delay. Our results show that
even further improvements are achieved when C'W = 30. For
clarity, the same curves from Fig.1 and Fig. 2 are plotted in
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Fig. 1. End to end delay for increasing number of LTE and WiFi users for
the proposed Q-learning based LBT and standard LBT mechanism (denoted
by ‘Base’). The number of LTE and WiFi users is set to be equal.
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Fig. 2. End to end delay for increasing number of LTE and WiFi users.

Fig. 3, which compares the Q-learning algorithm for CW=15
and CW=30. In particular, LTE users can benefit from a
higher contention window when the number of LTE users
exceed 6. For 20 users (10LTE:10WiFi), our results show an
improvement in reduction of delay as high as 286ms for LTE
users while WiFi users experience a delay reduction reaching
58ms. Note that, these delays may be tolerated by delay-
tolerant applications but not by mission critical applications.
Based on this observation, we use C'W = 30 for the remaining
set of simulations.

In Fig. 4, we show the delivery success rate for WiFi and
LTE traffic with respect to increasing number of WiFi and
LTE users (using the 1:1 ratio). The success rate achieved by
WiFi using the proposed Q-Learning based approach is always
greater than that of the existing LBT scheme. This comes at
the expense of performance degradation for LTE users, as seen
in the figure. In the following set of results, we consider only
1 WiFi user competing with increasing number of LTE users
to eliminate the impact of multiple WiFi users competing with
each other. In Fig. 5, we present the end-to-end delay for both
WiFi and LTE traffic as the number or LTE users increase in
the network. As more LTE users try to share the unlicensed
spectrum, the delay for the WiFi user increases. Our proposed
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Fig. 3. End to end delay under varying number of LTE and WiFi users, and
CW =15 and CW = 30.
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Fig. 4. Delivery success rate under increasing number of LTE and WiFi users.

approach incurs less increase in delay for WiFi, in comparison
to traditional LBT mechanism. As for the end-to-end delay of
LTE, the Q-learning based scheme incurs higher delay for few
LTE users but eventually the delay approaches to the delay of
the base scheme as the number of LTE users increase to 6.
The reason for this behavior has been explained before. Once
again,the existing LBT scheme defers LTE transmission as
well, but not as aggressive as ours. For higher number of nodes
the deferral inevitably incurs high delays. In Fig. 6, we present
the delivery success rate of the traditional LBT scheme and
the Q-learning scheme under increasing number of LTE users.
The contention window is set to 30. In these set of results,
the WiFi user is able to attain 100% success rate with our
proposed scheme which is a significant improvement (60%
improvement over the Base WiFi). Meanwhile, LTE traffic
experiences almost 30% losses as they yield to WiFi.

In Fig. 7, we compare the results for CW = 15 and CW =
30 for the integrity of our evaluation. Even for CW = 15, the
delivery success rate of WiFi reaches 75%-80% while in this
case LTE performance is not impacted. Our results, show that
both the proposed Q-learning-based approach and the existing
LBT mechanism favor WiFi users which is desired. However,
our approach has better performance for WiFi, achieving less
delay and higher delivery success rate. This naturally impacts
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Fig. 5. End to end delay under increasing number of LTE users.
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Fig. 6. Delivery success rate under increasing number of LTE users.

L] * N
e . " & » s - - a "
- _ d

. . 4 0Bi52 i
il e —_—— - e e B e —
~—-— L 2 —a e y—
—_— |
: .
= B

Fig. 7. Delivery success rate under increasing number of LTE users and
varying size of contention window (15 and 30).

the performance of LTE users which indicates that LTE traffic
would use the licensed bands under heavy WiFi existence.

V. CONCLUSION

In this paper, we proposed a Q-learning based Listen Before
Talk (LBT) mechanism that increases the delivery success
rate and reduces the end-to-end delay of WiFi traffic. The
proposed scheme observes the backoff for WiFi users which
is an indication of how well users make use of the shared
medium. If the backoff is increasing, then the defer period
of LTE users is increased so that they can yield to WiFi
traffic. The Q-learning mechanism help the LBT mechanism
to learn the defer times. Our results show that, the proposed
scheme reduces the end-to-end delay of WiFi significantly
while increasing its delivery success rate. This comes at the
expense of performance degradation of LTE. However, in
many countries LTE-U mechanisms are required to yield to
WiFi in the unlicensed spectrum. Therefore, this behavior is
expected. In our simulations, we further investigate the impact
of contention window on the performance. Our results show
that larger contention window favors WiFi performance.

In our future work, we plan to optimize the Q-learning
algorithm and the training of the network. There is room
for improvement in the fairness of the proposed approach.
Therefore, we plan to design the objective of the Q-learning
algorithm to consider fairness in addition to other metrics.
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