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Abstract 9 

This paper extends the discontinuous element insertion program (DEIP) to insert cohesive 10 
interface elements along periodic surfaces of representative volume elements (RVE). The key 11 
enabler involves zipping the RVE mesh along its periodic surfaces, generating a topologically 12 
closed grid similar to a torus. Such models are relevant to modeling grain boundary sliding and 13 
cracking in polycrystalline materials, for which a two-dimensional example is provided with 14 
hexagonal-shaped grains.  15 
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1. Introduction 17 

Micromechanical modeling is becoming increasingly popular as a robust and computationally 18 
efficient predictive tool for the accurate modeling of nonlinear response at grain boundaries of 19 
metallic alloys. This method is also being applied to model deformation and fracture in engineered 20 
materials such as composites and metamaterials. The accurate definition of the representative 21 
volume element (RVE) and the construction of the micro scale boundary value problem are 22 
essential to determining the local behavior across the macroscale [1]. Particularly, the analysis of 23 
damage or sliding along interface within RVE having periodic boundary conditions requires the 24 
generation of periodic finite element meshes that enable discontinuities in the solution fields at the 25 
periodic surfaces to avoid inserting the boundary layer differently than the interior.  26 
The ability to model complex RVE in higher dimensions facilitates the study of several 27 
deformation modes, such as uniaxial, plane strain, shear deformation, and even arbitrary principal 28 
stress states [2]. The modeling of interfacial phenomena under these conditions is typically 29 
accomplished using interface elements, such as cohesive zone (CZ) models [3, 4]. Unfortunately, 30 
mesh generators have only been able to insert interface elements into the RVE mesh within the 31 
interior but excluding the treatment of grain boundaries along the RVE periodic surfaces because 32 
the treatment of nodal constraints for the periodic conditions at the surfaces in 2 and 3 dimensions  33 
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may be non-trivial. Thus, we describe the extension of the zero-thickness interface element 37 
insertion algorithm [5, 6] for producing the FE meshes required for modeling interface damage [7, 38 
8] to include cohesive element (termed herein as “couplers”) insertion at the boundary surfaces to 39 
allow for periodic boundary modeling of complex 2D and 3D RVE problems. A 2-dimensional 40 
example of RVE grain boundary sliding and opening in a polycrystalline periodic structure 41 
demonstrates the algorithm’s capabilities. 42 

2. Truly Periodic Boundary Model  43 

Many existing works [1, 3, 4] represent the RVE using a block or cuboid domain since this shape 44 
is simple to create, the periodic conditions along the planar cube faces are easy to describe, and 45 
the multipoint constraints are easy to generate. However, the truly periodic model is the direct 46 
instantiation of the microstructure without artificial planar cuts, and then arbitrary macroscale 47 
loading conditions can be imposed. For interfacial sliding and cracking in a block domain, couplers 48 
are inserted only along the interior grain boundaries because of the artificial cuts. On the other 49 
hand, the couplers are inserted along all grain boundaries for the truly periodic model to allow for 50 
sliding and opening at the periodic interfaces. In the block RVE model, the artificial cuts could 51 
cause artificial stress concentrations, and the interior grain boundaries terminating on the RVE 52 
surface are restricted against sliding outward. Therefore, a more sophisticated coupler insertion 53 
algorithm is required. 54 

3. Coupler Insertion Algorithm 55 

The algorithm described herein performs topologically based coupler insertion into conforming 56 
FE meshes to generate suitable meshes for periodic boundary analysis. The required input data are 57 
the spatial nodal coordinates, the element connectivity array, the elements contained in each region, 58 
the list of the nodal multipoint constraints for periodicity, and a flag to insert couplers in regions 59 
and/or region boundaries. The algorithm then inserts the couplers at the element boundaries 60 
belonging to the sets along interior interfaces and periodic surfaces of the interface and periodic 61 
boundary. Note that these periodic conditions are expressed through nodal constraints of the form: 62 

      u u ε x x  (1)

where x  is the spatial coordinate, u  is the displacement, ε  is the macroscopic strain, and       63 
and   refer to the opposite sides of paired surfaces on the RVE boundary. 64 
The key idea for coupler insertion at the periodic surfaces is the creation of a topologically-closed 65 
mesh analogous to a torus by forcing shared facets between pairs of opposing opposite boundaries. 66 
The key new steps are the zipping of the mesh and the renumbering of the nodes followed by 67 
element connectivity update of the mesh. This process is automated using the multipoint constraint 68 
list, collapsing linked nodes into a single instance, creating a mesh with only element interfaces 69 
and no boundary surfaces. Then the existing algorithm from [5, 6] is executed with minimal 70 
modifications to produce the new nodes, couplers and periodicity links. 71 
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These additional steps are outlined for an example 2D mesh of 16 elements, 25 nodes and 4 regions 72 
denoted by different colors in Figure 1 (a). The automated process for determining which sets of 73 
couplers to insert and nodes to duplicate for periodic finite element domains consists of seven 74 
phases. In the first phase, the periodic boundary condition node links are employed to renumber 75 
connected nodes with a single identifier. For example, the four boundary nodes 1, 5, 21, and 25 76 
are linked and all set to 1. The connectivity array of nodes attached to elements is then updated 77 
with this renumbering as shown in Figure 1 (b). Essentially, this zips the mesh together, so that the 78 
upper right yellow element is adjacent to the upper left green element, and so forth. The next five 79 
phases proceed on this modified connectivity and are identical to the original algorithm described 80 
in [5] and the associated user manual. These phases identify all the element interface facets of the 81 
mesh and duplicate the nodes along the region boundaries designated for coupler, by the user. The 82 
final phase extends the sixth phase of [5] to generate the coupler connectivity as well as the new 83 
set of periodic boundary condition node links.   84 

  
a) b) c)  

Figure 1. Square finite element mesh containing 4 regions: (a) initial mesh; (b) node numbering 85 
for zipped mesh; (c) mesh after coupler insertion along interfaces and periodic surfaces. 86 

The unzipped finite element mesh produced after coupler insertion is shown in Figure 1 (c) with 87 
the interfaces and couplers expanded for clarity. When a coupler is inserted along the RVE surface 88 
(which is known from phase 1 and 3), extra copies of the attached nodes are generated. For 89 
example, the coupler on the right of the domain is connected to nodes 5, 10, 37, and 38; node links 90 
then attach node 38 to node 1 and node 37 to node 6 on the left boundary of the domain. Thus 91 
nodes 1 and 6 are the   side and nodes 37 and 38 become the   side in constraint (1) . Caution 92 
is exercised by using the region number to ensure that all couplers are inserted along the same side 93 
of the shared interface. Also, linearly dependent periodicity constants are removed by converting 94 
the link equations to row-echelon form. 95 
Thus the enhancements of the original DEIP program presented in [5, 6] is the creation of FE 96 
meshes required for solving periodic boundary conditions and insertion of cohesive couplers at the 97 
periodic boundary to allow for interface sliding and cracking in truly periodic models. 98 
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4. Two Dimensional Example 99 

As a verification example of the node duplication algorithm, a patch test was performed on a 100 
periodic polycrystalline domain containing hexagonal grains. Due to the repeating geometrical 101 
structures, several different “windows” can be chosen to form an RVE, and in fact each should 102 
produce identical bulk response if each grain has identical properties. Hence, we select RVE1 as a 103 
truly periodic model with grain boundaries (and couplers) on the periodic surfaces, while RVE2 is 104 
a block model chosen such that no grain boundaries lie on the block surface. The solid meshes 105 
contain 288 constant strain triangular (T3) elements in the coarsest possible uniform arrangement 106 
for a total of 167 nodes in RVE1 and 169 nodes in RVE2 as shown in Figure 2 (b) and (c). A 107 

macroscopic shear strain 0.02xy   was applied to both RVEs, and the solid elements employ 108 

linear elasticity with  = 100 MPaE  and 0.25  . The interfaces were modeled as linear elastic 109 

cohesive elements, and the periodic boundary conditions were enforced as node pairs constrained 110 
together with two “master nodes” via Lagrange multiplier, similar to [2] . For a very high cohesive 111 

stiffness of 10 3500 10 N mm  , a constant shear stress of 0.8 MPa throughout the grains was 112 

computed by the model, thereby satisfying the patch test. 113 

   

 

a) b) c)  

Figure 2. Periodic polycrystalline domain: (a) overall microstructure; (b) truly periodic RVE1; 114 
(c) block RVE2 115 

The solution on a very fine mesh for a lower cohesive stiffness of 3500 N mm  is shown in Figure 116 

3 (a). The stress is slightly greater along horizontal interfaces than on inclined interfaces of the 117 
grains by examining Figure 3 (a) – (c). The computed elemental stresses for RVE1 and RVE2 are 118 
in perfect agreement spatially and also share features with the refined model. We also observe 119 
relative horizontal sliding of the grains and separation along the diagonal interfaces. Next, the 120 

displacement xu  contour plots in Figure 4 (b) and (c) correspond with the location of the RVEs 121 

within the larger instantiation of the polycrystalline microstructure in Figure 4 (a). Thus, these 122 
results confirm that the choice of the RVE windows does not change the effective microscale 123 
response so long as the cohesive interfaces are properly accounted for. These examples in Sections 124 
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3 and 4 as well as others in three dimensions are provided within an open-source MATLAB© 125 
version of the code at https://bitbucket.org/trusterresearchgroup/deiprogram. 126 
 127 

   
 

a) b) c)  

Figure 3. Stress xy  contour: (a) refined mesh of overall microstructure; (b) RVE1; (c) RVE2 128 

   
 

a) b) c)  

Figure 4. Displacement xu  contour: (a) coarse overall mesh; (b) RVE1; (c) RVE2 129 

5. Conclusion 130 

The proposed topologically-based algorithm enables cohesive interface element insertion along 131 
periodic boundary surfaces in two and three dimensions. It builds seamlessly onto an existing 132 
method by introducing the automatic generation of a topologically-closed mesh analogous to a 133 
torus. Results from a periodic polycrystalline domain with hexagonal grains and interfaces 134 
allowing sliding and opening verify that the insertion algorithm generates the proper node 135 
duplication and interface elements on different yet mechanically equivalent RVEs. 136 
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