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Abstract—Recent revolution of the electricity distribution sector, 
especially a deeper penetration of gas-fired distributed generations 
(DG), intensifies the interdependence of electricity on natural gas 
distribution systems. Such integrated electricity and natural gas 
distribution systems (IENDS) are facing with significant threats 
from frequent natural disasters that cause enormous economic 
losses. Network hardening is regarded as an effective technique 
for enhancing resilience of IENDSs against natural disasters. This 
paper presents a tri-level robust optimization-based network 
hardening model for minimizing worst-case total weighted 
electricity and gas load shedding of IENDSs with respect to 
hardening budget limits and random damages caused by disasters 
of different severity levels. Specifically, distinct failure 
probabilities of overhead power lines and underground gas 
pipelines are considered, while DGs and gas storages are modeled 
as effective emergency response resources for supplying high- 
priority electricity/gas loads during disasters. The proposed model 
is solved by a column-and-constraint generation (CCG) approach, 
in which nonlinear gas network constraints are linearized via 
Taylor series expansion. Numerical case studies evaluate the 
proposed robust hardening strategy against natural disasters. 

Index Terms— Integrated electricity and natural gas distribution 
systems, natural disaster, resilience, robust optimization. 

NOMENCLATURE 

Major symbols and notations used throughout the paper are 
defined below, while others are defined following their first 
appearances as needed. 

Indices: 
b Index of breakpoints used in the Taylor series 

expansion. 
i, j, k Indices of power nodes. 
(i,j), (m,n) Indices of power lines and gas pipelines. 
l Index of disaster severity levels. 
m, n, o Indices of natural gas nodes. 

t, g Indices of time periods and DGs. 

Sets: 
GU Set of gas-fired DGs. 
s(j)  Set of child nodes of node j. 
Ωj,	Ωn Set of assets connected to power/gas node j/n. 
ΩB,ΩD,ΩL Sets of power nodes, DGs, and power lines. 
ΩN,ΩC,ΩP Sets of gas nodes, compressors, and pipelines. 
ΩS,	ΩR Sets of gas storages and gas retailers. 

Variables: 
aij,t,	amn,t Binary variable which is 1 if power line (i,j)/ gas 
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pipeline (m,n) is available at time t, being 0 
otherwise. 

En,t
GS Gas volume of a gas storage at gas node n at time t. 

Gmn,t Gas flow of pipeline (m,n) at time t. 

Gn,t
GS,	Gn,t

RE Gas flow injection of gas storage/retailer at gas node 
n at time t. 

Gn,t
dis,	Gn,t

cha Gas discharge/charge of a gas storage at gas node n 
at time t. 

hij,	hmn Binary variable which is 1 if power line (i,j)/ gas 
pipeline (m,n) is hardened, being 0 otherwise. 

NB Total number of breakpoints used in the Taylor 
series expansion. 

Pij,t,	Qij,t Active/reactive power flow of line (i,j) at time t. 

Pg,t
DG,	Qg,t

DG Active/reactive power dispatch of DG g at time t. 

uij,	umn Binary variable which is 1 if power line (i,j)/ gas 
pipeline (m,n) is damaged by natural disasters, 
being 0 otherwise. 

Vj,t Nodal voltage magnitude of bus j at time t. 
δj,t,	δn,t Load shedding of power/gas node j/n at time t. 
πn,t Pressure of gas node n at time t. 

Constants: 
Gn,t

LD Gas demand of gas node n at time t. 
κij,	κmn Coefficient of hardening effort of power line (i,j)/ 

gas pipeline (m,n). 
Kmn Gas flow constant of gas pipeline (m,n). 
M A large enough positive number. 
pij,l,	pmn,l Failure probability of power line (i,j)/ gas pipeline 

(m,n) under disaster severity level l. 
Pj,t

LD,	Qj,t
LD Active/reactive power demand of node j at time t. 

rij,	xij Resistance/reactance of power line (i,j). 

Tenter Time point when natural disaster attacks the system. 
V0 Reference voltage magnitude at the substation. 
θj,	θn Priority weight of power load j/gas load n. 
Δh Hardening budget. 
Δl System parameter corresponding to disaster severity 

level l. 
ηg Gas fuel consumption factor of gas-fired DG g. 

ηmn Fuel consumption factor of a gas compressor at 
pipeline (m,n). 

Γmn Compressor factor at pipeline (m,n). 
ሺ∙ሻmin/max Min/max value of a quantity. 

I. INTRODUCTION 

n increasing frequency of catastrophic natural disasters, 
such as hurricanes and windstorms, has inflicted major 

social and financial impacts at national, regional, and local 
levels. Such catastrophic events could result in loss of life and 
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residences, long-term health consequences, and significant 
impacts on businesses. For instance, in October 2012, the 
Hurricane Sandy swept the Northeast U.S., causing 147 direct 
deaths and at least $50 billion worth of damage in the area [1].  

One critical issue associated with such disaster events is the 
availability of electricity for recovery and reconstruction 
efforts. Reference [2] reviewed impacts of various types of 
natural disasters that have caused widespread blackouts and 
affected resilience of power systems. According to a report by 
the National Oceanic and Atmospheric Administration, the 
U.S. has sustained 188 weather and climate disasters since 
1980, more than 80% of which have brought damages to the 
nation’s electricity infrastructure [3]. The most notable 
example is the Hurricane Sandy in 2012, which damaged 
electricity transmission/distribution infrastructures by 
devastating wind/flood and caused over 8 million customer 
outages [4]. As a result, reference [5] proposed a probabilistic 
model to assess resilience of power systems against hurricanes 
and ensure rapid recovery of power systems from cascading 
failures. 

Electricity grid hardening is regarded as one of the most 
effective ways for enhancing system resilience against natural 
disasters [6]-[8]. These hardening techniques, including 
upgrading poles with guy wires, burying power lines 
underground, managing vegetation, and elevating substations/ 
control rooms, can be implemented to protect the power grid 
against strong wind and flood [8]. However, existing researches 
[9]-[11] focus on hardening transmission networks against 
natural disasters, while actually about 90% of weather related 
outages occur at the distribution level, as indicated in a report 
by the Executive Office of the President [6]. Thus, enhancing 
resilience of distribution systems against natural events is 
becoming a primary task of utilities. A few studies discussed 
enhancing resilience of distribution systems [12]-[15]. A 
vegetation maintenance scheduling for overhead power 
distribution systems was proposed in [12]. Reference [13] 
studied targeted hardening strategies to protect distribution 
systems against hurricanes, while considering failure 
probabilities of power poles. A resilient distribution network 
planning model was proposed in [14] to coordinate network 
hardening and distributed generation (DG) allocation. 
Reference [15] focused on different hardening techniques to 
protect distribution networks against extreme weather events. 

Furthermore, an increasing penetration of gas-fired DGs has 
significantly intensified the dependency of electricity 
distribution system on natural gas distribution network [16]. 
Consequently, extreme weather events, by triggering damages 
of gas distribution pipelines, could cause further catastrophic 
outages on power distribution systems. In fact, the Hurricane 
Sandy caused severe damages to gas distribution pipelines, 
affecting approximately 32,000 customers of New Jersey 
Natural Gas [4]. In turn, reference [17] proposed a performance 
index to measure functionality of the natural gas network 
against natural disasters. Gas pipelines could be hardened by 
securing cooling towers, improving tank integrity against wind, 
and building/strengthening berms/levees/floodwalls against 
flood.  

Impacts of hurricanes on electricity and natural gas systems 
were thoroughly studied in [18] where a network flow model 
was adopted to simulate large-scale disruptions. Furthermore, a 
resilience assessment framework for interdependent electricity 
and natural gas system was studied in [19] to analyze the joint 
restoration processes. Indeed, during a natural disaster, 
resilience of power system and natural gas system is highly 
interdependent. That is, loss of a power line or shutdown of a 
pipeline could easily spread to the other system and further lead 
to cascading failures [18]-[19]. However, researches that 
explore resilience enhancement of the integrated energy 
systems are rather limited. Reference [20] proposed to enhance 
resilience of the power grid via an expansion planning of 
integrated electricity and natural gas system. A defense strategy 
to identify and protect vulnerable components was proposed in 
[21] for increasing resilience of integrated gas-electric system 
against malicious attacks. However, these works [20]-[21] 
mainly focus on resilience enhancement of integrated systems 
at the transmission level, while such a resilience issue for 
integrated electricity and natural gas distribution systems 
(IENDS) has not been studied. To fill the gap, this paper 
proposes a tri-level robust optimization-based network 
hardening strategy for IENDSs, which identifies the most 
effective hardening strategy of electric distribution lines and 
gas distribution pipelines for minimizing electricity and natural 
gas load shedding (LS) against natural disasters. Compared to 
[20], the proposed model focuses on hardening strategies of the 
integrated electricity and natural gas system to protect 
important components against natural disasters. Compared to 
[21] which focuses on malicious attacks, this paper 
concentrates on the modeling of natural disasters and the 
corresponding optimal hardening strategies. Specifically, in the 
proposed hardening model, DGs and gas storages are 
considered as emergency response resources for supporting 
high-priority loads after system components are damaged by 
natural disasters. This practical consideration is driven by the 
facts that: (i) DGs are commonly used as backup generators for 
providing continued power supply when the main grid is 
interrupted [22]-[23], while gas-fired DGs further couple 
electricity and gas distribution systems; and (ii) Gas storage 
assets can be used as an insurance for maintaining adequate gas 
network pressure against unforeseen accidents [24]. 

Furthermore, in reality, as underground pipelines are much 
more reliable than overhead power lines [25], Claude 
Shannon’s concept of information [15] is adopted in this paper 
to address distinct failure probabilities of power lines and 
pipelines. Moreover, the proposed tri-level robust model is 
solved by a column-and-constraint generation (CCG) algorithm 
[26], while the lower-level nonlinear dispatch problem is 
converted into a linear programming (LP) problem by 
linearizing Weymouth gas flow equations via Taylor series 
expansion [27]. 

Major contributions of the paper are twofold.  
1) Integrated Robust Network Hardening Strategy: The 
proposed tri-level robust optimization model explores network 
hardening strategies of IENDS, while considering DGs and gas 
storage assets as emergency response resources to support 
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high-priority electricity/gas loads and reduce system LS against 
natural disasters. In addition, distinct failure probabilities of 
underground gas pipelines and overhead power lines are 
considered by recognizing the fact that underground gas 
pipelines are more reliable. 
2) Solution Algorithm: Taylor series expansion is applied to 
linearize nonlinear gas flow equations, which enables dualizing 
lower-level subproblem of the proposed robust model and 
facilitates its calculation via CCG algorithm. Two metrics are 
introduced to examine approximation accuracy of Taylor series 
expansion. Moreover, a dynamic procedure is proposed to 
successively add new breakpoints as needed, for deriving 
high-quality solutions or even global optimal solutions to the 
original problem with nonlinear gas flow equations. 

The rest of the paper is organized as follows. Sections II-III 
discuss the proposed robust optimization-based network 
hardening model and solution approach for IENDSs. 
Numerical case studies are presented in Section IV, and Section 
V concludes the paper. 

II. MODEL DESCRIPTION 

As we do not exactly know how the IENDS will be affected 
by natural disasters, such uncertainties should be properly 
simulated in the hardening framework. Stochastic 
programming and robust optimization are two widely used 
optimization approaches for handling uncertainties. As power 
line and pipeline failures against a natural disaster could be 
completely random, stochastic optimization can be adopted to 
model natural disasters and their random impacts on system 
components [10]. In these stochastic models, damage scenarios 
of natural disasters are modeled as a set of stochastic events 
with a subset of predefined components that may fail. However, 
stochastic optimization usually considers high-probability 
scenarios as a tradeoff between computational time and 
solution quality. Consequently, neglecting low-probability/ 
high-damage scenarios in stochastic optimization approaches 
could bring significant damages to the IENDS. In comparison, 
robust optimization has become a popular tool to optimize 
against the worst-case scenarios and control the worst-case 
damages. In turn, this paper adopts a robust optimization model 
to anticipate and prepare for the worst-case outcomes of natural 
disasters. 

In the proposed robust network hardening model for 
enhancing resilience of IENDS against natural disasters, the 
following assumptions are made. 
1) Hardened power distribution lines and gas distribution 
pipelines will survive natural disasters [9]-[12], [14]. Whereas, 
once a power line or a gas pipeline is damaged by natural 
disasters, it will remain unavailable throughout catastrophic 
events. As this paper mainly focuses on network hardening 
while DGs, compressors, and gas storages could be more 
resilient than power lines and gas pipelines [14], [24], [28], they 
are assumed to survive natural disasters and can be readily used 
as emergency response resources during catastrophic events. 
2) Both electricity and gas distribution networks are radial 
[14], [29]-[31]. That is, directions of power and gas flows are 
pre-specified. Consequently, emergency response resources 

will only be able to supply electricity/gas loads that are 
connected to the same or their child nodes. 
3) Gas fuel consumption of a gas-fired DG only depends on its 
active power output [32], [33]. Gas fuel consumption of a gas 
compressor is linearly dependent on gas flow through it [34].  

The proposed network hardening model for IENDSs is 
formulated as a tri-level robust optimization problem (1), which 
seeks for optimal network hardening plans to minimize the 
worst-case total weighted electricity and gas LS. Specifically, 
the upper level determines proactive optimal network 
hardening strategy in response to upcoming natural disasters, 
the middle level identifies maximum damages of IENDS 
caused by natural disasters, and the lower level explores 
reactions of distribution system operators for minimizing the 
total weighted LS (TWLS) in response to natural disasters. 
Weights of individual electricity and gas loads are set based on 
their priorities. In addition, power LS quantities are multiplied 
by ߚ HHV⁄  to convert to the same unit of kcf as gas LS, where 
energy conversion factor β=3.4MBtu/MWh and HHV=1.026 
MBtu/kcf [35]-[36].  
min
h∈H

max
u∈U

min
z∈Fሺh,uሻ

∑ ൣ∑ ሺβ HHV⁄ ሻ·θj·δj,tj +∑ θn·δn,tn ൧t  (1) 

where H represents the feasibility set of hardening decisions; U 
is uncertainty set of network damages caused by natural 
disasters; F represents feasible IENDS operation conditions; h, 
u, and z are vectors of hardening strategies, uncertain network 
damage statuses with respect to natural disasters, and IENDS 
operation decision variables. 

A. Upper-Level Constraints 

Feasibility set of hardening decisions in the upper level is 
described as in (2), which restricts total hardening efforts 
within the hardening budget Δh . Coefficients κij  and κmn 
indicate distinct levels of efforts/costs required to harden 
different types of network assets (i.e., overhead power lines and 
underground pipelines) with different lengths. These values 
could be determined via the following two ways: (i) 
coefficients are associated with real-world hardening costs, i.e., 
similar to reference [15], utilities determine how much money 
is needed to harden a certain power line or pipeline, while Δh 
represents the total monetary hardening budget; and (ii) 
coefficients are associated with manpower, i.e., based on 
historical data utilities can estimate how much manpower is 
needed to harden a certain power line or pipeline, while Δh 
represents the total manpower hardening budget. In case studies 
of this paper, hardening coefficients of power lines and gas 
pipelines are set as 1 and 3 to replicate practical situations, 
indicating that hardening an underground pipeline needs two 
times more money/manpower than an overhead power line. 

	H=൛h:∑ κij·hij(i,j)∈ΩL
൅∑ κmn·hmn(m,n)∈ΩP

൑ Δh, hij,hmn ∈ ሼ0,1ሽቅ

 (2) 

B. Middle-Level Constraints 

Middle-level constraints describe uncertainty sets of random 
damages caused by natural disasters. Indeed, various natural 
disasters present unique characteristics and could affect power 
grid and natural gas network to varying degrees. As pointed in 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

[2], predictability, impacted region, and affecting time of 
individual natural disasters are different. In literature [2], [10], 
[14]-[15], researchers typically model impact of different types 
of natural disasters via the number of system components that 
are damaged. Follow the tradition, this paper also uses number 
of system component outages to model the impact of different 
types of natural disasters. Consequently, by considering 
different numbers of system components at fault, the model 
presented in this paper can apply to different types of natural 
disasters, including weather related natural disasters and other 
non-weather related natural disasters such as earthquake that 
could impact power grid and natural gas network.  

Indeed, considering that natural gas is an important primary 
energy resource, outage of a gas pipeline by natural disasters 
could lead to cascading outages of multiple gas-fired DGs, and 
result in extensive power LS of an electricity distribution 
network. On the other hand, because underground pipelines are 
much more reliable than overhead power lines, conventional 
uncertainty set modeling of power lines such as N-K 
contingency may not be applicable [9]-[11], [14]-[15]. In this 
paper, according to Claude Shannon’s concept of information 
[15], coefficients - log2 pij,l and - log2 pmn,l are used to represent 

distinct resilience characteristics of individual power lines and 
gas pipelines under disaster severity level l. For instance, taking 
an overhead power line with a failure probability of 0.3 and an 
underground gas pipeline with a failure probability of 0.1 as an 
example, coefficients of the power line and gas pipeline are 
respectively 1.737 and 3.32, i.e., it takes much more efforts to 
damage a more resilient pipeline. It is noted that failure 
probability considered in the model refers to probability that a 
component will fail during natural disasters in a short term, 
which is different from failure rate or forced outage rate (FOR) 
used in the long-term reliability assessment [37]. For different 
types of natural disasters, utilities can calculate failure 
probabilities of overhead power lines pതij,l  and underground 

pipelines pതmn,l  at severity level l. Failure probabilities of 

overhead systems can be calculated using equations in 
reference [5], [38]. Similarly, for underground systems, their 
failure probabilities can be calculated via approach in [15], [39] 
Given failure probabilities of different components with respect 
to a certain natural disaster, the proposed model can identify 
effective hardening strategies against this type of natural 
disasters. 

Middle-level constraints are presented as in (3)-(7). 
Constraint (3) describes extend of random damages caused by 
natural disasters, where ൫- log2 Δl൯ represents budget of system 
component failures corresponding to disaster severity level l. 
One possible way to determine this parameter Δl  is through 
expected maximum numbers of power line and pipeline 
outages and their corresponding average failure probabilities. 
That is, (i) From historical data or by expectation, determine 
numbers of power lines Kp and pipelines K-Kp that could fail in 
a natural disaster of severity level l; (ii) Calculate average 
failure probabilities of individual power lines pതij,l and pipelines 

pതmn,l  in a natural disaster of severity level l using their 

individual failure probabilities; and (iii) Calculate system 

parameter Δl via Δl=pത
ij,l

Kp ∙ pത
mn,l

൫K-Kp൯. It is also noteworthy that Kp 

and K-Kp are pre-specified for calculating Δl only, while 
worst-case power line and pipeline failures will be determined 
by the proposed model according to Δl and their importance to 
the IENDS. The proposed method is an extension of the 
traditional N-K criterion. That is, if failure probabilities of 
power lines and pipelines are the same, equation (3) will 
degrade to the traditional N-K criterion which defines that at 
most K power lines and pipelines will fail. Constraint (4)-(5) 
describes that power lines and pipelines are available before 
catastrophic events. Equations (6)-(7) represent logic 
relationships among availability a, hardening h, and damages 
by natural disasters u for individual power lines and pipelines 
after catastrophic events. (8) imposes binary restrictions on a 
and u variables. The component failure model (3)-(8) could be 
extended to consider different numbers of failure components 
in different time slots during the disaster, if information on 
dynamics of disasters sweeping the area can be reasonably 
obtained and the distribution system spans a larger area that 
will not be influenced by the disaster at the same time. 

		U= ቄu:∑ ቀ- log2 pij,lቁ ·uij(i,j)∈ΩL
+∑ ቀ- log2 pmn,lቁ·umn(m,n)∈ΩP

  

                                                                           ≤- log2 Δl 	 (3) 

aij,t=1,																																																														t<Tenter,(i,j) ∈ ΩL (4)

amn,t=1,																																																									t<Tenter,(m,n) ∈ ΩP (5) 
aij,t=1-uij+uij·hij,																																												t≥Tenter,(i,j) ∈ ΩL (6) 

amn,t=1-umn+umn·hmn,																																t≥Tenter,(m,n) ∈ ΩP (7) 
uij,umn,aij,t,amn,t ∈ ሼ0,1ሽ,																			(i,j) ∈ ΩL,(m,n) ∈ ΩP	ൟ (8) 

C. Lower-Level Constraints 
Lower-level constraints (9)-(29) describe physical operation 

conditions of IENDSs. For an electricity distribution network, 
the linearized DistFlow model is adopted to calculate complex 
power flows [14]-[15], [40]. Specifically, active and reactive 
power flow balances are enforced via (9)-(10). Branch voltage 
differences and branch power flows are limited as in (11)-(13) 
with respect to network connectivity indicator aij,t. Limits on 
DG outputs as well as voltage levels and electrical LS of 
individual nodes are enforced in (14)-(17). Although convex 
relaxations, such as second-order cone programing (SOCP), of 
nonlinear Distflow model have been recently explored in 
literature, they may not be applicable in the proposed model. 
The reason is that in order to ensure solution exactness of 
convex relaxation, the objective function needs to be 
formulated as minimizing total costs or losses [41]-[42], while 
the objective of this paper is to minimize TWLS of the IENDS. 
In addition, the linearized DistFlow model has been widely 
used in various distribution system applications including 
optimal DG placement [30], service restoration [28], and 
optimal operation [43], while its solution quality has also been 
extensively studied in literature. 

Constraints (18)-(29) describe Weymouth gas flow 
equations and operation characteristics of a natural gas 
distribution network. As demonstrated in Fig. 1, gas network 
nodal balance equation (18) represents that the total gas flow 
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injection from Gmn,t , Gn,t
GS, and Gn,t

RE is equal to the total gas 

withdrawn by Gno,t , Gn,t
LD, ቀηg·Pg,t

DGቁ, and ൫ηmn·Gmn,t൯ at each 

gas node. Fuel consumption factor of gas compressor ηmn is set 
as 0.03-0.05 based on the fact that a gas compressor usually 
consumes about 3-5% of the total transported gas [34]. 
Coefficient ηg  is calculated as β ൫HHV ൉ eg

DG൯⁄ , where eg
DG  is 

efficiency of DG g. As gas flow directions in the natural gas 
distribution network are pre-specified, Weymouth gas flow 
equation of a gas pipeline is described as in (19) [44]. 
Analogous to power flows of power lines, gas flows of 
pipelines are also constrained by their capacity limits (20). In 
addition, (21) describes that two terminal pressures of a gas 
compressor are limited by compressor factor Γmn  [27]. 
Constraint (22) describes pressure limits of individual gas 
nodes. Operation limits of gas storage facilities are presented as 
in (23)-(26), including net gas output, capacity balance, as well 
as lower/upper limits of discharge/charge rate and storage 
capacity. Finally, constraints (28)-(29) impose limits on supply 
capabilities of gas retailers and gas LS.  

	F= ቄz:∑ Pjk,tk∈s(j) =Pij,t-Pj,t
LD+∑ Pg,t

DG
g∈Ωj

+δj,t ,											j ∈ ΩB (9) 

∑ Qjk,tk∈s(j) =Qij,t-Qj,t
LD+∑ Qg,t

DG
g∈Ωj

+൫δj,t Pj,t
LD⁄ ൯·Qj,t

LD,j ∈ ΩB (10) 

	-൫1-aij,t൯·M≤Vi,t-Vj,t- ቀrij·Pij,t+xij·Qij,tቁ V0ൗ ≤൫1-aij,t൯·M,					 
                                                                          				(i,j) ∈ ΩL (11) 
0≤	Pij,t≤aij,t·Pij

max,																																																								(i,j) ∈ ΩL (12)
0≤	Qij,t≤aij,t·Qij

max,																																																							(i,j) ∈ ΩL (13) 

0≤	Pg,t
DG≤Pg

DG,max,																																																													g ∈ ΩD (14) 

0≤	Qg,t
DG≤Qg

DG,max,																																																												g ∈ ΩD (15) 

Vj
min≤	Vj,t≤Vj

max,																																																															j ∈ ΩB	 (16) 

0≤	δj,t≤Pj,t
LD,																																																																							j ∈ ΩB	 (17) 

∑ Gno,to∈s(n) =Gmn,t-Gn,t
LD-∑ ηg·Pg,t

DG
g∈Ωn

-∑ ηmn·Gmn,t(m,n)∈ΩC
  

                                                   	+Gn,t
GS+Gn,t

RE+δn,t ,n ∈ ΩN  (18) 

	-൫1-amn,t൯·M≤Gmn,t-Kmn·ටπm,t
2 -πn,t

2 ≤൫1-amn,t൯·M,		 

                                                                           (m,n) ∈ ΩP (19) 
0≤	Gmn,t≤amn,t·Gmn

max,																																																(m,n) ∈ ΩP (20) 
πn,t≤Γmn·πm,t,																																																													(m,n) ∈ ΩC (21) 
πn

min≤πn,t≤πn
max,																																																																	n ∈ ΩN (22) 

Gn,t
GS=Gn,t

dis-Gn,t
cha,																																																																n ∈ ΩS (23) 

En,t
GS=En,t‐1

GS -Gn,t		
GS ,																																																														n ∈ ΩS (24) 

Gn
GS,min≤Gn,t

dis≤Gn
GS,max,																																																				n ∈ ΩS (25) 

Gn
GS,min≤Gn,t

cha≤Gn
GS,max,																																																			n ∈ ΩS (26) 

	En
min≤En,t

GS≤En
max,																																																														n ∈ ΩS (27) 

0≤Gn,t
RE≤Gn

RE,max,																																																															n ∈ ΩR (28) 

0≤	δn,t≤Gn,t
LD,																																																																				n ∈ ΩNൟ (29) 

 
Fig. 1 An illustrative radial natural gas distribution network 

III. SOLUTION METHODOLOGY 

In this paper, we use CCG to solve the proposed tri-level 
min-max-min robust hardening problem (1)-(29), which has 
been widely used for solving robust optimization instances 
[26], [32]. Moreover, this paper adopts Taylor series expansion 
to linearize Weymouth gas flow equation (19) [27], [45], which 
converts the lower-level minimization problem to an LP to 
facilitate the implementation of CCG. 

A. Linearize Weymouth Gas Flow Equations 

In this subsection, the original Weymouth equation while 
considering outages of pipelines (19) is discussed via two 
situations, i.e., a pipeline is available amn,t=1 and is on outage 

amn,t=0.  
(i) When amn,t=1 , equation (19) reduces to the standard 
Weymouth equation as described in (30). Applying Taylor 
series expansion, linear outer approximation of (30) around 
certain given terminal pressures ൫πොm,t,πොn,t൯ is given as in (31) 
[27], [45]. 

Gmn,t=Kmn·ටπm,t
2 -πn,t

2 ,																																													(m,n) ∈ ΩP (30) 

Gmn,t≤Kmn·ටπොm,t
2 -πොn,t

2 +
∂Gmn,t

∂πm,t
·൫πm,t-πොm,t൯+

∂Gmn,t

∂πn,t
·൫πn,t-πොn,t൯ 

                                                                         (m,n) ∈ ΩP (31) 

Let us define NB pairs of breakpoints ൫πොm,t
b ,πොn,t

b ൯  with 

πොm,t
b >πොn,t

b  for b=1,2,…, NB, πm
min≤πොm,t

1 ≤…≤ πොm,t
NB≤πm

max, and πn
min≤ 

πොn,t
1 ≤… ≤πොn,t

NB≤πn
max. It is pointed out in [27] that each plane, 

given by (32)-(34) corresponding to a pair of breakpoints, is 
tangent to the cone described by (30) at a line where the ratio 
between intake pressure πm,t and outtake pressure πn,t is equal 

to the ratio between πොm,t
b  and πොn,t

b . In turn, all planes in the form 
of (32)-(34) corresponding to all NB pairs of breakpoints 
represent an outer approximation of cone described by the 
original Weymouth equation (30) in the entire region of πn

min ൑
πn,t ൑ πn

max and πm
min ൑ πm,t ൑ πm

max [27], [45]. 

Gmn,t≤Kmn·φොmn,t
b ·πm,t-Kmn·ϕ෠mn,t

b
·πn,t,																			(m,n) ∈ ΩP (32) 

πm,t≥πn,t,																																																																		(m,n) ∈ ΩP (33) 

φොmn,t
b = πොm,t

b ට൫πොm,t
b ൯

2
-൫πොn,t

b ൯
2

ൗ ;		ϕ෠mn,t

b
= πොn,t

b ට൫πොm,t
b ൯

2
-൫πොn,t

b ൯
2

ൗ  (34) 

(ii) When amn,t=0 , the original Weymouth equation 
considering random outages (19) is not binding and always 
satisfied. That is, under this situation, equation (20) restricts gas 
flow of this pipeline to zero, and (32)-(34) are always satisfied. 

In summary, constraints (32)-(34) can be used to 
equivalently replace equation (19), and constraints (20) and 
(32)-(34) all together represent a valid linear approximation of 
the original Weymouth equation while considering outages of 
pipelines. 

B. CCG Solution Algorithm 

For the sake of discussion, the proposed tri-level robust 
optimization problem with linearized Weymouth gas flow 
equations is rewritten in a compact form as in (35). 
min
h∈H

max
u∈U

min
z∈Fሺh,uሻ

cTz  (35) 
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where 	Fሺh,uሻ=ሼz:Cz+Dh+Eu≤gሽ  corresponds to (9)-(18), 
(20)-(29), and (32)-(34), in which C, D, and E are constant 
coefficient matrixes while c and g are constant coefficient 
vectors.  

CCG is employed to solve (35) in a master-subproblem 
framework [26], [32]. Specifically, by iteratively adding 
worst-case network damage scenarios uො  identified in the 
subproblem, master problem (36) yields a network hardening 
strategy h෠  and a lower bound of (35). W represents the set of 
worst-case indices iteratively identified in the subproblem. 
min
h∈H,z

σ  

s.t. σ≥cTࢠw;  Cࢠw+Dh+Eෝ࢛w≤g,                     ∀w ∈ W  (36) 
With a given network hardening strategy h෠  from the master 

problem, the bi-level max-min subproblem (37) identifies the 
worst-case network damage scenario caused by natural 
disasters that would lead to the largest TWLS. (37) can be 
recasted into an equivalent single-level bilinear maximization 
problem (38) by applying duality theory on the inner LP 
problem, where λ are dual variables of the inner-level LP. 
	γ൫h෠൯=max

u∈U
min

z∈Fሺh,uሻ
cTz  

s.t.		Cz+Dh෠+Eu≤g	:	ሺλሻ (37) 

	γ൫h෠൯=max
u∈U,λ

൫g-Dh෠-Eu൯
T
λ  

s.t. CTλ≤c, λ≤0 (38) 
Furthermore, bilinear terms in the objective function of (38), 

e.g. products of binary variables and dual variables uTλ, can be 
equivalently linearized via well-known algebra results [46]. For 
instance, a bilinear term u·λ can be linearized as in (39)-(41) 
with an ancillary continuous variable r. 
r=u·λ (39) 
-u·M≤r≤0 (40) 
	λ-ሺ1-uሻ·M≤r≤λ+ሺ1-uሻ·M (41) 

The detailed solution procedure is summarized as follows. 
Step 1) Set lower bound LB=0  and upper bound  UB=∞ . 
Initialize convergence tolerance ε, iteration index w=1, and 
 W=∅. 
Step 2) Solve master problem (36), derive optimal solution h෠w 
and optimal objective value σොw, and update  LB=σොw.  
Step 3) Solve subproblem (38) with respect to h෠w , obtain 
optimal solution uොw  and optimal objective value 	γ൫h෠w൯, and 

update		UB=min൛UB,γ൫h෠w൯ൟ. 
Step 4) If  UB-LB≤ε, terminate and return optimal solution h෠w. 
Otherwise, add new variables ࢠw  as well as new constrains 
σ≥cTࢠw  and 	Cࢠw+Dh+Eෝ࢛w≤g  into master problem (36), 
update W=W⋃ሼwሽ and w=w+1, and go back to Step 2.  

C. Discussion on Accuracy of Taylor Series Expansion based 
Outer Approximation 

In above Sections III.A-B, Weymouth equation (19) is 
approximated by a set of linear inequalities via Taylor series 
expansion, which could potentially introduce calculation error 
and derive solutions that are infeasible to (19). Specifically, if 
optimal nodal gas pressures calculated from (36) and (38) are 
not identical to any breakpoint, the solution may not satisfy (19) 
and infeasible to the original problem. On the other hand, if 

optimal nodal gas pressures from (36) and (38) are identical to 
certain breakpoints, linearization (32)-(34) is exact and the 
derived solution is optimal [45]. That is, the closer to 
breakpoints the resulting nodal pressures are, the more exact 
the linearization is. Consequently, increasing the number of 
breakpoints could improve accuracy of approximation [47]. 

In Step 3 of Section III.B, the subproblem is solved in 
one-shot with a predefined fixed number of breakpoints. 
Although there is a good chance that the solution is of good 
quality when the number of breakpoints is sufficiently large, it 
is still necessary to examine solution quality for ensuring that 
approximation error is within an acceptable range. Thus, the 
following iterative procedure is proposed to extend Step 3 of 
Section III.B, which dynamically adds additional breakpoints 
for identifying high-quality solutions to the original Weymouth 
equation (19). In this dynamic procedure, an upper bound and a 
lower bound are iteratively calculated to examine solution 
quality of the lower-level dispatch problem through Taylor 
series expansion. The same procedure is applicable to the 
master problem (36). Note that the following procedure intends 
to boost approximation accuracy of Taylor series expansion in 
the lower-level subproblem. Essentially, gas flows in pipelines 
are approximated through (32)-(34) and the lower-level 
dispatch problem tries to maximize gas flows to support gas 
loads. Thus, if gas flow approximations are of high quality, 
possibly exact, gas load shedding in (37) corresponding to 
pipeline outages can be accurately approximated. Furthermore, 
damaged pipelines instead of total gas load shedding are of 
concern, which may not be sensitive to approximation errors. In 
turn, pipeline outage solutions of problem (38) are considered 
good enough.  
Step 3.1) Solve subproblem (38) via Taylor series expansion to 
obtain availability status of power lines aij,t

*  and pipelines amn,t
* .  

Step 3.2) Solve the lower-level dispatch subproblem of (37) 
with aij,t

*  and amn,t
*  to retrieve gas flow solution Gmn,t

* . The 
optimal objective value is denoted as lower bound LBgf of the 
original nonlinear lower-level dispatch subproblem.  
Step 3.3) Solve (42) with Gmn,t

* , aij,t
* , and amn,t

* , and the optimal 
objective value is denoted as UBgf.  

Min∑ ቆ
∑ ሺβ HHV⁄ ሻ·θj·δj,tj +∑ θn·δn,tn

൅ρ·∑ ൫ξmn,t
+ +ξmn,t

	- ൯(m,n)∈ΩP

ቇt   

s.t.	-൫1-amn,t
* ൯·M≤൫Gmn,t

* ൯
2
-Kmn

2 ·൫πm,t
2 -πn,t

2 ൯+ξmn,t
+ -ξmn,t

	-  

                                                           ≤൫1-amn,t
* ൯·M,	(m,n) ∈ ΩP 

        Constraints (9)-(18) and (20)-(29).  (42) 
In (42), potential violation of Weymouth equation (19) with 

respect to given Gmn,t
* , aij,t

*  and amn,t
*  is penalized in objective 

function of the lower-level dispatch subproblem with a positive 
penalty factor ρ. In addition, squared nodal pressure πn,t

2  is 
considered as a single variable. In turn, (42) with given gas flow 
solution Gmn,t

*  is an LP problem, and provides an upper bound 
to the original nonlinear lower-level dispatch subproblem with 
respect to given aij,t

*  and amn,t
* . 

Step 3.4) If either gap between upper bound UBgf and lower 
bound LBgf, i.e. 	൫UBgf-LBgf൯ LBgf⁄ ≤εgf, or the maximum error 
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in the Weymouth equation 	Error= min
(m,n)∈ΩP

൛൫ξmn,t
+ +ξmn,t

	- ൯/ 

൫Gmn,t
* ൯

2
ቅ≤εgf  meets certain threshold, the derived result 

represents a good-enough solution and the process terminates. 
Specifically, if lower and upper bounds are equal, the derived 
result is an optimal solution to the original nonlinear 
lower-level dispatch subproblem; Otherwise, go to Step 3.5. 

Step 3.5) Add additional breakpoints for improving accuracy 
of approximation, and go back to Step 3.1. It is noteworthy that 
tuning breakpoints around real operating conditions could 
reduce the number of breakpoints needed for achieving a same 
accuracy level. For instance, more breakpoints around nodal 
pressures obtained from Step 3.3, which represents a good 
intermediate solution, could be generated. 

IV. NUMERICAL RESULTS 

The proposed robust network hardening approach is 
demonstrated on an IENDS consisting of a modified IEEE 
33-node electricity distribution grid and a modified 20-node 
Belgian gas network. As shown in Fig. 2, the IENDS includes 2 
gas-fired DGs, 1 non-gas DG, 2 gas retailers, 2 gas storages, 32 
power distribution lines, 17 pipelines, 2 gas compressors, 32 
power loads, and 15 gas loads. DGs at power nodes 6 and 12 are 
respectively connected to gas nodes 9 and 14 for gas fuel 
supply. Voltage limits of all power nodes are set as [0.95, 1.05] 
p.u. Other system configuration data can be found in [48]. 

System electrical and gas load profiles are shown in Fig. 3. 
Electrical and gas loads are divided into 5 priority categories 
with priority weights θj/θn from 1 to 5. Thresholds ε and εgf are 
both 1%. All case studies are solved via Gurobi 6.5. 

 
Fig. 2 Power-gas distribution system 

 
Fig. 3 System electrical and natural gas load profiles 

A. Approximation Accuracy of Taylor Series Expansion 

The lower-level system dispatch problem is used in this 
section to investigate approximation accuracy of Taylor series 
expansion. Penalty factor ρ is set as 1. Two tests are carried out, 
in which the first test uses original gas flow constants Kmn in 
[48], and the second one reduces Kmn to 60% of their original 
values to trigger gas network congestion. Results against 

different numbers of breakpoints are reported in Table I.  
It is observed that when natural gas network is lightly loaded, 

i.e., without LS or network congestion, both gap and 
Weymouth equation error are zeros regardless the number of 
breakpoints, indicating that obtained solutions are optimal. On 
the other hand, when gas network with a lower transportation 
capability is congested, i.e., nodal pressures at certain nodes 
reach their lower/upper limits, more breakpoints are needed to 
reasonably approximate optimal gas flows with smaller gaps 
and errors. Specifically, in this case, 100 breakpoints can reach 
the predefined error threshold of 1% although gap is still higher 
than 1%. Moreover, when the number of breakpoints reaches 
500, upper bound UBgf is significantly improved, and a higher 
accurate solution is obtained with gap of 0.71%. It is concluded 
that a proper number of breakpoints can reasonably enhance 
approximation accuracy of Taylor series expansion.  

TABLE I APPROXIMATION ACCURACY OF TAYLOR SERIES EXPANSION 
# of 

breakpoints
Without congestion With congestion 

LBgf UBgf Gap(%) Error(%) LBgf UBgf Gap(%) Error(%)
50 0 0 0 0 620.83 817.67 31.71 2.32 
80 0 0 0 0 627.03 734.50 17.14 1.26 
100 0 0 0 0 631.32 676.25 7.12 0.56 
200 0 0 0 0 633.19 650.24 2.69 0.31 
500 0 0 0 0 634.06 638.55 0.71 0.14 

B. Natural Disasters and Their Worst-case Damages 

A 24-hour period is considered to study impacts of a natural 
disaster hitting the IENDS at hour 8. Parameter settings with 
respect to disaster severity level l are shown in Table III. 
Without network hardening, worst-case damages of natural 
disasters to the original IENDS is obtained by solving max-min 
subproblem (38). Table III shows worst-case damages by 
natural disaster with respect to different severity levels while 
the number of breakpoints is set as 50. Note that as severity 
level increases, failure probability of each component also 
increases. Gaps and errors against all severity levels are zeros, 
indicating that optimal solutions are obtained. Specifically, in 
this case, since no gas network congestion occurs, a small 
number of breakpoints is sufficient to guarantee approximation 
accuracy. 

TABLE II COMPONENT FAILURE PROBABILITIES AND SYSTEM PARAMETER 
 Severity

level 
Maximum numbers of expected damages on 

power lines and gas pipelines 
(pij,l , pmn,l) Δl 

1 (2,0) (0.2,0.03) 0.04 
2 (2,1) (0.3,0.05) 0.0045 
3 (2,2) (0.4,0.1) 0.0016 
4 (3,3) (0.6,0.13) 0.0004 
5 (3,5) (0.7,0.2) 0.0001 

TABLE III WORST-CASE DAMAGES AGAINST DIFFERENT SEVERITY LEVELS 

 Severity
level 

Proposed method N-K 

Damaged components Damages TWLS Damages TWLS 

1 L1-2, L6-7 (2,0) 299.14 (0,2) 2053.45
2 L1-2, L28-29, P8-9 (2,1) 2019.00 (1,2) 2468.31

3 
L1-2, L28-29,  

P1-2, P8-9 
(2,2) 2537.94 (1,3) 2718.31

4 
L1-2, L6-26, L28-29, 

P1-2, P5-6, P8-9 
(3,3) 2787.94 (1,5) 2967.08

5 
L1-2, L6-26, L28-29, 

P1-2, P5-6, P8-9, 
P11-12, P11-17 

(3,5) 3036.70 (3,5) 3036.70
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Table III also shows that a higher severity level induces more 
component damages with a higher TWLS. As underground 
pipelines are much more reliable than overhead power lines, 
they could survive natural disasters of low severity levels. 
Specifically, a natural disaster with severity level of 1 is not 
catastrophic enough to damage underground pipelines. When 
severity level increases to 2, damages on underground pipelines 
emerge. Moreover, because natural gas is a primary energy 
resource for both non-generation gas loads and gas-fired DGs, 
under high-severity natural disasters, damaging the gas 
distribution network could be more destructive than the 
electricity distribution grid in terms of a larger TWLS. In fact, 
in this case, pipeline P8-9 and power line L28-29, instead of 
power line L6-7 at severity level of 1, are damaged, which 
significantly increases TWLS by about 575%. Indeed, as the 
electricity distribution grid depends on the gas distribution 
network for supplying gas fuel to gas-fired DGs when power 
supply from the main grid is unavailable, damaging the gas 
distribution network would potentially restrict power 
generation of gas-fired DGs and lead to significant electrical 
LS. Specifically, when pipeline P8-9 is damaged, gas supply to 
gas-fired DG at power node 6 is cut off, which, together with 
damage of power line L1-2, leads to a completely outage of 
power nodes 2-11. As a result, damaging power line L28-29 
instead of L6-7 would lead to the worst case with larger TWLS. 

The proposed method based on Claude Shannon’s concept 
and the traditional N-K criterion are further compared. Results 
are shown in Table III. At severity level 1 where the natural 
disaster is not strong enough to damage underground pipelines, 
results of the proposed method show that two power lines are 
damaged. In comparison, the N-K criterion derives results of 
two pipeline failures which seem unpractical. Similarly, for 
severity levels ranging from 2 to 4, the N-K criterion derives a 
higher total weighted load shedding (TWLS) with more 
pipelines damaged. Although these N-K criterion results 
correctly indicate the importance of pipelines in the IENDS, 
they fail to accurately reflect real-world characteristics of 
overhead power lines and underground pipelines during natural 
disaster, i.e., underground pipelines are far more resilient than 
power lines. Finally, results from both methods at severity level 
5 are the same, because most of the major components are 
damaged under this catastrophic disaster level. In summary, the 
traditional N-K criterion is a good way to identify importance 
of components in the IENDS, but fails to represent practical 
consequences against actual disaster levels. In comparison, the 
proposed method based on Claude Shannon’s concept, by using 
different coefficients on overhead power lines and underground 
pipelines, can accurately simulate real-world situations that 
underground pipelines are less likely to be damaged than power 
lines during certain severe levels of natural disasters. 

To further investigate potential impacts of different numbers 
of breakpoints on worst-case damage identification results 
when gas congestion occurs, gas flow constants Kmn  of all 
pipelines are reduced to 60% of their original values. Results 
against different numbers of breakpoints are shown in Table 
IV, with disaster severity level of 2. Similar trend as in Table I 
is observed, i.e., more breakpoints results in a smaller 

gap/error. That is, more breakpoints will derive a better lower 
bound of TWLS. On the other hand, it is observed that outages 
of the same two power lines and one gas pipeline are identified 
as the worst case with different numbers of breakpoints, while 
TWLSs obtained from different numbers of breakpoints are 
also close. In summary, it can be concluded that a reasonably 
small number of breakpoints could be utilized to enhance 
computational efficiency while not compromising the proposed 
approach, since identifying worst-case damaged components is 
the main concern instead of exact nodal pressure levels. 

TABLE IV WORST-CASE DAMAGES WITH DISASTER SEVERITY LEVEL 2 
# of breakpoints Damaged components  TWLS Gap Error 

30 L1-2, L28-29, P8-9 2107.96 4.95% 31.01% 
50 L1-2, L28-29, P8-9 2109.95 2.33% 15.00% 

100 L1-2, L28-29, P8-9 2111.57 0.23% 1.61% 
200 L1-2, L28-29, P8-9 2111.74 0.01% 0.31% 
500 L1-2, L28-29, P8-9 2111.74 0.01% 0.24% 

C. Importance of DGs and Natural Gas Storages 

It is well recognized that when the main grid power is lost 
during natural disasters, DGs can serve as emergency response 
resources in an electricity distribution system for continuously 
supplying critical electrical loads. Analogously, when main gas 
supply from gas retailers is down, gas storages in a gas 
distribution system can be used as emergency resources for 
supplying high-priority gas loads. The following three cases are 
studied to investigate importance of DGs and gas storages on 
resilience of an IENDS, by comparing worst-case TWLSs with 
respect to different disaster severity levels: 
C1: No DGs. 
C2: No natural gas storages. 
C3: No DGs and natural gas storages. 

Results in Table IV show that a higher disaster severity level 
derives a larger TWLS in all three cases. In addition, for each 
disaster severity level, without support of DGs, electrical loads 
connected to child nodes of damaged power lines will be 
completely lost, leading to a higher total weighted power LS in 
Case C1 compared to Case B. Similarly, without emergency 
support of gas storages in the gas distribution system, total 
weighted gas LS also significantly increases in Case C2 
compared to Case B. Furthermore, in Case C3 where no 
emergency response resource is available, the IENDS faces 
with the highest TWLS. It is concluded that DGs and gas 
storage assets are valuable emergency response resources for 
reducing TWLS and enhancing resilience of IENDSs.  

TABLE IV WORST-CASE DAMAGES WITH EMERGENCY RESOURCES 
Severity 

level 
B C1 C2 C3 

Power Gas Power Gas Power Gas Power Gas 
1 299.14 0.00 497.60 0.00 303.31 11.04 497.60 2.35 
2 484.49 1534.52 497.60 1534.52 484.49 1894.52 497.60 1894.52
3 484.49 2053.45 497.60 2053.45 484.49 2663.45 497.60 2663.45
4 484.49 2303.45 497.60 2303.45 484.49 2663.45 497.60 2663.45
5 484.49 2552.22 497.60 2552.22 484.49 2663.45 497.60 2663.45

In addition, gas LS levels in Cases C2 and C3 are higher than 
that of B. In these two cases, DGs are utilized to support 
high-priority power demands when power supply from the 
main-grid is cut off. However, gas storage facilities are not 
available which further deteriorate the situation of insufficient 
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gas supply. As a result, low-priority gas load at gas node 12 is 
partially shed, while gas-fired DG at gas node 14 converts 
natural gas into electric power to support high-priority power 
loads at power nodes 14-15 and 17. 

Furthermore, taking disaster severity level of 3 as an 
example while considering DGs and gas storages (i.e., row 3 in 
Table III), gas levels of storage asset at gas nodes 5 and 11 are 
shown in Fig. 4. It is observed from Fig. 4 that gas fuel stored in 
storage facilities is effectively utilized in response to pipeline 
outages. Specifically, when worst-case outages of pipelines 
P1-2 and P8-9 happen, gas supply is completely cut off. Thus, 
gas levels of storage assets at gas nodes 5 and 11 are increased 
to their maximum capacities at hour 7 to prepare for the 
catastrophic event at hour 8. That is, gas fuel stored in these 
storages can be used later to supply gas loads when natural gas 
supply is cut off after hour 8. As a result, a total 140 kcf of 
natural gas from storage facilities is utilized during hours 8-24 
and TWLS is reduced by 610 as compared to C2.  

 
Fig. 4 Natural gas levels of gas storages 

D. Effectiveness of Network Hardening Strategies 

To demonstrate benefits of hardening strategies on IENDSs, 
TWLS with respect to different hardening budgets is studied 
with disaster severity level of 3. Coefficients of hardening 
effort of power lines and gas pipelines are set as 1 and 3, 
indicating that hardening an underground pipeline needs more 
efforts/cost than an overhead power line. Results in Table VI 
show that with a higher hardening budget, more power lines 
and pipelines will be hardened, leading to a smaller TWLS. 
Table VI also indicates that, as damaging pipelines could lead 
to higher TWLS, optimal hardening strategies prefer to harden 
gas pipelines with hardening budget smaller than 11. When 
hardening budget is sufficient (i.e., larger than 12), more power 
lines will be hardened in order to further reduce TWLS. 

TABLE VI HARDENING STRATEGY AGAINST DIFFERENT HARDENING BUDGETS 
Budget Hardening Strategy TWLS 

1 L1-2 2474.87
2 L1-2, L2-3 2395.98
3 P8-9 2372.72
4 L1-2, P8-9 2309.66
5 L1-2, L6-7, P8-9 2268.00
6 P8-9, P9-10 1940.14
7 L1-2, P8-9, P9-10 1877.08
8 L1-2, L6-7, P8-9, P9-10 1835.42
9 P8-9, P9-10, P10-11 1750.15
10 L1-2, P8-9, P9-10, P10-11 1687.08
11 L1-2, L6-7, P8-9, P9-10, P10-11 1645.42
12 L1-2, L6-7, L7-8, P8-9, P9-10, P10-11 1603.76
13 L1-2, L2-3, L6-7, L7-8, P8-9, P9-10, P10-11 1572.91
14 L1-2, L2-3, L6-7, L7-8, L9-10, P8-9, P9-10, P10-11 1563.65

Hardening strategies in Table VI against different hardening 
budget levels also implicate importance of individual power 

lines and pipelines on system resilience. For instance, power 
line L1-2 is the most cirtical that would be hardened 
preferentially, as it is directly connected to the substation. 
Furthermore, pipelies P8-9, P9-10, and P10-11 are always 
hardened which indicates their importance in the IENDS. When 
hardening budget reaches 14, by optimally hardening 5 power 
lines and 3 pipelines, TWLS is decreased from 2474.87 to 
1563.65 with a 37% drop. In addition, in this case, a proper 
budget level could be 6 because it brings the largest drop in 
TWLS of 327.85 for one unit increase in hardening budget. 

E. Sensitivity Analysis 

A sensitivity analysis on TWLS with respect to different 
hardening budgets and disaster severity levels is further 
performed, to illustrate their impacts on resilience of IENDSs. 
Results in Fig. 5 indicate a monotonically decreasing trend of 
TWLS with respect to an increase in hardening budgets and/or 
a decrease in disaster severity levels. Such a sensitivity study 
can guide utilities to determine proper hardening budgets for 
maintaining a certain resilience level of IENDSs in response to 
natural disasters of different disaster severity levels. 

 
Fig. 5 TWLS under various hardening budgets and disaster severity levels 

F. Discussion on Computational Performance 

Computational performance of the proposed model is studied 
in this section. Table VII reports computational time and 
number of iterations with disaster severity level of 3. Overall, 
results show that number of iterations increases with the 
increase in hardening budget, because more hardening options 
are to be evaluated. In addition, numbers of iterations for 
budget levels of 6, 7, and 8 are lower because two important 
pipelines are always preferably hardened, which reduces the 
number of hardening options to be evaluated. The high 
computational time is mainly introduced by the CCG 
algorithm. That is, as the number of CCG iteration increases, 
numbers of variables and constraints increase, leading to a 
significant increase in computational time. In addition, Fig. 5 is 
derived in about four hours, which is sufficient for this type of 
offline applications to support timely and effective 
decision-making against natural disasters. 

TABLE VII COMPUTATIONAL TIME WITH DISASTER SEVERITY LEVEL 3 
Budget Time(s) # of iterations Budget Time(s) # of iterations

1 5 3 8 35 8 
2 6 3 9 154 14 
3 16 6 10 183 15 
4 80 11 11 220 16 
5 128 13 12 257 17 
6 10 4 13 492 23 
7 26 7 14 981 34 
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V. CONCLUSION 

This paper proposes a tri-level robust network hardening 
model for enhancing resilience of IENDSs against natural 
disasters. It provides optimal hardening strategies for 
proactively reinforcing power lines/ pipelines and minimizing 
the worst-case TWLS with respect to hardening budget limits 
and random damages caused by disasters of different severity 
levels. Distinct failure probabilities of overhead power lines 
and underground pipelines are considered. Furthermore, DGs 
and gas storage assets are considered as emergency response 
resources for supplying high-priority electricity/gas loads 
during disaster events and reducing TWLS. The proposed 
model is solved by CCG, in which nonlinear gas network 
constraints are linearized via Taylor series expansion. An 
iterative procedure is proposed to improve approximation 
accuracy of Taylor series expansion. 

Numerical studies illustrate effectiveness of the proposed 
Taylor series expansion-based solution approach. It also shows 
that DGs and gas storage assets, as critical emergency response 
resources in IENDSs, could greatly reduce TWLS and enhance 
system resilience. Optimal network hardening strategies 
obtained from the proposed model can assist utilities in 
mitigating vulnerability of IENDSs against natural disasters. 
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