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Abstract—Recent revolution of the electricity distribution sector,
especially a deeper penetration of gas-fired distributed generations
(DG), intensifies the interdependence of electricity on natural gas
distribution systems. Such integrated electricity and natural gas
distribution systems (IENDS) are facing with significant threats
from frequent natural disasters that cause enormous economic
losses. Network hardening is regarded as an effective technique
for enhancing resilience of IENDSs against natural disasters. This
paper presents a tri-level robust optimization-based network
hardening model for minimizing worst-case total weighted
electricity and gas load shedding of IENDSs with respect to
hardening budget limits and random damages caused by disasters
of different severity levels. Specifically, distinct failure
probabilities of overhead power lines and underground gas
pipelines are considered, while DGs and gas storages are modeled
as effective emergency response resources for supplying high-
priority electricity/gas loads during disasters. The proposed model
is solved by a column-and-constraint generation (CCG) approach,
in which nonlinear gas network constraints are linearized via
Taylor series expansion. Numerical case studies evaluate the
proposed robust hardening strategy against natural disasters.

Index Terms— Integrated electricity and natural gas distribution
systems, natural disaster, resilience, robust optimization.

NOMENCLATURE

Major symbols and notations used throughout the paper are
defined below, while others are defined following their first
appearances as needed.

Indices:

b Index of breakpoints used in the Taylor series
expansion.

i, k Indices of power nodes.

(i,7), (m,n) Indices of power lines and gas pipelines.
/ Index of disaster severity levels.

m, n, o Indices of natural gas nodes.

t g Indices of time periods and DGs.
Sets:

GU Set of gas-fired DGs.

s(7) Set of child nodes of node ;.

Q, Q, Set of assets connected to power/gas node j/n.
Q5,Qp,Q; Sets of power nodes, DGs, and power lines.
Q\,Q0,Qp Sets of gas nodes, compressors, and pipelines.

Qg, Qp  Sets of gas storages and gas retailers.
Variables:
Qjj 1> Ay, Binary variable which is 1 if power line (i,j)/ gas
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pipeline (m,n) is available at time ¢, being 0
otherwise.

E,,GtS Gas volume of a gas storage at gas node 7 at time ¢.

Gt Gas flow of pipeline (m,n) at time ¢.

G,?f, G,,R,],:‘ Gas flow injection of gas storage/retailer at gas node
n at time ¢.

G35, G Gas discharge/charge of a gas storage at gas node n
at time ¢.

Binary variable which is 1 if power line (i,/)/ gas
pipeline (m,n) is hardened, being 0 otherwise.

NB Total number of breakpoints used in the Taylor
series expansion.

Active/reactive power flow of line (i) at time ¢.

ij> "*mn

Pij,ta Q[i,t

Pg G QgD tG Active/reactive power dispatch of DG g at time ¢.

U, U,  Binary variable which is 1 if power line (i,j)/ gas
pipeline (m,n) is damaged by natural disasters,
being 0 otherwise.

Vi, Nodal voltage magnitude of bus j at time ¢.

J

i1 0,  Load shedding of power/gas node j/n at time ¢.

Tt Pressure of gas node # at time ¢.

Constants:

Gi,j? Gas demand of gas node 7 at time ¢.

Kijs Kn Coefficient of hardening effort of power line (i;)/
gas pipeline (m,n).

K,, Gas flow constant of gas pipeline (m,n).

M A large enough positive number.

P Pouni Failure probability of power line (i,j)/ gas pipeline
(m,n) under disaster severity level /.

P/L,D , Q]%tD Active/reactive power demand of node j at time ¢.

Fijs Xij Resistance/reactance of power line (i,)).

7o Time point when natural disaster attacks the system.

Vo Reference voltage magnitude at the substation.

0;, 6, Priority weight of power load j/gas load n.
Ay Hardening budget.
A, System parameter corresponding to disaster severity
level I.
A Gas fuel consumption factor of gas-fired DG g.
. Fuel consumption factor of a gas compressor at
pipeline (m,n).
L Compressor factor at pipeline (m,n).
()min/max Min/max value of a quantity.

I. INTRODUCTION

An increasing frequency of catastrophic natural disasters,

such as hurricanes and windstorms, has inflicted major
social and financial impacts at national, regional, and local
levels. Such catastrophic events could result in loss of life and
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residences, long-term health consequences, and significant
impacts on businesses. For instance, in October 2012, the
Hurricane Sandy swept the Northeast U.S., causing 147 direct
deaths and at least $50 billion worth of damage in the area [1].

One critical issue associated with such disaster events is the
availability of electricity for recovery and reconstruction
efforts. Reference [2] reviewed impacts of various types of
natural disasters that have caused widespread blackouts and
affected resilience of power systems. According to a report by
the National Oceanic and Atmospheric Administration, the
U.S. has sustained 188 weather and climate disasters since
1980, more than 80% of which have brought damages to the
nation’s electricity infrastructure [3]. The most notable
example is the Hurricane Sandy in 2012, which damaged
electricity ~ transmission/distribution  infrastructures by
devastating wind/flood and caused over 8 million customer
outages [4]. As a result, reference [5] proposed a probabilistic
model to assess resilience of power systems against hurricanes
and ensure rapid recovery of power systems from cascading
failures.

Electricity grid hardening is regarded as one of the most
effective ways for enhancing system resilience against natural
disasters [6]-[8]. These hardening techniques, including
upgrading poles with guy wires, burying power lines
underground, managing vegetation, and elevating substations/
control rooms, can be implemented to protect the power grid
against strong wind and flood [8]. However, existing researches
[9]-[11] focus on hardening transmission networks against
natural disasters, while actually about 90% of weather related
outages occur at the distribution level, as indicated in a report
by the Executive Office of the President [6]. Thus, enhancing
resilience of distribution systems against natural events is
becoming a primary task of utilities. A few studies discussed
enhancing resilience of distribution systems [12]-[15]. A
vegetation maintenance scheduling for overhead power
distribution systems was proposed in [12]. Reference [13]
studied targeted hardening strategies to protect distribution
systems against hurricanes, while considering failure
probabilities of power poles. A resilient distribution network
planning model was proposed in [14] to coordinate network
hardening and distributed generation (DG) allocation.
Reference [15] focused on different hardening techniques to
protect distribution networks against extreme weather events.

Furthermore, an increasing penetration of gas-fired DGs has
significantly intensified the dependency of electricity
distribution system on natural gas distribution network [16].
Consequently, extreme weather events, by triggering damages
of gas distribution pipelines, could cause further catastrophic
outages on power distribution systems. In fact, the Hurricane
Sandy caused severe damages to gas distribution pipelines,
affecting approximately 32,000 customers of New Jersey
Natural Gas [4]. In turn, reference [17] proposed a performance
index to measure functionality of the natural gas network
against natural disasters. Gas pipelines could be hardened by
securing cooling towers, improving tank integrity against wind,
and building/strengthening berms/levees/floodwalls against
flood.

Impacts of hurricanes on electricity and natural gas systems
were thoroughly studied in [18] where a network flow model
was adopted to simulate large-scale disruptions. Furthermore, a
resilience assessment framework for interdependent electricity
and natural gas system was studied in [19] to analyze the joint
restoration processes. Indeed, during a natural disaster,
resilience of power system and natural gas system is highly
interdependent. That is, loss of a power line or shutdown of a
pipeline could easily spread to the other system and further lead
to cascading failures [18]-[19]. However, researches that
explore resilience enhancement of the integrated energy
systems are rather limited. Reference [20] proposed to enhance
resilience of the power grid via an expansion planning of
integrated electricity and natural gas system. A defense strategy
to identify and protect vulnerable components was proposed in
[21] for increasing resilience of integrated gas-electric system
against malicious attacks. However, these works [20]-[21]
mainly focus on resilience enhancement of integrated systems
at the transmission level, while such a resilience issue for
integrated electricity and natural gas distribution systems
(IENDS) has not been studied. To fill the gap, this paper
proposes a tri-level robust optimization-based network
hardening strategy for IENDSs, which identifies the most
effective hardening strategy of electric distribution lines and
gas distribution pipelines for minimizing electricity and natural
gas load shedding (LS) against natural disasters. Compared to
[20], the proposed model focuses on hardening strategies of the
integrated electricity and natural gas system to protect
important components against natural disasters. Compared to
[21] which focuses on malicious attacks, this paper
concentrates on the modeling of natural disasters and the
corresponding optimal hardening strategies. Specifically, in the
proposed hardening model, DGs and gas storages are
considered as emergency response resources for supporting
high-priority loads after system components are damaged by
natural disasters. This practical consideration is driven by the
facts that: (i) DGs are commonly used as backup generators for
providing continued power supply when the main grid is
interrupted [22]-[23], while gas-fired DGs further couple
electricity and gas distribution systems; and (ii) Gas storage
assets can be used as an insurance for maintaining adequate gas
network pressure against unforeseen accidents [24].

Furthermore, in reality, as underground pipelines are much
more reliable than overhead power lines [25], Claude
Shannon’s concept of information [15] is adopted in this paper
to address distinct failure probabilities of power lines and
pipelines. Moreover, the proposed tri-level robust model is
solved by a column-and-constraint generation (CCGQG) algorithm
[26], while the lower-level nonlinear dispatch problem is
converted into a linear programming (LP) problem by
linearizing Weymouth gas flow equations via Taylor series
expansion [27].

Major contributions of the paper are twofold.

1) Integrated Robust Network Hardening Strategy: The
proposed tri-level robust optimization model explores network
hardening strategies of IENDS, while considering DGs and gas
storage assets as emergency response resources to support



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

high-priority electricity/gas loads and reduce system LS against
natural disasters. In addition, distinct failure probabilities of
underground gas pipelines and overhead power lines are
considered by recognizing the fact that underground gas
pipelines are more reliable.

2) Solution Algorithm: Taylor series expansion is applied to
linearize nonlinear gas flow equations, which enables dualizing
lower-level subproblem of the proposed robust model and
facilitates its calculation via CCG algorithm. Two metrics are
introduced to examine approximation accuracy of Taylor series
expansion. Moreover, a dynamic procedure is proposed to
successively add new breakpoints as needed, for deriving
high-quality solutions or even global optimal solutions to the
original problem with nonlinear gas flow equations.

The rest of the paper is organized as follows. Sections II-1II
discuss the proposed robust optimization-based network
hardening model and solution approach for IENDSs.
Numerical case studies are presented in Section IV, and Section
V concludes the paper.

II. MODEL DESCRIPTION

As we do not exactly know how the IENDS will be affected
by natural disasters, such uncertainties should be properly
simulated in the hardening framework. Stochastic
programming and robust optimization are two widely used
optimization approaches for handling uncertainties. As power
line and pipeline failures against a natural disaster could be
completely random, stochastic optimization can be adopted to
model natural disasters and their random impacts on system
components [10]. In these stochastic models, damage scenarios
of natural disasters are modeled as a set of stochastic events
with a subset of predefined components that may fail. However,
stochastic optimization usually considers high-probability
scenarios as a tradeoff between computational time and
solution quality. Consequently, neglecting low-probability/
high-damage scenarios in stochastic optimization approaches
could bring significant damages to the IENDS. In comparison,
robust optimization has become a popular tool to optimize
against the worst-case scenarios and control the worst-case
damages. In turn, this paper adopts a robust optimization model
to anticipate and prepare for the worst-case outcomes of natural
disasters.

In the proposed robust network hardening model for
enhancing resilience of IENDS against natural disasters, the
following assumptions are made.

1) Hardened power distribution lines and gas distribution
pipelines will survive natural disasters [9]-[12], [14]. Whereas,
once a power line or a gas pipeline is damaged by natural
disasters, it will remain unavailable throughout catastrophic
events. As this paper mainly focuses on network hardening
while DGs, compressors, and gas storages could be more
resilient than power lines and gas pipelines [14], [24], [28], they
are assumed to survive natural disasters and can be readily used
as emergency response resources during catastrophic events.

2) Both electricity and gas distribution networks are radial
[14], [29]-[31]. That is, directions of power and gas flows are
pre-specified. Consequently, emergency response resources

will only be able to supply electricity/gas loads that are
connected to the same or their child nodes.
3) Gas fuel consumption of a gas-fired DG only depends on its
active power output [32], [33]. Gas fuel consumption of a gas
compressor is linearly dependent on gas flow through it [34].
The proposed network hardening model for IENDSs is
formulated as a tri-level robust optimization problem (1), which
seeks for optimal network hardening plans to minimize the
worst-case total weighted electricity and gas LS. Specifically,
the upper level determines proactive optimal network
hardening strategy in response to upcoming natural disasters,
the middle level identifies maximum damages of IENDS
caused by natural disasters, and the lower level explores
reactions of distribution system operators for minimizing the
total weighted LS (TWLS) in response to natural disasters.
Weights of individual electricity and gas loads are set based on
their priorities. In addition, power LS quantities are multiplied
by B/HHYV to convert to the same unit of kcf as gas LS, where
energy conversion factor f=3.4MBtu/MWh and HHV=1.026
MBtw/kef [35]-[36].

minmax min Y%, (8/HHV) 06, +%.,0,6,,] )

where H represents the feasibility set of hardening decisions; U
is uncertainty set of network damages caused by natural
disasters; F represents feasible IENDS operation conditions; A,
u, and z are vectors of hardening strategies, uncertain network
damage statuses with respect to natural disasters, and IENDS
operation decision variables.

A. Upper-Level Constraints

Feasibility set of hardening decisions in the upper level is
described as in (2), which restricts total hardening efforts
within the hardening budget A, . Coefficients x; and «,,
indicate distinct levels of efforts/costs required to harden
different types of network assets (i.e., overhead power lines and
underground pipelines) with different lengths. These values
could be determined via the following two ways: (i)
coefficients are associated with real-world hardening costs, i.e.,
similar to reference [15], utilities determine how much money
is needed to harden a certain power line or pipeline, while A,
represents the total monetary hardening budget; and (ii)
coefficients are associated with manpower, i.e., based on
historical data utilities can estimate how much manpower is
needed to harden a certain power line or pipeline, while A,
represents the total manpower hardening budget. In case studies
of this paper, hardening coefficients of power lines and gas
pipelines are set as 1 and 3 to replicate practical situations,
indicating that hardening an underground pipeline needs two
times more money/manpower than an overhead power line.

H:{h: Z(i,j)EQL Kljhlj + Z(m,n)GQp Kmn 'hmn < Aht hijlhmn € {0’ 1}}
(2)
B. Middle-Level Constraints

Middle-level constraints describe uncertainty sets of random
damages caused by natural disasters. Indeed, various natural
disasters present unique characteristics and could affect power
grid and natural gas network to varying degrees. As pointed in
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[2], predictability, impacted region, and affecting time of
individual natural disasters are different. In literature [2], [10],
[14]-[15], researchers typically model impact of different types
of natural disasters via the number of system components that
are damaged. Follow the tradition, this paper also uses number
of system component outages to model the impact of different
types of natural disasters. Consequently, by considering
different numbers of system components at fault, the model
presented in this paper can apply to different types of natural
disasters, including weather related natural disasters and other
non-weather related natural disasters such as earthquake that
could impact power grid and natural gas network.

Indeed, considering that natural gas is an important primary
energy resource, outage of a gas pipeline by natural disasters
could lead to cascading outages of multiple gas-fired DGs, and
result in extensive power LS of an electricity distribution
network. On the other hand, because underground pipelines are
much more reliable than overhead power lines, conventional
uncertainty set modeling of power lines such as N-K
contingency may not be applicable [9]-[11], [14]-[15]. In this
paper, according to Claude Shannon’s concept of information
[15], coefficients - log, Py and - log, Py ATC used to represent

distinct resilience characteristics of individual power lines and
gas pipelines under disaster severity level /. For instance, taking
an overhead power line with a failure probability of 0.3 and an
underground gas pipeline with a failure probability of 0.1 as an
example, coefficients of the power line and gas pipeline are
respectively 1.737 and 3.32, i.e., it takes much more efforts to
damage a more resilient pipeline. It is noted that failure
probability considered in the model refers to probability that a
component will fail during natural disasters in a short term,
which is different from failure rate or forced outage rate (FOR)
used in the long-term reliability assessment [37]. For different
types of natural disasters, utilities can calculate failure
probabilities of overhead power lines 1_’ij, , and underground

pipelines p , at severity level /. Failure probabilities of

overhead systems can be calculated using equations in
reference [5], [38]. Similarly, for underground systems, their
failure probabilities can be calculated via approach in [15], [39]
Given failure probabilities of different components with respect
to a certain natural disaster, the proposed model can identify
effective hardening strategies against this type of natural
disasters.

Middle-level constraints are presented as in (3)-(7).
Constraint (3) describes extend of random damages caused by
natural disasters, where (- log, Al) represents budget of system
component failures corresponding to disaster severity level /.
One possible way to determine this parameter A; is through
expected maximum numbers of power line and pipeline
outages and their corresponding average failure probabilities.
That is, (i) From historical data or by expectation, determine
numbers of power lines K, and pipelines K-K), that could fail in
a natural disaster of severity level /; (ii) Calculate average
failure probabilities of individual power lines ﬁij’ , and pipelines

D, In a natural disaster of severity level / using their

individual failure probabilities; and (iii) Calculate system
parameter A; via A,:ﬁllj_’; : ﬁ’(ni'f").
and K-K, are pre-specified for calculating A; only, while
worst-case power line and pipeline failures will be determined
by the proposed model according to A; and their importance to
the IENDS. The proposed method is an extension of the
traditional N-K criterion. That is, if failure probabilities of
power lines and pipelines are the same, equation (3) will
degrade to the traditional N-K criterion which defines that at
most K power lines and pipelines will fail. Constraint (4)-(5)
describes that power lines and pipelines are available before
catastrophic events. Equations (6)-(7) represent logic
relationships among availability a, hardening 4, and damages
by natural disasters u for individual power lines and pipelines
after catastrophic events. (8) imposes binary restrictions on a
and u variables. The component failure model (3)-(8) could be
extended to consider different numbers of failure components
in different time slots during the disaster, if information on
dynamics of disasters sweeping the area can be reasonably
obtained and the distribution system spans a larger area that
will not be influenced by the disaster at the same time.

U= {”1 Lijea, ( log, Ply,z) Uyt Z(m,meﬂp(' log, Pmn,z) Umn
<-log, A, (3)
<T™30)) € Q (4)
(<T™" (m,n) € Qp (5)
2T, (ij) € Q. (6)
=T (m,n) € Qp (7)
(i) € Q(mn) €Qp} (B)

It is also noteworthy that K,

ay, ~L

amn,t:L

ag; = l-u;tu; hy,

amn,t: 1 Upn +umn 'hmnr
u(/” umn’a(/,t: Apn,t € {0: 1}’

C. Lower-Level Constraints

Lower-level constraints (9)-(29) describe physical operation
conditions of IENDSs. For an electricity distribution network,
the linearized DistFlow model is adopted to calculate complex
power flows [14]-[15], [40]. Specifically, active and reactive
power flow balances are enforced via (9)-(10). Branch voltage
differences and branch power flows are limited as in (11)-(13)
with respect to network connectivity indicator a;;,. Limits on
DG outputs as well as voltage levels and electrical LS of
individual nodes are enforced in (14)-(17). Although convex
relaxations, such as second-order cone programing (SOCP), of
nonlinear Distflow model have been recently explored in
literature, they may not be applicable in the proposed model.
The reason is that in order to ensure solution exactness of
convex relaxation, the objective function needs to be
formulated as minimizing total costs or losses [41]-[42], while
the objective of this paper is to minimize TWLS of the IENDS.
In addition, the linearized DistFlow model has been widely
used in various distribution system applications including
optimal DG placement [30], service restoration [28], and
optimal operation [43], while its solution quality has also been
extensively studied in literature.

Constraints  (18)-(29) describe Weymouth gas flow
equations and operation characteristics of a natural gas
distribution network. As demonstrated in Fig. 1, gas network
nodal balance equation (18) represents that the total gas flow
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injection from G, ,, Gﬁ?, and GEE is equal to the total gas
withdrawn by G,,,, Gle,), (ng-Pg?), and (nmn
gas node. Fuel consumption factor of gas compressor 77, .
as 0.03-0.05 based on the fact that a gas compressor usually

consumes about 3-5% of the total transported gas [34].
Coefficient M is calculated as S/ (HHV . egG), where egG is

efficiency of DG g. As gas flow directions in the natural gas
distribution network are pre-specified, Weymouth gas flow
equation of a gas pipeline is described as in (19) [44].
Analogous to power flows of power lines, gas flows of
pipelines are also constrained by their capacity limits (20). In
addition, (21) describes that two terminal pressures of a gas
compressor are limited by compressor factor 1, [27].
Constraint (22) describes pressure limits of individual gas
nodes. Operation limits of gas storage facilities are presented as
in (23)-(26), including net gas output, capacity balance, as well
as lower/upper limits of discharge/charge rate and storage
capacity. Finally, constraints (28)-(29) impose limits on supply
capabilities of gas retailers and gas LS.

F= {z: Ykesg) Piet =Py, rP‘LD"’deQ PDG 0, J€Q (9)
ZkES(]') ij,t :Qi/',t_Qj ZgEQ Q ( PLD) ’] € QB(IO)
-(L-ay) M=V, -V - (’ij'Pz‘Jlterl‘/"Qij,t)/ o 5(1'%:1) M,

(@) € Q. (11)

‘G, ,) at each

is set

0< Py <ay, P§™, (ij) € Q; (12)
0=Q, =a;, Qm“x, (i) € Q. (13)
0< Py <PRom™, g€ Q) (14)
0< QDG<QDG,H}(’1X’ g e QD (15)
Vi< v <V, J€Qp (16)
0<6,<P;?, JE Qg (17)

Z(m n)EQC ’7,,,,, Gmn,t
+GS§+G5‘E+5,”,n €Qy (18)

'(l'amn,t)'MSGmn,t'Kmn' ’7[,2"[ nt—(l A, t) M

(m,n) € Qp(19)
(m,n) € Qp (20)
(m,n) € Q- (21)

LD
2063(}’1) Gnot Gmn t Gnt gEQ, 77

max
0< Gmn l— mn,t Gmn ’

T <L n T

Trt,fllniﬂn_é?ﬂ?ax, n € Qy?22)
Gor=Gi-Git, 7 €8s (23)
EN=ES1-GSy, n € Qg (24)
GOS.min sGﬂfst,?S’ma", n € Qg (25)
GnGS,minSGZgaanGS,maX) n € Qg (26)
Emin<fGS<pmax, n € Qg (27)
0<GRE<GREm n € Qp(28)
0< 6, <GP, n € Q}(29)

m

Root Node

G ,IJ D, Pm .-G

Fig. 1 An illustrative radial natural gas distribution network

mn

III. SOLUTION METHODOLOGY

In this paper, we use CCG to solve the proposed tri-level
min-max-min robust hardening problem (1)-(29), which has
been widely used for solving robust optimization instances
[26], [32]. Moreover, this paper adopts Taylor series expansion
to linearize Weymouth gas flow equation (19) [27], [45], which
converts the lower-level minimization problem to an LP to
facilitate the implementation of CCG.

A. Linearize Weymouth Gas Flow Equations

In this subsection, the original Weymouth equation while
considering outages of pipelines (19) is discussed via two
situations, i.e., a pipeline is available a,,, =1 and is on outage
amn,t:O'
(i) When a,, =1, equation (19) reduces to the standard
Weymouth equation as described in (30). Applying Taylor
series expansion, linear outer approximation of (30) around
certain given terminal pressures (ﬁm,t,?r,,,t) is given as in (31)
[27], [45].

Gmn,t:Kmn' ﬂ%z,t_nlzf:,tl (m,n) € QP (30)
A~ aGmn aGmn
Gmn,tSKmn' 7[2 '7[ + 8775 : (n'mt T, t)+ : (”nt nt)

(m n) € Qp (31)

Let us define NB pairs of breakpoints (nm,b ,,,t) with
70 >0 for b=1,2,..., NB, "<}, <...< Ao<a®, and i<
?r,l,,,< <7“rf,v€ <z It is pointed out in [27] that each plane,
given by (32)-(34) corresponding to a pair of breakpoints, is
tangent to the cone described by (30) at a line where the ratio
between intake pressure 7,,, and outtake pressure z, , is equal

to the ratio between ﬁfm, and frf; .~ In turn, all planes in the form
of (32)-(34) corresponding to all NB pairs of breakpoints
represent an outer approximation of cone described by the
original Weymouth equation (30) in the entire region of 7" <
T, < A and 70" < 7, < 7 [27], [45].

Gmn tSKmn (omn t

ﬁm,tzﬂn,t’

mnt_ W'f/ (mf) (ﬂﬂl) mn,t:’\’l,t/ (mt) (”nt) (34)

(i) When a,,,~0 , the original Weymouth equation
considering random outages (19) is not binding and always
satisfied. That is, under this situation, equation (20) restricts gas
flow of this pipeline to zero, and (32)-(34) are always satisfied.

In summary, constraints (32)-(34) can be used to
equivalently replace equation (19), and constraints (20) and
(32)-(34) all together represent a valid linear approximation of
the original Weymouth equation while considering outages of
pipelines.

B. CCG Solution Algorithm

For the sake of discussion, the proposed tri-level robust
optimization problem with linearized Weymouth gas flow
equations is rewritten in a compact form as in (35).

minmax min c'z
heH ueU zeF(hu)

(mn) € Qp (32)
(m,n) € Qp (33)

mn'¢mn’t'7rn,tr

(35)
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where F(h,u)={z:Cz+Dh+Eu<g} corresponds to (9)-(18),
(20)-(29), and (32)-(34), in which C, D, and E are constant
coefficient matrixes while ¢ and g are constant coefficient
vectors.

CCG is employed to solve (35) in a master-subproblem
framework [26], [32]. Specifically, by iteratively adding
worst-case network damage scenarios # identified in the
subproblem, master problem (36) yields a network hardening
strategy & and a lower bound of (35). W represents the set of
worst-case indices iteratively identified in the subproblem.

min o
heH,z

st.o>c'z,; Cz,+Dh+EW,<g, YwE W (36)
With a given network hardening strategy / from the master
problem, the bi-level max-min subproblem (37) identifies the
worst-case network damage scenario caused by natural
disasters that would lead to the largest TWLS. (37) can be
recasted into an equivalent single-level bilinear maximization
problem (38) by applying duality theory on the inner LP
problem, where 4 are dual variables of the inner-level LP.

h) =max min ¢'z
V( ) uelU z€F(hu)

s.t. Cz+Dh+Eu<g: (2) (37)
~ ~ T

() =max(g-Di-Eu)

s.t. CTa<e, <0 (38)

Furthermore, bilinear terms in the objective function of (38),
e.g. products of binary variables and dual variables u'4, can be
equivalently linearized via well-known algebra results [46]. For
instance, a bilinear term u-4 can be linearized as in (39)-(41)
with an ancillary continuous variable r.

r=uj (39)
-u-M<r<0 (40)
A-(1-u)-M<r<A+(1-u)-M (41)

The detailed solution procedure is summarized as follows.
Step 1) Set lower bound LB=0 and upper bound UB=w.
Initialize convergence tolerance ¢, iteration index w=I1, and
W=0.

Step 2) Solve master problem (36), derive optimal solution /,,
and optimal objective value 6,,, and update LB=4,,.

Step 3) Solve subproblem (38) with respect to A, , obtain
optimal solution #,, and optimal objective value y(lAtw), and
update UB:min{UB,y(itw)}.

Step 4) If UB-LB<e, terminate and return optimal solution /,,.
Otherwise, add new variables z,, as well as new constrains
0>c'z, and Cz,+Dh+Et,<g into master problem (36),
update W=W U{w} and w=w-+1, and go back to Step 2.

C. Discussion on Accuracy of Taylor Series Expansion based
Outer Approximation

In above Sections III.A-B, Weymouth equation (19) is
approximated by a set of linear inequalities via Taylor series
expansion, which could potentially introduce calculation error
and derive solutions that are infeasible to (19). Specifically, if
optimal nodal gas pressures calculated from (36) and (38) are
not identical to any breakpoint, the solution may not satisfy (19)
and infeasible to the original problem. On the other hand, if

optimal nodal gas pressures from (36) and (38) are identical to
certain breakpoints, linearization (32)-(34) is exact and the
derived solution is optimal [45]. That is, the closer to
breakpoints the resulting nodal pressures are, the more exact
the linearization is. Consequently, increasing the number of
breakpoints could improve accuracy of approximation [47].

In Step 3 of Section III.B, the subproblem is solved in
one-shot with a predefined fixed number of breakpoints.
Although there is a good chance that the solution is of good
quality when the number of breakpoints is sufficiently large, it
is still necessary to examine solution quality for ensuring that
approximation error is within an acceptable range. Thus, the
following iterative procedure is proposed to extend Step 3 of
Section III.B, which dynamically adds additional breakpoints
for identifying high-quality solutions to the original Weymouth
equation (19). In this dynamic procedure, an upper bound and a
lower bound are iteratively calculated to examine solution
quality of the lower-level dispatch problem through Taylor
series expansion. The same procedure is applicable to the
master problem (36). Note that the following procedure intends
to boost approximation accuracy of Taylor series expansion in
the lower-level subproblem. Essentially, gas flows in pipelines
are approximated through (32)-(34) and the lower-level
dispatch problem tries to maximize gas flows to support gas
loads. Thus, if gas flow approximations are of high quality,
possibly exact, gas load shedding in (37) corresponding to
pipeline outages can be accurately approximated. Furthermore,
damaged pipelines instead of total gas load shedding are of
concern, which may not be sensitive to approximation errors. In
turn, pipeline outage solutions of problem (38) are considered
good enough.
Step 3.1) Solve subproblem (38) via Taylor series expansion to
obtain availability status of power lines a;;, and pipelines a,,, .
Step 3.2) Solve the lower-level dispatch subproblem of (37)
with aj;, and a;,,, to retrieve gas flow solution G,,,,. The
optimal objective value is denoted as lower bound LB# of the
original nonlinear lower-level dispatch subproblem.
Step 3.3) Solve (42) with G, , aj,;, and a,,, , and the optimal
objective value is denoted as UBY.
Mi (ZJ(ﬂ/HHV) ejéjt + Zn Hn .5n,t>

" ' +p Z(’",”)GQP(f;n,t+fr;m,t)

s.t. '( 1 ‘a:m,t) 'MS(Gjnn.t)z'K;n ' (”ﬁu‘”%,f) +§;rm,t_§r;m,t
S(l'a:;m,t) "M, (m’n) € QP
Constraints (9)-(18) and (20)-(29). (42)
In (42), potential violation of Weymouth equation (19) with
respect to given G, ,, a;;, and ay,,, is penalized in objective
function of the lower-level dispatch subproblem with a positive
penalty factor p. In addition, squared nodal pressure 72, is
considered as a single variable. In turn, (42) with given gas flow
solution G,tmy, is an LP problem, and provides an upper bound
to the original nonlinear lower-level dispatch subproblem with

respect to given a;;, and a,,, .

Step 3.4) If either gap between upper bound UBE and lower
bound LB i.e. (UBgf-LBgf) /LB <¢¢f or the maximum error
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in the Weymouth equation Error=(m%iEnQP{(€n it )/

2 . .
(Gf,m,t) }Segf meets certain threshold, the derived result

represents a good-enough solution and the process terminates.
Specifically, if lower and upper bounds are equal, the derived
result is an optimal solution to the original nonlinear
lower-level dispatch subproblem; Otherwise, go to Step 3.5.

Step 3.5) Add additional breakpoints for improving accuracy
of approximation, and go back to Step 3.1. It is noteworthy that
tuning breakpoints around real operating conditions could
reduce the number of breakpoints needed for achieving a same
accuracy level. For instance, more breakpoints around nodal
pressures obtained from Step 3.3, which represents a good
intermediate solution, could be generated.

IV. NUMERICAL RESULTS

The proposed robust network hardening approach is
demonstrated on an IENDS consisting of a modified IEEE
33-node electricity distribution grid and a modified 20-node
Belgian gas network. As shown in Fig. 2, the IENDS includes 2
gas-fired DGs, 1 non-gas DG, 2 gas retailers, 2 gas storages, 32
power distribution lines, 17 pipelines, 2 gas compressors, 32
power loads, and 15 gas loads. DGs at power nodes 6 and 12 are
respectively connected to gas nodes 9 and 14 for gas fuel
supply. Voltage limits of all power nodes are set as [0.95, 1.05]
p-u. Other system configuration data can be found in [48].

System electrical and gas load profiles are shown in Fig. 3.
Electrical and gas loads are divided into 5 priority categories
with priority weights 6/, from 1 to 5. Thresholds & and el are
both 1%. All case studies are solved via Gurobi 6.5.

27 28
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Fig. 2 Power-gas distribution system

160

4T Power load (MW, MVar) Gas load (kef/h)

440

............... Active power load
------------------------- Reactive power load
....................... Gas load

Time (h)
1 s ‘ : ‘ 30
0 5 10 15 20 25
Fig. 3 System electrical and natural gas load profiles

A. Approximation Accuracy of Taylor Series Expansion

The lower-level system dispatch problem is used in this
section to investigate approximation accuracy of Taylor series
expansion. Penalty factor p is set as 1. Two tests are carried out,
in which the first test uses original gas flow constants K,,,, in
[48], and the second one reduces K,,,,, to 60% of their original
values to trigger gas network congestion. Results against

different numbers of breakpoints are reported in Table I.

It is observed that when natural gas network is lightly loaded,
i.e., without LS or network congestion, both gap and
Weymouth equation error are zeros regardless the number of
breakpoints, indicating that obtained solutions are optimal. On
the other hand, when gas network with a lower transportation
capability is congested, i.e., nodal pressures at certain nodes
reach their lower/upper limits, more breakpoints are needed to
reasonably approximate optimal gas flows with smaller gaps
and errors. Specifically, in this case, 100 breakpoints can reach
the predefined error threshold of 1% although gap is still higher
than 1%. Moreover, when the number of breakpoints reaches
500, upper bound UB®' is significantly improved, and a higher
accurate solution is obtained with gap of 0.71%. It is concluded
that a proper number of breakpoints can reasonably enhance
approximation accuracy of Taylor series expansion.

TABLE I APPROXIMATION ACCURACY OF TAYLOR SERIES EXPANSION

#of Without congestion With congestion
breakpoints| LB UB* Gap(%) Error(%)| LB  UB¥ Gap(%) Error(%)
50 0 0 0 0 620.83 817.67 31.71  2.32
80 0 0 0 0 627.03 734.50 17.14 1.26
100 0 o0 0 0 631.32 676.25 7.12 0.56
200 0 0 0 0 633.19 650.24 2.69 0.31
500 0 0 0 0 634.06 638.55 0.71 0.14

B. Natural Disasters and Their Worst-case Damages

A 24-hour period is considered to study impacts of a natural
disaster hitting the IENDS at hour 8. Parameter settings with
respect to disaster severity level / are shown in Table III.
Without network hardening, worst-case damages of natural
disasters to the original IENDS is obtained by solving max-min
subproblem (38). Table III shows worst-case damages by
natural disaster with respect to different severity levels while
the number of breakpoints is set as 50. Note that as severity
level increases, failure probability of each component also
increases. Gaps and errors against all severity levels are zeros,
indicating that optimal solutions are obtained. Specifically, in
this case, since no gas network congestion occurs, a small
number of breakpoints is sufficient to guarantee approximation
accuracy.

TABLE Il COMPONENT FAILURE PROBABILITIES AND SYSTEM PARAMETER
Severity Maximum numbers of expected damages on

level power lines and gas pipelines CyrPns) A
1 (2,0) (0.2,0.03)  0.04
2 2,1) (0.3,0.05) 0.0045
3 2,2) (0.4,0.1) 0.0016
4 3.,3) (0.6,0.13)  0.0004
5 (3,5) (0.7,0.2)  0.0001
TABLE III WORST-CASE DAMAGES AGAINST DIFFERENT SEVERITY LEVELS
Severity Proposed method N-K
level Damaged components Damages TWLS Damages TWLS
1 L1-2,L6-7 (2,0) 299.14 (0,2) 2053.45
2 L1-2,128-29, P8-9 2,1) 2019.00 (1,2) 246831
L1-2,128-29,
3 P1-2, P8-9 2,2) 2537.94 (1,3) 271831
L1-2,L6-26, L28-29,
4 P1.2, P5-6, P8-9 (3.3) 2787.94 (1,5)  2967.08
L1-2,16-26,1.28-29,
5 P1-2,P5-6,P8-9, 3.5) 3036.70 (3,5) 3036.70

P11-12,P11-17
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Table III also shows that a higher severity level induces more
component damages with a higher TWLS. As underground
pipelines are much more reliable than overhead power lines,
they could survive natural disasters of low severity levels.
Specifically, a natural disaster with severity level of 1 is not
catastrophic enough to damage underground pipelines. When
severity level increases to 2, damages on underground pipelines
emerge. Moreover, because natural gas is a primary energy
resource for both non-generation gas loads and gas-fired DGs,
under high-severity natural disasters, damaging the gas
distribution network could be more destructive than the
electricity distribution grid in terms of a larger TWLS. In fact,
in this case, pipeline P8-9 and power line L28-29, instead of
power line L6-7 at severity level of 1, are damaged, which
significantly increases TWLS by about 575%. Indeed, as the
electricity distribution grid depends on the gas distribution
network for supplying gas fuel to gas-fired DGs when power
supply from the main grid is unavailable, damaging the gas
distribution network would potentially restrict power
generation of gas-fired DGs and lead to significant electrical
LS. Specifically, when pipeline P8-9 is damaged, gas supply to
gas-fired DG at power node 6 is cut off, which, together with
damage of power line L1-2, leads to a completely outage of
power nodes 2-11. As a result, damaging power line L28-29
instead of L6-7 would lead to the worst case with larger TWLS.

The proposed method based on Claude Shannon’s concept
and the traditional N-K criterion are further compared. Results
are shown in Table III. At severity level 1 where the natural
disaster is not strong enough to damage underground pipelines,
results of the proposed method show that two power lines are
damaged. In comparison, the N-K criterion derives results of
two pipeline failures which seem unpractical. Similarly, for
severity levels ranging from 2 to 4, the N-K criterion derives a
higher total weighted load shedding (TWLS) with more
pipelines damaged. Although these N-K criterion results
correctly indicate the importance of pipelines in the IENDS,
they fail to accurately reflect real-world characteristics of
overhead power lines and underground pipelines during natural
disaster, i.e., underground pipelines are far more resilient than
power lines. Finally, results from both methods at severity level
5 are the same, because most of the major components are
damaged under this catastrophic disaster level. In summary, the
traditional N-K criterion is a good way to identify importance
of components in the IENDS, but fails to represent practical
consequences against actual disaster levels. In comparison, the
proposed method based on Claude Shannon’s concept, by using
different coefficients on overhead power lines and underground
pipelines, can accurately simulate real-world situations that
underground pipelines are less likely to be damaged than power
lines during certain severe levels of natural disasters.

To further investigate potential impacts of different numbers
of breakpoints on worst-case damage identification results
when gas congestion occurs, gas flow constants K,,, of all
pipelines are reduced to 60% of their original values. Results
against different numbers of breakpoints are shown in Table
IV, with disaster severity level of 2. Similar trend as in Table I
is observed, i.e., more breakpoints results in a smaller

gap/error. That is, more breakpoints will derive a better lower
bound of TWLS. On the other hand, it is observed that outages
of the same two power lines and one gas pipeline are identified
as the worst case with different numbers of breakpoints, while
TWLSs obtained from different numbers of breakpoints are
also close. In summary, it can be concluded that a reasonably
small number of breakpoints could be utilized to enhance
computational efficiency while not compromising the proposed
approach, since identifying worst-case damaged components is
the main concern instead of exact nodal pressure levels.

TABLE IV WORST-CASE DAMAGES WITH DISASTER SEVERITY LEVEL 2

# of breakpoints ~ Damaged components TWLS Gap Error
30 L1-2,128-29, P8-9 210796  4.95%  31.01%
50 L1-2,128-29, P8-9 2109.95 2.33%  15.00%
100 L1-2,1L28-29, P8-9 2111.57  0.23% 1.61%
200 L1-2,128-29, P8-9 2111.74  0.01% 0.31%
500 L1-2,128-29, P8-9 2111.74  0.01% 0.24%

C. Importance of DGs and Natural Gas Storages

It is well recognized that when the main grid power is lost
during natural disasters, DGs can serve as emergency response
resources in an electricity distribution system for continuously
supplying critical electrical loads. Analogously, when main gas
supply from gas retailers is down, gas storages in a gas
distribution system can be used as emergency resources for
supplying high-priority gas loads. The following three cases are
studied to investigate importance of DGs and gas storages on
resilience of an IENDS, by comparing worst-case TWLSs with
respect to different disaster severity levels:

CI: No DGs.
C2: No natural gas storages.
C3: No DGs and natural gas storages.

Results in Table IV show that a higher disaster severity level
derives a larger TWLS in all three cases. In addition, for each
disaster severity level, without support of DGs, electrical loads
connected to child nodes of damaged power lines will be
completely lost, leading to a higher total weighted power LS in
Case C1 compared to Case B. Similarly, without emergency
support of gas storages in the gas distribution system, total
weighted gas LS also significantly increases in Case C2
compared to Case B. Furthermore, in Case C3 where no
emergency response resource is available, the IENDS faces
with the highest TWLS. It is concluded that DGs and gas
storage assets are valuable emergency response resources for
reducing TWLS and enhancing resilience of IENDSs.

TABLE IV WORST-CASE DAMAGES WITH EMERGENCY RESOURCES

Severity B Cl C2 C3

level Power Gas Power Gas Power Gas Power Gas
1 299.14 0.00 497.60 0.00 303.31 11.04 497.60 2.35
2 484.49 1534.52 497.60 1534.52 484.49 1894.52 497.60 1894.52
3 484.49 2053.45 497.60 2053.45 484.49 2663.45 497.60 2663.45
4 484.49 2303.45 497.60 2303.45 484.49 2663.45 497.60 2663.45

W

484.49 2552.22 497.60 2552.22 484.49 2663.45 497.60 2663.45

In addition, gas LS levels in Cases C2 and C3 are higher than
that of B. In these two cases, DGs are utilized to support
high-priority power demands when power supply from the
main-grid is cut off. However, gas storage facilities are not
available which further deteriorate the situation of insufficient
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gas supply. As a result, low-priority gas load at gas node 12 is
partially shed, while gas-fired DG at gas node 14 converts
natural gas into electric power to support high-priority power
loads at power nodes 14-15 and 17.

Furthermore, taking disaster severity level of 3 as an
example while considering DGs and gas storages (i.e., row 3 in
Table I1I), gas levels of storage asset at gas nodes 5 and 11 are
shown in Fig. 4. It is observed from Fig. 4 that gas fuel stored in
storage facilities is effectively utilized in response to pipeline
outages. Specifically, when worst-case outages of pipelines
P1-2 and P8-9 happen, gas supply is completely cut off. Thus,
gas levels of storage assets at gas nodes 5 and 11 are increased
to their maximum capacities at hour 7 to prepare for the
catastrophic event at hour 8. That is, gas fuel stored in these
storages can be used later to supply gas loads when natural gas
supply is cut off after hour 8. As a result, a total 140 kcf of
natural gas from storage facilities is utilized during hours 8-24
and TWLS is reduced by 610 as compared to C2.

120
Storage level (kcf)

100+ —— Natural gas storage at gas node 5
- Natural gas storage at gas node 11
80
60
40

201

o ‘ ‘ " Time (h)
0 5 10 15 20 25
Fig. 4 Natural gas levels of gas storages

D. Effectiveness of Network Hardening Strategies

To demonstrate benefits of hardening strategies on IENDSs,
TWLS with respect to different hardening budgets is studied
with disaster severity level of 3. Coefficients of hardening
effort of power lines and gas pipelines are set as 1 and 3,
indicating that hardening an underground pipeline needs more
efforts/cost than an overhead power line. Results in Table VI
show that with a higher hardening budget, more power lines
and pipelines will be hardened, leading to a smaller TWLS.
Table VI also indicates that, as damaging pipelines could lead
to higher TWLS, optimal hardening strategies prefer to harden
gas pipelines with hardening budget smaller than 11. When
hardening budget is sufficient (i.e., larger than 12), more power
lines will be hardened in order to further reduce TWLS.

TABLE VI HARDENING STRATEGY AGAINST DIFFERENT HARDENING BUDGETS

Budget Hardening Strategy TWLS
1 L1-2 2474.87
2 L1-2,12-3 2395.98
3 P8-9 2372.72
4 L1-2, P8-9 2309.66
5 L1-2,L6-7, P8-9 2268.00
6 P8-9, P9-10 1940.14
7 L1-2, P8-9, P9-10 1877.08
8 L1-2,L6-7, P8-9, P9-10 1835.42
9 P8-9, P9-10, P10-11 1750.15
10 L1-2, P8-9, P9-10, P10-11 1687.08
11 L1-2,L6-7, P§-9, P9-10, P10-11 1645.42
12 L1-2,L6-7, L7-8, P8-9, P9-10, P10-11 1603.76
13 L1-2,L2-3,L6-7, L7-8, P8-9, P9-10, P10-11 157291
14 L1-2,12-3,L6-7,L7-8,L9-10, P8-9, P9-10, P10-11  1563.65

Hardening strategies in Table VI against different hardening
budget levels also implicate importance of individual power

lines and pipelines on system resilience. For instance, power
line L1-2 is the most cirtical that would be hardened
preferentially, as it is directly connected to the substation.
Furthermore, pipelies P8-9, P9-10, and P10-11 are always
hardened which indicates their importance in the IENDS. When
hardening budget reaches 14, by optimally hardening 5 power
lines and 3 pipelines, TWLS is decreased from 2474.87 to
1563.65 with a 37% drop. In addition, in this case, a proper
budget level could be 6 because it brings the largest drop in
TWLS of 327.85 for one unit increase in hardening budget.

E. Sensitivity Analysis

A sensitivity analysis on TWLS with respect to different
hardening budgets and disaster severity levels is further
performed, to illustrate their impacts on resilience of IENDSs.
Results in Fig. 5 indicate a monotonically decreasing trend of
TWLS with respect to an increase in hardening budgets and/or
a decrease in disaster severity levels. Such a sensitivity study
can guide utilities to determine proper hardening budgets for
maintaining a certain resilience level of IENDSs in response to
natural disasters of different disaster severity levels.
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Fig. 5 TWLS under various hardening budgets and disaster severity levels

F. Discussion on Computational Performance

Computational performance of the proposed model is studied
in this section. Table VII reports computational time and
number of iterations with disaster severity level of 3. Overall,
results show that number of iterations increases with the
increase in hardening budget, because more hardening options
are to be evaluated. In addition, numbers of iterations for
budget levels of 6, 7, and 8 are lower because two important
pipelines are always preferably hardened, which reduces the
number of hardening options to be evaluated. The high
computational time is mainly introduced by the CCG
algorithm. That is, as the number of CCG iteration increases,
numbers of variables and constraints increase, leading to a
significant increase in computational time. In addition, Fig. 5 is
derived in about four hours, which is sufficient for this type of
offline applications to support timely and effective
decision-making against natural disasters.

TABLE VII COMPUTATIONAL TIME WITH DISASTER SEVERITY LEVEL 3

Budget Time(s) # of iterations Budget Time(s) # of iterations
1 5 3 8 35 8
2 6 3 9 154 14
3 16 6 10 183 15
4 80 11 11 220 16
5 128 13 12 257 17
6 10 4 13 492 23
7 26 7 14 981 34
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V. CONCLUSION

This paper proposes a tri-level robust network hardening
model for enhancing resilience of IENDSs against natural
disasters. It provides optimal hardening strategies for
proactively reinforcing power lines/ pipelines and minimizing
the worst-case TWLS with respect to hardening budget limits
and random damages caused by disasters of different severity
levels. Distinct failure probabilities of overhead power lines
and underground pipelines are considered. Furthermore, DGs
and gas storage assets are considered as emergency response
resources for supplying high-priority electricity/gas loads
during disaster events and reducing TWLS. The proposed
model is solved by CCG, in which nonlinear gas network
constraints are linearized via Taylor series expansion. An
iterative procedure is proposed to improve approximation
accuracy of Taylor series expansion.

Numerical studies illustrate effectiveness of the proposed
Taylor series expansion-based solution approach. It also shows
that DGs and gas storage assets, as critical emergency response
resources in IENDSs, could greatly reduce TWLS and enhance
system resilience. Optimal network hardening strategies
obtained from the proposed model can assist utilities in
mitigating vulnerability of IENDSs against natural disasters.
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