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Abstract—The immersive tactile applications that are emerg-
ing in the entertainment, education and health industries are
anticipated to be available for mobile users in the close future.
These applications are data-intensive and delay-sensitive due
to the nature of information that is being exchanged. With
today’s mobile networks, the throughput and latency challenges
are the major roadblocks for mobile users. In this paper, we
propose a resource allocation technique with the aim of increasing
throughput and reducing latency of Data Intensive Devices
(DIDs). We consider the coexistence of DIDs with traditional
User Equipments (UEs) on a two-tier, densely deployed network
of Small cell Base Stations (SBSs) and eNBs. We propose a Q-
learning-based resource allocation scheme, namely, Throughput
Maximizing Q-Learning (TMQ) that learns the efficient resource
allocation of both SBSs and eNB. The proposed technique is
compared with well-known Proportional Fairness (PF) algorithm
in terms of average throughput, delay, and fairness. Simulation
results show significant improvement in throughput, 80% reduc-
tion in delay, and 6% increase in fairness.

Index Terms—Immersive communications, Resource alloca-
tion, Small cell networks, Q-Learning, tactile applications.

I. INTRODUCTION

Immersive communications is concerned with the real-time
exchange of natural social signals between people at different
locations in a way that mimics face-to-face interactions [1].
This new form of information exchange can be visual or even
tactile. Tactile refers to transmission of signals to deliver the
feeling of touch, while in general Tactile Internet refers to
an extremely reliable, secure and ultra low-latency network.
Tactile information can be used to train students and medical
staff on clinical skills [2], anatomical evaluation [3], or
guide surgeons in intraoperative surgery [4]. In parallel to
tactile applications, augmented and virtual reality (AR/VR)
applications are emerging to serve health, entertainment
and education [5]. Most of these technologies have not
been initially developed for mobile users. Only recently,
they are being considered for mobile users. However all
of the mentioned, immersive tactile applications require a
high-throughput and low-latency network performance which
is beyond the capacity of the state-of-the-art wireless mobile
networks.

In this paper, we consider a small cell network of SBSs
and an eNB where a large number of DIDs coexist with UEs.
This calls for efficient use of time and frequency resources
which is essentially a resource allocation problem. We address

resource block allocation using reinforcement learning, more
specifically Q-Learning. Q-Learning is a machine learning
algorithm, which offers fast and sub-optimal results in model-
free environments [6]. Our proposed Throughput Maximizing
Q-Learning (TMQ) algorithm performs resource allocation in
dense small cell networks with an objective of maximizing
throughput and minimizing delay.

In the literature, resource allocation schemes span from
traditional Round-Robin (RR) and Proportional Fairness (PF)
to recent reinforcement learning based schemes. Authors in
[7] provide a Universal Software Radio Peripheral (USRP)-
based Q-Learning implementation for femtocell interference
mitigation. The algorithm aims to maximize the femtocells
aggregate capacity without sacrificing macrocell capacity.
In [8], the authors propose a heuristic power and resource
block allocation algorithm for haptic communications. The
algorithm follows a steepest descent approach to decrease
the difference between the uplink and downlink rates. In [9],
the authors utilize distributed and centralized Q-Learning
algorithm to improve the system performance in ultra-dense
heterogeneous cellular network.

On the other hand, low-latency is a critical QoS requirement
for tactile applications [10]-[13]. Therefore, in this paper, we
address the resource block allocation for network throughput
maximization while achieving low packet delay for tactile
communications. We develop a throughput-maximization
algorithm based on Q-Learning. We show that by combining
the two-tier network model and careful design of TMQ
reward, the algorithm can improve multiple network metrics
simultaneously. In summary, our algorithm increases the
throughput notably, achieves 80% reduction in delay, and 6%
increase in fairness.

The paper is organized as follows. We first discuss the
related work in section II. The network model and problem
formulation are presented in Section III. The proposed Q-
Learning algorithm and the comparison algorithm are dis-
cussed in Section IV. Section V demonstrates the simulation
results to show our scheme’s performance. And Section VI
concludes the paper.
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II. RELATED WORK

In the literature, several studies have used reinforcement
learning techniques for enhancing network performance.
In [14], the authors proposed a distributed co-operative
Q-Learning algorithm for power allocation with the aim of
maximizing femtocells capacity, while guaranteeing a certain
macrocell interference level. In [15], the authors employ
Q-Learning to perform spectrum and power allocation
to improve capacity of D2D communications in cellular
networks. The paper [16] addresses the minimization of
energy consumption in heterogeneous cellular networks while
maintaining the Quality-of-Service (QoS) of the mobile users.
To solve the curse of dimensionality problem, the authors
propose to use centralized and decentralized Q-Learning
algorithms. Meanwhile, in [17], the authors use Q-Learning
to improve the femtocells spectral efficiency. The number of
subchannels are dynamically adjusted by different frequency
reuse factors. Furthermore, the authors in [18] consider the
resource allocation problem in LTE-U systems. They perform
user association, spectrum allocation, and load balancing
using a decentralized expected Q-Learning algorithm.

In [19], the authors propose three variations of the Q-
Learning algorithm, one to capture accurate information
about the channel, another to consider Signal to Interference
plus Noise Ratio (SINR) of different cells, and a third one to
jointly consider the behaviour of users and channel conditions
to perform spectrum allocation. Results demonstrate the
spectrum allocation efficiency and SINR values during
transmission. In [20], the authors address the improvement
of the Q-Learning slow convergence through the introduction
of smart initialization procedure. Hence, they utilize this
to perform power control for throughput improvement in
LTE femtocell networks. In [21], the authors use non-
deterministic Q-Learning scheme to perform the spectrum
allocation to secondary users in cognitive radio networks,
in which aging can remove the starvation of low-priority users.

Previous works either focus on improving one metric at a
time (e.g., spectral efficiency, throughput, etc.), or use the Q-
Learning approach with special initialization conditions. In our
work, we aim to jointly improve latency and throughput; We
do not enforce initialization conditions; And we use a two-
tier heterogeneous network where the Q-Learning algorithm
works at both tiers. Our results show that network throughput,
delay, and fairness can be improved compared to a well-known
resource allocation schemes. This is facilitated through careful
design of the action-space and reward function as explained
in the following sections. As with other learning based ap-
proaches Q-learning needs time for exploring. Therefore, the
performance is expected to improve over time.

III. NETWORK MODEL

The system model constitutes a two-tier network with one
eNode-B (eNB), J Small-cell Base Stations (SBSs), and N
user devices per SBS (Figure 1). Network users can be
classified as either Data-Intensive Devices (DIDs), or User

Equipments (UEs). DIDs can be haptics gadgets, AR/VR
devices, mobile ultrasound, etc., whereas UEs are conventional
users of the mobile network such as smart phones. All nodes
comply with LTE standard’s Downlink (DL) and Uplink (UL)
communication release 12 [22]. According to the standard,
each frame consists of 10 subframes of 1 milli-seconds du-
ration. LTE resource grid consists of Nrp resource block
(RBs), where the RB is a collection of frequency subcarriers
and spans two time slot durations (i.e., time slot = 0.5 msec).
Each M contiguous RBs are combined to form one RB Group
(RBG). The resource allocation process is performed each
Time-To-Transmit Interval (TTI) (TTI = one subframe) by
allocating RBGs to the covered nodes. On the other hand,
we consider uniform power allocation. We utilize the Almost-
Blank SubFrame (ABSF) to reduce the cross-tier interference.
In particular, each tier performs its uplink transmission in
different subframes in an interleaved manner.

LTE eNB

Fig. 1. Data-intensive and tactile application users over small cell wireless
networks.

A. Two-tier Allocation in the Small Cell Network

In this paper, resource block allocation is performed to
maximize the DIDs throughput. The proposed algorithm is a
Q-Learning-based approach, performed on the two-tiers (i.e.,
on both eNB and SBSs). The algorithm utilizes the Channel
Quality Indicator (CQI) and the recent packet rate sent to each
Base Station (BS) to update its state and reward function.

B. Problem formulation

The transmission rate of the link between user ¢ connected
to BS j (i.e., link (¢, 7)) can be formulated as:

K
Rij = ik Cijp (D
k=1 P
g,k 9,5,k
Ciir =Wy 1092(14- LoJ )
e Wi No + > Tk Prik Gmik
m#i
meN z

(2)

Here, R;; denotes the total rate of ith user attached to
j" BS. ;) is a binary variable and it is 1 if k' RB is
allocated to i*" user that is attached to j** BS, otherwise 0.
C; j, denotes the user rate on RB k. W, is the bandwidth
of RB k. Ny is the Additive White Gaussian Noise (AWGN)

single-sided power spectral density. P; ;. is the transmission
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power. g; j r is the channel coefficient on link (¢, j) at RB k.
P, j1 and g, ; 1 are the transmission power and the channel
coefficient of interfering user m, respectively.

Resource allocation can be formulated as an optimization
problem aiming to maximize network rate:

J N;
Maximize 2z = g E R; 3
Jj=11i=1

However, optimization-based centralized approaches do not
scale well with the dynamic nature of the network. Therefore,
we propose to use a Q-Learning-based approach. Q-Learning
has the potential to reduce the computational complexity
and improve the convergence speed. Moreover, the proposed
algorithm is decentralized and independent. In other words, it
can achieve the desired performance, in terms of throughput
and delay, without having to share Q-Learning information
between the active nodes. In the following section, we present
the internal design of the algorithm and highlight its main
features.

IV. THROUGHPUT-MAXIMIZING RESOURCE ALLOCATION
USING Q-LEARNING (TMQ)

TMQ utilizes the Q-Learning algorithm, which is a
Reinforcement Learning algorithm that aims to achieve a
sub-optimal decision policy by selecting the actions having
the maximum expected reward. In our model, we apply the
TMQ on both network tiers of our network model (i.e., eNB,
and SBSs). The eNB performs TMQ to allocate RBs to its
attached SBSs, while SBSs perform it to allocate RBs to its
attached users. Each tier agent can estimate the link quality
by utilizing the CSI feedback from its users.

To facilitate a distributed and self-organizing approach,
a multi-agent scenario is considered, in which agents are
eNB and SBSs. The actions are the set containing all the
RB allocation possibilities to active users (a; ). Hence,
a;j ;¢ is the action of user ¢ attached to BS j at time (TTI)
t. Obviously, this leads to a curse of dimensionality as the
action-space dimension will increase dramatically with the
number of users. For instance, a SBS covering 10 users and
performing allocation using 50 RBs will have 10°° actions
to choose among. Instead, allocation can be performed in a
group of contiguous RBs, namely Resource Block Groups
(RBG). In this paper, we use a RBG of size 10 RBs. This
significantly reduces the action-space to become N(K/10)
where N is the number of users and K is the number of RBs.
This improves the convergence of the algorithm significantly.

In TQM, the reward function aims at maximizing the rates
of both DIDs and UEs. The priority given to traffic types of
devices are managed by Vprp and ¥y g which are defined
as follows:

2
lI’D]D = (;) arctan(RDID) (4)

2
Uyp = (;) arctan(Ryg) (5)

where, Rprp, and Ryp are the peak rates for DIDs and
UEs, respectively. Then, the reward function can be defined
as follows:

RCj(aj) =B ¥Ypip+ (1 —-5) Yug (6)

where RC)j(a; ) is the reward function of BS j for the action
aj, of its covered users. a;, represents the RB allocation
to users attached to BS j at TTI ¢. 3 is a scalar weight to
control the priority among devices and their traffic types.
Thus, the reward function aims at maximizing both the DID
and UE rates while giving higher priority to the critical load
by increasing the parameter /3.

The Q-Value is updated using Bellman’s equation as follows
[23]:

Q(aj) = (1—a)Q(aj ) +a[RC(aj) + Igljafi Qaj)] (D

where « represents the learning rate and + is a discount factor
that determines the importance of future rewards.

The Q-Learning policy is to select the action that maximizes
the Q-value as in eq. 8:

Tj = argmax Q(aj ) (8)

Figure 2 presents the flow-chart of the TMQ algorithm
performed by each BS j. To account for action exploration,
Q-Learning utilizes the e-greedy algorithm to select actions
randomly with probability (¢) (Exploration), or using policy
in eq. 8 with probability (1 — €) (Exploitation). Afterwards,
the agent observes the new reward and state, it updates the
Q-value, and reports the selected actions to the users so that
they perform UL/DL communications. Last, the throughput
is estimated by the agent to be used in the next iteration.

Performance comparison is conducted between our algo-
rithm and a well-known algorithm from the literature: Propor-
tional Fairness (PF). PF algorithm allocates the RBs to the
users having a maximum relative channel conditions, with an
intent to have fairness on the long-run [24].

V. PERFORMANCE EVALUATION

Our simulations are performed using the Matlab LTE
toolbox. Our settings incorporate one eNB with a radius of
800 meters, covering 10 SBSs, each with 50 meters radius
[25]. In all simulation figures, a fixed number of 5 UEs per
SBS is considered, while number of DIDs is changed from
4 to 12 with a step of 2. The 3GPP pathloss model is used
[26]: PLsgpp = 128.1 + 37.6 * log(dg.m ), where dg,, is
the distance in Km between the BS and the user. Shadowing
is drawn from a log-normal distribution of zero-mean and 8
dB variance while penetration loss is set to 20 dB [27], and
the receiver noise is set to 5 dB. TMQ learning rate « is 0.5,
discount factor v is 0.9 [28], and exploration probability (€)
of 0.2. We consider two traffic types. For devices running
tactile applications we adopt the Beta distribution as defined
in 3GPP for Machine-Type Communications (MTC) [29], and
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initialize SBS j

Input: R; ;
Initialize: Q-Table <— 0
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random
number r
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N
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(Equation 6)

S

N

Update Q(a; ;)
(Equation 7)

S

N

Perform UL/DL
transmissions

i

= .
Estimate I?; ;
(Equations
1), and (2)

Fig. 2. TMQ algorithm running on each SBS j (also works for eNB)

the traditional user traffic is modeled as Poisson distribution
with interarrival time 5ms. Simulations are performed and
averaged for 5 runs. Table I summarizes the simulation
parameters.

The performance is analyzed in terms of average
throughput, average packet delay, average queuing delay, and
fairness. We define delay as the total transmission delay from
a user to an eNB, starting from the packet generation time.
The queue waiting delay is the aggregate waiting time the

TABLE I
SIMULATION SETTINGS

Number of eNBs 1
Number of SBSs per eNB 10
Number of DIDs per SBS 4:2:10
Number of UEs per SBS 5
eNB radius 800 m
SBS radius 50 m
Min distance between SBSs 30 m
Traffic arrival model DIDs: Beta [29]
UEs: Poisson
Packet mean Inter-arrival time 5 milli-seconds
Packet size Exponential (mean = 25 Bytes)
Modulation Schemes QPSK, 16-QAM, 64-QAM
Bandwidth 10 MHz
Number of RBs 50
Resource Block Groups 10
eNB power transmit 46 dBm
SBS power transmit 20 dBm
Pathloss model 3GPP
PLyp = 128.1 + 37.6 = log(d)
Penetration loss 20 dB
Noise Figure 5 dB
Shadowing ~ LOGN(0, 8 dB)
Simulation time 500 TTIs
« (Learning rate) 0.5
7 (Discount factor) 0.9
[ (Priority weight of DIDs) 0.9
¢ (Exploration probability) 0.2
Confidence Interval 95%

packet experiences throughout its transmission (i.e., waiting
in the device queue, and waiting in SBS queue).

Figures 3 and 4 present the average and peak throughput
versus number of DIDs. Figures 3a and 4a shows the DID
throughput. It can be seen that TMQ outperforms PF both
for average and peak throughput. Meanwhile, TMQ improves
DIDs throughput without compromising the UEs throughput.
As seen in Figures 3b and 4b, UE throughput is also higher
than the case with PF.
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Fig. 3. Average throughput for (a) DIDs and (b) UEs (10 SBS, 5 UEs per
SBS)

Figure 5 presents the average packet delay in milli-seconds
versus the number of DIDs. As seen from the figure, TMQ
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(a) Peak DIDs throughput
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Fig. 4. Max-user throughput for (a) DIDs and (b) UEs (10 SBS, 5 UEs per
SBS)
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Fig. 5. Average packet delay [ms] for (a) DIDs and (b) UEs (10 SBS, 5 UEs
per SBS)

achieves the lowest total packet delay. On the other hand,
Figure 6 shows the average queuing delay experienced by
both algorithms. The waiting time is a direct outcome of the
scheduling time, where it constitutes the time the user waits
for getting a RB allocation from its BS. This result reflects
that most of the packet delay comes from the scheduling time,
which was significantly improved using the TMQ algorithm.
As seen from the figures, TMQ achieves 80% decrease in
delay for the highly-dense scenario (i.e., number of DIDs =
100). In addition, both algorithms do not incur any outage.
It is worth noting that the achieved delay is still higher than
QoS requirements of tactile applications. The reason is that
the minimum scheduling unit in LTE networks is one TTI,
which is 1 msec duration. Therefore, the achieved delay can
be reasonable, particularly when adding signaling delay. In
our future work, we plan to use flexible slot durations fo
fifth-generation networks to combat this constraint.

To study fairness of TMQ, Jain’s fairness index is plotted
in Figure 7. As the figure shows, TMQ achieves better results
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Fig. 6. Average queuing time [ms] for (a) DIDs and (b) UEs (10 SBS, 5 UEs
per SBS)

that PF, which is a direct product of applying reward function
that maintains fairness between DIDs and UEs.
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Fig. 7. Jain’s Fairness Index (JFI) (10 SBS, 5 UEs per SBS)

Finally, the results presented here have converged after 200
TTIs (i.e., 200 msec). For tactile applications, this is a high
convergence time, however note that this only happens for
network initialization. In other words, if network dynamics
changes after the convergence, the TMQ will need less number
of iterations to reach the new decision due to the nature of
exploration and exploitation of Q-learning algorithms.

VI. CONCLUSION

In this paper, we proposed a Throughput-Maximization
Q-Learning (TMQ) algorithm to provide high-throughput to
mobile Data Intensive Devices (DIDs) that can run tactile
applications. The number of DIDs will increase in the fu-
ture mobile networks with the emerging AR/VR and tactile
applications. The proposed TMQ algorithm is based on Q-
Learning and it aims to maximize throughput of DIDs. TMQ
is a distributed algorithm running on both eNB and SBSs.
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Performance results are compared to both proportional fairness
(PF) algorithm in terms of throughput, delay and fairness.
TMQ is shown to have the higher throughput and fairness
and the lower delay than PE. In our on-going work, we are
aiming to improve training time for the Q-learning approach.

VII. ACKNOWLEDGEMENT

This research is supported by the U.S. National Science
Foundation (NSF) under Grant Number CNS-1647135 and the
Natural Sciences and Engineering Research Council of Canada
(NSERC) under RGPIN-2017-03995.

[1]

[2

—

[3]

[4]

[5

[ty

[6

=

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

P. A. Chou, “Advances in Immersive Communication: (1) Telephone,
(2) Television, (3) Teleportation,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 9, p. 41:141:4, 10 2013.

S. Persky, “Employing immersive virtual environments for innovative
experiments in health care communication,” Patient Education and
Counseling, vol. 82, pp. 313-317, 3 2011.

W. S. Khor, B. Baker, K. Amin, A. Chan, K. Patel, and J. Wong,
“Augmented and virtual reality in surgery-the digital surgical environ-
ment: applications, limitations and legal pitfalls.,” Annals of translational
medicine, vol. 4, p. 454, 12 2016.

L.-M. Su, B. P. Vagvolgyi, R. Agarwal, C. E. Reiley, R. H. Taylor, and
G. D. Hager, “Augmented Reality During Robot-assisted Laparoscopic
Partial Nephrectomy: Toward Real-Time 3D-CT to Stereoscopic Video
Registration,” Urology, vol. 73, pp. 896-900, 4 2009.

M. Erol-Kantarci and S. Sukhmani, “Caching and Computing at the
Edge for Mobile Augmented Reality and Virtual Reality in 5G,” Proc.
of ADHOCNETS, 2017.

0. Sigaud and F. Garcia, “Reinforcement Learning,” in Markov Decision
Processes in Artificial Intelligence, pp. 39—-66, Hoboken, NJ USA: John
Wiley & Sons, Inc., 3 2013.

M. H. M. Elsayed and A. Mohamed, “Distributed interference manage-
ment using Q-Learning in cognitive femtocell networks: New USRP-
based implementation,” in 2015 7th International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1-5, IEEE, 7 2015.
A. Aijaz, “Towards 5G-enabled Tactile Internet: Radio resource alloca-
tion for haptic communications,” in 2016 IEEE Wireless Communica-
tions and Networking Conference, pp. 1-6, IEEE, 4 2016.

M. Chen, Y. Hua, X. Gu, S. Nie, and Z. Fan, “A self-organizing
resource allocation strategy based on Q-Learning approach in ultra-
dense networks,” in 2016 IEEE International Conference on Network
Infrastructure and Digital Content (IC-NIDC), pp. 155-160, Sept 2016.
A. Aijaz, M. Dohler, A. H. Aghvami, V. Friderikos, and M. Frodigh,
“Realizing the tactile internet: Haptic communications over next gen-
eration 5g cellular networks,” IEEE Wireless Communications, vol. 24,
pp- 82-89, April 2017.

M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis, “Sg-enabled
tactile internet,” IEEE Journal on Selected Areas in Communications,
vol. 34, pp. 460—473, March 2016.

M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Mark-
endahl, and M. Dohler, “Business case and technology analysis for 5g
low latency applications,” IEEE Access, vol. 5, pp. 5917-5935, 2017.
M. Dohler, T. Mahmoodi, M. A. Lema, M. Condoluci, F. Sardis,
K. Antonakoglou, and H. Aghvami, “Internet of skills, where robotics
meets ai, 5g and the tactile internet,” in 2017 European Conference on
Networks and Communications (EuCNC), pp. 1-5, June 2017.

H. Saad, A. Mohamed, and T. ElBatt, “Distributed cooperative Q-
Learning for power allocation in cognitive femtocell networks,” in 20712
IEEE Vehicular Technology Conference (VIC Fall), pp. 1-5, Sept 2012.
Y. Luo, Z. Shi, X. Zhou, Q. Liu, and Q. Yi, “Dynamic resource
allocations based on Q-Learning for D2D communication in cellular
networks,” in 2014 11th International Computer Conference on Wavelet
Actiev Media Technology and Information Processing(ICCWAMTIP),
pp. 385-388, Dec 2014.

X. Chen, C. Wu, Y. Zhou, and H. Zhang, “A learning approach for traffic
offloading in stochastic heterogeneous cellular networks,” in 2015 IEEE
International Conference on Communications (ICC), pp. 3347-3351,
June 2015.

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

283

X. Ji, Z. Qi, and Z. Su, “Spectrum allocation based on g-learning algo-
rithm in femtocell networks,” in 2012 IEEE International Conference on
Computer Science and Automation Engineering (CSAE), vol. 1, pp. 381—
385, May 2012.

Y. Hu, R. MacKenzie, and M. Hao, “Expected q-learning for self-
organizing resource allocation in lte-u with downlink-uplink decou-
pling,” in European Wireless 2017; 23th European Wireless Conference,
pp. 1-6, May 2017.

L. R. Faganello, R. Kunst, C. B. Both, L. Z. Granville, and J. Rochol,
“Improving reinforcement learning algorithms for dynamic spectrum
allocation in cognitive sensor networks,” in 2013 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pp. 35-40, April 2013.
M. Simsek, A. Czylwik, A. Galindo-Serrano, and L. Giupponi, “Im-
proved decentralized g-learning algorithm for interference reduction in
Ite-femtocells,” in 2011 Wireless Advanced, pp. 138—143, June 2011.
S. Bhattacharjee, A. Bhar, and R. Saha, “Channel allocation in a
cognitive radio network using non deterministic q learning algorithm,”
in 2012 Third International Conference on Emerging Applications of
Information Technology, pp. 327-330, Nov 2012.

3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Medium
Access Control (MAC) protocol specification,” Technical Specification
(TS) 136.321, 3rd Generation Partnership Project (3GPP), 04 2015.
Version 12.5.0.

E. Alpaydin, Introduction to machine learning. MIT Press, 2010.

A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, Fundamentals of
LTE. Upper Saddle River, NJ, USA: Prentice Hall Press, Ist ed., 2010.
M. A. Imran, E. Katranaras, M. Dianati, and A. Saeed, “Dynamic
femtocell resource allocation for managing inter-tier interference in
downlink of heterogeneous networks,” IET Communications, vol. 10,
pp. 641-650, 4 2016.

3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
Frequency (RF) requirements for LTE Pico Node B,” Technical Spec-
ification (TS) 36.931, 3rd Generation Partnership Project (3GPP), 05
2011. Version 9.0.0.

C. C. Coskun and E. Ayanoglu, “Energy-Spectral Efficient Resource
Allocation Algorithm for Heterogeneous Networks,” IEEE Transactions
on Vehicular Technology, pp. 1-1, 2017.

Y.-Y. Liu and S.-J. Yoo, “Dynamic resource allocation using reinforce-
ment learning for LTE-U and WiFi in the unlicensed spectrum,” in 2017
Ninth International Conference on Ubiquitous and Future Networks
(ICUFN), pp. 471-475, IEEE, 7 2017.

3GPP, “Technical Specification Group GERAN; GERAN Improvements
for Machine-type Communications,” Technical Specification Group
GERAN 43.868, 3rd Generation Partnership Project (3GPP), 11 2011.
Version 0.5.0.



