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Owing to its amorphous structure, a chalcogenide glass exhibits a thermal conductivity
k approaching the theoretical minimum of its composition, called the Einstein’s limit. In
this work, this limit is beaten in an amorphous solid consisting of glassy particles joined
by nanosized contacts. When amorphous particles are sintered below the glass tran-
sition temperature under a high pressure, these particles can be mechanically bonded
with a minimized interfacial thermal conductance. This reduces the effective k below the
Einstein’s limit while providing superior mechanical strength under a high pressure for
thermal insulation applications under harsh environments. The lowest room temperature
k for the solid counterpart can be as low as 0.10 W/m-K, which is significantly lower than
k~0.2 W/m-K for the bulk glass.

Keywords: nanoparticles, hot-press, Einstein’s limit, glass, thermal insulation

Thermal insulation materials (TIMs) with solid-like mechanical properties are critical for many
harsh-environment applications. However, this cannot be easily satisfied by conventional TIMs
that exhibit highly porous structures (e.g., polyurethane foam) and suffer from poor mechanical
strength as well as low resistance to moisture penetration. In that respect, the best thermal insula-
tion techniques such as vacuum insulation panels (Alam et al., 2011) and aerogels with 90-99.9%
porosity (Akimov, 2003) pose serious durability issues. Instead of pushing the porosity to extremes,
alternative approaches have been pursued to effectively reduce k of fully dense materials, particularly
by boundary or interface scattering of phonons (Cahill et al., 2014). The largely suppressed lattice
contribution k; is often compared with the theoretical minimum for solids, known as the Einstein’s
limit (Einstein, 1911; Cahill and Pohl, 1989). This limit is reached when the phonon mean free path
(MFP) decreases to half of the phonon wavelength (~1 A) and thus invalidates the wave description of
lattice vibrations. This limit is effectively approached in amorphous solids where structural disorder
reduces the phonon MFP to the order of interatomic distance. Beyond amorphous bulk materials,
it has been found that this limit can be beaten within a fully dense material when weak phonon
coupling and thus negligible phonon transmission exist across various nanostructured interfaces
within thin films (Chiritescu et al., 2007; Duda et al., 2013) or Cg/Cso pellets (Olson et al., 1993).
Despite some record-low k values for a solid [e.g., cross-plane k~0.05 W/m-K at 300 K for WSe,
films (Chiritescu et al., 2007)], these materials are unsuitable for practical applications due to their
prohibitive manufacturing cost to achieve sufficient thickness for thermal insulation. Along another
line of thought, packed nanoparticles (Hu et al., 2007a) or nanospheres (Gao et al., 2013) can be used
as bulk TIMs, with largely reduced thermal transport across these nanostructures with nanosized
contacts. However, no bonding is formed at the interface between these networked nanostructures
to form a rigid bulk material for large-scale applications.

In this work, we investigate the potential of using nanostructured amorphous solids as an effec-
tive approach to achieve bulk k values below the Einstein’s limit, along with superior mechanical
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strength. The selected amorphous (glassy) solids offer multiple
advantages for this approach, including k already close to their
Einstein’s limit and structural pliancy to accommodate interface
defects. By ball milling a bulk glass into nanoparticles and then
cold pressing these nanoparticles into a bulk disk, a high density
of nanograined interfaces can be created within a bulk glass.
When grains are weakly bonded to minimize the inter-grain
heat transfer, a high grain-interface thermal resistance Rx would
occur and further reduce k below the Einstein’s limit. Meanwhile,
the nanostructured solid remains mechanically strong under a
high pressure and thus satisfies the durability requirements. This
work addresses the long-term challenge of finding TIMs with not
only an extremely low k but also superior durability under harsh
conditions.

GeSey glass was selected for this application due to (1) its
excellent glass-forming ability which precludes the risk of crystal
formation, and (2) its high mean atomic weight to reduce the
phonon group velocity and thus k (equaling to k; for electrically
nonconductive glasses). The starting bulk GeSe, glass was synthe-
sized by conventional melt quenching method (Yang and Lucas,
2009) and was then ball milled into nanopowder with a SPEX
8000 Mixer/Mill for more than 24 h. Particle sizes ranged from
200 nm to 1 pm and the majority size was ~500 nm, as examined
by scanning electron microscopy (SEM). No apparent particle
size reduction was observed with longer ball milling period.
Further reducing the nanoparticle size may require cryogenic ball

milling. The amorphous nature of GeSe, was confirmed by X-ray
diffraction (XRD) before and after ball milling.

Using a home-built hot press setup, the glassy nanoparticles
were pressed into a disk that is typically 12.7 cm in diameter and
4-8 mm in thickness. To minimize the covalent bond formation
across grain interfaces, pressing was carried out below the glass
transition temperature (T,~160°C for GeSe,), at which significant
atom diffusion would lead to complete fusion of the grains. Here,
the hot-press temperature (pressure) was 100°C (80—100 MPa),
150°C (80—100 MPa), and 100°C (~400 MPa) for Samples 1-3,
respectively.

The thermal conductivity of the disks was measured under a
high vacuum (<1 X 107" torr) based on the one-dimensional and
steady-state heat conduction along the axial direction of a disk
(Figure 1A, inset) (Lucas et al., 2013). A temperature difference
was applied across the sample via a heater on its top, whereas
two 1 mil (i.e., 1 milli-inch in diameter) type-K thermocouples
were used to read the temperature gradient along the sample.
A copper plate was glued between the heater and the sample to
uniformly distribute the heat and reduce the radiation loss from
the sample top. The sample was also surrounded with an Al-foil
radiation shield to minimize the radiation loss from its sidewall.
Radiative and lead wire conduction heat losses from the heater
(<7% influence for all samples) were calibrated in the self-heating
test of a suspended heater (Goldsmid, 1964) and then subtracted
in k calculations.
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FIGURE 1 | (A) Temperature-dependent k values of GeSe. glass and nanograined bulk GeSe; glass. The inset is experimental setup. Solid symbols connected by
solid lines are the measurement results, whereas empty symbols with dashed lines indicate the nanoporous kssid for nanograined bulk samples. The symbols used
for nanograined bulk samples are square (Sample 1), triangle (Sample 2), and circle (Sample 3); (B) scanning electron microscopy image of Sample 1, with the scale
bar as 2 um; and (C) the X-ray diffraction pattern of representative sample powder.
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The data for two bulk GeSe; samples are presented in
Figure 1A and show <4% divergence below room temperature.
The thickness f is 6—7 mm for both samples, whereas the diam-
eter d is 11.77 and 8.83 mm for Samples A (star in Figure 1A)
and B (diamond), respectively. Although it was not pointed
out for similar Ge-Se-Te glasses (Zhang et al., 2009), attention
should be paid to the k enhancement due to radiative heat
transfer across the disk that is optically transparent (ot < < 1)
to the infrared radiation, in which the absorption coefficient or
is less than 5 m™! for the infrared range (Boudebs et al., 2004).
Between the top and bottom ends of a disk, Ak due to radiation
is roughly 4n’cT°t/(2/e¢ — 2 4 1/F,), in which n~2.4is the refrac-
tive index of GeSe, (Boudebs et al., 2004), the Stefan-Boltzmann
constant 6 = 5.67 X 107 Wm™—K™, €x0.3 is the emissivity of
silver epoxy layers on the disk ends, and Fy, is the view factor
between two circular ends. Assuming d = t = 6 mm, Ak is only
0.02 W/m-K at 300 K. This is also indicated by the excellent k
agreement between the two samples with quite different dimen-
sions and thus different Ak.

The Einsteins limit ki min of GeSey is computed using the model
proposed by Cahill and Pohl (1989):

A TY cor xe*
_| 2/3 N i
kL,min_[GJ an Zvi[eij I() (ex_l)z dx’ (1)

in which the cutoff frequency for polarization i is
0,=v,(h/ky)(6n’'n)"” (in Kelvin), v; is the sound velocity,
n=3.38 X 10® m~ is the number density of atoms in GeSe,. Only
one longitudinal acoustic branch and two transverse acoustic
branches are considered here. Using an Olympus Panametrics®
35 ultrasonic gage, v; for longitudinal and transverse acoustic
phonons are measured as 2,093 and 1,130 m/s, respectively. At
room temperature, the estimated ki minr0.25 W/m-K is close to
the measured ki ~0.2 W/m-K. The temperature-dependent Ky min
is further plotted in Figure 1A as the solid line, with weaker
temperature dependence than that for real bulk glasses. Similar
trend has been observed in one early study (Zhang et al., 2009),
which can be partially attributed to increased radiative Ak~T° at
elevated temperatures. Based on the Debye model, Eq. 1 tends
to overpredict the k. contribution by high-frequency modes
with slower propagation speed. The Debye frequency can also
be higher than the maximum frequency in the real phonon
dispersion (Morelli et al., 2002). More discussions can be found
elsewhere (Feser et al., 2013).

Figure 1A further compares the temperature-dependent
k values of three representative nanograined samples (solid
symbols) synthesized as described earlier. Here, the porosity @
was estimated by comparing the measured density p of samples
with that measured for the bulk GeSes glass (p = 4360 kg/m?),
which is close to p = 4,370 kg/m® reported in the literature
(Guin et al., 2002). The estimated porosity was 23, 33, and 18%
for Samples 1-3, respectively. The averaged grain size was deter-
mined by SEM to be 500 nm for all samples. Figure 1B shows
the SEM image of Sample 1. Despite the porosity variation, no
significant difference is found between the three samples with
randomized porous structures. Figure 1C further shows the
XRD pattern of representative sample powder, where no peak

for crystalline phases can be detected. Each measurement took
several days, and each sample was remeasured at 300 K in
between to assure no structure changes during the heating and
cooling processes. Nanograined bulk samples were found to
be more resilient under rapid temperature variation, whereas
initial GeSe, glass easily cracked during fast cooling processes
due to thermal shock.

Significant porosity was found in the sintered samples. To
eliminate the contribution of porosity on ki, the thermal con-
ductivities for equivalent fully dense samples kia (labeled as
empty symbols in Figure 1A) were estimated from the measured
ksampie by the Eucken’s formulation, given as k¢ = ksample/ [(1 — @)/
(1 + @/2)] (Eucken, 1932). At room temperature, the computed
ksoa values range from 0.10 to 0.14 W/m-K and are remarkably
lower than ki~0.2 W/m-K for the bulk glass, indicating weak
thermal transport between adjacent nanograins. Starting from
Sample 1, increasing the sintering temperature (Sample 2) or
pressure (Sample 3) leads to higher kqq due to increased contact
area and/or more covalent bonds formed between adjacent
nanograins. Mechanically, all samples have graphite-like strength
and can be diced with a diamond wheel saw without damaging
their nanoporous structures, which is challenging for highly
porous materials such as aerogel.

For porous TIMs, ~10 nm nanopores are normally required
to reduce the additional k contribution by the in-pore air
conduction, which can be significantly suppressed when the
pore sizes are smaller than air molecule MFPs [~68 nm at room
temperature (Jennings, 1988)]. With submicrometer pores,
thin disks cut from Samples 1 and 3 were remeasured in air
with an infrared microscope (Figure 2), following the same
measurement principle as thermal interface materials (Hu
et al., 2007b). In this setup, the GeSe; disk was sandwiched
between a heated Cu block and a reference fused quartz disk
(k = 1.4 W/m-K) of the same diameter as the heat flow meter.
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FIGURE 2 | Measurement setup for thin-disk samples and the measured
temperature profile (~25 pm per pixel) along the cross-plane direction of two
disks (inset). Thermal compound and pressure are used to improve the
thermal contacts of all interfaces.
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To improve the accuracy of the infrared temperature reading,
a micrometer-thick graphite layer was sprayed onto the sample
sidewall to make it closer to a blackbody. An infrared camera,
with its spatial resolution of 25 um, was used to measure the
lateral temperature slope along both disks (inset of Figure 2).
The estimated k values of Samples 1 and 3 were 0.092 and
0.105 W/m-K at 300 K, respectively. These values were higher
than those measured in vacuum and can be reduced by decreas-
ing the pore size to the order of 10 nm.

With weak radiation influence, the measured k values are
mostly attributed to the lattice contribution and are further ana-
lyzed using an effective medium formulation recently developed
for polycrystals (Hao, 2012). In its simplest form, the effective ke

is given as
T s @)
1+¢@/2 \1+Rk, /2d

in which kg is the lattice thermal conductivity of a single grain, d
is the grain size, Rk is the grain-interface thermal resistance, and
@ is the porosity. Because phonon MFPs already approach the
theoretical minimum inside a glassy grain [a few A only (Zhang
etal., 2009)], phonon size effects are not considered and kg can be
approximated as the bulk k~0.20 W/m-K at 300 K. Without grain
growth during the low-temperature press, d is mainly around
500 nm as the hot-pressed particle sizes. Equation 2 therefore
predicts an effective grain-boundary Rk of 5.3 X 107, 2.4 X 1075,
and 5.2 X 107* m*K/W for Samples 1, 2, and 3, respectively. These
effective Rx values are orders of magnitude higher than typical
Rk values, which range from ~1 X 107 to ~1 X 107® m*K/W
for crystal-crystal interfaces (Chen, 2005; Tai et al., 2013), to
~1 % 1077 m*K/W for crystal-liquid interfaces or nanocarbon-
related interfaces (Huxtable et al., 2003; Moisala et al., 2006;
Konatham et al., 2012). However, the contrast here can be largely
attributed to the limited contact area between adjacent grains
with surface roughness, where full contact between adjacent
approximately cubic grains is assumed in Eq. 2. Such a limited
inter-grain contact area is expected when nanoparticles are hot
pressed below the glass transition temperature, i.e., the softening
temperature of each nanoparticle. The radius a of the contact spot
can be estimated as done in the study by Prasher (2006)

TCP 1/3
a= (0.375 = ] R, (3)

where surface tension of the nanoparticles is neglected and the
only force exerted is due to the hot-press pressure P. The aver-
aged nanoparticle radius R = 250 nm is assumed here. Further
considering the surface tension can increase the a value (Johnson
et al., 1971). Here, 1/E* = 2(1 — v*)/E, where E is the Young’s
modulus and v is the Poisson’s ratio. Using E = 14.8 GPa and
v =0.286 for bulk GeSe, (Rouxel et al., 2010), a is estimated to be
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