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Abstract— The increasing interdependencies between natural
gas systems and power systems create new business opportunities
in coupled energy distribution markets. This paper studies the
marginal price based bilateral energy trading on the equilibrium
of coupled natural gas and electricity distribution markets.
Convex relaxation is employed to solve a multi-period optimal
power flow problem, which is used to clear the electricity market.
A successive second-order cone programming (SOCP) approach
is utilized to solve a multi-period optimal gas flow problem,
which is used to clear the gas market. In addition, the line
pack effect in the gas network is considered, which can offer
storage capacity and provide extra operation flexibility for both
networks. In both problems, locational marginal energy prices are
recovered from the Lagrangian multipliers associated with nodal
balancing equations. Furthermore, a best-response decomposition
algorithm is developed to identify the equilibrium of the coupled
energy markets with bilateral gas and electricity trading, which
leverages the computational superiority of SOCPs. Cases studies
on two test systems validate the proposed methodology.

Index Terms—interdependency, nodal energy price, natural gas
network, optimal energy flow, power distribution network.

NOMENCLATURE

A. Indices and Sets
c ∈ C Gas compressors (gas active pipelines)
dg ∈ Dg Gas distribution network (GDN) loads
dp ∈ Dp Power distribution network (PDN) loads
g ∈ G Gas-fired distributed generators (DGs)
ig ∈ Ig GDN nodes
ip ∈ Ip PDN buses
lg ∈ Lg Gas passive pipelines
lp ∈ Lp PDN lines
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n ∈ N Non-gas DGs
t ∈ T Time periods
φg Mapping between gas-fired DG and GDN node
ϕc Mapping between compressor and PDN node

B. Parameters
eMlp PDN line current capacity
Flg , Fc Pipeline friction coefficients
PLn /P

M
n Active power range of non-gas DGs

PLg /P
M
g Active power range of gas-fired DGs

aip/bip Shunt condunctance/susceptance from ip to
ground

Pdpt/Qdpt PDN active/reactive power demands
QLn/Q

M
n Reactive power range of non-gas DGs

QLg /Q
M
g Reactive power range of gas-fired DGs

Qn(·) Generation cost of non-gas DGs
Rlg , Rc Pipe diameters
rlp/xlp PDN line resistance/reactance
Tk Temperature
vLip/v

M
ip

PDN bus voltage magnitude range
Xlg , Xc Length of the pipeline
Ydgt GDN loads
ybm Maximal allowed gas purchase
ymaxc Maximal allowed gas in flow of compressor
Zlcrtg , Zc Compression factor of the pipeline
αc Fuel consumption coefficient of compressor
βipt Locational marginal electricity price
χ Thermal equivalent conversion constant
ηg Efficiency of gas-fired DG
γc Compression factor of the compressor
λgt Gas purchase price at a higher-level market
λpt Power purchase price at a higher-level market
µ Specific gas constant
φlg Weymouth equation coefficient
ρ0 Gas density in standard condition
τuig/τ

l
ig

Gas pressure range
θg Gas-electricity conversion factor
%igt Locational marginal gas price
ξ Unit transformation constant

C. Variables
elpt Line current square of PDN
mlgt,mct Average gas mass of GDN
pbt/q

b
t Purchased active/reactive power

pgt, pnt Active power of DGs
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pflpt/qflpt Active/reactive power of PDN lines
qgt, qnt Reactive power of DGs
uigt Nodal gas pressure
ybt Purchased gas
yinlgt/y

out
lgt

Gas in/out-flow of passive pipeline
yinct /y

out
ct Gas in/out-flow of active pipeline

νipt Bus voltage square of PDN

D. Acronyms
CCP Convex concave procedure
DG Distributed generator
GDN Gas distribution network
GTN Gas transmission network
LDC Local distribution company
LMP Locational marginal price
LMEP Locational marginal electricity price
LMGP Locational marginal gas price
LP Linear prog
MILP Mixed integer linear programming
OPF Optimal power flow
OGF Optimal gas flow
PDE Partial differential equation
PDN Power distribution network
PTN Power transmission network
P2G Power-to-gas
SOC Second-order cone
SOCP Second-order cone programming
TLEM Transmission-level electricity market
TLGM Transmission-level gas market

I. INTRODUCTION

THe interdependencies between power and natural gas
systems have been significantly enhanced during the past

decades, due to the proliferation of gas-fired generators in
power systems and the emerging power-to-gas (P2G) facilities
in gas systems. Such increased interdependencies not only
bring potential economic and environmental benefits to the
society, but also provide extra operating flexibility to both
critical energy infrastructures. Many valuable works have been
focused on the coordinated operation of coupled gas and
power systems. Just to name a few, the optimal gas-power
flow is studied in [1]; an interval optimization based robust
dispatch model considering uncertain wind power and demand
response is discussed in [2]; the coordinated system scheduling
considering gas system dynamics is analyzed in [3]; a security-
constrained co-planning model is presented in [4].

The wide deployment of gas-fired generators, gas com-
pressors, and P2G facilities creates notable interdependencies
across power systems and gas systems, as well as the markets
of both energy resources. On the one hand, the electricity
price will affect the gas production costs and delivery costs
(because both the P2G facilities and the compressors are
driven by electricity), thus will further influence the elec-
tricity demands from the gas side as well as the locational
marginal gas prices (LMGPs), if a marginal pricing scheme
is adopted in the gas market; on the other hand, the LMGPs
will impact the production costs of the gas-fired generators,
hence will influence the gas demands from the power grid

and the locational marginal electricity prices (LMEPs). Some
inspiring works which endeavour to address the correlation
between electricity and gas markets have been found. The
optimal bidding problem of the gas-fired generators in the day-
ahead electricity market considering the security constraints
of the gas network is discussed in [5] while neglecting the
line pack effect, the quantity of natural gas contained in a
certain segment of a pipeline [6]. [7] extends the work of [5]
by taking unit commitment and wind power uncertainty into
account. In [8], the interdependency of power and gas systems
under market environment in a medium-long time horizon
is analyzed, where operation costs of individual systems are
optimized. Nevertheless, due to the existence of the nonlinear
and nonconvex Weymouth equations, which are used for
capturing the mathematical relationship between gas flows
and pressures, pricing natural gas is still difficult, especially
when the marginal pricing scheme is adopted. The reason is
the nonconvexities will induce non-zero duality gap between
the primal and dual problems and the dual variables of the
nodal energy balancing equation cannot be regarded as the
locational marginal prices (LMPs) directly. To conquer this
obstacle, [5] relaxes the Weymouth equation as an inequality,
and then uses a series of linear inequalities to approximate the
relaxed inequality, resulting in a linear form of the optimal gas
flow (OGF) problem. However, this treatment cannot guarantee
feasibility of the OGF problem, which has been reported in
literature [9], making their work less attractive. Another possi-
ble way is to add a series of binary variables and approximate
the Weymoth equation by a series of linear segments, turning
the gas market clearing problem into a mixed integer linear
programming (MILP). It should be noted this approach has
been widely adopted in the coordinated operation issues of
gas-power system [10]–[14], yet hasn’t been reported by any
gas pricing literature. However, the approximated gas flow
model is still nonconvex, due to the introduction of binaries,
which call for additional pricing schemes similar with the
convex hull pricing in power markets [15], [16].

Currently, the electricity and gas markets in the U.S. are
cleared asynchronously [17] with different frequencies: the
LMEPs are updated hourly, while the flat daily gas prices are
provided for certain users. For industrial gas-fired generators,
they usually get the cheapest gas price with interruptible
supply contracts, which may lead to fuel inadequacy if con-
gestion or gas shortage occurs [18]. The wide adoption of
energy transition facilities and increasingly prominent system
interdependencies call for more reliable and resilient operation
of both networks, and also create new business opportunities
that allow bilateral energy trading as well as promote the syn-
chronization and coordination of electricity and gas markets,
pioneered by the work in [17]. The first step for deregulating
the gas network is to establish gas pricing policies and gas
markets. We envision a pool-based gas market with LMGPs
which is similar to most existing power markets, because
marginal pricing scheme has been well acknowledged for its
fairness and ability to price congestions. This paper studies
a coupled gas-electricity market of distribution networks with
bilateral energy trading at locational marginal prices. Com-
pared the existing works, the salient features of our work are
summarized as below.
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1) We envision marginal gas pricing in the natural gas sys-
tem. A convex optimization based method is proposed to
clear the gas market and retrieve price, which overcome
the computational difficulty brought by the non-convex
Weymouth equations.

2) To the best of our knowledge, it is the first time that such
a bilateral gas-electricity market is proposed, where the
two markets trade energy at locational marginal prices.
The proposed framework has the potential to promote
gas and power system integration, and to increase the
operational flexibility of both systems. A best-response
decomposition algorithm is suggested to compute the
equilibrium of the coupled energy markets, and the
existence of equilibrium is discussed through the price-
demand curves.

The rest of this paper is organized as follows. The market
framework and basic settings are clarified in Section II, follow-
ing which the mathematical formulations of the power market
clearing and gas market clearing problems are elaborated.
The solution methods for both market clearing problems, the
calculation of LMEPs and LMGPs, and the best response
algorithm for the market equilibrium are introduced in Section
III. To validate the proposed model and algorithm, numerical
results on two testing systems are presented in Section IV.
Finally, conclusions are drawn in Section V.

II. MARKET FRAMEWORK, OPF AND OGF PROBLEMS

A. The Pool-based Market Framework

At the electricity side, the power distribution network (PDN)
is connected with an upper-level power transmission network
(PTN), and purchases electricity from it. Local generators in
the PDN include gas-fired and non-gas distributed generators
(DGs). The PDN loads are deterministic. In the OPF problem,
the electricity demands from compressors are treated as param-
eters in the clearing process of the electricity market, which
are submitted by the gas system operator; natural gas is offered
at the LMGPs. The PDN operator clears the electricity market
with minimal production costs, and determines the generation
schedules, the gas demands, and the LMEPs simultaneously.

At the gas side, the gas distribution network (GDN) is con-
nected with an upper-level gas transmission network (GTN),
and purchases natural gas from it. The GDN loads are also
considered deterministic. In the OGF problem, the natural
gas demands from gas-fired units are treated as parameters
in the clearing process of the gas market, which are submitted
by the power system operator; electricity is supplied at the
LMEPs. The GDN operator clears the gas market with minimal
production costs, and determines the gas transactions, the
compressor electricity usage, and the LMGPs simultaneously.
The schematic diagram of the coupled energy markets is
shown in Fig. 1.

The proposed market framework is designed for short-term
operation of the coupled energy networks, and the correspond-
ing market clearing models are multi-period ones. For the day-
ahead market, the time period could be 1 hour, and for the
intra-day market, the time period could be 15 or 5 minutes.
The adpativity of the market timeframe and length of a time
period can be achieved by adjusting the value of ξ, which is the
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Fig. 1. The proposed coupled markets framework.

unit transformation constant. In the current work, the proposed
market framework mainly focuses on energy trading, and the
energy transportation rights are not considered.

B. Assumptions and Simplifications
The main assumptions made in the proposed optimal energy

flow models are clarified as follows.
1) General assumptions: (i) We are focusing on the networks

and markets in the distribution level, where the PDN and
the GDN are operated with radial topologies, and energy
flow directions can be determined in advance. (ii) The elec-
tricity and gas consumptions are paid at locational marginal
prices, i.e., the LMEPs and the LMGPs, respectively. (iii)
P2G facilities are not considered in the proposed models for
simplicity. Technically, the proposed models can be easily
extended to ones with P2G facilities if linear P2G models are
adopted [13], [19]. (iv) The PDN and GDN are owned and
operated by different local distribution companies (LDCs). If
not, the proposed bilateral energy trading market framework
may not work and no equilibrium exists, as there is only one
“player” in the integrated energy market, suggesting a holistic
optimization model similar as the works of [1]–[4]. (v) The
demands in both markets are non-elastic. For detailed price-
responsive load model, one can refer to [20]. (vi) Only energy
transactions with wholesale market are considered and there
is no retail market in the current work. Nonetheless, most
results in this paper are easily extendable for transmission-
level studies, despite a somehow different energy flow model.

2) For the PDN: (i) Electricity can be produced locally, or
purchased from the PTN at the contract prices. (ii) The branch
flow model in [21] and the conic relaxation techniques in [22]
are used. Reverse power flow is prohibited to guarantee the
feasibility of the optimal power flow (OPF) solution obtained
from the convexified model [23]–[25]. For controllable DGs,
namely gas-fired DGs and diesel DGs, the assumption can
be easily satisfied due to their high operation flexibility. For
renewable DGs, the assumption would still hold, if curtailment
is allowed. (iii) Gas demands of the gas-fired DGs solely
depend on their active power outputs. (iv) We assume that unit
commitment decisions have been made in a previous stage. If
a DG is shut down, its output is enforced at zero. Interested
readers can refer to [26] for the market clearing problem
considering operating status of generators, however, this will
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significantly intensifies the computation complexity. (v) DGs
are assumed to be non-strategic, which means they offer their
generation costs as well as capacities to the power distribution
market operator directly. (vi) The PDN is assumed to be a
balanced one, and then the three-phase PDN model can be
replaced by an equivalent single-phase one. (vii) For each PDN
node equipped with one or several DGs, there exists at least
one combination of its downstream DGs, whose minimum
outputs is smaller than the sum of downstream demands of the
same PDN node. It should be noted the downstream DGs and
loads of the PDN node include the ones connected to it if there
are any. To model an OPF of meshed transmission network,
the direct current flow approximation or the traditional bus-
injection model can be used. The former gives rise to a linear
program, and the latter is nonlinear and non-convex, but can
be solved by the semi-definite relaxation method in [27].

3) For the GDN: (i) Gas flow dynamics are approximated
by algebraic equations. Details can be found in [11]. (ii) A
simplified and tractable compressor model in [6] is adopted,
which can also be found in [10]–[13], [28], [29]. For the
detailed compressor model, please refer to [30]. Please note
that the accurate compressor modelling would impose great
challenge on computation efficiency and model tractablity.
Therefore, approximations and simiplifications in compressor
modelling are quite common [10]–[14], [28], [29], [31]. A
more accurate and tractable compressor model in gas network
optimization problems is desired. (iii) All the compressors
are driven by electricity and their cost functions are linear.
According to [32] and [33], a compressor typically consumes
about 3-5% of the transported gas. Likewise, the compressors
are assumed to be non-strategic, which means they report their
operating costs to the gas distribution market operator directly.

Remark 1: In this paper, the GDN is assumed to be operated
with radial topology, which can be reasoned and supported by
the following factors.

1) Practicality. There are controllable valves in the GDN,
which enables the GDN to be operated with radial
topology [34].

2) Efficiency. Radial-topology distribution networks enjoy
high efficiency, especially in single source cases, as their
total lengths of the networks are smaller than those of
the meshed ones [34], [35].

Radial-topology GDN analysis can be found in many lit-
eratures [36]–[39], which further confirm the rationality of
the proposed assumption. Nevertheless, the proposed model
and algorithm also apply to meshed network if gas flow
directions can be specified in advance from heuristic methods
or operating experiences. We do not actually require that gas
flow directions keep unchanged all day long. In fact, gas
flow problem is hard to solve for non-radial networks, even
under steady-state and balanced conditions [40], due to the
nonlinearities and nonconvexities in the gas network model,
let along the OGF problem. Tractable pricing schemes for the
meshed GDNs would be the one of the future works.

C. Power Distribution Market Clearing

The PDN is connected to a upper-level power transmission
network (PTN), which serves as a power supplier with infinite

capacity. The PDN is a price-taker and pays the energy
transaction costs to the transmission level electricity market
according to the electricity price. In the electricity market, the
operator aims to minimize the production costs, leading to the
following OPF problem

min
Φp

∑
t

(
∑
g

%igtpgt

ηgθg
+
∑
n

Qn(pnt) + λptp
b
t), ig ∈ φ−1

g

Φp = {eipt, pbt , pgt, pnt, qbt , qgt, qnt, pflpt, qflpt, vipt}
(1)

s.t. 0 ≤ elpt ≤ (eMlp )2, ∀lp,∀t, (2)

(vLip)2 ≤ νipt ≤ (vMip )2, ∀ip,∀t, (3)

PL{·} ≤ p{·}t ≤ P
M
{·}, {·} = {g, n},∀t, (4)

QL{·} ≤ q{·}t ≤ Q
M
{·}, {·} = {g, n},∀t, (5)

pbt ≥ 0, qbt ≥ 0, ∀t, (6)

pflpt ≥ 0, qflpt ≥ 0,∀lp, t, (7)∑
{·}∈Ψ{·}(ip)

p{·}t +
∑

l∈ΨO2
(ip)

(pflpt − rlpelpt)− aipνip

−
∑

l∈ΨO1
(ip)

pflpt −
∑

dp∈Ψdp (ip)

Pdpt + 1{ip=i0p}p
b
t

−
∑

c∈Ψc(ip)

χαcy
in
ct = 0 : βipt, {·} = {g, n}, ∀ip, t,

(8)

∑
{·}∈Ψ{·}(ip)

q{·}t +
∑

l∈ΨO2
(ip)

(qflpt − xlpelpt)− bipνip

−
∑

l∈ΨO1
(ip)

qflpt −
∑

dp∈Ψdq (ip)

Qdqt + 1{ip=i0p}q
b
t

= 0, {·} = {g, n}, ∀ip, ∀t,

(9)

νip2t = νip1t − 2(rlppflpt + xlpqflpt)

+ (r2
lp + x2

lp)elpt, ∀(ip1, ip2) ∈ lp,∀t,
(10)

νip1telpt ≥ pf2
lpt + qf2

lpt, ∀(ip1, ip2) ∈ lp,∀t. (11)

In this formulation, the objective function (1) is the total
operating costs of the PDN, in which the first two components
are the generation costs of gas-fired DGs and non-gas DGs,
respectively, and the third one is the energy transaction costs
paid to the transmission-level electricity market (TLEM); Φp
collects decision variables of the OPF problem. (2) and (3)
impose boundaries for line currents and bus voltages. (4)
and (5) enforce active and reactive generation capacities for
DGs. (6) and (7) ban reverse energy transactions and power
flows, respectively. (8) and (9) are the nodal power balancing
equations, where Ψg(ip), Ψn(ip), Ψdp(ip), and Ψc(ip) stand
for sets of gas-fired DGs, non-gas DGs, electricity loads, and
gas compressors connecting to node ip; ΨO1

(ΨO2
) stands

for the set of feeders whose head (tail) node is ip; i0p is
the connection node between the upper-level PTN and PDN.
(10) is the voltage drop equation. (11) defines the relaxed
line apparent power, which can be expressed via a standard
second-order cone constraint. It is proved that (11) will be
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binding at the optimal solution under mild conditions [22].
Dual variables which serve as the LMEPs are indicated in
(8) following a colon. In the proposed market clearing model
of the PDN, renewable DGs, if there is any, use forecasted
outputs. Uncertainty is not the main focus of this paper, but
will be an interesting direction in future research. A relevant
discussion is presented in Section III.C.

D. Gas Distribution Market Clearing

In the gas market, the operator aims to minimize the total
gas production costs, leading to the following OGF problem

min
Φg

∑
t

(λgty
b
t +

∑
c

βiptχαcy
in
ct ), ip ∈ ϕ−1

c ,

Φg = {ybt , yinlgt, y
out
lgt , y

in
ct , y

out
ct , uigt,mlgt}

(12)

s.t. 0 ≤ ybt ≤ ybm, ∀t, (13)

τ lig ≤ uigt ≤ τ
u
ig , ∀ig, t, (14)

1{ig=i0g}y
b
t +

∑
{·}∈Θ{·}2 (ig)

yin{·}t −
∑

{·}∈Θ{·}1 (ig)

yout{·}t =

∑
n∈Θn(ig)

pgt
ηgθg

+
∑

dg∈Θdg (ig)

Ydgt : %igt, {·} = {c, lg},∀ig, t,

(15)

m{·}t =
π

4

X{·}R
2
{·}

µTkZ{·}ρ0

u{·}1t + u{·}2t

2
, {·} = {c, lg}, ∀t,

(16)
m{·}t = m{·}(t−1) + yin{·}t − y

out
{·}t,

{·} = {c, lg}, t = 2, . . . , T,
(17)

m{·}1 = m{·}T + yin{·}1 − y
out
{·}1, {·} = {c, lg}, (18)

uc2t ≤ γcuc1t, ∀c, t, (19)

0 ≤ yinct ≤ ymaxc , ∀c, t, (20)

(yinlgt + youtlgt )|yinlgt + youtlgt | = 4φlg [(ul1gt)
2 − (ul2gt)

2], ∀lg, t,
(21)

φlg =
(
π2ξ2R5

lg

)
/
(

16XlgFlgµTkZlgρ
2
0

)
, ∀lg. (22)

In this formulation, the objective function (12) is the total
operating costs of the GDN, in which the first component is
the gas purchase costs from the transmission-level gas market
(TLGM), and the second one is the operating costs of compres-
sors. Φg collects decision variables of the OGF problem. (13)
prevents negative or excessive gas transactions. (14) imposes
boundaries for nodal gas pressures. (15) represents nodal gas
balancing conditions, where Θdg (ig) and Θn(ig) represent sets
of gas loads and gas-fired DGs connecting to node ig; Θc1(ig),
Θc2(ig), Θlg1

(ig), and Θlg2
(ig) represent sets of active and

passive pipelines whose head/tail node is ig . Particularly, ac-
tive/passive pipelines refer to those with/without compressors;
i0g denotes the connection node between the upper-level GTN
and GDN. (16) gives the relationship between line pack and
average pressure of a pipeline. (17) and (18) depict the time-
dependent relationship between line pack and gas flow, and
require the initial and final levels of line pack are the same
in a clearing cycle. The mathematical procedure to derive

(16) and (17) can be found in the Appendix of [11], in
which a constant compressibility factor Zlg is adopted to
preserve linearity. For each active pipeline, (19) and (20)
limit the maximum compression ratio and gas flow, where
uc1t and uc2t are the pressures of head and tail nodes of an
active pipeline, respectively. (19)-(20) constitute a simplified
compressor model, which has been justified and adopted in
[6]. (21) is the Weymouth equation which characterizes the
relationship between gas flow in a passive pipeline and nodal
gas pressures, where ul1gt and ul2gt are pressures of head and
tail nodes of lg , respectively. (22) defines the coefficient φlg
in the Weymouth equation. Dual variables which serve as the
LMGPs are indicated in (15) following a colon.

The non-differentiable absolute value function in (21)
greatly challenges the solution of the OGF problem. Recalling
the first assumption of the general ones in Section II.A, (21)
can be reduced as

ul1gt ≥ ul2gt, ∀lg, t, (23)

yinlgt + youtlgt ≥ 0, ∀lg, t, (24)

(yinlgt + youtlgt )2/4 = φlg ((ul1gt)
2 − (ul2gt)

2), ∀lg, t. (25)

We assume the notations of head and tail nodes of lg are
consistent with the positive direction of gas flows. (23)-(25)
naturally hold for radial GDNs. The non-convexity in the OGF
problem originates from equation (25).

Remark 2: According to the literature [41], [42], the
cycling periods of most gas storages are years or months,
which are not inconsistent with the time scale of the OGF
problem tackled here. Besides, gas storages usually locate in
transmission networks rather than distribution networks [42].
Therefore, in the short operation of gas distribution networks,
the line pack, defined as the short-term storage by [41], acts
as the distributed gas storage facilities with limited regulation
capability compared with the transmission-level gas storages,
which has been modelled and serves as the only gas storage
in the proposed OGF model. With more interactions between
distribution-level electricity and gas networks, there may be
more gas storage facilities in the GDN in the future. Though
gas storage facilities are not considered in this work, it can be
easily incorporated in the OGF model and efficiently solved
by the proposed algorithm, if it is convex mathematically. Take
the simplified linear gas storage model in [2], [11]–[13] as an
example:

yin
s
≤ yinst ≤ ȳins , ∀s, ∀t, (26a)

yout
s
≤ youtst ≤ ȳouts , ∀s, ∀t, (26b)

rs ≤ rst ≤ r̄s, ∀s, ∀t, (26c)

rst = rs,t−1 + yinst − youtst , ∀s, ∀t, (26d)

where s is the index for gas storages; yin
s

and ȳins (yout
s

and
ȳouts ) are the lower and upper limits of in (out) rate of gas
storages, respectively; rs and r̄s are lower and upper limits
of stored gas; yinst , youtst , and rst are the in rate, out rate,
and stored gas, respectively. In this formulation, (26a) and
(26b) describe the limits for in and out rates of gas storages,
respectively; (26c) imposes the boundaries for stored gas;
(26d) represents the variation of stored gas. Accordingly, the
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nodal gas balancing equation needs to be modified as follows

1{ig=i0g}y
b
t +

∑
{·}∈Θ{·}2 (ig)

yin{·}t −
∑

{·}∈Θ{·}1 (ig)

yout{·}t+∑
s∈Θs(ig)

(
youtst − yinst

)
=

∑
n∈Θn(ig)

pgt
ηgθg

+
∑

dg∈Θdg (ig)

Ydgt,

{·} = {c, lg},∀ig, t.
(27)

It should be noted that modeling gas storage as (26a)-(26d)
will not change the mathematical property of the gas distri-
bution market clearing problem, which means the proposed
approach would still work.

Remark 3: There is no imbalance charge when the total
gas supply exceeds or is less than the total gas demand in a
time period in the current formulation, as constraints (17) and
(18) are embedded in the proposed OGF formulation, which
enforce the initial and final line pack levels of a clearing cycle
are the same. However, it would be interesting to treat the line
pack as an individual market product and explore its pricing
scheme.

Remark 4: The formulations of gas flows are expressed
by partial differential equations (PDEs), as shown in the Ap-
pendix of [11]. Then the implicit method of finite differences
is used to discretize these PDEs in time and space. In [11],
the time and space steps are selected as one hour and the
length of the pipeline, respectively. Similarly, the current line
pack model, namely (16)-(18), is an approximation of the
actual one. One possible method to improve the accuracy
of approximation without losing its linearity is reported in
[43], which is achieved by introducing fictitious gas nodes
in a pipeline and dividing one pipeline into several sub-
pipelines spatially. Temporally, the approximation could also
be enhanced by using smaller time steps for the line pack
model compared with the one for gas market clearing.

Remark 5: Weymouth equation is adopted to approximate
the gas flow in a pipeline, which is the same as [44]. In
fact, Weymouth equation is widely adopted in transmission-
level gas network analysis [5], [11], [13], while the pressure
levels of GDNs are lower than GTNs, which means the
Weymouth equation might not be the most accurate formula
for distribution-level gas flow analysis. In fact, there are many
formulas to describe the gas flow in a pipeline, however, none
has the complete acceptance of academia and industry [45].
This is because of the effects of friction are difficult to quan-
tify, resulting in formula variations in the literature. Therefore,
more accurate and tractable formulations for distribution-level
gas flow analysis are desired.

Remark 6: According to current natural gas market reality,
LMGPs stay unchanged during a gas day. In the proposed gas
market model, we assume the real-time natural gas pricing
mechanism is adopted. However, the proposed model can be
in line with current natural gas market reality after adding
the nodal gas balancing equations (15) with respect to t and
regarding the dual variable %ig of the following equation as
LMGP.

∑
t

(
1{ig=i0g}y

b
t +

∑
{·}∈Θ{·}2 (ig)

yin{·}t −
∑

{·}∈Θ{·}1 (ig)

yout{·}t

)
=

∑
t

( ∑
n∈Θn(ig)

pgt
ηgθg

+
∑

dg∈Θdg (ig)

Ydgt

)
: %ig , {·} = {c, lg},∀ig.

(28)

With the aforementioned modifications, the LMGPs of gas
market will remain unchanged throughout a gas day.

III. SOLUTION METHODOLOGY

A. Locational Marginal Electricity Price

The compact form of the OPF problem is given by

min
x

f>x+ %>F%xx (29a)

s.t. 0 ≤ C1x+ d1 +D1y : β, (29b)

||Aix+ bi||2 ≤ c>2,ix+ d2,i : δ,ω, i ∈ Lp, (29c)

where x is vector of decision variables in Φg;
f ,F%x,C1,d1,D1,Ai, bi, c2,i, d2,i are coefficient matrices
corresponding to (1)-(11); β, δ and ω are dual variables. In
problem (29), y and % are constant electricity demands and
LMGPs delivered from the GDN. The dual SOCP of (29) is
given by

max
β,δ,ω

− β>(d1 +D1y)> −
∑
i∈Lp

(
δ>i bi + ωid2,i

)
(30a)

s.t. f + F>%x% = C>1 β +
∑
i∈Lp

(
A>i δi + c2,iωi

)
, (30b)

β ≥ 0, ‖δi‖2 ≤ ωi, ∀i ∈ Lp. (30c)

As long as the OPF problem (29) has a Slater point, strong
duality holds, which means dual variable βipt is the LMEP
at bus ip. Some commercial SOCP solvers, such as MOSEK,
offers primal and dual optimal solutions at the same time, thus
can be used to procure the OPF solution and the LMEPs more
conveniently.

B. Locational Marginal Gas Price

The compact form of the OGF problem is expressed as

Objgas = min
y

g>y + β>Gβyy (31a)

s.t. 0 ≤ Ey + h+Hx, (25). (31b)

where y is vector of decision variables in Φg , and g,Gβy ,
E,h,H are coefficient matrices in (12)-(20), (22), (23)-(24).
x and β are constants delivered from the PDN.

(31) is a non-convex program due to the quadratic equalities
in (25). In view of the difference-of-convex structure in the
right-hand side of (25), (31) can be solved by a convex-
concave procedure (CCP) discussed in [46], whose basic idea
is to linearize the concave part in the constraints. To perform
CCP, (25) is written as two opposite inequalities

(yinlgt + youtlgt )2/4 + φlg (ul2gt)
2 ≤ φlg (ul1gt)

2, ∀lg, t, (32a)

φlg (ul1gt)
2 ≤ (yinlgt + youtlgt )2/4 + φlg (ul2gt)

2, ∀lg, t. (32b)
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Algorithm 1 Penalty CCP for OGF
1: Initialize the penalty parameters π0, πmax, κ > 1 and

convergence parameters δ and ε. Set the iteration index
k = 0. Solve the following relaxed OGF problem

Objgas = min
y

g>y + β>Gβyy (36a)

s.t. 0 ≤ Ey + h+Hx, (33). (36b)

The optimal solutions (values) are y0 (Obj0
gas).

2: Solve the following penalized OGF problem

Objgas = min
y

g>y + β>Gβyy + πk1
>s (37a)

s.t. 0 ≤ Ey + h+Hx, s ≥ 0, (33), (37b)

‖G1y + g1‖ ≤ g>2 y + g3, (37c)

where coefficient matrices G1, g1, g2, and g3 in SOC
constraint (37c) corresponding to (34) are updated at yk.
The optimal solution is yk+1 and sk+1, with the optimal
value of Objk+1

gas .
3: If (38a) and (38b) are satisfied, then terminate and report

the optimal solution; otherwise, update k = k+1, πk+1 =
min(κπk, πmax), and go to Step 2.

|Objk+1
gas −Objkgas| ≤ δ, (38a)

slgt,k+1 ≤ ε · φlg (ul1gt)
2, ∀lg, t. (38b)

Because ul1gt and φlg are positive,
√
φlgul1gt ≥ 0 holds, and

(32a) is equivalent to SOC inequalities shown below∥∥∥∥ (yinlgt + youtlgt
)/2√

φlgul2gt

∥∥∥∥ ≤√φlgul1gt, ∀lg, t. (33)

Furthermore, given the value of ul2gt,k, y
in
lgt,k

and youtlgt,k
,

(32b) can be convexified by replacing the right-hand side with
its linear approximation, yielding

φlg (ul1gt)
2 ≤

(yinlgt,k + youtlgt,k
)(yinlgt + youtlgt

)

2
− φlg (ul2gt,k)2

−
(yinlgt,k + youtlgt,k

)2

4
+ 2φlgul2gt,kul2gt, ∀lg, t.

(34)

Note that (34) is a set of convex quadratic inequalities and can
be further converted to second-order cone (SOC) inequalities
as follows [47]

x2 ≤ by − d⇒

∥∥∥∥∥∥∥
2x

y − b
2
√
d

∥∥∥∥∥∥∥ ≤ y + b. (35)

To make the linear approximations performed in (34) com-
patible, the nonnegative slack variable vector s as well as the
penalty term associated with s are incorporated in constraint
(34) and objective (31a), respectively, rendering a penalized
version of CCP shown in Algorithm 1, which is able to find a
local, but very promising to be the global, OGF solution. The
convergence is proved in [46].

In Step 2 of Algorithm 1, problem (37), denoted as Mk
g , is

solved in its SOCP form using the transforation in (35). While

Algorithm 2 Best-Response Decomposition
1: Set %igt = λgt and yinct = 0. Set the maximum iteration

number jmax and convergence criterion ε. Set j = 1.
2: Solve the OPF problem (29) with given yinct , %igt, and

obtain pjgt. Solve problem (30), and obtain LMEP βjipt.
3: Solve the OGF problem (31) using Algorithm 1 with given
pjgt, β

j
ipt

, and obtain yin,jct ,Mk,j
g . Solve the dual problem

of Mk,j
g , and obtain LMGP %jigt.

4: If following criteria are met, terminate and report pjgt, β
j
ipt

,
yin,jct , %jigt; else if j = jmax, terminate and report failure
of convergence; else, update j = j + 1, and go to Step 2.

|pjgt − p
j−1
gt | ≤ ε ·max{pjgt, p

j−1
gt }, ∀g, t,

|βjipt − β
j−1
ipt
| ≤ ε ·max{βjipt, β

j−1
ipt
}, ∀ip, t,

|yin,jct − y
in,j−1
ct | ≤ ε ·max{yin,jct , yin,j−1

ct }, ∀c, t,

|%jigt − %
j−1
igt
| ≤ ε ·max{%jigt, %

j−1
igt
}, ∀ig, t.

Algorithm 1 converges, we solve the dual problem of Mk
g in

the last iteration, which is again an SOCP, and recover dual
variables %igt as the LMGPs. The duality form of the SOCP
is similar to (30) and is omitted here.

C. Market Equilibrium

Let OPF(LMGP, y) (OGF(LMEP, x)) be the OPF (OGF)
problem with given LMGPs (LMEPs) and OGF (OPF) result y
(x), the equilibrium of the market with bilateral gas-electricity
trading can come down to a fixed point problem

[LMEP,x] = OPF(LMGP,y)

[LMGP,y] = OGF(LMEP,x)
(39)

The market interdependency originates from two observations:
(i) the LMEPs (LMGPs), namely the dual variables of the
OPF (OGF) problem, appear in the objective function of the
OGF (OPF) problem; (ii) the gas (electricity) usage of gas-
fired generators (compressors), i.e., the primal variables of the
OPF (OGF) problem, appear in the constraints of the OGF
(OPF) problem. A best-response decomposition algorithm is
designed to identify the market equilibrium. Details are given
in Algorithm 2.

Remark 7: In fact, the proposed model and solution method-
ology could extend to the cases with uncertain renewables
in the PDN. Currently, two major modeling approaches are
widely adopted in the power system operation problems with
uncertain renewables, which are the scenario based stochastic
approach and the uncertainty set based robust one.

(1) Scenario based stochastic approach: if uncertainty of
renewables is represented by scenarios, and the goal of oper-
ator of the PDN is to minimize the expected operation costs,
the compact form of the OPF problem would be a stochastic
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programming as follows

min
xj

∑
j

πj

(
f>xj +

(
%j
)>
F%xx

j
)

(40a)

s.t. 0 ≤ C1x
j + d1 +D1y

j +M1u
j : βj , ∀j, (40b)

||Aix
j + bi||2 ≤ c>2,ixj + d2,i : δj ,ωj , i ∈ Lp, ∀j, (40c)

where j is scenario index and uj is outputs of the renewables
in scenario j; πj is probability of scenario j; xj is vector
of decision variables in scenario j; f , F%x, C1, d1, D1,
M1, Ai, bi, c2,i, d2,i in model (40) are the same as model
(29); M1 is the coefficient matrix for outputs of renewables;
βj , δj and ωj are dual variables. In problem (40), yj and
%j are constant electricity demands and LMGPs delivered
from the GDN. In (40), the objective (40a) is to minimize
the expected operation costs of the PDN, i.e., a weighted
sum of the operation costs in each scenario; (40b) and (40c)
are the PDN operation constraints in each scenario. With the
integration of renewables in the PDN, uncertainty will impact
the OGF problem indirectly, due to interdependencies between
the PDN and the GDN, leading to a stochastic formulation of
the OGF problem as follows

min
yj

∑
j

πj

(
g>yj +

(
βj
)>
Gβyy

j
)

(41a)

s.t. 0 ≤ Eyj + h+Hxj : %j , ∀j, (41b)(
yj
)>
Qyj = 0, ∀j, (41c)

where yj is vector of decision variables in scenario j, and
g,Gβy , E,h,H in (41) are the same as (31). xj and βj

are constants delivered from the PDN. In (41), the objective
(40a) is to minimize the expected operation costs of the GDN,
i.e., a weighted sum of the operation costs in each scenario;
(41b)-(41c) are GDN operation constraints in each scenario.
Specially, (41c) represents the nonlinear Weymouth equation.

However, it should be noted that the mathematical properties
of the stochastic OPF and OGF models are the same with cor-
responding deterministic ones, which are respectively SOCPs
and quadratic equality constrained programmings. Therefore,
the proposed solution approach would still work in this situa-
tion.

(2) Uncertainty set based robust approach: if uncertainty
of renewables is represented by an uncertainty set, and the
decision goal of the PDN operator is to evaluate the “worst-
case” operation costs, the OPF problem would be a max-min
programming as below

max
u∈U

min
x

f>x+ %>F%xx (42a)

s.t. 0 ≤ C1x+ d1 +D1y +M1u : β, (42b)

||Aix+ bi||2 ≤ c>2,ix+ d2,i : δ,ω, i ∈ Lp, (42c)

where u is outputs of renewables; U is the predetermined
uncertainty set; other notations are the same as (29). Obvi-
ously, (42) is not immediately solvable as it is a max-min
programming. One widely adopted treatment is to take the dual
of the inner level minimization problem, and then the bi-level
programming would degenerate to a single level maximization
problem with bilinear terms in the objective function. Big-M
based linearization approach in [48] can be applied and the

tractable reformulation is a mixed integer second-order cone
programming (MISOCP), which can be solved by commercial
solvers such as Gurobi. Then the “worst-case” realization of
u can be obtained, denoted as u∗, and the LMEPs β can be
retrieved by substituting u∗ into (29). It should be noted that
the OGF problem will remain the same with (31), as both
decision vector of PDN x and LMEPs β in the worst-case
realization of u are deterministic values rather uncertain ones.
And it is not hard to tell that the proposed approach would
still work in this situation.

D. Discussions on the Existence of Market Equilibrium

Due to the complicated mathematical structure of the market
equilibrium problem, provable convergence guarantee of Al-
gorithm 2 is non-trivial. We provide some intuitive discussions
to explain under what conditions Algorithm 2 is likely to
converge or may fail to converge. Our analysis rests on the
nodal price-demand curves.

Consider a PDN node i∗p, which is connected with a gas-
fired DG g∗, whose gas supply comes from GDN node i∗g .
The relationship between the gas demand of g∗ and the gas
price at i∗g is illustrated by the grey curve in Fig. 2. While the
gas price ρ is no larger than a certain value, say ρ ≤ ρ1, DG
g∗ will keep working at its maximum generation capacity. It
is also easy to image that if % is greater than a certain value
%2, g∗ might lose all the energy contract. When %1 ≤ % ≤ %2,
the optimal generation of g∗ is likely to be a continuously
decreasing function in %. Continuity is indicated by the fact
that the Pareto-front of feasible nodal injection region for a
radial network is strictly convex due to network losses, which
is revealed in [49], [50].

Now we consider the price response from the GDN: the
LMGP at node i∗g is a function of the gas demand of g∗, which
is plotted by black curves in Fig. 2. As mentioned before, the
LMGPs can be decomposed into a purchase component which
depends on the gas price at TLGM and a delivery component
which relies on the LMEP at the compressor bus. Both of
them are non-decreasing. When the demand exceeds the line
pack capacity, the compressor has to increase its output in
order to deliver more gas. As a result, the LMGP grows as the
LMEP rises. However, the continuity of black curves depends
on specific system data. If it is indeed continuous, it is very
likely to intersect with the grey one. The intersection interprets
the fixed point. If it is discontinuous, an intersection point may
exist or may not exist, as illustrated in Fig. 2.

Similarly, we consider a GDN node with a compressor c∗,
whose electricity is supplied by PDN bus i∗p. The relationship
between the electricity demand of c∗ and the LMEP at i∗p is
portrayed by grey curves in Fig. 3. The demand of c∗ remains
unchanged as long as the value of LMEP βi∗p is either small
or large enough. Grey curves can be either continuous or
discontinuous, depending on the data of the OGF problem.
On the other hand, black curves in Fig. 3 depict the LMEP as
a function of electricity demand of c∗. In general, an LMEP
curve would be discontinuous, because nodal price could be
attributed to a number of factors, and any active inequality
might introduce a sudden rise in the LMEP. Take the lossless
power transmission network for example, the nodal price is
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Fig. 2. Illustration of gas price and gas demand curves.

known to be stepwise constant [51]. Fig. 3 demonstrates four
possible outcomes. In each of the left two subfigures, the two
curves have an intersection, and the market equilibrium exists;
in the right two subfigures, no equilibria exist.

From above discussions, it can be concluded that the
existence of market equilibrium is system dependent. If no
equilibrium exists, Algorithm 2 will fail to converge. In
continuous case, Algorithm 2 is very likely to converge and
find the equilibrium, regardless of the initial point; If either of
the curves is discontinuous, the equilibrium may not exist.
In addition, even if an equilibrium indeed exists, whether
Algorithm 2 can converge depends on the selection of the
initial point.

IV. ILLUSTRATIVE EXAMPLE

In this section, we present numerical results on two test
systems to validate the proposed methods. All experiments
are performed on a laptop with Intel(R) Core(TM) 2 Duo 2.2
GHz CPU and 4 GB memory. The proposed algorithms are
coded in MATLAB with YALMIP toolbox [52]. SOCPs are
solved by Gurobi 6.5.

Fig. 4 depicts the topology of the connected infrastructures,
which will be referred to as the Power13Gas7 system later
on. The PDN has 2 gas-fired DGs and 8 electric loads. The
GDN possesses 2 compressors, 4 passive pipelines, and 6
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Fig. 3. Illustration of electricity price and electricity demand curves.

gas loads. In Fig. 4, P, PL, and DG with subscripts denote
electrical buses, power loads, and DG units in the PDN,
respectively; N,C,GL, and GLine with subscripts denote
gas nodes, compressors, gas loads, and passive pipelines in
GDN, respectively. Specially, the fuel of DG1 and DG2 are
supplied by GDN nodes N4 and N6, respectively. Electrical
compressors C1 and C2 are connected to PDN buses P3 and
P8, respectively. The daily demand profiles and price forecasts
in TLEM and TLGM are shown in Fig. 5 and Fig. 6. Other
detailed system data are available in [53]. Hereinafter, we use
the million British thermal unit (MMBtu) as the unifying unit
for electricity and natural gas, i.e., 1MMBtu equals to the
thermal energy of 28.3 Sm3 thorough burnt gas, or 293 kWh
electricity.
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Fig. 4. Topology of the Power13Gas7 system.
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Fig. 5. Demand profile of the PDN and the price curve in the TLEM.
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Fig. 6. Demand profile of the GDN and the price curve in the TLGM.

A. Simulation Results of the Base Case

The initialization parameters of Algorithm 1 and Algorithm
2 are provided in Table I. Algorithm 1 for the OGF problem
always converges in 3 iterations in our tests. Algorithm 2 iden-
tifies the market equilibrium after 4 iterations. Hourly LMEPs
and LMGPs are plotted in Fig. 7 and Fig. 8, respectively. From
Fig. 7, it can be observed that the LMEP curve at the slack bus
is identical with the given price curve in Fig. 5, and the LMEPs
of other buses in the same time period grow with increasing
distances to the slack bus, due to the unilateral power flows
and network losses. In particular, the hourly LMEP curve at
each bus has a shape similar to the price curve in Fig. 5. In
fact, among various factors that would possibly influence nodal
prices including network losses, congestions, and bus voltage
limits, network losses impacts the LMEPs in distribution
networks more evidently than it does in transmission networks,
where the line resistance to reactance ratio is much smaller,
and all buses share only one marginal cost in the absence of
congestions. This result indicates that the lossless power flow
model, such as the direct current power flow model which
has been widely used in transmission-level studies, and the
linearized branch flow model [54] which is also popular in
distribution-level studies, may be less accurate for calculating
the LMEPs in distribution networks.

Because the node connected with the TLGM is the only gas
source, and gas delivery may incur electricity consumption,
the LMGPs are affected by the following two factors: the
gas price in the TLGM and LMEPs corresponding to active
pipelines (compressors). As a result, the LMGP curve is
stepwise constant with respect to node index, as demonstrated

in Fig. 8. Moreover, it can be observed that the LMGP curves
at N1 and N2 do not change over time, and fluctuations in the
LMGP curves at other gas nodes are smaller than the price
variation trend shown in Fig. 6, due to the line pack effect,
which can be regarded as a sort of gas storage, allows the
GDN operator purchase and store extra gas when the price
in the TLGM is low. In this case, the line pack capacity of
GLine1 is adequate to store the gas which is purchased during
periods 3 to 5 with the lowest gas prices, contributing to the
constant hourly LMGP curves at nodes N1 and N2. For N3

and N5, they are downstream nodes of active pipelines C1

and C2, respectively, and their hourly LMGP curves share
similar variation patterns with hourly LMEP curves of their
electricity supply nodes P3 and P8, respectively, since active
pipelines do not have line pack effect, and delivery costs for
N3 and N5 are directly related to LMEPs at P3 and P8. For
N4, N6, and N7, extra gas purchased in low-price periods
can be stored in GLine2, GLine3, and GLine4, respectively,
which results in lower LMGPs compared with those at N3 and
N5, respectively.

TABLE I
PARAMETERS OF ALGORITHM 1 AND ALGORITHM 2

Algorithm 1 Algorithm 2

δ π0 πmax ε κ kmax ε jmax

1 0.01 1000 10−6 2 20 10−4 20
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Fig. 7. The LMEP curves of the PDN.

B. Impacts of the Line Pack Effect

In this subsection, the line pack in passive pipelines is
neglected, which is implemented by dropping mlgt and con-
straints (16)-(17) in the OGF problem. Operating costs of the
PDN and the GDN at market equilibrium are listed in Table
II, which are increased by 20.3% and 97.1%, respectively,
compared with those in the base case. From previous results,
the economic benefits of line pack effect is clear: it helps
reduce energy prices and system operation costs by allowing
more flexible gas transactions between GDN and TLGM.
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Fig. 8. The LMGP curves of the GDN.

TABLE II
OPERATING COSTS AT EQUILIBRIUM WITH/WITHOUT LINE PACK

PDN ($) GDN ($)

With line pack 2.1505× 104 7.6052× 104

Without line pack 2.5871× 104 1.4990× 105

In fact, the line pack capacity in the pipelines are mainly
determined by nodal pressure limits and parameters of the
pipelines. And nodal pressure limits are crucial to both the
operating feasibility and flexibility of the GDN. From the
feasibility perspective, if the limits decrease, the maximum
allowable gas flow through a pipeline would decrease si-
multaneously, and if the limits are below certain thresholds,
the nodal gas balancing equations would not hold, leading
to infeasibility issues of the OGF problem. And from the
flexibility perspective, capacity of the line pack has a positive
relationship with pressures of head and tail nodes of a pipeline
according to (16), which means it will drop correspondingly
if the pressure limits decrease. And of course the lower
line pack capacities are, the higher the operation costs of
both energy distribution networks might be, indicating lower
operating flexibility of the GDN accordingly. To verify the
aforementioned analysis, the simulations in Section IV.A are
repeated with different nodal pressure limits, and operation
costs of the two energy networks are displayed as follows

TABLE III
OPERATING COSTS AT EQUILIBRIUM WITH DIFFERENT LEVELS OF NODAL

PRESSURE LIMITS.

Pressure (%) PDN ($) GDN ($)

100 2.1505× 104 7.6052× 104

80 2.2201× 104 8.3217× 104

60 2.3445× 104 9.7762× 104

40 2.5162× 104 1.2165× 105

20 - Infeasible

In Table III, the left column indicates pressure limits level,
e.g., 80% means pressure limits of all nodes are 80% of the
corresponding values in the Power13Gas7 test system. From
Table III, it can be observed that operation costs of both

energy networks will increase along with the drop of pressure
limits. Specifically, when pressure limits drop to 20%, the OGF
problem would be infeasible.

C. Comparisons with other OGF Solution Methods
As previously mentioned, the sequential SOCP algorithm

is proposed to solve the gas market clearing problem, which
identifies a local, but very promising to be the global, OGF
solution. In fact, due to the nonlinearities and nonconvexities
in the gas market clearing problem, the global optimality of the
solution cannot be theoretically guaranteed. However, it is still
worth comparing the quality of the solution obtained by the
proposed algorithm with the ones obtained by other algorithms
and methods. To the best knowledge of the authors, three
methods to solve the nonlinear and nonconvex OGF problem
have been reported by the literature, which are

1) A1: MILP based method [10]–[14], where the nonlinear
Weymouth equation is approximated by a series of linear
segments and nearly same amount of binary variables are
added, rendering an MILP approximation of the original
OGF problem.

2) A2: SOCP/ linear programming (LP) relaxation method
[2], [5], where the Weymouth equation is relaxed as
an SOCP inequality or a series of linear inequalities,
transforming the nonconvex OGF problem into a convex
one.

3) A3: Interior point method, which can obtain a solution
for many nonlinear programming in a given time limit.
It should be noted the initial point have direct impact
on the quality of solution.

The gas network of the Power13Gas7 system is selected as
the test system for the OGF problem. The parameters can be
found in [53]. The variables, which are related to the electricity
network and appear in the OGF problem, are parameterized
with the OPF solution in the last iteration of Algorithm 2.
In A1, two eight-segment piecewise linear approximations are
adopted to replace the nonlinear Weymouth equation [11]. To
test the performance of A3 under different choices of initial
point, A3 is performed 103 times with different initial points,
including the OGF solution offered by A2, which is identical
with the initial point of CCP. Particularly, MILPs are solved
by Gurobi 6.5 and the interior point method is from OPTI
toolbox. The solution time limit is set as 10 minutes. The
simulation results are summarized in Table IV, where F, Y
and N are short for feasible, yes and no, respectively, in the
fifth column.

TABLE IV
COMPARISON WITH THE STATE-OF-ART METHODOLOGIES FOR THE OGF

PROBLEM

Objective ($) F Time (s)
avg max min

CCP 7.605× 104 - - Y 0.68
A1 8.426× 104 - - Y 720∗

A2 7.405× 104 - - N 0.09
A3 7.824× 104 8.294× 104 7.652× 104 Y 75

The comparisons are conducted in three aspects, namely, the
OGF costs, the feasibility of the OGF solution, and the solution
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time. It should be noted that, the results of CCP, A1, and
A2 in Table IV refer to the single time performance of these
algorithms, while the results of A3 is the average performance
of 103 tests. From Table IV, though the objective value of A2
is the lowest, its OGF solution is infeasible. A1 can offer
a feasible solution, however, its computational burden is the
largest and the time runs out before an optimal solution is
obtained. Among the algorithms which can offer a feasible
OGF solution, namely, CCP, A1 and A3, CCP performs the
best in terms of both objective value and solution time. From
the simulation results, it should be noted that OGF solution
offered by CCP is always better than A3, including the best
case of A3. In this regard, the OGF solution offered by the
proposed CCP method is satisfying, which is the basis of an
“optimal” equilibrium.

D. Impacts of Compressors

If the GDN in the couple energy networks does not have
compressor stations, the models and algorithms still work after
the following modifications

1) In the PDN market clearing model, remove the active
power consumption terms of the compressor in the nodal
active power balance equation.

2) In the GDN market clearing model, remove the elec-
tricity purchase cost terms in the objective function as
well as the compressor related terms and models in the
constraints.

3) In the proposed best-response decomposition algorithm,
remove the compressor related convergence criterion.

To demonstrate the impact of compressors on the results,
numerical tests are executed on the modified Power13Gas7
system, where the compressors in the GDN have been re-
moved, and the rest is the same as the Power13Gas7 system
demonstrated in Section IV, including the daily electricity
demand profiles and price forecasts in the transmission-level
energy markets. It should be noted that the OGF problem
would be infeasible without compressors, if the daily gas
demand profiles stay the same. Therefore, the gas demands are
set as one third of the ones in [53] to recover the feasibility
of the OGF problem with no compressors equipped.

Likewise, Algorithm 1 for the OGF problem always con-
verges in 3 iterations. And Algorithm 2 locates the market
equilibrium after 3 iterations, which converges faster than the
case in Section IV.A, because the bilateral energy trading
degenerates to unilateral one, as a result, the interdependency
is weakened. Hourly LMGPs are shown in Fig. 9. From Fig.
9, it can be observed that the LMGPs remain unchanged
throughout the day, and their values are 9 $/MMBtu, which
is the lowest price of TLGM. The reason is that the GDN
operation costs only consist of the gas purchase costs from
the GTN as there is no compressors, and the pipelines are
capable to store adequate gas when the price is low. Though
the LMGPs have decreased dramatically compared with the
case in Section IV.A, the LMEP curves in this case share the
same trends as Fig.7. This is because the total capacity of
DGs in the PDN is always smaller than its hourly electricity
demand, which indicates the PDN has to buy electricity from
the PTN invariably in both cases. In the case of Section IV.A,

PTN is the marginal “generator”, as its price is the higher than
the DGs. In this case, the generation costs of DGs decrease
as the LMGPs decrease, which means the PTN is still the
marginal “generator”, resulting in the same variation trends in
the LMEP curves of the two cases.
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Fig. 9. The LMGP curves of the GDN with no compressors equipped.

E. Computational Efficiency Analysis

To demonstrate the scalability and efficiency of the proposed
methods, they are applied to a larger system, consisting
of a modified IEEE 123-bus power feeder and a modified
Belgian high-calorific 20-node gas network, which will be
referred to as the Power123Gas20 system hereinafter. The
system includes 10 gas-fired DGs, 3 compressors, 16 passive
pipelines, 85 power loads, and 9 gas loads. Please refer to
[53] for the network topology, the demand curves as well as
other system data. Algorithmic parameters in Table I are used
in this case.

The convergence performances are shown in Fig. 10. It can
be observed that both algorithms converge in 3 iterations. The
total computation time of Algorithm 1 and Algorithm 2 is 7.24
seconds, demonstrating the scalability of the proposed meth-
ods. Besides the satisfactory convergence rates of Algorithms
1-2, the high efficiency is also attributed to the computational
superiority of SOCPs, which can be readily solved even for
very large-scale instances [47].

V. CONCLUSION

The interdependencies between power systems and gas sys-
tems have been greatly enhanced in recent decades, indicating
a greater amount of bilateral energy flows as well as more
business opportunities. In this paper, a market framework
for the coupled power and gas distribution systems, both
with radial topologies, is designed, which allows the energy
markets to trade energy bilaterally with its marginal price.
Under certain assumptions and simplifications, the multi-
period alternating current OPF problem becomes tractable us-
ing convex relaxation techniques. The penalty CCP algorithm
is developed to turn the nonlinear and nonconvex multi-period
OGF problem with the line pack effect into a tractable one,
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Fig. 10. Algorithm performances in the Power123Gas20 system.

where a sequence of convex optimization problems is tackled.
SOCP based methods are used to solve the OPF problem
and the OGF problem, as well as to recover the locational
marginal energy prices. A best-response decomposition algo-
rithm is developed to identify the market equilibrium, whose
existence is analytically investigated via nodal price-demand
curves. Simulation results corroborate the effectiveness of the
proposed methods, and reveal economic benefits of the line
pack effect. Two promising aspects are selected as our future
research interests and listed as below, which could facilitate
the application of the proposed market framework.

1) More accurate and tractable gas network modelling.
Detailed compressor models would be considered. The
accuracies of the approximation techniques for the gas
flows and their dynamics need to be improved.

2) More reliable algorithm for market equilibrium identifi-
cation. Particularly, a criterion for the existence of the
market equilibrium needs to be developed.
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