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Abstract 

The rapid growth of natural gas fuel consumption by gas-fired generators and the new emerging power-to-gas technology have intensified 

interdependency of electric power and natural gas systems. Consequently, such interdependency, together with heterogeneous uncertainties of the 

power system (e.g., power loads and renewable energy) and the gas system (e.g., gas loads), has brought new challenges to energy system 

operators for the secure and economic operation of interdependent power and gas systems. Specifically, uncertainties from one infrastructure 

could easily spread to the other, which consequently increase vulnerability and eventually lead to cascading outages of both systems. This paper 

proposes a two-stage adjustable robust model to study day-ahead coordinated optimal scheduling of the interdependent power and gas systems. 

Dual-fuel generating units are also considered for shaving gas fuel consumptions and ensuring the security of both systems during peak gas 

demand hours. Moreover, Weymouth gas flow constraints are linearized via Taylor series expansion, which facilitates the implementation of 

column-and-constraint generation algorithm to effectively solve the proposed two-stage adjustable robust model with nonlinear gas flow 

constraints in the second stage. Numerical case studies illustrate that dual-fuel units can enhance the secure and economical operation of 

interdependent power and gas systems, especially when natural gas demands present upward uncertainties. It is also demonstrated that 

power-to-gas facilities can facilitate a deeper penetration of volatile renewable energy by effectively converting excessive renewable generation 

into natural gas. 
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Nomenclature 

A. Acronyms: 

CCG Column-and-constraint generation. 

DC Direct current. 

HHV Higher heating value. 

IPGS Interdependent power and gas systems. 

LP Linear programing. 

MILP Mixed-integer linear programing. 

PtG Power-to-gas. 

UC Unit commitment. 

B. Indices: 

a, j, g, s Indices of PtG facilities, natural gas wells, gas 

loads, and gas storage facilities. 

e, m Indices of power buses and natural gas nodes. 

l, p Indices of transmission lines and gas pipelines. 

t, i, h, d, w Indices of hours, generating units, curve 

segments, power loads, and wind farms. 

C. Sets and Functions: 

GU,DF,TU Set of gas-fired/dual-fuel/traditional units. 

( )N e , ( )G m  Set of components connected to power bus e 

/gas node m. 

( )s l , ( )r l  Set of sending/receiving buses of line l. 

P , C  Set of inactive pipelines/active pipelines with 

compressors. 

D , W , G  Uncertainty set of power loads/ wind 

generations/ gas loads. 

 pg
L  Compact form of IPGS operation constraints. 

D. Variables:  

b
ptE ,

b
stE  Base-case storage volume of inactive pipeline 

p/ storage facility s at time t. 

ptf  , ptf   Binary variables indicating gas flow direction 

of inactive pipeline p at time t. 

,gasb
itF ,

,fuelb
itF  Base-case gas/ traditional fuel consumption of 

unit i at time t. 

b
jtG  Base-case gas production of gas well j at time t. 

,inb
ptG ,

,outb
ptG  Base-case inflow/outflow of pipeline p at time 

t. 

b
itG  Base-case gas consumption of unit i at time t. 

b
atG  Base-case gas production of PtG facility a at 

time t. 

,inb
stG ,

,outb
stG  Base-case gas inflow/outflow of gas storage 

facility s at time t. 

b
ptG ,

b
pt  Base-case average gas flow/pressure of 

pipeline p at time t. 

itI , atI  Commitment status of unit i /PtG facility a at 

time t. 

gas
itI  Binary indicator which is 1 if unit i burns gas at 

time t, and otherwise 0. 
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fuel
itI  Binary indicator which is 1 if unit i burns 

traditional fuel at time t, and otherwise 0. 

b
itP ,

b
atP  Base-case dispatch of unit i/ PtG facility a at 

time t.  

,gasb
iht

P ,
,fuelb

iht
P  Base-case dispatch of unit i at segment h at time 

t when burning gas/traditional fuel. 

b
ltP ,

b
et  Base-case power flow of line l and phase angle 

of power bus e at time t. 

gas
itS  Binary indicator which is 1 if unit i switches 

from gas to traditional fuel at time t, and 

otherwise 0. 

fuel
itS  Binary indicator which is 1 if unit i switches 

from traditional fuel to gas at time t, and 

otherwise 0. 

gas
itSU ,

gas
itSD  Startup/shutdown cost of unit i at time t when 

burning gas fuel. 

fuel
itSU ,

fuel
itSD  Startup/shutdown cost of unit i at time t when 

burning traditional fuel. 

dtv  Load shedding of power load d at time t. 

gtv  Load shedding of gas load g at time t. 

wtv  Wind spillage of wind farm w at time t. 

on
itX ,

off
itX  ON/OFF time counter of unit i at time t. 

dt  , wt 
, gt   Binary indicators describing uncertainty sets. 

b
mt  Base-case pressure of gas node m at time t. 

 
u

 ,  
wc

  Variables corresponding to uncertainties/worst 

cases. 

E. Constants:  

gas
ih

c ,
fuel
ihc  Incremental fuel consumption of unit i at 

segment h when burning gas/traditional fuel. 

fuel
iC  Price of traditional fuel for unit i. 

jC  Production cost of gas well j. 

sC  Operation cost of gas storage facility s. 

ls
dC ,

ws
wC ,

gs
gC  Costs of power load shedding, wind spillage, 

and gas load shedding. 

gf
pK ,

lp
pK  Gas flow/linepack constant of pipeline p. 

M A large enough positive number. 

NT,ND,NW,NG Number of hours/power loads/wind farms/gas 

loads. 

b
dtP ,

b
wtP ,

b
gtG  Forecast value of power load d/wind generation 

of wind farm w/gas load g at time t. 

dtP ,
wtP , gtG  Uncertainty deviation of power load d/wind 

farm w/gas load g at time t. 

up
iR ,

down
iR  Up/down corrective action limit of unit i. 

gas
isu ,

gas
isd  Startup/shutdown cost of unit i when burning 

gas. 

fuel
isu ,

fuel
isd  Startup/shutdown cost of unit i when burning 

traditional fuel. 

max
iS  Maximum fuel switching limit of unit i. 

tSR  System spinning reserve requirement at time t. 

on
iT ,

off
iT  Minimum ON/OFF time limit of unit i. 

iUR , iDR  Ramp up/down rate limit of unit i. 

maxv  Predefined threshold on monetary system 

security violation, in terms of total penalty cost 

of power load shedding, wind spillage, and gas 

load shedding. 

com
p  Compressor factor of active pipelines p. 

ptg
a  Efficiency of PtG facility a. 

com
p  Fuel consumption factor of active pipeline p. 

d , w ,
g  Budget of uncertainty for power loads/wind 

generations/gas loads. 

 
min/max

  Min/max value of a quantity.  

1. Introduction 

Thanks to the sharp decrease in natural gas price and the 

distinct advantages of gas-fired generators including smaller 

capital cost, higher efficiency, faster response capability, and 

lower carbon emission, natural gas is becoming the top choice 

of fuel for building new generators in electric power systems 

[1]. Furthermore, power-to-gas (PtG) as a new promising 

technology could effectively convert excessive renewable 

energy into compatible natural gas [2]. The impact of PtG on 

electrical and gas transmission networks is studied in [3]. As a 

result, the power system relies more on the natural gas system 

in terms of supplying and delivering gas fuel to gas-fired units 

and utilizing gas produced from PtGs. On the other hand, 

electric-driven gas compressors, which could compensate 

pressure losses in the gas network, rely on electricity supply 

from the power grid.  

In this regard, the electric power system and the natural gas 

system are interdependent with each other, e.g., the secure and 

economic operation of one energy system would directly 

impact and be influenced by that of the other [4]. Indeed, gas 

supply shortage of the gas network could lead to forced outage 

of multiple gas-fired units, while power transmission line 

security violations could result in shutdown of multiple gas 

compressor stations. Both situations would greatly jeopardize 

security of the two energy systems [5]. In turn, considering the 
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interdependency of power and gas systems, co-optimizing them 

as a whole integrated system (e.g., the IPGS) could achieve a 

more secure and economic operation of both systems. 

Focusing on enhancing secure and economic operation of 

IPGS, coordinated day-ahead scheduling of power system and 

gas system has been studied in several literature [6]-[10] under 

the deterministic setting. A short-term security-constrained UC 

is developed in [6] while considering the impact of natural gas 

transmission network constraints. Reference [7] aims on an 

integrated formulation to analyze steady-state electricity and 

natural gas systems. A novel MILP formulation of an integrated 

power and natural gas system is proposed in [8] while taking 

into account gas traveling velocity and compressibility. A 

unified energy flow formulation is presented in [9] to describe 

the bi-directional energy conversion in an integrated natural gas 

and electric power system. Reference [10] proposes a bi-level 

economic dispatch model for the integrated natural gas and 

electricity system, in which the upper level is an economical 

dispatch problem of the electricity system and the lower level is 

an optimal allocation problem of the natural gas network. 

As uncertainties of power loads, renewable energy (wind 

generation in particular), and gas loads bring additional 

challenges for managing operational security of the IPGS, 

coordinated operation of IPGS with respect to major power 

system uncertainties is further studied in literature [11]-[17]. 

Reference [11] presents a mid-term stochastic security- 

constrained model for optimally coordinating water and natural 

gas supplies to power systems while considering random 

outages of power system components, electricity load forecast 

errors, and water inflow fluctuations. Reference [12] utilizes 

quick-ramping capabilities of gas-fired units to compensate 

variability and uncertainty of wind generation, while 

minimizing total operation cost of the power grid with respect 

to both electricity grid and gas network constraints. Reference 

[13] studies a stochastic day-ahead electric power system 

scheduling model while considering natural gas transmission 

constraints, random outages of generating units/transmission 

lines, and forecasting errors of electric power loads. Reference 

[14] formulates a two-stage stochastic optimization problem to 

determine the short-term energy and reserve schedule while 

considering electricity demand response. Two interval 

algorithm-based models are presented in [15] to study the 

impact of wind power output uncertainty on coupled natural gas 

and electricity networks. Robust optimization-based models are 

also proposed in [16]-[17] to explore coordinated scheduling of 

electricity and natural gas systems. Specifically, reference [16] 

focuses on distributed computation of electricity and natural 

gas systems which could keep information privacy of the two 

systems, while [17] discusses the effectiveness of PtG facilities 

for handling wind generation uncertainties. 

Indeed, above review on existing literature indicates several 

key shortcomings that need to be adequately addressed: 1) 

Although robust optimization has been used to study impacts of 

power system uncertainties on operational security and 

economics of IPGS [16]-[17], influence of gas system 

uncertainties, fluctuating natural gas demands in particular, has 

not been studied under any robust optimization framework, 

which is mainly because of additional computational 

challenges introduced by nonlinear gas flow equations. Indeed, 

because residential gas loads have higher priorities than 

gas-fired units, a sharp increase in residential gas demands, 

especially in cold winter days, could potentially cause gas 

supply deficit to gas-fired units and comprise power system 

security. Consequently, natural gas demand uncertainties could 

significantly impact operational security of the IPGS and 

should be adequately addressed in the IPGS operation 

scheduling framework. 2) Benefits of other advanced 

technologies, such as dual-fuel units that could help shave peak 

gas demands and maintain operational security and economy of 

IPGS under uncertainties, have not been explored sufficiently. 

This paper proposes an adjustable robust day-ahead 

scheduling model for the IPGS, while simultaneously 

considering uncertainties of the power system (e.g., power 

loads and renewable energy) and the gas system (e.g., gas 

loads). Furthermore, dual-fuel units are considered as an 

effective mean to shave peak gas demands and maintain the 

secure and economic operation of IPGS during peak gas 

demand hours [5], [18]. In addition, it is well understood that 

MILP based piecewise linear approximations of Weymouth gas 

flow equations [8], [12], [16] significantly complicate the 

calculation of robust optimization models, because binary 

variables in gas flow approximation models prevent dualizing 

lower-level economic dispatch problem in the second-stage 

subproblem. In order to effectively solve the proposed 

adjustable robust optimization model, Taylor series expansion 

is adopted in this paper to approximate nonlinear Weymouth 

gas flow constraints via a set of linear constraints. 

Major contributions of this paper are threefold.  

1) Interdependency Modeling: The IPGS is rigorously 

modeled by considering key coupling components of the 

two systems, including gas-fired units, dual-fuel units, PtG 

facilities, and electric-driven compressors. Specifically, 

gas-fired units and dual-fuel units rely on the gas network 

for gas fuel supply, while electric-driven compressors and 

PtG facilities depend on the power grid for electricity 

supply. 

2) Uncertainty Consideration: A two-stage adjustable robust 

model is proposed to derive physically secure and 

economically viable solutions, for optimally operating IPGS 

against various uncertainties of power loads, wind 

generations, and gas loads. Specifically, the proposed 

adjustable robust model minimizes total cost in base case, 

while maintaining operational security against all possible 

situations within predefined uncertainty sets. 

3) Nonlinear Gas Flow Equation Approximation: 

Bi-directional nonlinear gas flow equations are represented 

as an MILP formulation via Taylor series expansion, in 

which only a limited number of binary variables is needed to 

identify gas flow directions. Thus, after gas flow directions 

are determined in the master problem, the max-min security 

checking sub-problem can be recast into a single-level 

maximization problem via duality theory, because the 

inner-level minimization problem becomes an LP model. In 

this way, the proposed two-stage adjustable robust model 

can be efficiently solved via CCG [16], [19]. 
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The remainder of the paper is as follows. Sections 2 and 3 

describe the adjustable robust scheduling model and the 

solution methodology. Numerical case studies are presented in 

Section 4, and conclusions are given in Section 5. 

2. Robust Formulations of IPGS 

This section first provides an overview of IPGS, in which the 

electric power system and the natural gas system are coupled 

through gas-fired units, dual-fuel units, PtG facilities, and 

electric-driven compressors. Next, the adjustable robust 

optimization-based day-ahead coordinated scheduling model is 

presented with respect to base-case operation and uncertainty 

situations. 

2.1 Overview of IPGS 

Interactions between electric power system and natural gas 

system are highlighted in Fig. 1, in which gas-fired units 

(including dual-fuel units), PtG facilities, and electric-driven 

compressors represent linkages between the two systems. 

Specifically, in an IPGS, the electric power system relies on the 

natural gas network for supplying gas fuel to gas-fired/ 

dual-fuel units and absorbing natural gas converted by PtG 

facilities; While the natural gas system relies on the electric 

power system to operate electric-driven gas compressors for 

facilitating natural gas transportation. Indeed, under highly 

interdependent circumstance, the economic and secure 

operation of one energy system would directly impact and be 

influenced by that of the other. Specifically: 

 
Fig. 1.  Interaction between electric power system and natural gas system. 

 Interdependency in Economic Operation: Because of the 

limited gas transmission capacity and a higher priority of 

residential gas loads, gas fuel unavailability of gas-fired units 

could significantly increase operation cost of power system 

by turning on more expensive power plants. On the other 

hand, because dispatches of gas-fired units are frequently 

adjusted more often to offset variations of electrical loads and 

renewable generations, natural gas system operators are 

facing with more significant gas load volatility with 

increased operation cost of the natural gas system.  

 Interdependency in Secure Operation: Gas supplier 

shortages and gas pipeline congestions could lead to forced 

outage of multiple gas-fired units; While electric 

transmission line congestion could result in shutdown of 

multiple electric-driven compressor stations. 

Consequently, in this paper, electric power system and 

natural gas system are modeled as a whole integrated system 

under the robust optimization framework to ensure its 

economic and secure operations. 

2.2 Robust Formulations 

This paper proposes a two-stage adjustable robust model to 

study day-ahead coordinated optimal scheduling of the IPGS. 

Specifically, the IPGS is designed to operate under base-case 

conditions with respect to forecast values of power loads, wind 

generation, and gas loads in the day-ahead timeframe, while it 

can adaptively and securely redispatch generating units, gas 

wells, and gas compressors when uncertainties are revealed in 

real time [20]-[22]. This operation scheme perfectly fits the 

concept of two-stage adjustable robust model. That is, the first 

stage determines unit commitment statuses of generators, fuel 

types of dual-fuel units, and gas flow directions of gas pipelines 

in the base-case scenario, while the second stage finds 

redispatches when uncertainties are revealed. 

The following assumptions are adopted in the proposed 

two-stage adjustable robust scheduling model.  

1) Unit commitment statuses are the first stage variables, i.e., 

they remain fixed when uncertainties are revealed [16], [20], 

[21]. This is recognized by the fact that physical characteristics 

of most generating units restrict them from quickly changing 

their unit commitment statuses under uncertainties. 

2) Dual-fuel units cannot switch fuel type in response to 

uncertainties, as it could take up to hours for them to switch 

from one fuel to another [23]-[24]. 

3) Gas flow direction of an inactive pipeline cannot be 

reversed when uncertainties are revealed. It is pointed out in 

[25] that reversing gas flows may lead to complicated changes 

in operation statuses of multiple facilities such as overpressure 

protection devices, control valves, and compressor stations. 

Thus, reversing gas flow directions is only allowed in the first 

stage with sufficient time and appropriate management.  

4) All compressors are electric-driven with linear cost 

functions [26]-[27]. According to [27], typical energy 

consumption of compressor stations is equivalent to about 

3-5% of total transported gas quantity. 

The proposed two-stage adjustable robust scheduling model 

is described below in details. 

2.2.1  Objective Function 

The objective of the proposed two-stage adjustable robust 

co-optimization scheduling model is to minimize base-case 

total costs of the IPGS for supplying power and gas loads. In 

Equation (1), the three terms represent operation cost of 

non-gas-fired units, production cost of natural gas wells to 

supply gas loads (including gas-fired and dual-fuel units), and 

operation cost of gas storage facilities for storing gas in and 

withdrawing gas out of them. 

fuel ,fuel ,inmin b b b
i j jt s stit

t i j s

C F C G C G



        

 DF TU

  (1) 

2.2.2  Base-Case Constraints 

Base-case constraints of the IPGS include those for 
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individual electric power and natural gas systems, as well as 

coupling constraints that describe interdependency of the two 

systems. 

 Base-Case Power System Constraints 

Base-case power system constraints are presented as in 

(2)-(6). Specifically, constraint (2a) represents system spinning 

reserve requirement. Individual generators need to satisfy 

minimum ON/OFF time limits (2b)-(2c). Equation (2d) 

indicates that regular generating units and PtG facilities 

connected at the same bus will not operate simultaneously.  
max b

i it dt t
i d

P I P SR     (2a) 

     on on

1 1
0i iti t i t

X T I I
 

    (2b) 

     off off

1 1
0i iti t i t

X T I I
 

    (2c) 

1, , ( )it atI I i a N e     (2d) 

Other base-case power system operation constraints include 

system load balance (3a), DC power flow equations (3b)-(3d), 

ramp up and down limits (3e)-(3f), as well as capacity limits of 

generating units (3g) and PtG facilities (3h). It is worth 

mentioning that electric-driven compressors are considered in 

(3a) as power loads 
b
ptP  in the power grid.  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) C

b b b b
it wt lt lt

i N e w N e s l N e r l N e

b b b
at dt pt

a N e d N e p N e p

P P P P

P P P

   

   

     

    

 (3a) 

 ( ) ( )
b b b
lt s l t r l t lP x    (3b) 

max maxb
l lt lP P P    (3c) 

min maxb
e et e     (3d) 

     
min max

1 1 1
( ) (1 )b b

it i i it i iti t i t i t
P P UR I P I I P I

  
        

 (3e) 

     
min max

1 1 1
( ) (1 )b b

it i it i it ii t i t i t
P P DR I P I I P I

  
        

 (3f) 

min maxb
i it it i itP I P P I     (3g) 

max0 b
at a atP P I    (3h) 

Fuel consumption and fuel-switching limit of dual-fuel units 

are modeled as in (4)-(6). Constraint (4a) describes that a 

fuel-switching unit either burns natural gas or traditional fuel. 

Startup/shutdown costs when burning natural gas or traditional 

fuel are shown in (4b)-(4e). Constraint (5) calculates total fuel 

consumptions of individual dual-fuel units. In addition, 

dual-fuel units can only switch between natural gas and 

traditional fuel for a limited number of times throughout a day 

(6a), while fuel-switching logic constraints are restricted via 

(6b)-(6f). Fuel consumptions of traditional units and gas-fired 

units can be similarly described as those in (4)-(5).  

gas fuel ,it ititI I I i  DF  (4a) 

  gas gas gas gas gas

1
, 0,it i it iti t

SU su I I SU i


    DF  (4b) 

  gas gas gas gas gas

1
, 0,it i it iti t

SD sd I I SD i


    DF  (4c) 

  fuel fuel fuel fuel fuel

1
, 0,it i it iti t

SU su I I SU i


    DF  (4d) 

  fuel fuel fuel fuel fuel

1
, 0,it i it iti t

SD sd I I SD i


    DF  (4e) 

,gas gasmax0 ,
b

ih itiht
P P I i   DF  (5a) 

,fuel max fuel0 ,b
ih itiht

P P I i   DF  (5b) 

gas,min gas ,gas fuel,min fuel ,fuel ,
bb b

it iti it iiht iht
h h

P P I P P I P        

iDF  (5c) 

,gas gas,min gas gas ,gas gas gas
,

b b
it it it it itih iht

h

F F I c P SU SD       

iDF  (5d) 

,fuel fuel,min fuel fuel ,fuel fuel fuel ,b b
it ih it itit it iht

h

F F I c P SU SD       

iDF  (5e) 

 gas fuel max ,it iit
t

S S S i   DF  (6a) 

gas fuel ,it ititS S I i  DF  (6b) 

 
gas gas

1
,it i t

S I i


 DF  (6c) 

 
gas gas gas

1
,it iti t

S I I i


  DF  (6d) 

 
fuel fuel

1
,it i t

S I i


 DF  (6e) 

 
fuel fuel fuel

1
,it iti t

S I I i


  DF  (6f) 

 Base-Case Natural Gas System Constraints 

Base-case natural gas system constraints are presented as in 

(7)-(11). Gas network nodal balance equation (7a) represents 

that total gas flow injection is equal to total gas withdrawn at 

each gas node. Nodal pressures and production capabilities of 

gas wells are limited in (7b) and (7c), respectively. 

           

,in ,outb b b b
jt pt pt at

j m s p m r p m aG G G mG

G G G G
   

     

 
     

,out ,in

G G

b b b b
st st it gt

s m i G m g m

G G G G
  

       (7a) 

min maxb
m mt m     (7b) 

min maxb
j jt jG G G   (7c) 

Equations (8)-(9) describe dynamic network operation 

characteristics of inactive pipelines with varying incoming and 

outgoing gas flows. Specifically, (8a) is Weymouth gas flow 

equation of inactive pipelines [28]-[30], where average gas 

flow is calculated via (8b). Gas flow directions of inactive 
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pipelines are determined by (8c)-(8f), where 1ptf    indicates 

that gas flow is in positive direction, i.e., pressure of the 

sending node is higher than the receiving node. In addition, 

linepack represents the quantity of natural gas contained in an 

inactive pipeline, which can be used to handle variations in gas 

demands that may not be balanced instantaneously by gas 

production wells [31]. Linepack of an inactive pipeline is 

proportional to average nodal pressure (9a)-(9b) and 

time-coupled with all previous pipeline inflows/outflows (9c) 

[8], [16].  

     
2 2

gf
( ) ( ) ,b b b

pt pt pt p s p t r p t PG f f K p         (8a) 

 ,in ,out 2,b b b
pt pt pt PG G G p    (8b) 

   ( ) ( )1 1 ,b b
pt s p t r p t pt Pf M f M p            (8c) 

   ,in1 1 ,b
pt pt pt Pf M G f M p          (8d) 

   ,out1 1 ,b
pt pt pt Pf M G f M p          (8e) 

1,pt pt Pf f p     (8f) 

lp
, ,b b

pt p mn t PE K p    (9a) 

 , 2,b b b
mn t mt nt Pp      (9b) 

 
,in ,out

1
,b b b b

pt pt pt Pp t
E E G G p


     (9c) 

An active gas pipeline equipped with a gas compressor 

usually has predefined gas flow direction (10a), and presents 

equal gas inflow and outflow (10b). In addition, terminal nodal 

pressures of active pipelines are constrained via compressor 

factor as in (10c) [32].  

,in 0,b
pt CG p   (10a) 

,in ,out ,b b
pt pt CG G p   (10b) 

com
( ) ( ) ,b b

r p t p s p t Cp      (10c) 

Operational characters of gas storage facilities are described 

as in (11), including gas storage balance (11a), storage capacity 

limit (11b), as well as lower/upper limits of storage inflow rates 

(11c) and storage outflow rates (11d). 

 
,in ,out

1

b b b b
st st sts t

E E G G


    (11a) 

min maxb
s st sE E E   (11b) 

in,min ,in in,maxb
s st sG G G   (11c) 

out,min ,out out,maxb
s st sG G G   (11d) 

 Base-Case Coupling Constraints of the IPGS 

In an IPGS, the power system relies on the gas system to 

supply gas fuel to gas-fired/dual-fuel units and to absorb gas 

converted from PtG facilities, while the gas system relies on the 

power system to power gas compressors for facilitating natural 

gas transportation. PtG contains two main processes of 

electrolysis and methanization [2], [9], through which 

electricity is converted into hydrogen and further into methane. 

The efficiency of converting electricity into natural gas is 

normally in the region of 0.49-0.65. 

Base-case coupling constraints of the IPGS are presented as 

in (12). Three types of couplings are considered, including (i) 

gas-fired and dual-fuel units which consume gas fuel from the 

gas system and generate electricity in the power system (12a); 

(ii) PtG facilities which consume electricity from the power 

system and deliver gas into the gas system (12b) [9], [33]; and 

(iii) electric-driven gas compressors which consume electricity 

from the power system and support gas transportation (12c) 

[16], [34]. In (12), HHV equals 1.026MBtu/kcf, and the energy 

conversion factor χ equals 3.4MBtu/MWh.  

,gas
HHV,

bb
it itG F i GU DF  (12a) 

ptg HHVb b
at at aG P     (12b) 

,in com HHV ,b b
pt pt p CP G p      (12c) 

For the sake of discussion, power system operation 

constraints (3) and (5), natural gas system operation constraints 

(7)-(11), and coupling constraints (12) are rewritten in a 

compact form as in (13). 

 pg ,out ,in, , , , , , , 0b b b b b b b b
it at wt dt gt jt st stP P P P G G G G L  (13) 

2.2.3  Constraints for Handling Uncertainties 

The proposed two-stage adjustable robust optimization 

model minimizes total cost in the base case while maintaining 

system security with respect to all possible uncertainty 

realizations within a predefined uncertainty set. The worst-case 

security violation under uncertainties is identified via a 

maximin calculation as in (14a), which is further limited by a 

predefined system security level maxv  to ensure physically 

secure operation of IPGS. That is, the total penalty of electric 

load shedding, wind spillage, and gas load shedding should be 

no larger than maxv  under any circumstance. Moreover, a 

higher priority of residential gas loads over gas-fired units is 

reflected by a larger load shedding costs 
gs
gC  over 

ls
dC . That 

is, a relatively larger gas load shedding cost 
gs
gC  of residential 

gas loads would drive that available gas will be first used to 

meet residential gas loads, instead of supplying gas-fired units 

to generate electricity. Constraints (14b)-(14e) describe 

uncertainty sets of power loads, wind generation, and gas loads 

[35]-[36]. Constraints (14f)-(14g) depict relaxed nodal 

power/gas balance requirements with additional slack valuables 

for power load shedding dtv , wind spillage wtv , and natural gas 

load shedding 
gtv . Dispatch adjustments in response to 

uncertainty are limited by corrective ramp capabilities of 

generating units (14h). Constraint (14h) describes dispatch 

adjustment of generating units in response to uncertainties of 

electric load and wind generation. Up corrective capability 
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up
iR  and down corrective capability 

down
iR  refer to the 

10-min spinning reserve of generating units [16], [20]. In the 

day-ahead scheduling, the IPGS is designed to operate under 

the base-case scenario with unit commitment and dispatch 

decisions corresponding to the forecasted values of electric 

load, gas load, and wind generation, while dispatches could 

be adaptively and securely adjusted in real time. 

Specifically, generation dispatches of units are constrained 

by their corrective capabilities (14h). The compact form (14i) 

represents power system operation constraints, natural gas 

system operation constraints, and coupling constraints under 

uncertainties corresponding to base-case operation constraints 

(13). Boundaries of power load shedding, wind spillage, and 

gas load shedding are enforced by (14j)-(14l). 

  
ls ws gs

, , ,, ,
, ,

max min
u u u

dt wt gt

d dt w wt g gt
v PP P G t d w g
G E f

C v C v C v
 

 
         

 

maxv  (14a) 

 
 

: , 1

, , 0,1

u ND NT
dt dt dt d dt dt

tD
u b
dt dt dt dt dt dt dt dt

P

P P P P

   

   

    

   

       
   

       

 (14b) 

 
 

: , 1

, , 0,1

u NW NT
wt wt wt w wt wt

tW
u b
wt wt wt wt wt wt wt wt

P

P P P P

   

   

    

   

       
   

       

 (14c) 

 
 

: , 1

, , 0,1

u NG NT
gt gt gt g gt gt

t
G

u b
gt gt gt gt gt gt gt gt

G

G G G G

   

   

    

   

       
   

       

 (14d) 

, ,u u u
dt D wt W gt GP P G    (14e) 

 
( ) ( ) ( ) ( ) ( ) ( )

u u u u
it wt wt lt lt

i N e w N e s l N e r l N e

P P v P P
   

      

 
( ) ( ) ( ) C

u u u
at dt dt pt

a N e d N e p N e p

P P v P
   

       (14f) 

           

 
   

 
 

,in ,out

,out ,in

u u u u
jt pt pt at

j m s p m r p m a m

u u u u
st st it g

G G G G

G G
t gt

s m i G m g m

G G G G

G G G G v

   

  

     

      

 (14g) 

updown u b
i it it it itiR I P P R I       (14h) 

 pg ,out ,in, , , , , , , 0u u u u u u u u
it at wt dt gt jt st stP P P P G G G G L  (14i) 

0 u
dt dtv P   (14j) 

0 u
wt wtv P   (14k) 

0 u
gt gtv G   (14l) 

3. Solution Methods 

This section first discusses, based on the Taylor series 

expansion, how a bi-directional nonlinear Weymouth gas flow 

equation can be converted into an MILP formulation with only 

a few binary variables indicating gas flow directions. Then, a 

detailed CCG-based solution procedure is presented to 

effectively solve the proposed model. Specifically, with 

determined gas flow directions from the master problem, 

references [8] and [16] piecewisely linearize Weymouth gas 

flow equations with additional binary variables, which 

complicates the problem because duality theory cannot be 

directly applied to solve the maximin security evaluation 

subproblem; In comparison, the proposed Taylor series 

expansion based gas flow equation approximation could 

effectively avoid the introduction of additional binary variables 

and facilitate the calculation of CCG. 

3.1 Linearize Weymouth Equations with Unknown Gas Flow 

Directions 

This subsection first starts with Weymouth gas flow 

constraint (8a) for a gas pipeline operated in the positive flow 

direction (i.e., 1ptf   ), which can be equivalently represented 

as in (15a). Applying the Taylor series expansion, linear 

approximation of (15a) around a pair of given terminal 

pressures  ( ) ( )ˆ ˆ,s p t r p t    (i.e., ( ) ( )ˆ ˆs p t r p t   ) is shown as 

in (15b) [32], [37]. 

   
2 2

gf
( ) ( ) ,b b b

pt p s p t r p t PG K p      (15a) 

     
2 2

gf
( ) ( ) ( ) ( )

( )

ˆ ˆ ˆ

b
ptb b

pt p s p t r p t s p t s p tb
s p t

G
G K    



  


    


 ( ) ( )

( )

ˆ ,

b
pt b

r p t r p t Pb
r p t

G
p 






  


 (15b) 

By defining two sets of K breakpoints  ( ) , ( ) ,ˆ ˆ,s p t k r p t k    

with ( ) , ( ) ,ˆ ˆs p t k r p t k    for k=1,2,…,K, K linear constraints in 

the form of (16a) represent an outer approximation of the cone 

described by the original Weymouth equation (15a), where 

,pt k
 and ,pt k  are defined as in (16b)-(16c). 

gf gf
, ( ) , ( ) ,

1

b b b
pt p pt k s p t p pt k r p t

P pt

G K K

p and f

    



     

 

 (16a) 

   

( ) ,
,

2 2

( ) , ( ) ,

ˆ

ˆ ˆ

s p t k
pt k

s p t k r p t k




 




 





 (16b) 

   

( ) ,
,

2 2

( ) , ( ) ,

ˆ

ˆ ˆ

r p t k
pt k

s p t k r p t k




 




 





 (16c) 

Similarly, for a gas pipeline operated in the negative gas flow 

direction (i.e., 1ptf   ), with another two sets of K breakpoints 
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 ( ) , ( ) ,ˆ ˆ,s p t k r p t k    with ( ) , ( ) ,ˆ ˆs p t k r p t k    for k=1,2,…,K, 

the Weymouth equation (8a) with negative gas flow direction 

can be linearized as in (17). 
gf gf

, ( ) , ( ) ,

1

b b b
pt p pt k r p t p pt k s p t

P pt

G K K

p and f

    



      

 

 (17a) 

   

( ) ,
,

2 2

( ) , ( ) ,

ˆ

ˆ ˆ

r p t k
pt k

r p t k s p t k




 




 





 (17b) 

   

( ) ,
,

2 2

( ) , ( ) ,

ˆ

ˆ ˆ

s p t k
pt k

r p t k s p t k




 




 





 (17c) 

Finally, combining (16a) and (17a), Weymouth equation (8a) 

with unknown gas flow direction can be linearized as an MILP 

formulation (18). 

 gf gf
, ( ) , ( ) 1 ,b b b

pt p pt k s p t p pt k r p t ptG K K f M               

                                                                             Pp  (18a) 

 gf gf
, ( ) , ( ) 1 ,b b b

pt p pt k r p t p pt k s p t ptG K K f M                

                                                                             Pp  (18b) 

It is noteworthy that each pipeline is associated with 2K 

constraints (18a) and (18b), which altogether presents an outer 

approximation of the cone formed by the original Weymouth 

equation [32]. It is obvious that a larger value of K could derive 

a more accurate approximation. Indeed, at an optimal solution, 

only one that approximates gas flow most tightly will be 

binding. 

3.2 Solution Algorithm 

For the sake of discussion, the proposed two-stage adjustable 

robust optimization problem with linearized gas flow equations 

(18) is rewritten in a compact form as in (19). 

   

T T

, ,
min


b g
x y F x y

c x c y  (19a) 

s.t. Ax + By b  (19b) 

where  
  T max, : max min

,

s.t.  

,
v  

  
  

z vu
x y f v

F x y

Cx + Dy + Ez + Gv + Hu h

 (19c) 

In (19), x represents binary variables related to unit 

commitment statuses of generators and gas flow directions of 

pipelines; y and z represent base-case continuous variables and 

corresponding adaptively adjusted variables under 

uncertainties; u is uncertain variables of power loads, wind 

generation, and gas loads described in (14b)-(14d); v represents 

vectors of power load shedding, wind spillage, and gas load 

shedding; A, B, C, D, E, G, and H are constant coefficient 

matrices, and cb, cg, b, f, and h are constant coefficient vectors, 

which all can be derived from (1)-(18). 

In this paper, CCG is employed to solve the proposed 

two-stage adjustable robust optimization problem (19) in a 

master-subproblem framework.  

 Master Problem 

The master problem is presented as in (20), which minimizes 

base-case operation cost (20a), subject to base-case constraints 

(20b) and constraints (20c)-(20d) corresponding to individual 

worst-case realizations q


u  identified by the subproblem in all 

previous iterations.  

T T

, , ,
min

q q

b g
x y z v

c x c y  (20a) 

s.t. Ax + By b  (20b) 

      
T max ,q v q n  f v  (20c) 

      ,q q q q n   Cx + Dy + Ez + Gv h Hu  (20d) 

Solutions of unit commitment statuses and base-case 

dispatch of generators as well as gas flow directions of 

pipelines calculated from the master problem (20) will be 

passed onto the subproblem.  

 Max-Min Subproblem 

With given x* and y* from the master problem, the bi-level 

max-min subproblem (21) is calculated to identify the 

worst-case scenario that would lead to the largest possible 

system security violation. λ in the bracket is dual variable 

vector of the inner-level LP economic dispatch problem. The 

bi-level max-min subproblem (21) can be recast into a 

single-level equivalent bilinear maximization problem (22) by 

applying duality theory to the inner LP problem.  
Tmax min

,z vu
f v  (21a) 

s.t.  :   Ez + Gv + Hu h Cx Dy   (21b) 

 Tmax
,

   
u

h Cx Dy Hu

  (22a) 

s.t. 
T G f  (22b) 

      T  0E  (22c) 

       0  (22d) 

Objective function (22a) includes bilinear terms, i.e. T
u . 

Because an uncertainty variable only takes forecast value or its 

upper/lower limit as indicated in (14b)-(14d), a bilinear term 

u  can be linearized as in (23). 
0 bu u u u          (23a)

0        (23b) 

0 1       (23c) 

0 0 0M M      (23d) 

M M        (23e) 

M M        (23f) 

In (23), 0 / /     and 
0 / /   

 are auxiliary 

continuous and binary variables, corresponding to the situation 

when u takes the forecast value bu /the upper bound u /the 

lower bound u . 
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 The Detailed Solution Procedure of CCG 

As shown in Fig. 2, the detailed implementation of CCG 

algorithm includes the following major steps: 

Step 1: Initialize the system security violation threshold under 

uncertainties maxv  and the iteration counter n=0. 

Step 2: Solve the master problem (20), and pass optimal 

solutions x* and y* to the security checking subproblem (22). 

Step 3: Solve the worst-case identification subproblem (22) 

with respect to x* and y* from Step 2, which identifies the 

worst-case realization n


u  of power loads, wind generation, 

and gas loads that leads to the largest possible security 

violation. 

Step 4: If the largest possible security violation identified in 

Step 3 is no larger than maxv , x* and y* are final solutions and 

the process terminates; Otherwise, set n=n+1, introduce new 

variables zn and vn and new constraints (24) to the master 

problem (20), and go back to Step 2. 

T max
n vf v  (24a) 

n n n
 Cx + Dy + Ez + Gv h Hu  (24b) 

 
Fig. 2.  Flowchart of the CCG algorithm. 

4. Numerical Results 

In this section, a 6-bus power system with a 7-node natural 

gas system and a modified IEEE 118-bus power system with a 

12-node natural gas system are used to demonstrate 

effectiveness of the proposed two-stage adjustable robust 

co-optimization model. Test data are modified based on [13] 

and [16]. Wind spillage cost, power load shedding cost, and gas 

load shedding cost are set as $100/MWh, $1000/MWh, and 

$4104/kcf (or equivalently $4000/MWh), respectively. 

Specifically, natural gas load shedding cost is much higher than 

that of power load, in order to reflect the fact that residential gas 

loads have a higher priority than gas-fired units. All case 

studies are solved by Gurobi 6.5 on a personal computer with 

Intel Core i7 3.6 GHz processor and 16 GB memory. Number 

of breakpoints K in Section 4.1 is set as 100 for all pipelines as a 

trade-off between computational time and solution accuracy. 

4.1 6-Bus Power System/7-Node Natural Gas System 

In this section, a 6-bus power system with a 7-node natural 

gas system shown in Fig. 3 is used to demonstrate effectiveness 

of the proposed approach. The 6-bus power system includes 

three non-gas units G2-G4, one gas-fired unit G1 connected to 

gas node 3, one dual-fuel unit G5 connected to gas node 1, one 

wind farm, seven transmission lines, and three electrical loads 

(besides gas compressor). Peak power demand is 480 MW. 

Capacity and forecasted peak wind generation of the wind farm 

are 120MW and 97.8MW, respectively. Fuel price of 

non-gas-fired units is 4$/MBtu. 

The 7-node natural gas system includes two gas wells, one 

gas storage, one active pipeline, five passive pipelines, and 

three gas loads. Peak gas demand is 7342 kcf/h. The active 

pipeline 2-4 is equipped with an electric-driven compressor, 

which is connected to bus 4 of the power grid with fuel 

consumption factor of 0.03 [27]. The PtG facility, connected at 

bus 4 of the power grid and at node 2 of the gas network, has a 

capacity of 37.5MW and efficiency of 0.64 [2], [16]. Initial and 

terminal linepack of the entire gas system are both set as 

106800kcf to facilitate daily operation. Production costs of the 

two gas wells are 3$/kcf and 3.6$/kcf, respectively. Operation 

cost of the gas storage is 0.5$/kcf.  

Profiles of forecasted electricity loads, wind generation, and 

gas loads are shown in Fig. 4. Variations of electric power 

loads, wind generation, and gas loads are considered as 10%, 

20%, and 10% of their forecast values, i.e., 0.1 b
dt dtP P  , 

0.2 b
wt wtP P  , and 0.1 b

gt gtP P   in (14b)-(14d). Budgets of 

uncertainties d , w , and 
g  are all set as 24. System 

operation security violation threshold maxv  is set to $0.01, 

which ensures negligible power/gas load shedding and wind 

spillage under uncertainties. Threshold of relative MILP gap is 

set as 0.01%. 
 

 
Fig. 3.  6-bus power system/7-node natural gas system. 

 
Fig. 4.  Profiles of forecasted power loads, wind generation, and gas loads. 

The following six cases are studied to illustrate the proposed 

robust day-ahead scheduling approach of IPGS. The main 

settings of different cases are compared in Table I. 

Case 1: Co-optimization without uncertainties. This is the 

base case for comparison with other cases. 

Case 2: Robust co-optimization with uncertainties. The 

influence of system uncertainties on the IPGS is 

tested in this case. 

Cases 3-4: Cases 1-2 with natural gas system congestion, in 

which gas loads L1 and L3 are both increased by 

10% of total original residential gas loads. These 
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two cases are studied to show the impact of gas 

network congestion on the operation of electric 

power system. 

Case 5: Case 4 with fuel-switching limit of dual-fuel units. 

The effect of fuel-switching limits on the optimal 

scheduling of IPGS is simulated in this case. 

Case 6: Case 4 with different wind penetration levels. In 

this case, the impact of different wind penetration 

levels on the optimal scheduling of IPGS is 

studied. 

Table I Comparison of different settings in Cases 1-6 

Case Uncertainties 
Gas system 

congestions 

Fuel-switching 

limits 

Different wind 

penetration levels 

1 N N N N 

2 Y N N N 

3 N Y N N 

4 Y Y N N 

5 Y Y Y N 

6 Y Y N Y 

Cases 1-4: Fig. 5 shows results of unit commitment of G4 and 

G5 and flow direction of pipeline PL3 in Cases 1-4. In these 

four cases, the cheapest units G1 and G2 are always committed 

in all 24 hours, the most expensive unit G3 stays off for the 

entire day, and gas flows of all pipelines except PL3 keep the 

same direction throughout the day. Thus, they are not reported 

in Fig. 5. Solid circles in Fig. 5 represent that units are ON and 

gas flows are in positive direction. In addition, black stars in 

Case 4 describe that dual-fuel units burn traditional fuel instead 

of natural gas. Total operation costs of the IPGS, total gas 

consumption of G1 and G5, and power consumption of the gas 

compressor in the four cases are shown in Table II. 

 
Fig. 5.  UC solutions and gas flow directions for Cases 1-4. 

In Case 1 where uncertainties and natural gas system 

congestions are neglected, G4 is committed in hours 16-21, G5 

is committed in hours 8-24, and pipeline PL3 has positive gas 

flow direction in hours 7-8, 10, and 17-24. When uncertainties 

are considered in Case 2, total cost increases to $M0.913 

because more generating units are committed and pipeline PL3 

has negative gas flows in 22 hours. In this case, transmission 

line limits are binding under the worst-case scenarios which 

could cause electric load shedding. Specifically, compared with 

Case 1, G4 is turned on in extra hours of 9-15 and 22 while G5 

is also turn on at hour 7, which contribute to mitigating power 

load shedding induced by electricity transmission violations 

and/or shortage of ramping capabilities in the worst-case 

scenarios at hours 7-15 and 23. As non-gas-fired units are 

turned on more extensively, total gas consumption of G1 and 

G5 throughout the day is decreased from 77226.48kcf to 

76834.72kcf as shown in Table II. Consequently, gas 

production of gas wells is reduced by 410.58kcf, and electric 

energy consumed by the gas compressor is reduced by 

19.85MWh. As for the natural gas network, gas well W1 alone 

cannot fully support gas loads L1, L2, and G5 in worst-case 

scenarios. That is, the gas network relies on gas well W2 to 

produce gas for meeting part of gas loads L1, L2, and G5. As a 

result, gas flow of pipeline PL3 is directed from node 5 to node 

2 in 22 out of 24 hours. 

Table II Comparison of results in Cases 1-4 

Case 
Total cost 

($) 

Total gas consumption  

of G1 and G5 (kcf) 

Electric energy consumption of 

the gas compressor (MWh) 

1 909105.10 77245.30 1025.16 

2 912861.99 76834.72 1005.31 

3 1022288.63 69085.32 1025.82 

4 1027229.07 67839.65 1015.69 

When natural gas network congestion appears in Case 3 with 

increased residential gas loads, pressures of some gas nodes 

have reached their lower or upper bounds. In this case, unit 

commitment solution of generators remains the same as that in 

Case 1, while gas flow direction of pipeline PL3 differs 

slightly. Table II shows that, because natural gas network 

congestion does not occur in Case 1 and natural gas is cheaper 

than traditional fuel, gas-fired units and dual-fuel units burn as 

much gas fuel as possible to generate electricity. In comparison, 

in Case 3, gas consumption of G1 and G5 is reduced because 

higher-priority residential gas loads L1 and L3 have to be 

served first. 

However, when uncertainties are further considered in Case 

4, natural gas network congestion presents more significant 

impacts on power system operation as shown in Fig. 5. 

Specifically, in Case 4, pipeline PL1 is congested in worst-case 

scenarios due to nodal pressure limits, which causes 

insufficient gas supply to dual-fuel unit G5. In turn, dual-fuel 

unit G5 is switched to burn traditional fuel for meeting 

electricity demands in hours 17-21, when power and gas 

demands reach their peaks concurrently. Results of Case 4 

show that dual-fuel units can effectively shave natural gas 

consumption at peak hours by switching to other fuels. 

As stochastic programming is also recognized as an effective 

approach for handling uncertainties in optimization problems 

[38]-[39], solutions of the proposed robust model and the 

stochastic programming model are further compared. 

Specifically, in the stochastic programming model, 

uncertainties of electrical loads, wind power generations, and 

gas loads are assumed to follow uniform distributions within 

predefined uncertainty sets. 5000 scenarios are generated via 

the Latin hypercube sampling method for simulating these 

uncertainties in a 24-hour period, which is further reduced to 5 

scenarios via scenario reduction techniques as a trade-off 

between computational speed and solution quality [38]. Results 

of stochastic programming models corresponding to Cases 2 

and 4 are compared in Table III. It is observed that results 

obtained by stochastic programming yield a smaller base-case 

cost for covering high-probability scenarios, while the system 

may be vulnerable to low-probability high-impact worst cases 

with relatively higher system load shedding. Specifically, in 

Case 4 where natural gas network is congested, inefficient 

scheduling solution from stochastic programming increases the 
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worst-case operation cost by 65% as compared to the solution 

from robust optimization. Indeed, the proposed robust 

day-ahead scheduling of IPGS greatly enhances operational 

security of interdependent systems with a reasonable increase 

in base-case operation cost. 

Table III Comparison of results from robust optimization and 

stochastic programming  

Case 
Base-case 

total cost ($) 

Worst-case 

total cost ($) 

Worst-case load 

shedding cost ($) 

2 (robust) 912861.99 1030610.56 0 

2 (stochastic) 909988.93 1041209.93 11718.98 

4 (robust) 1027229.07 1192797.45 0 

4 (stochastic) 1023258.22 1966687.99 829214.37 

Cases 5: In this case, limit on the number of fuel switches of 

dual-fuel unit G5 is set as 0, 1, 2, and 3 (denoted as Cases 

5.1-5.4), to explore influence of fuel-switching limits. Unit 

commitment solutions of G4 and G5 in these cases are shown in 

Fig. 6, while total costs and gas consumptions of G5 are 

presented in Table IV. Unit commitment statuses of G1-G3 are 

the same as those in Cases 1-4. 

Fig. 6 shows that fuel-switching limit influences 

commitment statuses of peaking units G4 and G5. Specifically, 

because switching fuel is forbidden in Case 5.1, G5 is only 

committed in hours 10-24 because of limited gas fuel supply, 

which triggers G4 to be committed between hours 7-23 for 

ensuring operational security of power systems. In Case 5.2, G5 

switches to burn traditional fuel in hours 18-24 when natural 

gas demand is relatively high, and G4 is only needed in hours 

10-22. Moreover, when fuel-switching limit is larger than 1, 

unit commitment solutions in Cases 5.3 and 5.4 do not change 

anymore. In addition, as shown in Table IV, in the worst-case 

scenario, natural gas supply to G5 is more restricted because 

most available natural gas is used to supply high residential gas 

demands. Table IV also indicates that a larger fuel-switching 

limit will result in a more economical system operation 

scheduling. In summary, fuel-switching capabilities of 

dual-fuel units play an important role in supporting the secure 

and economical operation of IPGS with gas supply shortage. 

 
Fig. 6.  UC solutions of Case 5. 

Table IV Total cost and gas consumption of G5 in Case 5 

Case 
Total cost 

($) 

Base-case gas 

consumption of G5 (kcf) 

Worst-case gas 

consumption of G5 (kcf) 

5.1 1029910.86 11628.36 8106.58 

5.2 1027514.33 8008.79 6880.91 

5.3 1027229.07 10860.39 9396.19 

5.4 1027229.07 10860.39 9396.19 

Cases 6: Impact of different wind penetration levels, including 

18%, 20%, and 22% (denoted as Case 6.1-6.3), is further 

examined. Moreover, influence of PtG is also explored via Case 

6.4 by increasing the capacity of PtG from 37.5MW in Case 6.3 

to 50MW. Unit commitment solutions of all five units are 

presented in Fig. 7.  

 
Fig. 7.  UC solutions in Case 6. 

As shown in Fig. 7, increasing wind penetration level from 

18% to 20% only impacts operation status of G5, in terms of a 

larger numbers of hours to burn traditional fuel. Moreover, 

when wind penetration increases to 22%, minimum output 

constraints of G1 and G2 will trigger wind spillage in the 

worst-case scenario. As a result, G2 is turned off in hours 1-5 so 

that wind spillage could be avoided under uncertainties. In 

comparison, when capacity of PtG is increased to 50MW in 

Case 6.4, base unit G2 can be kept online in the early morning 

for providing a more economical scheduling solution. That is, 

PtG can effectively provide ramping down capabilities for 

power systems to prevent wind spillage, by converting 

excessive wind energy into natural gas. In turn, with a better 

operation scheduling, a more effective utilization of uncertain 

wind generation can be guaranteed, while total operation cost is 

also reduced from $M0.980 in Case 6.3 to $M0.974 in Case 6.4. 

4.2 IEEE 118-Bus Power System/12-Node Gas System 

A modified IEEE 118-bus power system together with a 

12-node natural gas system is applied here to further 

demonstrate applicability of the proposed model on larger 

systems. The modified IEEE-118 bus power system includes 46 

non-gas thermal units, 6 gas-fired units, 2 dual-fuel units, 7 

wind farms, 1 PtG facility, 186 branches, and 91 power loads. 

Total capacities of gas-fired units, dual fuel units, and wind 

farms are 525MW, 200MW, and 720MW, respectively.  

The gas system consists of 12 gas nodes, 3 gas wells, 10 

inactive pipelines, 2 active pipelines with gas compressors, 2 

storage facilities, and 12 gas loads. The PtG facility is 

connected to power bus 4 and gas node 4. Two electric-driven 

gas compressors draw electric power from buses 7 and 15 of the 

power grid. Forecasted values of peak power load, wind 

generation, and gas load are 6000MW, 635MW, and 

9000kcf/h, respectively.  

With threshold on relative MILP gap of 0.1%, the 

deterministic co-optimization model without uncertainties is 

solved in 60s. In this IPGS, cheaper gas-fired units G1 and G2 

are not constantly operated at their full capacities due to natural 

gas shortage. Furthermore, lower linepack in some pipelines at 

the beginning of the day has limited natural gas supply to 

gas-fired units G1/G2 and dual-fuel units G4/G5, because 

residential gas demands at nodes 4, 6, and 7 are given higher 

priority to be served. As a result, G1 and G2 are forced to shut 
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down in the early morning until linepack in pipelines is refilled 

later of the day. However, fuel-switching capabilities of G4 and 

G5 allow them to continue operation while relying on 

traditional fuel. In this case without considering uncertainties, 

total operation cost is $M6.230 with a total of 651 unit∙hour 

commitment throughout the day.  

When considering uncertainties in the adjustable robust 

model, calculation time increases significantly to 3627s due to 

computational burden of the robust optimization [17], [21]. 

Furthermore, in order to maintain power system security, 59 

more unit∙hour are committed throughout the day to provide 

enough up/down ramping capabilities for handling worst-case 

scenarios, which yields a total operation cost of $M6.234. In 

addition, to ensure operational security of the natural gas 

system in the worst-case scenario, total natural gas 

consumption of gas-fired and dual-fuel units G1-G8 is 

decreased from M0.242kcf in the deterministic case to 

M0.194kcf. 

5. Conclusions 

This paper proposes a two-stage adjustable robust model for 

the coordinated optimal operation of the IPGS, while 

considering uncertainties of power loads, wind generation, and 

gas loads. Coupling components including gas-fired units, 

dual-fuel units, PtGs, and electric-driven compressors are 

studied. The proposed two-stage robust optimization model is 

solved by CCG, in which nonlinear gas network constraints are 

linearized via Taylor series expansion. 

Simulation results show that system uncertainties need to be 

adequately considered in order to derive accurate unit 

commitment solutions and gas flow directions of the IPGS. In 

addition, fuel-switching capabilities of dual-fuel units are 

valuable in enhancing the secure and economical operation of 

IPGS, especially when natural gas demands present upward 

uncertainties. Moreover, PtG facilities can positively contribute 

to a more economical unit commitment scheduling by 

effectively converting excessive wind generation into natural 

gas, while also facilitating a deeper penetration of wind energy. 

In summary, the proposed approach provides a physically 

secure and economically viable solution to optimally operate 

IPGS against various upcoming uncertainties.  
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