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Owing to its amorphous structure, a chalcogenide glass exhibits a thermal conductivity  
k approaching the theoretical minimum of its composition, called the Einstein’s limit. In 
this work, this limit is beaten in an amorphous solid consisting of glassy particles joined 
by nanosized contacts. When amorphous particles are sintered below the glass tran-
sition temperature under a high pressure, these particles can be mechanically bonded 
with a minimized interfacial thermal conductance. This reduces the effective k below the 
Einstein’s limit while providing superior mechanical strength under a high pressure for 
thermal insulation applications under harsh environments. The lowest room temperature 
k for the solid counterpart can be as low as 0.10 W/m·K, which is significantly lower than 
k≈0.2 W/m·K for the bulk glass.
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Thermal insulation materials (TIMs) with solid-like mechanical properties are critical for many 
harsh-environment applications. However, this cannot be easily satisfied by conventional TIMs 
that exhibit highly porous structures (e.g., polyurethane foam) and suffer from poor mechanical 
strength as well as low resistance to moisture penetration. In that respect, the best thermal insula-
tion techniques such as vacuum insulation panels (Alam et al., 2011) and aerogels with 90–99.9% 
porosity (Akimov, 2003) pose serious durability issues. Instead of pushing the porosity to extremes, 
alternative approaches have been pursued to effectively reduce k of fully dense materials, particularly 
by boundary or interface scattering of phonons (Cahill et al., 2014). The largely suppressed lattice 
contribution kL is often compared with the theoretical minimum for solids, known as the Einstein’s 
limit (Einstein, 1911; Cahill and Pohl, 1989). This limit is reached when the phonon mean free path 
(MFP) decreases to half of the phonon wavelength (~1 Å) and thus invalidates the wave description of 
lattice vibrations. This limit is effectively approached in amorphous solids where structural disorder 
reduces the phonon MFP to the order of interatomic distance. Beyond amorphous bulk materials, 
it has been found that this limit can be beaten within a fully dense material when weak phonon 
coupling and thus negligible phonon transmission exist across various nanostructured interfaces 
within thin films (Chiritescu et al., 2007; Duda et al., 2013) or C60/C70 pellets (Olson et al., 1993). 
Despite some record-low k values for a solid [e.g., cross-plane k~0.05 W/m·K at 300 K for WSe2 
films (Chiritescu et al., 2007)], these materials are unsuitable for practical applications due to their 
prohibitive manufacturing cost to achieve sufficient thickness for thermal insulation. Along another 
line of thought, packed nanoparticles (Hu et al., 2007a) or nanospheres (Gao et al., 2013) can be used 
as bulk TIMs, with largely reduced thermal transport across these nanostructures with nanosized 
contacts. However, no bonding is formed at the interface between these networked nanostructures 
to form a rigid bulk material for large-scale applications.

In this work, we investigate the potential of using nanostructured amorphous solids as an effec-
tive approach to achieve bulk k values below the Einstein’s limit, along with superior mechanical 
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Figure 1 | (A) Temperature-dependent k values of GeSe4 glass and nanograined bulk GeSe4 glass. The inset is experimental setup. Solid symbols connected by 
solid lines are the measurement results, whereas empty symbols with dashed lines indicate the nanoporous ksolid for nanograined bulk samples. The symbols used 
for nanograined bulk samples are square (Sample 1), triangle (Sample 2), and circle (Sample 3); (B) scanning electron microscopy image of Sample 1, with the scale 
bar as 2 µm; and (C) the X-ray diffraction pattern of representative sample powder.
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strength. The selected amorphous (glassy) solids offer multiple 
advantages for this approach, including k already close to their 
Einstein’s limit and structural pliancy to accommodate interface 
defects. By ball milling a bulk glass into nanoparticles and then 
cold pressing these nanoparticles into a bulk disk, a high density 
of nanograined interfaces can be created within a bulk glass. 
When grains are weakly bonded to minimize the inter-grain 
heat transfer, a high grain-interface thermal resistance RK would 
occur and further reduce k below the Einstein’s limit. Meanwhile, 
the nanostructured solid remains mechanically strong under a 
high pressure and thus satisfies the durability requirements. This 
work addresses the long-term challenge of finding TIMs with not 
only an extremely low k but also superior durability under harsh 
conditions.

GeSe4 glass was selected for this application due to (1) its 
excellent glass-forming ability which precludes the risk of crystal 
formation, and (2) its high mean atomic weight to reduce the 
phonon group velocity and thus k (equaling to kL for electrically 
nonconductive glasses). The starting bulk GeSe4 glass was synthe-
sized by conventional melt quenching method (Yang and Lucas, 
2009) and was then ball milled into nanopowder with a SPEX 
8000 Mixer/Mill for more than 24 h. Particle sizes ranged from 
200 nm to 1 µm and the majority size was ~500 nm, as examined 
by scanning electron microscopy (SEM). No apparent particle 
size reduction was observed with longer ball milling period. 
Further reducing the nanoparticle size may require cryogenic ball 

milling. The amorphous nature of GeSe4 was confirmed by X-ray 
diffraction (XRD) before and after ball milling.

Using a home-built hot press setup, the glassy nanoparticles 
were pressed into a disk that is typically 12.7 cm in diameter and 
4–8 mm in thickness. To minimize the covalent bond formation 
across grain interfaces, pressing was carried out below the glass 
transition temperature (Tg~160°C for GeSe4), at which significant 
atom diffusion would lead to complete fusion of the grains. Here, 
the hot-press temperature (pressure) was 100°C (80−100 MPa), 
150°C (80−100 MPa), and 100°C (~400 MPa) for Samples 1–3, 
respectively.

The thermal conductivity of the disks was measured under a 
high vacuum (<1 × 10−5 torr) based on the one-dimensional and 
steady-state heat conduction along the axial direction of a disk 
(Figure 1A, inset) (Lucas et al., 2013). A temperature difference 
was applied across the sample via a heater on its top, whereas 
two 1 mil (i.e., 1 milli-inch in diameter) type-K thermocouples 
were used to read the temperature gradient along the sample. 
A copper plate was glued between the heater and the sample to 
uniformly distribute the heat and reduce the radiation loss from 
the sample top. The sample was also surrounded with an Al-foil 
radiation shield to minimize the radiation loss from its sidewall. 
Radiative and lead wire conduction heat losses from the heater 
(<7% influence for all samples) were calibrated in the self-heating 
test of a suspended heater (Goldsmid, 1964) and then subtracted 
in k calculations.
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Figure 2 | Measurement setup for thin-disk samples and the measured 
temperature profile (~25 μm per pixel) along the cross-plane direction of two 
disks (inset). Thermal compound and pressure are used to improve the 
thermal contacts of all interfaces.
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The data for two bulk GeSe4 samples are presented in 
Figure 1A and show <4% divergence below room temperature. 
The thickness t is 6−7 mm for both samples, whereas the diam-
eter d is 11.77 and 8.83 mm for Samples A (star in Figure 1A) 
and B (diamond), respectively. Although it was not pointed 
out for similar Ge-Se-Te glasses (Zhang et al., 2009), attention 
should be paid to the k enhancement due to radiative heat 
transfer across the disk that is optically transparent (αRt < < 1)  
to the infrared radiation, in which the absorption coefficient αR 
is less than 5 m−1 for the infrared range (Boudebs et al., 2004). 
Between the top and bottom ends of a disk, Δk due to radiation 
is roughly 4n2σT3t/(2/ε − 2 + 1/F12), in which n≈2.4 is the refrac-
tive index of GeSe4 (Boudebs et al., 2004), the Stefan–Boltzmann 
constant σ =  5.67 ×  10−8 Wm−2K−4, ε≈0.3 is the emissivity of 
silver epoxy layers on the disk ends, and F12 is the view factor 
between two circular ends. Assuming d = t = 6 mm, Δk is only 
0.02 W/m·K at 300 K. This is also indicated by the excellent k 
agreement between the two samples with quite different dimen-
sions and thus different Δk.

The Einstein’s limit kL,min of GeSe4 is computed using the model 
proposed by Cahill and Pohl (1989):
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in which the cutoff frequency for polarization i is 
θ ( )( )i iv k n=  / /

B 6 2 1 3π  (in Kelvin), vi is the sound velocity, 
n = 3.38 × 1028 m−3 is the number density of atoms in GeSe4. Only 
one longitudinal acoustic branch and two transverse acoustic 
branches are considered here. Using an Olympus Panametrics® 
35 ultrasonic gage, vi for longitudinal and transverse acoustic 
phonons are measured as 2,093 and 1,130 m/s, respectively. At 
room temperature, the estimated kL,min≈0.25 W/m·K is close to 
the measured kL≈0.2 W/m·K. The temperature-dependent kL,min 
is further plotted in Figure  1A as the solid line, with weaker 
temperature dependence than that for real bulk glasses. Similar 
trend has been observed in one early study (Zhang et al., 2009), 
which can be partially attributed to increased radiative Δk~T3 at 
elevated temperatures. Based on the Debye model, Eq. 1 tends 
to overpredict the kL contribution by high-frequency modes 
with slower propagation speed. The Debye frequency can also 
be higher than the maximum frequency in the real phonon 
dispersion (Morelli et al., 2002). More discussions can be found 
elsewhere (Feser et al., 2013).

Figure  1A further compares the temperature-dependent 
k values of three representative nanograined samples (solid 
symbols) synthesized as described earlier. Here, the porosity φ  
was estimated by comparing the measured density ρ of samples 
with that measured for the bulk GeSe4 glass (ρ = 4360 kg/m3), 
which is close to ρ =  4,370  kg/m3 reported in the literature 
(Guin et al., 2002). The estimated porosity was 23, 33, and 18% 
for Samples 1–3, respectively. The averaged grain size was deter-
mined by SEM to be 500 nm for all samples. Figure 1B shows 
the SEM image of Sample 1. Despite the porosity variation, no 
significant difference is found between the three samples with 
randomized porous structures. Figure  1C further shows the  
XRD pattern of representative sample powder, where no peak 

for crystalline phases can be detected. Each measurement took 
several days, and each sample was remeasured at 300  K in 
between to assure no structure changes during the heating and 
cooling processes. Nanograined bulk samples were found to 
be more resilient under rapid temperature variation, whereas 
initial GeSe4 glass easily cracked during fast cooling processes 
due to thermal shock.

Significant porosity was found in the sintered samples. To 
eliminate the contribution of porosity on kL, the thermal con-
ductivities for equivalent fully dense samples ksolid (labeled as 
empty symbols in Figure 1A) were estimated from the measured 
ksample by the Eucken’s formulation, given as ksolid = ksample/[(1 − φ)/
(1 + φ/2)] (Eucken, 1932). At room temperature, the computed 
ksolid values range from 0.10 to 0.14 W/m·K and are remarkably 
lower than kL≈0.2  W/m·K for the bulk glass, indicating weak 
thermal transport between adjacent nanograins. Starting from 
Sample 1, increasing the sintering temperature (Sample 2) or 
pressure (Sample 3) leads to higher ksolid due to increased contact 
area and/or more covalent bonds formed between adjacent 
nanograins. Mechanically, all samples have graphite-like strength 
and can be diced with a diamond wheel saw without damaging 
their nanoporous structures, which is challenging for highly 
porous materials such as aerogel.

For porous TIMs, ~10 nm nanopores are normally required 
to reduce the additional k contribution by the in-pore air 
conduction, which can be significantly suppressed when the 
pore sizes are smaller than air molecule MFPs [~68 nm at room 
temperature (Jennings, 1988)]. With submicrometer pores, 
thin disks cut from Samples 1 and 3 were remeasured in air 
with an infrared microscope (Figure  2), following the same 
measurement principle as thermal interface materials (Hu 
et  al., 2007b). In this setup, the GeSe4 disk was sandwiched 
between a heated Cu block and a reference fused quartz disk 
(k = 1.4 W/m·K) of the same diameter as the heat flow meter. 
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To improve the accuracy of the infrared temperature reading, 
a micrometer-thick graphite layer was sprayed onto the sample 
sidewall to make it closer to a blackbody. An infrared camera, 
with its spatial resolution of 25 µm, was used to measure the 
lateral temperature slope along both disks (inset of Figure 2). 
The estimated k values of Samples 1 and 3 were 0.092 and 
0.105 W/m·K at 300 K, respectively. These values were higher 
than those measured in vacuum and can be reduced by decreas-
ing the pore size to the order of 10 nm.

With weak radiation influence, the measured k values are 
mostly attributed to the lattice contribution and are further ana-
lyzed using an effective medium formulation recently developed 
for polycrystals (Hao, 2012). In its simplest form, the effective keff 
is given as
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in which kG is the lattice thermal conductivity of a single grain, d 
is the grain size, RK is the grain-interface thermal resistance, and 
φ is the porosity. Because phonon MFPs already approach the 
theoretical minimum inside a glassy grain [a few Å only (Zhang 
et al., 2009)], phonon size effects are not considered and kG can be 
approximated as the bulk kL≈0.20 W/m·K at 300 K. Without grain 
growth during the low-temperature press, d is mainly around 
500  nm as the hot-pressed particle sizes. Equation  2 therefore 
predicts an effective grain-boundary RK of 5.3 × 10−6, 2.4 × 10−6, 
and 5.2 × 10−6 m2·K/W for Samples 1, 2, and 3, respectively. These 
effective RK values are orders of magnitude higher than typical 
RK values, which range from ~1 ×  10−9 to ~1 ×  10−8  m2·K/W 
for crystal–crystal interfaces (Chen, 2005; Tai et  al., 2013), to 
~1 × 10−7 m2·K/W for crystal–liquid interfaces or nanocarbon-
related interfaces (Huxtable et  al., 2003; Moisala et  al., 2006; 
Konatham et al., 2012). However, the contrast here can be largely 
attributed to the limited contact area between adjacent grains 
with surface roughness, where full contact between adjacent 
approximately cubic grains is assumed in Eq. 2. Such a limited 
inter-grain contact area is expected when nanoparticles are hot 
pressed below the glass transition temperature, i.e., the softening 
temperature of each nanoparticle. The radius a of the contact spot 
can be estimated as done in the study by Prasher (2006)
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where surface tension of the nanoparticles is neglected and the 
only force exerted is due to the hot-press pressure P. The aver-
aged nanoparticle radius R = 250 nm is assumed here. Further 
considering the surface tension can increase the a value (Johnson 
et  al., 1971). Here, 1/E* =  2(1 −  v2)/E, where E is the Young’s 
modulus and v is the Poisson’s ratio. Using E =  14.8  GPa and 
v = 0.286 for bulk GeSe4 (Rouxel et al., 2010), a is estimated to be 

60 nm at P = 100 MPa. The actual contact area, πa2, is only 4.7% 
of the interface between packed cubes, as assumed in Eq. 2. This 
ratio is even smaller when the surface roughness of individual 
nanoparticles is considered. Following this, the actual RK per 
unit area between bonded nanoparticles should be less than 
2.5 × 10−7 m2·K/W.

For mechanical properties, nanoindentation test using Key
sight NanoIndenter G200 was performed on representative 
samples. This type of measurements has not been performed on 
any reported thin films with an ultra-low thermal conductivity 
(Chiritescu et al., 2007; Duda et al., 2013; Liu et al., 2013). By push-
ing a probe onto the sample surface, the load and displacement 
were recorded simultaneously to extract the nanoscale elastic 
modulus and hardness of the material. For Sample 3 with its poros-
ity φ = 18%, an elastic modulus of 10.2 ± 0.6 GPa was found from 
the curve based on 1,600 tests. The corresponding hardness was 
0.67 ± 0.06 GPa. In contrast, a sample (φ = 22.4%) pressed under 
identical conditions as Sample 1 exhibited an elastic modulus of 
3.9 ± 2.1 GPa and hardness of 0.1 ± 0.08 GPa. This is anticipated 
as increased hot-press pressure should lead to better mechanical 
strength under a high pressure. In comparison, commercial TIMs 
are not considered for loading capabilities (Papadopoulos, 2005). 
For materials such as aerogel and polyurethane foam, their highly 
porous structures can be easily compacted or broken even with 
the pressure applied by a finger.

In conclusion, our studies show that k comparable or lower 
than that of conventional TIMs can be potentially achieved in 
nanostructured amorphous solids with disordered and nanosized 
grain boundaries, in which phonon transport is minimized both 
within and across nanograins. Compared to expensive thin films 
(Chiritescu et al., 2007; Duda et al., 2013; Liu et al., 2013), this 
approach could lead to the mass production of bulk TIMs with 
unprecedented compression strength. In the future, the material 
cost can be further reduced using cheaper sulfur-based glasses 
and thus satisfy various large-scale applications.
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