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ABSTRACT

Microgrids enable a network of distributed energy generators to
sustain energy needs off-the-grid. Microgrids can experience is-
landed operational mode, being this mode a time sensitive event
that affects costs of power generation and distribution. The detec-
tion of time-sensitive events is important because the control unit
needs to be aware of changes in the grid to avoid losses in power
quality and costs. This requires a quality of service (QoS)-aware
data aggregation and queuing mechanism in the core of the network
infrastructure to convey microgrid data to a central server (consid-
ered as a macro base station). This paper investigates the impact
of time sensitivity-based microgrid data aggregation on message
delivery under different priority and time-sensitivity levels. Hence,
we propose a framework to cluster the electrical data based on the
time sensitivity criteria using unsupervised machine learning. We
introduce a multi-class queuing system in the pico-cells to ensure
that clustering reduces the processing time for high priority data.
The results show that the proposed approach significantly reduces
the delivery delay of messages carrying time sensitive events from
the microgrid.
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1 INTRODUCTION

Smart grid is an electric power system formed of sensors, communi-
cation technologies, and control units to provide the customers with
better power services [6]. Power system reliability and sustainabil-
ity, as two of the major concerns in smart grids, call for proactive
emergency preparedness and self-recovery solutions [11]. Smart
microgrid is defined as small scale of the smart grid. In terms of
the microgrid operational mode, it is classified into two categories,
namely the islanded mode and grid-connected mode [13].

In the islanded mode, the utility grid is unable to supply/control
the newly formed island [2]. Thus, according to the IEEE standard,
islanding events must be detected within two seconds [1]. We also
need to notify the utility grid about the microgrid transition to a
different mode (either islanded or grid-connected) for the sake of
preparedness and sustainability in microgrids. Hence, we need to
reduce the processing time of the information messages (that iden-
tify the islanding events) in the communication infrastructure. This
means that islanding events not only need to be detected within two
seconds but also the information messages need to be transmitted
to the control unit in the utility grid as soon as possible. In other
words, the incidence of islanding and grid-connected events, which
could be defined as time sensitive events, could result in remarkable
hikes in the operational expenditures of the utilities [8].

In smart grids, the impact of islanding and grid-connected events
can be significantly reduced by integrating a reliable communica-
tion infrastructure with the smart grid [7]. A heterogeneous net-
work (HetNet) infrastructure can process and communicate the
time sensitive events faster and more accurately in comparison to
a single-tier network infrastructure. In this paper, we introduce a
multi-class queuing mechanism for aggregating of microgrid data
in the pico-cells. We compare the proposed framework to a baseline
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data aggregation approach that would work on first come, first
serve basis as opposed to multi-class priority queue-driven aggrega-
tion. Our simulation results show that the delivery delay of higher
priority messages can be significantly reduced if our proposed data
aggregation approach is adopted.

The paper proceeds as follows: Section II reviews the related
work while Section III describes the proposed system model in
detail. Section IV presents our simulations along with thorough dis-
cussions. Section V concludes the paper and gives future directions.

2 RELATED WORK

Wireless networks are considered as viable candidates for their flex-
ibility, ubiquity, and low cost of deployment. For instance, the au-
thors in [14] state Wireless Lan (WLAN) and Long Term Evolution
(LTE) as potential wireless technologies for effective management
of microgrids while identifying round robin polling-based time
division multiple access (TDMA) as a viable option for wireless ac-
cess in a microgrid network. The wireless communication network
serves to address the distributed load shedding and supply-demand
balancing problems. The wireless communication networks deal
with particular challenges, in the integration of wireless networks
with the microgrids, ensuring the stability of microgrid in the pres-
ence of wireless link delays. The authors in [5] study the stability of
a microgrid through analysis of wireless communication channels
between actuators and controllers.

The role of Heterogeneous Networks (HetNets) in microgrid con-
trol and management has been considered in the last few years by
several researchers. In [9], the authors presented the first work that
introduces multi-agent coordination via a HetNet infrastructure in
order to address the trade-off between two cost components: com-
munication and power generation. In [12], the authors tackle the
automation problem in microgrids, and propose a heterogeneous
and converged fiber-wireless network infrastructure as the commu-
nication medium for the addition and/or deployment of renewables
as well as storage systems into the power grid. To address the in-
teroperability issues, the proposed system utilizes the IEC 61850
standard for the power grid end, whereas off-the-shelf automation
protocols such as PROFINET and Modbus TCP are utilized for the
interoperability within building automation.

3 SYSTEM DESIGN

The system under study consists of four layers: power generation,
data analytics, data processing and communication. The power grid
generation layer denotes a smart microgrid that is aimed to be sus-
tained by renewable resources. The data analytics layer consists of
a data analytics framework running machine learning algorithms to
cluster time sensitive events. The data processing layer is responsi-
ble for processing the data rapidly based on their clusters/priorities.
The data analytics and processing layers are located in each pico-
cell. Finally, the communication layer is the data carrier between the
HetNet tiers. In this paper, we consider upcoming grid-connected
events as possible time sensitive events affecting the cost of elec-
tricity consumption.

3.1 Power generation layer

This work considers a microgrid with two distributed generators
(DGs) as in the literature. The first DG is assumed to be a diesel
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generator which serves as the base power supplier of the microgrid
to reduce the uncertainty of the power generation in the microgrid.
The second DG is assumed to be a photovoltaic (PV) panel with
an efficiency of E., which represents the average efficiency found
in the market. The PV panel is a simple example of the renewable
energy sources in the microgrid which causes uncertainty in the
amount of the generated power. The PV panel generated power
depends on its area following Eq. 1. [4]:

Eout = AeEeG (1)

where Eoy,; is the electricity production in kW; A the total surface
area of solar cells in m?; E, the mean power conversion efficiency
for the PV pane; and G the total solar irradiation in KW/m?.

3.2 Data analytics layer

The data analytics layer plays the key role in our proposed ap-
proach. This layer aims to cluster the electrical data generated from
the power layer into subcategories based on specific features by
implementing data analytics framework in the layer. Unsupervised
machine learning is one of the most viable techniques to cluster the
data based on hidden patterns and similar features in the data. One
of the well-known and popular algorithms used in data clustering
is k-means, proposed by Lloyd [10].

However, defining the time sensitivity of the raw data requires
the measurement of the electrical cost variation over a period of
time. In other words, we can identify whether the raw data is time
sensitive or not by calculating the difference in electrical costs
between every two consecutive minutes over 24 hours, as described
in Eq. 2. In the equation, § is the difference in the electrical cost of
two consecutive minutes. Each microgrid is defined by a sequence
of § values that indicate the time sensitivity of the data.

5 =x(t) - x(t - 1) @)

In order to accurately calculate variations of the § values, root
mean square (RMS) can be used to measure the level of variation
of electrical cost. Higher RMS means that the data varies rather
frequently which is more likely to be delay sensitive. Lower RMS
means that the data remains on a reasonable level which is more
likely to be delay tolerant.

3.3 Data processing

In order to process three different types of power consumption data
/messages (i.e. highly time-sensitive, moderately time-sensitive, and
delay-tolerant), the queuing system becomes vital to the integration
of microgrid data in a timely manner. With the integrated queuing
system deployed within a wireless network environment, different
power consumption messages can be handled asynchronously to
speed their processing time with delay-sensitive feature or higher
level of urgency. The system processes the high priority messages
first and after the lower priority messages.

The proposed queuing system for microgrid data aggregation
introduces a single priority queue into a system, which means the
priority queue contains all types of messages (Figure 1). In a pri-
ority queue, an element with high priority will be served earlier
than an element with low priority, making it possible for important
messages to be processed first in the system. To use a single priority
queue, less memory is required for queue structures in the heap
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Figure 1: Architecture with Single Priority Queue Structure

during the initialization stage. At the same time, only one com-
parator module is needed to realize the selection on the message
with the highest priority in the queue system. When the queuing
system scales with more types or classes being added, the queuing
system can still perform the same level of functionality and does not
require any modification since the queuing system still performs
the selection procedure based on the values of priority levels.

3.4 Communication layer

The communication layer is responsible for carrying the data from
and to the base station. The communication network infrastructure
followed in this paper consists of two tiers, namely macro-cell and
pico-cell, forming a heterogeneous network for microgrid, as shown
in Figure 2. The macro-cell base station is a simple type module
working as the terminal of all aggregated messages. It receives
all the incoming messages from the pico-cells, and —if equipped
with edge computing capability— performs data analysis based on
priority categories.

The pico-cell component is a compound type module working as
the first recipient of the sent messages from the microgrid users. It
consists of two submodules: the pico-sink component and the queue
component. The pico-sink module is an intermediate submodule
within a pico-cell to process the incoming user data. In order to
define the corresponding priority levels for each message, machine
learning procedure is needed to perform on the dataset.

The message queuing component is another important submod-
ule within a pico-cell. It identifies time sensitivity of incoming
messages from the pico-sink. This submodule contains a priority
queue and serves as an integrated queuing system. A comparator
method is integrated with the queue component as a priority iden-
tifier which defines the customized rules to compare each message
in the queue for selecting the highest prioritized message.

Macro-cell

Figure 2: Heterogeneous Network Topology in Microgrid
4 PERFORMANCE EVALUATION

For evaluations, we employ the dataset provided by UMass Smart*
Dataset 2013 release which is a microgrid dataset providing elec-
trical data of 443 microgrid users over a single 24-hour period [3].
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The electrical data is collected in a time sequence order per minute
using timestamps in Unix time. Figure 3 presents clustered data.
The simulation environment is built on OMNeT++ development
platform using C++ language (C++11). However, due to memory
limitation in OMNeT++, the platform only employs data of 48 home
users from the 443 microgrids dataset.

Cluster A Delay-tolerant
Cluster B Delay-medium
Cluster C Delay-sensitive
[Clus;  Cluster Cluster X Cluster centroid
ter B C
A
0 500 1000 1500 2000 2500 3000 3500 4000

Electrical cost
Figure 3: Clusters of Microgrid Data vs. Time Sensitivity

The wireless network consists of one macro-cell and four pico-
cells. In order to compare the performance of various cases, two
types of networks are simulated, namely uniform and heterogeneous
microgrid networks. In the uniform scenario, the microgrid users
are distributed over the pico-cells uniformly (i.e., 12 home users
per pico-cell) whereas the heterogeneous scenario considers the
certain pico-cells as hotspots. In the heterogeneous scenario, the
home users are distributed over the pico-cells 1, 2, 3 and 4 as 5, 10,
15 and 18 users, respectively.

Figure 4 compares the number of the clustered messages based on
the time sensitivity feature in both uniform and heterogeneous mi-
crogrid network scenarios. In the uniform scenario, 9.6% of the col-
lected data are considered highly time-sensitive messages, whereas
the moderately time-sensitive and the delay-tolerant are 27% and
63.4%, respectively. In the heterogeneous scenario, the percent-
ages of highly time-sensitive, moderately time-sensitive, and delay-
tolerant messages are 9.7%, 26.7% and 63.6%, respectively. Hence,
the data clustered percentages in the heterogeneous scenario are
close to those of the uniform scenario.
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Figure 4: Number of Queue Delay Messages

Figure 5 represents the queue messages delay time regarding the
three time-sensitive messages (highly time-sensitive, moderately
time-sensitive and the delay-tolerant). The delay time of the queue
messages, in both uniform and heterogeneous network scenarios,
have exactly the same pattern. The queuing delay is increasing
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Table 1: Pico-cells Throughput and Queue Length

Max Average Max Average
Throu- Throu- Queue  Queue
ghput ghput Length  Length
(kbps)  (kbps)  (B) (B)

Uniform Micro- 1.728 1.548 1375 687

grid Network

Heterogeneous 0.72 0.67 367 51

Network (Pico-

cell 1)

Heterogeneous 1.44 1.34 1087 303

Network (Pico-

cell 2)

Heterogeneous 2.16 2.01 1807 754

Network (Pico-

cell 3)

Heterogeneous  2.592 2.413 2239 1120

Network (Pico-

cell 4)

when the messages become less time-sensitive. In the uniform mi-
crogrid network, the delay time of highly time-sensitive messages is
40.56 seconds, whereas the moderately time-sensitive and the delay-
tolerant are 121.3 and 324.19 seconds, respectively. The delay time
in the heterogeneous network regarding the highly time-sensitive,
moderately time-sensitive and the delay-tolerant are 38.96, 119.3
and 321.5 seconds, respectively.
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Figure 5: Delivery Time of Queue Messages

With the increase in the number of users per pico-cell, the val-
ues of throughput and queue length increase as shown in Table 1.
Queue length represents the number of packets in the queue wait-
ing to be transmitted whereas the throughput denotes how fast
and successfully the pico-cell can process the data during the trans-
mission time. In the uniform scenario, since the number of users is
distributed uniformly among the pico-cells, the pico-cells are set
to have identical input parameters. On the other hand, since each
pico-cell has a different number of home users in the heterogeneous
scenario, the observed values for each metric are different. For the
four pico-cells, the maximum values of the throughput vary from
0.70 kbps to 2.592 kbps and the average values vary from 0.67 kbps
to 2.413 kbps. Moreover, the maximum values of the queue length
vary from 367 to 2239 and the average values vary from 51 to 1120.

From the observation and evaluation mentioned above, we can
infer that the priority queuing system has made an impact on the
processing time of the delivered messages from the home users.
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The results show that the delivery delay is reduced for messages
with higher level of priority. In other words, the introduction of
the machine learning algorithm, particularly k-means clustering
algorithm, and the implementation of a priority queue are the key
factors behind a lower delivery time for the time-sensitive messages.

5 CONCLUSION

In this paper, to process different types of messages asynchronously
according to their levels of urgency, priority queue has been inte-
grated into the system to aggregate microgrid messages in a priori-
tized manner. Through simulations, we have shown the successful
integration of k-means clustering algorithm for time sensitivity
analysis of microgrid data and priority queuing system for data ag-
gregation in HetNet. Future work would include analyzing system
scalability when the machine learning component and the queuing
system are applied to practical scenarios. Moreover, the load imbal-
ance issue will be important to the performance of the system as
well.
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