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Abstract

A large number of objectives have been proposed

to train latent variable generative models. We

show that many of them are Lagrangian dual

functions of the same primal optimization prob-

lem. The primal problem optimizes the mutual

information between latent and visible variables,

subject to the constraints of accurately model-

ing the data distribution and performing correct

amortized inference. By choosing to maximize

or minimize mutual information, and choosing

different Lagrange multipliers, we obtain differ-

ent objectives including InfoGAN, ALI/BiGAN,

ALICE, CycleGAN, beta-VAE, adversarial au-

toencoders, AVB, AS-VAE and InfoVAE. Based

on this observation, we provide an exhaustive

characterization of the statistical and computa-

tional trade-offs made by all the training objec-

tives in this class of Lagrangian duals. Next,

we propose a dual optimization method where

we optimize model parameters as well as the La-

grange multipliers. This method achieves Pareto

optimal solutions in terms of optimizing informa-

tion and satisfying the constraints.

1 INTRODUCTION

Latent variable generative models are designed to accom-

plish a wide variety of tasks in computer vision (Rad-

ford et al., 2015; Kuleshov & Ermon, 2017), natural lan-

guage processing (Yang et al., 2017), reinforcement learn-

ing (Li et al., 2017b), compressed sensing Dhar et al.

(2018),etc. Prominent examples include Variational Au-

toencoders (VAE, Kingma & Welling (2013); Rezende

et al. (2014)), with extensions such as β-VAE (Higgins

et al., 2016), Adversarial Autoencoders (Makhzani et al.,

2015), and InfoVAE (Zhao et al., 2017); Generative Ad-

versarial Networks (Goodfellow et al., 2014), with exten-

sions such as ALI/BiGAN (Dumoulin et al., 2016a; Don-

ahue et al., 2016), InfoGAN (Chen et al., 2016a) and AL-

ICE (Li et al., 2017a); hybrid objectives such as CycleGAN

(Zhu et al., 2017), DiscoGAN (Kim et al., 2017), AVB

(Mescheder et al., 2017) and AS-VAE (Pu et al., 2017).

All these models attempt to fit an empirical data distribu-

tion, but differ in multiple ways: how they measure the

similarity between distributions; whether or not they allow

for efficient (amortized) inference; whether the latent vari-

ables should retain or discard information about the data;

and how the model is optimized, which can be likelihood-

based or likelihood-free (Mohamed & Lakshminarayanan,

2016; Grover et al., 2018).

In this paper, we generalize existing training objectives

for latent variable generative models. We show that all

the above training objectives can be viewed as Lagrangian

dual functions of a constrained optimization problem (pri-

mal problem). The primal problem optimizes over the pa-

rameters of a generative model and an (amortized) infer-

ence distribution. The optimization objective is to max-

imize or minimize mutual information between latent and

observed variables; the constraints (which we term “consis-

tency constraints”) are to accurately model the data distri-

bution and to perform correct amortized inference. By con-

sidering the Lagrangian dual function and different settings

of the Lagrange multipliers, we can obtain all the afore-

mentioned generative modeling training objectives. Sur-

prisingly, under mild assumptions, the aforementioned ob-

jectives can be linearly combined to produce every possible

primal objective/multipliers in this model family.

In Lagrangian dual optimization, the dual function is max-

imized with respect to the Lagrange multipliers, and mini-

mized with respect to the primal parameters. Under strong

duality, the optimal parameters found by this procedure

also solve the original primal problem. However, the afore-

mentioned objectives use fixed (rather than maximized)

multipliers. As a consequence, strong duality does not gen-

erally hold.

To overcome this problem, we propose a new learning ap-

proach where the Lagrange multipliers are also optimized.

We show that strong duality holds in distribution space,



so this optimization procedure is guaranteed to optimize

the primal objective while satisfying the consistency con-

straints. As an application of this approach, we propose

Lagrangian VAE, a Lagrangian optimization algorithm for

the InfoVAE (Zhao et al., 2017) objective. Lagrangian VAE

can explicitly trade-off optimization of the primal objective

and consistency constraint satisfaction. In addition, both

theoretical properties (of Lagrangian optimization) and em-

pirical experiments show that solutions obtained by La-

grangian VAE Pareto dominate solutions obtained with In-

foVAE: Lagrangian VAE either obtains better mutual in-

formation or better constraint satisfaction, regardless of the

hyper-parameters used by either method.

2 BACKGROUND

We consider two groups of variables: observed variables

x ∈ X and latent variables z ∈ Z . Our algorithm receives

input distributions q(x), p(z) over x and z respectively.

Each distribution is either specified explicitly through a

tractable analytical expression such as N (0, I), or implic-

itly through a set of samples. For example, in latent variable

generative modeling of images (Kingma & Welling, 2013;

Goodfellow et al., 2014), X is the space of images, and Z
is the space of latent features. q(x) is a dataset of sam-

ple images, and p(z) is a simple “prior” distribution, e.g.,

a Gaussian; in unsupervised image translation (Zhu et al.,

2017), X and Z are both image spaces and q(x), p(z) are

sample images from two different domains (e.g., pictures

of horses and zebras).

The underlying joint distribution on (x, z) is not known,

and we are not given any sample from it. Our goal is

to nonetheless learn some model of the joint distribution

rmodel(x, z) with the following desiderata:

Desideratum 1. Matching Marginal The marginals of

rmodel(x, z) over x, z respectively match the provided dis-

tributions q(x), p(z).

Desideratum 2. Meaningful Relationship rmodel(x, z)
captures a meaningful relationship between x and z. For

example, in latent variable modeling of images, the latent

variables z should correspond to semantically meaningful

features describing the image x. In unsupervised image

translation, rmodel(x, z) should capture the “correct” pair-

ing between x and z.

We address desideratum 1 in this section, and desideratum

2 in section 3. The joint distribution rmodel(x, z) can be

represented in factorized form by chain rule. To do so,

we define conditional distribution families {pθp(x|z), θp ∈
Θp} and {qθq (z|x), θq ∈ Θq}. We require that for any z

we can both efficiently sample from pθp(x|z) and com-

pute log pθp(x|z), and similarly for qθq (z|x). For com-

pactness we use θ = (θp, θq) to denote the parameters of

both distributions pθ and qθ. We define the joint distribu-

tion rmodel(x, z) in two ways:

rmodel(x, z)
def
= pθ(x, z)

def
= p(z)pθ(x|z) (1)

and symmetrically

rmodel(x, z)
def
= qθ(x, z)

def
= q(x)qθ(z|x) (2)

Defining the model in two (redundant) ways seem unusual

but has significant computational advantages: given x we

can tractably sample z, and vice versa. For example, in la-

tent variable models, given observed data x we can sample

latent features from z ∼ qθ(z|x) (amortized inference),

and given latent feature z we can generate novel samples

from x ∼ pθ(x|z) (ancestral sampling).

If the two definitions (1), (2) are consistent, which we

define as pθ(x, z) = qθ(x, z), we automatically satisfy

desideratum 1:

rmodel(x) =

∫

z

rmodel(x, z)dz =

∫

z

qθ(x, z)dz = q(x)

rmodel(z) =

∫

x

rmodel(x, z)dx =

∫

x

pθ(x, z)dx = p(z)

Based on this observation, we can design objectives that en-

courage consistency. Many latent variable generative mod-

els fit into this framework. For example, variational au-

toencoders (VAE, Kingma & Welling (2013)) enforce con-

sistency by minimizing the KL divergence:

min
θ

DKL(qθ(x, z)‖pθ(x, z))

This minimization is equivalent to maximizing the evi-

dence lower bound (LELBO) (Kingma & Welling, 2013):

max
θ
−DKL(qθ(x, z)‖pθ(x, z)) (3)

= −Eqθ(x,z) [log(qθ(z|x)q(x))− log(pθ(x|z)p(z))]

= Eqθ(x,z)[log pθ(x|z)] +Hq(x)
−Eq(x) [DKL(qθ(z|x)‖p(z))]

≡ Eqθ(x,z)[log pθ(x|z)]
−Eq(x) [DKL(qθ(z|x)‖p(z))]

}

LELBO (4)

where Hq(x) is the entropy of q(x) and is a constant that

can be ignored for the purposes of optimization over model

parameters θ (denoted ≡).

As another example, BiGAN/ALI (Donahue et al., 2016;

Dumoulin et al., 2016b) use an adversarial discriminator to

approximately minimize the Jensen-Shannon divergence

min
θ

DJS(qθ(x, z)‖pθ(x, z))

Many other ways of enforcing consistency are possible.

Most generally, we can enforce consistency with a vector of

divergences D = [D1, . . . , Dm], where each Di takes two



probability measures as input, and outputs a non-negative

value which is zero if and only if the two input measures are

the same. Examples of possible divergences include Maxi-

mum Mean Discrepancy (MMD, Gretton et al. (2007)), de-

noted DMMD; Wasserstein distance (Arjovsky et al., 2017),

denoted DW; f -divergences (Nowozin et al., 2016), de-

noted Df ; and Jensen-Shannon divergence (Goodfellow

et al., 2014), denoted DJS.

Each Di can be any divergence applied to a pair of prob-

ability measures. The pair of probability measures can be

defined over either both variables (x, z), a single variable

x, z, or conditional x|z, z|x. If the probability measure is

defined over a conditional x|z, z|x, we also take expecta-

tion over the conditioning variable with respect to pθ or qθ.

Some examples of Di are:

Eqθ(z)[DKL(qθ(x|z)‖pθ(x|z))]

DMMD(qθ(z)‖p(z))

DW(pθ(x, z)‖qθ(x, z))

Eq(x)[Df (qθ(z|x)‖pθ(z|x))]

DJS(q(x)‖pθ(x))

We only require that

Di = 0, ∀i ∈ {1, . . . ,m} ⇐⇒ pθ(x, z) = qθ(x, z)

so D = 0 implies consistency. Note that each Di implic-

itly depends on the parameters θ through pθ and qθ, but

notationally we neglect this for simplicity.

Enforcing consistency pθ(x, z) = qθ(x, z) by D = 0

satisfies desideratum 1 (matching marginal), but does not

directly address desideratum 2 (meaningful relationship).

A large number of joint distributions can have the same

marginal distributions p(z) and q(x) (including ones where

z and x are independent), and only a small fraction of them

encode meaningful models.

3 GENERATIVE MODELING AS

CONSTRAINT OPTIMIZATION

To address desideratum 2, we modify the training objec-

tive and specify additional preferences among consistent

pθ(x, z) and qθ(x, z). Formally we solve the following

primal optimization problem

min
θ

f(θ) subject to D = 0 (5)

where f(θ) encodes our preferences over consistent distri-

butions, and depends on θ through pθ(x|z) and qθ(x|z).

An important preference is the mutual information between

x and z. Depending on the downstream application, we

may maximize mutual information (Chen et al., 2016b;

Zhao et al., 2017; Li et al., 2017a; Chen et al., 2016a) so

that the features (latent variables) z can capture as much

information as possible about x, or minimize mutual in-

formation (Zhao et al., 2017; Higgins et al., 2016; Tishby

& Zaslavsky, 2015; Shamir et al., 2010) to achieve com-

pression. To implement mutual information preference we

consider the following objective

fI(θ;α1, α2) = α1Iqθ (x; z) + α2Ipθ
(x; z) (6)

where Ipθ
(x; z) = Epθ(x,z)[log pθ(x, z)− log pθ(x)p(z)]

is the mutual information under pθ(x, z), and Iqθ (x; z) is

their mutual information under qθ(x, z).

The optimization problem in Eq.(5) with mutual informa-

tion f(θ) in Eq.(6) has the following Lagrangian dual func-

tion:

α1Iqθ (x; z) + α2Ipθ
(x; z) + λ>D (7)

where λ = [λ1, . . . , λm] is a vector of Lagrange multi-

pliers, one for each of the m consistency constraints in

D = [D1, . . . , Dm].

In the next section, we will show that many existing train-

ing objectives for generative models minimize the La-

grangian dual in Equation 7 for some fixed α1, α2, D and

λ. However, dual optimization requires maximization over

the dual parameters λ, which should not be kept fixed. We

discuss dual optimization in Section 5.

4 GENERALIZING OBJECTIVES WITH

FIXED MULTIPLIERS

Several existing objectives for latent variable generative

models can be rewritten in the dual form of Equation 7 with

fixed Lagrange multipliers. We provide several examples

here and provide more in Appendix A.

VAE (Kingma & Welling, 2013) Per our discussion in

Section 2, the VAE training objective commonly written

as ELBO maximization in Eq.(4) is actually equivalent

to Equation 3. This is a dual form where we set D =
[DKL(qθ(x, z)‖pθ(x, z)], α1 = α2 = 0 and λ = 1. Be-

cause α1 = α2 = 0, this objective has no information pref-

erence, confirming previous observations that the learned

distribution can have high, low or zero mutual information

between x and z. Chen et al. (2016b); Zhao et al. (2017).

β-VAE (Higgins et al., 2016) The following objective

Lβ−VAE is proposed to learn disentangled features z:

−Eqθ(x,z)[log pθ(x|z)] + βEq(x) [DKL(qθ(z|x)‖p(z))]

This is equivalent to the following dual form:

Lβ−VAE

≡ Eqθ(x,z)

[

log
qθ(x|z)q(x)

pθ(x|z)qθ(x|z)
+ β log

qθ(z|x)qθ(z)

qθ(z)p(z)

]

≡ (β − 1)Iqθ (x; z) (primal)
+βDKL(qθ(z)‖p(z))) (consistency)
+Eqθ(z)[DKL(qθ(x|z)‖pθ(x|z))]



f(p, q) Likelihood Based Unary Likelihood Free Binary Likelihood Free

0 VAE (Kingma & Welling, 2013) VAE-GAN (Makhzani et al., 2015) ALI (Dumoulin et al., 2016b)

α1Iq β-VAE (Higgins et al., 2016) InfoVAE (Zhao et al., 2017) ALICE (Li et al., 2017a)

α2Ip VMI (Barber & Agakov, 2003) InfoGAN (Chen et al., 2016a) -

α1Iq + α2Ip - CycleGAN (Zhu et al., 2017) AS-VAE (Pu et al., 2017)

Table 1: For each choice of α and computability class (Definition 2) we list the corresponding existing model. Several

other objectives are also Lagrangian duals, but they are not listed because they are similar to models in the table. These

objectives include DiscoGAN (Kim et al., 2017), BiGAN (Donahue et al., 2016), AAE (Makhzani et al., 2015), WAE

(Tolstikhin et al., 2017).

where we use ≡ to denote “equal up to a value that does

not depend on θ”. In this case,

α1 = β − 1, α2 = 0

λ = [β, 1]

D = [KL(qθ(z)‖p(z))),Eqθ(z)[DKL(qθ(x|z)‖pθ(x|z))]

When α1 > 0 or equivalently β > 1, there is an incentive

to minimize mutual information between x and z.

InfoGAN (Chen et al., 2016a) As another example, the

InfoGAN objective 1 :

LInfoGAN = DJS(q(x)‖pθ(x))− Epθ(x,z)[log qθ(z|x)]

is equivalent to the following dual form:

LInfoGAN ≡ Epθ(x,z)[− log pθ(z|x) + log p(z)

+ log pθ(z|x)− log qθ(z|x)] +DJS(q(x)‖pθ(x))

≡ −Ipθ
(x; z) (primal)

+Epθ(x)[DKL(pθ(z|x)‖qθ(z|x))] (consistency)
+DJS(q(x)‖pθ(x))

In this case α1 = 0, and α2 = −1 < 0, the model maxi-

mizes mutual information between x and z.

In fact, all objectives in Table 1 belong to this class2.

Derivations for additional models can be found in Ap-

pendix A.

4.1 ENUMERATION OF ALL OBJECTIVES

The Lagrangian dual form of an objective reveals its mu-

tual information preference (α1, α2), type of consistency

constraints (D), and weighting of the constraints (λ). This

suggests that the Lagrangian dual perspective may unify

many existing training objectives. We wish to identify and

categorize all objectives that have Lagrangian dual form as

in Eq.7). However, this has two technical difficulties that

we proceed to resolve.

1For conciseness we use z to denote structured latent vari-
ables, which is represented as c in (Chen et al., 2016a).

2Variational Mutual Information Maximization (VMI) is not
truly a Lagrangian dual because it does not enforce consistency
constraints (λ = 0).

1. Equivalence: Many objectives appear different, but

are actually identical for the purposes of optimization (as

we have shown). To handle this we characterize “equiva-

lent objectives” with a set of pre-specified transformations.

Definition 1. Equivalence (Informal): An objective L is

equivalent to L′ when there exists a constant C, so that for

all parameters θ, L(θ) = L′(θ) + C. We denote this as

L ≡ L′.

L and L′ are elementary equivalent if L′ can be obtained

fromL by applying chain rule or Bayes rule to probabilities

in L, and addition/subtraction of constants Eq(x)[log q(x)]
and Ep(z)[log p(z)].

A more formal but verbose definition is in Appendix B,

Definition 1.

Elementary equivalences define simple yet flexible trans-

formations for deriving equivalent objectives. For exam-

ple, all the transformations in Section 4 (VAE, β-VAE and

InfoGAN) and Appendix A are elementary. This implies

that all objectives in Table 1 are elementary equivalent to a

Lagrangian dual function in Eq.(7) . However, these trans-

formations are not exhaustive. For example, tranforming

Epθ
[g(x)] into Eqθ [g(x)pθ(x)/qθ(x)] via importance sam-

pling is not accounted for, hence the two objectives are not

considered to be elementary equivalent.

2. Optimization Difficulty: Some objectives are easier to

evaluate/optimize than others. For example, variational au-

toencoder training is robust and stable, adversarial training

is less stable and requires careful hyper-parameter selec-

tion (Kodali et al., 2018), and direct optimization of the

log-likelihood log pθ(x) is very difficult for latent variable

models and almost never used Grover et al. (2018).

To assign a “hardness score” to each objective, we first

group the “terms” (an objective is a sum of terms) from

easy to hard to optimize. An objective belongs to a “hard-

ness class” if it cannot be transformed into an objective

with easier terms. This is formalized below:

Definition 2. Effective Optimization: We define



1. Likelihood-based terms as the following set

T1 = {Epθ(x,z)[log pθ(x|z)],Epθ(x,z)[log pθ(x, z)],

Epθ(z)[log p(z)],Epθ(x,z)[log qθ(z|x)]

Eqθ(x,z)[log pθ(x|z)],Eqθ(x,z)[log pθ(x, z)],

Eqθ(z)[log p(z)],Eqθ(x,z)[log qθ(z|x)]}

2. Unary likelihood-free terms as the following set

T2 = {D(q(x)‖pθ(x)), D(qθ(z)‖p(z))}

3. Binary likelihood-free terms as the following set

T3 = {D(qθ(x, z)‖pθ(x, z))}

where each D can be f -divergence, Jensen Shannon diver-

gence, Wasserstein distance, or Maximum Mean Discrep-

ancy. An objective L is likelihood-based computable if L is

elementary equivalent to some L′ that is a linear combina-

tion of elements in T1; unary likelihood-free computable if

L′ is a linear combination of elements in T1 ∪ T2; binary

likelihood-free computable if L′ is a linear combination of

elements in T1 ∪ T2 ∪ T3.

The rationale of this categorization is that elements in

T1 can be estimated by Monte-Carlo estimators and opti-

mized by stochastic gradient descent effectively in practice

(with low bias and variance) (Kingma & Welling, 2013;

Rezende et al., 2014). In contrast, elements in T2 are op-

timized by likelihood-free approaches such as adversarial

training (Goodfellow et al., 2014) or kernelized methods

such as MMD (Gretton et al., 2007) or Stein variational

gradient (Liu & Wang, 2016). These optimization pro-

cedures are known to suffer from stability problems (Ar-

jovsky et al., 2017) or cannot handle complex distributions

in high dimensions (Ramdas et al., 2015). Finally, elements

in T3 are over both x and z, and they are empirically shown

to be even more difficult to optimize (Li et al., 2017a). We

do not include terms such as Eq(x)[log pθ(x)] because they

are seldom feasible to compute or optimize for latent vari-

able generative models.

Now we are able to fully characterize all Lagrangian dual

objectives in Eq.( 7) that are likelihood-based / unary like-

lihood free / binary likelihood free computable in Table 1.

In addition, Table 1 contains essentially all possible models

for each optimization difficulty class in Definition 2. This is

shown in the following theorem (informal, formal version

and proof in Appendix B, Theorem 3,4,5)

Theorem 1. Closure theorem (Informal): Denote a La-

grangian objectives in the form of Equation 7 where all

divergences are DKL a KL Lagrangian objective. Under

elementary equivalence defined in Definition 1,

1) Any KL Lagrangian objective that is elementary equiv-

alent to a likelihood based computable objective is equiva-

lent to a linear combination of VMI and β-VAE.

2) Any KL Lagrangian objective that is elementary equiv-

alent to a unary likelihood computable objective is equiva-

lent to a linear combination of InfoVAE and InfoGAN.

3) Any KL Lagrangian objective that is elementary equiva-

lent to a binary likelihood computable objective is equiva-

lent to a linear combination of ALICE, InfoVAE and Info-

GAN.

We also argue in the Appendix (without formal proof) that

this theorem holds for other divergences including DMMD,

DW, Df or DJS.

Intuitively, this suggests a rather negative result: if a new

latent variable model training objective contains mutual in-

formation preference and consistency constraints (defined

through DKL, DMMD, DW, Df or DJS), and this objec-

tive can be effectively optimized as in Definition 1 and

Definition 2, then this objective is a linear combination

of existing objectives. Our limitation is that we are re-

stricted to elementary transformations and the set of terms

defined in Definition 2. To derive new training objectives,

we should consider new transformations, non-linear com-

binations and/or new terms.

5 DUAL OPTIMIZATION FOR LATENT

VARIABLE GENRATIVE MODELS

While existing objectives for latent variable generative

models have dual form in Equation 7, they are not solving

the dual problem exactly because the Lagrange multipliers

λ are predetermined instead of optimized. In particular,

if we can show strong duality, the optimal solution to the

dual is also an optimal solution to the primal (Boyd & Van-

denberghe, 2004). However if the Lagrange multipliers are

fixed, this property is lost, and the parameters θ obtained

via dual optimization may be suboptimal for minθ f(θ), or

violate the consistency conditions D = 0.

5.1 RELAXATION OF CONSISTENCY

CONSTRAINTS

This observation motivates us to directly solve the dual op-

timization problem where we also optimize the Lagrange

multipliers.

max
λ≥0

min
θ

f(θ) + λTD

Unfortunately, this is usually impractical because the con-

sistency constrains are difficult to satisfy when the model

has finite capacity, so in practice the primal optimization

problem is actually infeasible and λ will be optimized to

+∞.

One approach to this problem is to use relaxed consistency

constraints, where compared to Eq.(5) we require consis-



tency up to some error ε > 0:

min
θ

f(θ) subject to D ≤ ε (8)

For a sufficiently large ε, the problem is feasible. This has

the corresponding dual problem:

max
λ≥0

min
θ

f(θ) + λ>(D − ε) (9)

When λ is constant (instead of maximized), Equation 9 still

reduces to existing latent variable generative modeling ob-

jectives since λ>ε is a constant, so the objective simply

becomes

min
θ

f(θ) + λTD + constant

In contrast, we propose to find λ∗, θ∗ that optimize the La-

grangian dual in Eq.(9). If we additionally have strong du-

ality, θ∗ is also the optimal solution to the primal problem

in Eq.(8).

5.2 STRONG DUALITY WITH MUTUAL

INFORMATION OBJECTIVES

This section aims to show that strong duality for Eq.(8)

holds in distribution space if we replace mutual informa-

tions in f with upper and lower bounds. We prove this via

Slater’s condition (Boyd & Vandenberghe, 2004), which

has three requirements: 1. ∀D ∈ D, D is convex in θ;

2. f(θ) is convex for θ ∈ Θ; 3. the problem is strictly

feasible: ∃θ s.t. D < ε. We propose weak conditions to

satisfy all three in distribution space, so strong duality is

guaranteed.

For simplicity we focus on discrete X and Z . We param-

eterize qθ(z|x) with a parameter matrix θq ∈ R
|X ||Z| (we

add the superscript q to distinguish parameters of qθ from

that of pθ) where

qθ(z = j|x = i) = θqij , ∀i ∈ X , j ∈ Z (10)

The only restriction is that θq must correspond to valid

conditional distributions. More formally, we require that

θq ∈ Θq , where

Θq =







θq ∈ R
|X ||Z| s.t. 0 ≤ θqij ≤ 1,

∑

j

θqij = 1







(11)

Similarly we can define θp ∈ Θp for pθ. We still use

θ = [θq, θp], Θ = Θq ×Θp (12)

to denote both sets of parameters.

1) Constraints D ∈ D are convex: We show that some

divergences used in existing models are convex in distribu-

tion space.

Lemma 1 (Convex Constraints (Informal)). DKL, DMMD,

or Df over any marginal distributions on x or z or joint

distributions on (x, z) are convex with respect to θ ∈ Θ as

defined in Eq.(12).

Therefore if one only uses these convex divergences, the

first requirement for Slater’s condition is satisfied.

2) Convex Bounds for f(θ): f(θ) = α1Iqθ (x; z) +
α2Ipθ

(x; z) is not itself guaranteed to be convex in general.

However we observe that mutual information has a convex

upper bound, and a concave lower bound, which we denote

as Iqθ and Iqθ respectively:

Iqθ (x; z) (13)

= Eq(x)[DKL(qθ(z|x)‖p(z))] convex upper bound Iqθ
−DKL(qθ(z)‖p(z)) bound gap Iqθ − Iqθ

= Eqθ(x,z)[log pθ(x|z)] +Hq(x) concave lower bound Iqθ
+Ep(z)DKL(q(x|z)‖pθ(x|z)) bound gap Iqθ − Iqθ

The convexity/concavity of these bounds is shown by the

following lemma, which we prove in the appendix

Lemma 2 (Convex/Concave Bounds). Iqθ is convex with

respect to θ ∈ Θ as defined in Eq.(12), and Iqθ is concave

with respect to θ ∈ Θ.

A desirable property of these bounds is that if we look at

the bound gaps (difference between bound and true value)

in Eq.(13), they are 0 if the consistency constraint is satis-

fied (i.e., pθ(x, z) = qθ(x, z)). They will be tight (bound

gaps are small) when consistency constraints are approx-

imately satisfied (i.e., pθ(x, z) ≈ qθ(x, z)). In addition

we also denote identical bounds for Ipθ
as Ipθ

and Ipθ

Similar bounds for mutual information have been discussed

in (Alemi et al., 2017).

3) Strict Feasibility: the optimization problem has non

empty feasible set, which we show in the following lemma:

Lemma 3 (Strict Feasibility). For discrete X and Z , and

ε > 0, ∃θ ∈ Θ such that D < ε.

Therefore we have shown that for convex/concave upper

and lower bounds on f , all three of Slater’s conditions are

satisfied, so strong duality holds. We summarize this in the

following theorem.

Theorem 2 (Strong Duality). If D contains only diver-

gences in Lemma 1, then for all ε > 0:

If α1, α2 ≥ 0 strong duality holds for the following prob-

lems:

min
θ∈Θ

α1Iqθ + α2Ipθ
subject to D ≤ ε (14)

If α1, α2 ≤ 0, strong duality holds for the following prob-

lem

min
θ∈Θ

α1Iqθ + α2Ipθ
subject to D ≤ ε (15)



Algorithm 1 Dual Optimization for Latent Variable Gen-

erative Models

Input: Analytical form for p(z) and samples from q(x);
constraints D; α1, α2 that specify maximization / mini-

mization of mutual information; ε > 0 which specifies

the strength of constraints; step size ρθ, ρλ for θ and λ.

Output: θ (parameters for pθ(x|z) and qθ(z|x)).

Initialize θ randomly

Initialize the Lagrange multipliers λ := 1
if α1, α2 > 0 then

f(θ)← α1Iqθ + α2Ipθ

else

f(θ)← α1Iqθ + α2Ipθ

end if

for t = 0, 1, 2, . . . do

θ ← θ − ρθ(∇θf(θ) + λ>∇θD)
λ← λ+ ρλ(D − ε)

end for

5.3 DUAL OPTIMIZATION

Because the problem is convex in distribution space and

satisfies Slater’s condition, the θ∗ that achieves the saddle

point

λ?, θ? = argmaxλ≥0argminθf(θ) + λT (D − ε) (16)

is also a solution to the original optimization problem

Eq.(8) (Boyd & Vandenberghe, 2004)(Chapter 5.4). In ad-

dition the max-min problem Eq.(16) is convex with respect

to θ and concave (linear) with respect to λ, so one can

apply iterative gradient descent/ascent over θ (minimize)

and λ (maximize) and achieve stable convergence to saddle

point (Holding & Lestas, 2014). We describe the iterative

algorithm in Algorithm 1.

In practice, we do not optimize over distribution space and

{pθ(x|z)}, {qθ(z|x)} are some highly complex and non-

convex families of functions. We show in the experimental

section that this scheme is stable and effective despite non-

convexity.

6 LAGRANGIAN VAE

In this section we consider a particular instantiation of

the general dual problem proposed in the previous section.

Consider the following primal problem, with α1 ∈ R:

min
θ

α1Iqθ (x; z) (17)

subject to DKL(qθ(x, z)‖pθ(x, z))) ≤ ε1

DMMD(qθ(z)‖p(z)) ≤ ε2

For mutual information minimization / maximization, we

respectively replace the (possibly non-convex) mutual in-

formation by upper bound Iqθ if α1 ≥ 0 and lower bound

Iqθ if α1 < 0. The corresponding dual optimization prob-

lem can be written as:

max
λ≥0

min
θ

{

α1Iqθ + λ>(DInfoVAE − ε), α1 ≥ 0
α1Iqθ + λ>(DInfoVAE − ε), α1 < 0

(18)

where ε = [ε1, ε2], λ = [λ1, λ2] and

DInfoVAE = [DKL(qθ(x, z)‖pθ(x, z))),

DMMD(qθ(z)‖p(z))]

We call the objective in 18 Lagrangian (Info)VAE (Lag-

VAE). Note that setting a constant λ for the dual function

recovers the InfoVAE objective (Zhao et al., 2017). By

Theorem 2 strong duality holds for this problem and finding

the max-min saddle point of LagVAE in Eq.(18) is identi-

cal to finding the optimal solution to original problem of

Eq.(17).

The final issue is choosing the ε hyper-parameters so that

the constraints are feasible. This is non-trivial since select-

ing ε that describe feasible constraints depends on the task

and model structure. We introduce a general strategy that

is effective in all of our experiments. First we learn a pa-

rameter θ∗ that satisfies the consistency constraints “as well

as possible” without considering mutual information max-

imization/minimization. Formally this is achieved by the

following optimization (for any choice of λ > 0),

θ∗ = argmin
θ

λTDInfoVAE (19)

This is the original training objective for InfoVAE with

α1 = 0 and can be optimized by

min
θ

λTDInfoVAE

=λ1DKL(qθ(x, z)‖pθ(x, z))) + λ2DMMD(qθ(z)‖p(z))

≡λ1LELBO(θ) + λ2DMMD(qθ(z)‖p(z)) (20)

where LELBO(θ) is the evidence lower bound defined in

Eq.(4). Because we only need a rough estimate of how

well consistency constraints can be satisfied, the selection

of weighing λ1 and λ2 is unimportant. The recommenda-

tion in (Zhao et al., 2017) works well in all our experiments

(λ1 = 1, λ2 = 100).

Now we introduce a “slack” to specify how much we are

willing to tolerate consistency error to achieve higher/lower

mutual information. Formally, we define ε̂ as the diver-

gences DInfoVAE evaluated at the above θ∗. Under this ε̂

the following constraint must be feasible (because θ∗ is a

solution):

DInfoVAE ≤ ε̂

Now we can safely set ε = γ + ε̂, where γ > 0, and the

constraint

DInfoVAE ≤ ε



must still be feasible (and strictly feasible). γ has a very

nice intuitive interpretation: it is the “slack” that we are

willing to accept. Compared to tuning α1 and λ for Info-

VAE, tuning γ is much more interpretable: we can antici-

pate the final consistency error before training.

Another practical consideration is that the one of the con-

straints DKL(qθ(x, z)‖pθ(x, z)) is difficult to estimate.

However, we have

DKL(qθ(x, z)‖pθ(x, z)) = −LELBO −Hq(x)

where LELBO is again, the evidence lower bound in Eq.(4)

of Section 2, and Hq(x) is the entropy of the true distri-

bution q(x). LELBO is empirically easy to estimate, and

Hq(x) is a constant irrelevant to the optimization prob-

lem. The optimization problem is identical if we replacing

the more difficult constraint DKL(qθ(x, z)‖pθ(x, z)) ≤ ε1
with the easier-to-optimize/estimate constraint−LELBO ≤
ε′1 (where ε′1 = ε1+Hq(x)). In addition, ε′1 can be selected

by the technique in the previous paragraph.

7 EXPERIMENTS

We compare the performance of LagVAE, where we learn

λ automatically, and InfoVAE, where we set λ in advance

(as hyperparameters). Our primal problem is to find solu-

tions that maximize / minimize mutual information under

the consistency constraints. Therefore, we consider two

performance metrics:

• Iq(x, z) the mutual information between x and z. We

can estimate the mutual information via the identity:

Iq(x; z) = Eqθ(x,z) [log qθ(z|x)− log qθ(z)] (21)

where we approximate qθ(z) with a kernel density es-

timator.

• the consistency divergences DKL(qθ(x, z)‖pθ(x, z))
and DMMD(qθ(z)‖p(z)). As stated in Section 6, we

replace DKL(qθ(x, z)‖pθ(x, z)) with the evidence

lower bound LELBO.

In the remainder of this section we demonstrate the follow-

ing empirical observations:

• LagVAE reliably maximizes/minimizes mutual infor-

mation without violating the consistency constraints.

InfoVAE, on the other hand, makes unpredictable and

task-specific trade-offs between mutual information

and consistency.

• LagVAE is Pareto optimal, as no InfoVAE hyper-

parameter choice is able to achieve both better mu-

tual information and better consistency (measured by

DMMD and LELBO) than LagVAE.

7.1 VERIFICATION OF DUAL OPTIMIZATION

We first verify that LagVAE reliably maximizes/minimizes

mutual information subject to consistency constraints. We

train LagVAE on MNIST according to Algorithm 1. ε is se-

lected according to Section 6, where we first compute ε̂ =
(ε̂1, ε̂2) without information maximization/minimization

by Eq.(20). Next we choose slack variables γ = (γ1, γ2),
and set ε = ε̂ + γ. For γ1 we explore values from 0.1 to

4.0, and for γ2 we use the fixed value 0.5ε̂2.

The results are shown in Figure 1, where mutual informa-

tion is estimated according to Eq.(21). For any given slack

γ, setting α1 to positive values and negative values re-

spectively minimizes or maximizes the mutual information

within the feasible set D ≤ ε. In particular, the absolute

value of α1 does not affect the outcome, and only the sign

matters. This is consistent with the expected behavior (Fig-

ure 1 Left) where the model finds the maximum/minimum

mutual information solution within the feasible set.

7.2 VERIFICATION OF PARETO

IMPROVEMENTS

In this section we verify Pareto optimality of LagVAE.

We evaluate LagVAE and InfoVAE on the MNIST dataset

with a wide variety of hyper-parameters. For LagVAE,

we set ε1 for LELBO to be {83, 84, . . . , 95} and ε2 for

DMMD to be 0.0005. For InfoVAE, we set α ∈ {1,−1},
λ1 ∈ {1, 2, 5, 10} and λ2 ∈ {1000, 2000, 5000, 10000}

3.

Figure 2 plots the mutual information and LELBO achieved

by both methods. Each point is the outcome of one hyper-

parameter choice of LagVAE / InfoVAE. Regardless of the

hyper-parameter choice of both models, no InfoVAE hyper-

parameter lead to better performance on both mutual infor-

mation and LELBO on the training set. This is expected be-

cause LagVAE always finds the maximum/minimum mu-

tual information solution out of all solutions with given

consistency value. The same trend is true even on the test

set, indicating that it is not an outcome of over-fitting.

8 CONCLUSION

Many existing objectives for latent variable generative

modeling are Lagrangian dual functions of the same type

of constrained optimization problem with fixed Lagrangian

multipliers. This allows us to explore their statistical and

computational trade-offs, and characterize all models in

this class. Moreover, we propose a practical dual optimiza-

tion method that optimizes both the Lagrange multipliers

and the model parameters, allowing us to specify inter-

pretable constraints and achieve Pareto-optimality empir-

ically.

3Code for this set of experiments is available at https://
github.com/ermongroup/lagvae
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