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Abstract

We consider the problem of learning function classes computed by neural networks
with various activations (e.g. ReLU or Sigmoid), a task believed to be computationally
intractable in the worst-case. A major open problem is to understand the minimal assump-
tions under which these classes admit provably efficient algorithms. In this work we show
that a natural distributional assumption corresponding to eigenvalue decay of the Gram
matrix yields polynomial-time algorithms in the non-realizable setting for expressive classes
of networks (e.g. feed-forward networks of ReLUs). We make no assumptions on the struc-
ture of the network or the labels. Given sufficiently-strong polynomial eigenvalue decay,
we obtain fully-polynomial time algorithms in all the relevant parameters with respect to
square-loss. Milder decay assumptions also lead to improved algorithms. This is the first
purely distributional assumption that leads to polynomial-time algorithms for networks of
ReLUs, even with one hidden layer. Further, unlike prior distributional assumptions (e.g.,
the marginal distribution is Gaussian), eigenvalue decay has been observed in practice on
common data sets.
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1 Introduction

Understanding the computational complexity of learning neural networks from random exam-
ples is a fundamental problem in machine learning. Several researchers have proved results
showing computational hardness for the worst-case complexity of learning various networks–
that is, when no assumptions are made on the underlying distribution or the structure of the
network [10, 16, 24, 29, 47]. As such, it seems necessary to take some assumptions in order to
develop efficient algorithms for learning deep networks (the most expressive class of networks
known to be learnable in polynomial-time without any assumptions is a sum of one hidden
layer of sigmoids [16]). A major open question is to understand what are the “correct” or mini-
mal assumptions to take in order to guarantee efficient learnability1. An oft-taken assumption
is that the marginal distribution is equal to some smooth distribution such as a multivariate
Gaussian. Even under such a distributional assumption, however, there is evidence that fully
polynomial-time algorithms are still hard to obtain for simple classes of networks [22, 39]. As
such, several authors have made further assumptions on the underlying structure of the model
(and/or work in the noiseless or realizable setting).

In fact, in an interesting recent work, Shamir [37] has given evidence that both distri-
butional assumptions and assumptions on the network structure are necessary for efficient
learnability using gradient-based methods. Our main result is that under only an assumption
on the marginal distribution, namely eigenvalue decay of the Gram matrix, there exist efficient
algorithms for learning broad classes of neural networks even in the non-realizable (agnostic)
setting with respect to square loss. Furthermore, eigenvalue decay has been observed often in
real-world data sets, unlike distributional assumptions that take the marginal to be unimodal
or Gaussian. As one would expect, stronger assumptions on the eigenvalue decay result in
polynomial learnability for broader classes of networks, but even mild eigenvalue decay will
result in savings in runtime and sample complexity.

The relationship between our assumption on eigenvalue decay and prior assumptions on
the marginal distribution being Gaussian is similar in spirit to the dichotomy between the
complexity of certain algorithmic problems on power-law graphs versus Erdős-Rényi graphs.
Several important graph problems such as clique-finding become much easier when the un-
derlying model is a random graph with appropriate power-law decay (as opposed to assuming
the graph is generated from the classical G(n, p) model) [6, 25]. In this work we prove that
neural network learning problems become tractable when the underlying distribution induces
an empirical gram matrix with sufficiently strong eigenvalue-decay.

1.1 Our Contributions

Our main result is quite general and holds for any function class that can be suitably embedded
in an RKHS (Reproducing Kernel Hilbert Space) with corresponding kernel function k (we refer
readers unfamiliar with kernel methods to [33]). Given m draws from a distribution (x1, . . . ,xm)
and kernel k, recall that the Gram matrix K is an m ×m matrix where the i, j entry equals
k(xi,xj). For ease of presentation, we begin with an informal statement of our main result
that highlights the relationship between the eigenvalue decay assumption and the run-time and
sample complexity of our final algorithm.

1For example, a very recent paper of Song, Vempala, Xie, and Williams [39] asks “What form would such an
explanation take, in the face of existing complexity-theoretic lower bounds?”
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Theorem 1 (Informal). Fix function class C and kernel function k. Assume C is approximated
in the corresponding RKHS with norm bound B. After drawing m samples, let K/m be the
(normalized) m×m Gram matrix with eigenvalues {λ1, . . . , λm}. For error parameter ǫ > 0,

1. If, for sufficiently large i, λi ≈ O(i−p), then C is efficiently learnable withm = Õ(B1/p/ǫ2+3/p).

2. If, for sufficiently large i, λi ≈ O(e−i), then C is efficiently learnable with m = Õ(logB/ǫ2).

We allow a failure probability for the event that the eigenvalues do not decay. In all prior
work, the sample complexity m depends linearly on B, and for many interesting concept classes
(such as ReLUs), B is exponential in one or more relevant parameters. Given Theorem 1, we
can use known structural results for embedding neural networks into an RKHS to estimate B
and take a corresponding eigenvalue decay assumption to obtain polynomial-time learnability.
Applying bounds recently obtained by Goel et al. [16] we have

Corollary 2. Let C be the class of all fully-connected networks of ReLUs with one-hidden layer
of ℓ hidden ReLU activations feeding into a single ReLU output activation (i.e., two hidden
layers or depth-3). Then, assuming eigenvalue decay of O(i−ℓ/ǫ), C is learnable in polynomial
time with respect to square loss on S

n−1. If ReLU is replaced with sigmoid, then we require

eigenvalue decay O(i−
√
ℓ log(

√
ℓ/ǫ)).

For higher depth networks, bounds on the required eigenvalue decay can be derived from
structural results in [16]. Without taking an assumption, the fastest known algorithms for
learning the above networks run in time exponential in the number of hidden units and accuracy
parameter (but polynomial in the dimension) [16].

Our proof develops a novel approach for bounding the generalization error of kernel meth-
ods, namely we develop compression schemes tailor-made for classifiers induced by kernel-based
regression, as opposed to current Rademacher-complexity based approaches. Roughly, a com-
pression scheme is a mapping from a training set S to a small subsample S′ and side-information
I . Given this compressed version of S, the decompression algorithm should be able to generate
a classifier h. In recent work, David, Moran and Yehudayoff [13] have observed that if the size
of the compression is much less than m (the number of samples), then the empirical error of h
on S is close to its true error with high probability.

At the core of our compression scheme is a method for giving small description length
(i.e., o(m) bit complexity), approximate solutions to instances of kernel ridge regression. Even
though we assume K has decaying eigenvalues, K is neither sparse nor low-rank, and even
a single column or row of K has bit complexity at least m, since K is an m × m matrix!
Nevertheless, we can prove that recent tools from Nyström sampling [31] imply a type of
sparsification for solutions of certain regression problems involving K. Additionally, using
preconditioning, we can bound the bit complexity of these solutions and obtain the desired
compression scheme. At each stage we must ensure that our compressed solutions do not lose
too much accuracy, and this involves carefully analyzing various matrix approximations. Our
methods are the first compression-based generalization bounds for kernelized regression.

1.2 Related Work

Kernel methods [33] such as SVM, kernel ridge regression and kernel PCA have been exten-
sively studied due to their excellent performance and strong theoretical properties. For large
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data sets, however, many kernel methods become computationally expensive. The literature
on approximating the Gram matrix with the overarching goal of reducing the time and space
complexity of kernel methods is now vast. Various techniques such as random sampling [43],
subspace embedding [2], and matrix factorization [15] have been used to find a low-rank approx-
imation that is efficient to compute and gives small approximation error. The most relevant
set of tools for our paper is Nyström sampling [43, 14], which constructs an approximation
of K using a subset of the columns indicated by a selection matrix S to generate a positive
semi-definite approximation. Recent work on leverage scores have been used to improve the
guarantees of Nyström sampling in order to obtain linear time algorithms for generating these
approximations [31].

The novelty of our approach is to use Nyström sampling in conjunction with compression
schemes to give a new method for giving provable generalization error bounds for kernel meth-
ods. Compression schemes have typically been studied in the context of classification problems
in PAC learning and for combinatorial problems related to VC dimension [26, 27]. Only re-
cently have some authors considered compression schemes in a general, real-valued learning
scenario [13]. Cotter, Shalev-Shwartz, and Srebro have studied compression in the context of
classification using SVMs and prove that for general distributions, compressing classifiers with
low generalization error is not possible [9].

The general phenomenon of eigenvalue decay of the Gram matrix has been studied from both
a theoretical and applied perspective. Some empirical studies of eigenvalue decay and related
discussion can be found in [30, 38, 41]. There has also been prior work relating eigenvalue decay
to generalization error in the context of SVMs or Kernel PCA (e.g., [32, 38]). Closely related
notions to eigenvalue decay are that of local Rademacher complexity due to Bartlett, Bousquet,
and Mendelson [4] (see also [5]) and that of effective dimensionality due to Zhang [46].

The above works of Bartlett et al. and Zhang give improved generalization bounds via data-
dependent estimates of eigenvalue decay of the kernel. At a high level, the goal of these works
is to work under an assumption on the effective dimension and improve Rademacher-based
generalization error bounds from 1/

√
m to 1/m (m is the number of samples) for functions

embedded in an RKHS of unit norm. These works do not address the main obstacle of this
paper, however, namely overcoming the complexity of the norm of the approximating RKHS.
Their techniques are mostly incomparable even though the intent of using effective dimension
as a measure of complexity is the same.

Shamir has shown that for general linear prediction problems with respect to square-loss
and norm bound B, a sample complexity of Ω(B) is required for gradient-based methods [36].
Our work shows that eigenvalue decay can dramatically reduce this dependence, even in the
context of kernel regression where we want to run in time polynomial in n, the dimension,
rather than the (much larger) dimension of the RKHS.

1.3 Recent work on Learning Neural Networks

Due in part to the recent exciting developments in deep learning, there have been several works
giving provable results for learning neural networks with various activations (threshold, sigmoid,
or ReLU). For the most part, these results take various assumptions on either 1) the distribution
(e.g., Gaussian or Log-Concave) or 2) the structure of the network architecture (e.g. sparse,
random, or non-overlapping weight vectors) or both and often have a bad dependence on one
or more of the relevant parameters (dimension, number of hidden units, depth, or accuracy).
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Another way to restrict the problem is to work only in the noiseless/realizable setting. Works
that fall into one or more of these categories include [23, 48, 44, 18, 34, 45, 11]. Kernel methods
have been applied previously to learning neural networks [47, 29, 16, 12]. The current broadest
class of networks known to be learnable in fully polynomial-time in all parameters with no
assumptions is due to Goel et al. [16], who showed how to learn a sum of one hidden layer
of sigmoids over the domain of S

n−1, the unit sphere in n dimensions. We are not aware of
other prior work that takes only a distributional assumption on the marginal and achieves fully
polynomial-time algorithms for even simple networks (for example, one hidden layer of ReLUs).

Much work has also focused on the ability of gradient descent to succeed in parameter es-
timation for learning neural networks under various assumptions with an intense focus on the
structure of local versus global minima [8, 20, 7, 40]. Here we are interested in the traditional
task of learning in the non-realizable or agnostic setting and allow ourselves to output a hy-
pothesis outside the function class (i.e., we allow improper learning). It is well known that for
even simple neural networks, for example for learning a sigmoid with respect to square-loss,
there may be many bad local minima [1]. Improper learning allows us to avoid these pitfalls.

2 Preliminaries

Notation. The input space is denoted by X and the output space is denoted by Y. Vectors
are represented with boldface letters such as x. We denote a kernel function by kψ(x, x

′) =
〈ψ(x), ψ(x′)〉 where ψ is the associated feature map and for the kernel and Kψ is the cor-
responding reproducing kernel Hilbert space (RKHS). For necessary background material on
kernel methods we refer the reader to [33].

2.1 Model and Generalization Bounds

We will work in the general non-realizable model of statistical learning theory also known as
the agnostic model of learning. In this model, the labels presented to the learner are arbitrary,
and the goal is to output a hypothesis that is competitive with the best fitting function from
some fixed class:

Definition 3 (Agnostic Learning [21, 17]). A concept class C ⊆ YX is agnostically learnable
with respect to loss function l : Y ′×Y → R

+ (where Y ⊆ Y ′) and distribution D over X ×Y, if
for every δ, ǫ > 0 there exists a learning algorithm A given access to examples drawn from D,
A outputs a hypothesis h : X → Y ′, such that with probability at least 1− δ,

E(x,y)∼D[l(h(x), y)] ≤ min
c∈C

E(x,y)∼D[l(c(x), y)] + ǫ. (1)

Furthermore, we say that C is efficiently agnostically learnable to error ǫ if A can output an h
satisfying Equation (1) with running time polynomial in n, 1/ǫ and 1/δ.

The agnostic model generalizes Valiant’s PAC model of learning [42], and so all of our
results will hold for PAC learning as well. The following is a well known theorem for proving
generalization based on Rademacher complexity.

Theorem 4 ([5]). Let D be a distribution over X × Y and let l : Y ′ × Y be a b-bounded loss
function that is L-Lispschitz in its first argument. Let F be a class of functions from X to Y ′
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and for any f ∈ F , and S = ((x1, y1), . . . , (xm, ym)) ∼ Dm and δ > 0, with probability at least
1− δ we have,

∣

∣

∣

∣

∣

E(x,y)∼D[l(f(x), y)]−
1

m

m
∑

i=1

l(f(xi), yi)

∣

∣

∣

∣

∣

≤ 4 · L · Rm(F) + 2 · b ·
√

log(1/δ)

2m

where Rm(F) is the Rademacher complexity of the function class F .

The Rademacher complexity of this linear class can be bounded by using the following
theorem.

Theorem 5 ([19]). Let K be a subset of a Hilbert space equipped with inner product 〈·, ·〉 such
that for each x ∈ K, 〈x,x〉 ≤ X2, and let W = {x → 〈x,w〉 | 〈w,w〉 ≤W 2} be a class of linear
functions. Then it holds that

Rm(W) ≤ X ·W ·
√

1

m
.

2.2 Selection and Compression Schemes

It is well known that in the context of PAC learning Boolean function classes, a suitable type
of compression of the training data implies learnability [28]. Perhaps surprisingly, the details
regarding the relationship between compression and ceratin other real-valued learning tasks
have not been worked out until very recently. A convenient framework for us will be the notion
of compression and selection schemes due to David et al. [13].

A selection scheme is a pair of maps (κ, ρ) where κ is the selection map and ρ is the
reconstruction map. κ takes as input a sample S = ((x1, y1), . . . , (xm, ym)) and outputs a
sub-sample S ′ and a finite binary string b as side information. ρ takes this input and outputs
a hypothesis h. The size of the selection scheme is defined to be k(m) = |S ′|+ |b|. We present
a slightly modified version of the definition of an approximate compression scheme due to [13]:

Definition 6 ((ǫ, δ)-approximate agnostic compression scheme). A selection scheme (κ, ρ) is an
(ǫ, δ)-approximate agnostic compression scheme for hypothesis class H and sample satisfying
property P if for all samples S that satisfy P with probability 1 − δ, f = ρ(κ(S)) satisfies
∑m

i=1 l(f(xi), yi) ≤ minh∈H (
∑m

i=1 l(h(xi), yi)) + ǫ.

Compression has connections to learning in the general loss setting through the following
theorem which shows that as long as k(m) is small, the selection scheme generalizes.

Theorem 7 (Theorem 30.2 [35], Theorem 3.2 [13]). Let (κ, ρ) be a selection scheme of size
k = k(m), and let AS = ρ(κ(S)). Given m i.i.d. samples drawn from any distribution D such
that k ≤ m/2, for constant bounded loss function l : Y ′ × Y → R

+ with probability 1 − δ, we
have

∣

∣

∣

∣

∣

E(x,y)∼D[l(AS(x), y)] −
m
∑

i=1

l(AS(xi), yi)

∣

∣

∣

∣

∣

≤

√

√

√

√ǫ ·
(

1

m

m
∑

i=1

l(AS(xi), yi)

)

+ ǫ

where ǫ = 50 · k log(m/k)+log(1/δ)
m .
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3 Problem Overview

In this section we give a general outline for our main result. Let S = {(x1, y1), . . . , (xm, ym)}
be a training set of samples drawn i.i.d. from some arbitrary distribution D on X × [0, 1]
where X ⊆ R

n. Let us consider a concept class C such that for all c ∈ C and x ∈ X we
have c(x) ∈ [0, 1]. We wish to learn the concept class C with respect to the square loss, that
is, we wish to find c ∈ C that approximately minimizes E(x,y)∼D[(c(x) − y)2]. A common
way of solving this is by solving the empirical minimization problem (ERM) given below and
subsequently proving that it generalizes.

Optimization Problem 1

minimize
c∈C

1

m

m
∑

i=1

(c(xi)− yi)
2

Unfortunately, it may not be possible to efficiently solve the ERM in polynomial-time due
to issues such as non-convexity. A way of tackling this is to show that the concept class can be
approximately minimized by another hypothesis class of linear functions in a high dimensional
feature space (this in turn presents new obstacles for proving generalization-error bounds, which
is the focus of this paper).

Definition 8 (ǫ-approximation). Let C1 and C2 be function classes mapping domain X to
R. C1 is ǫ-approximated by C2 if for every c ∈ C1 there exists a c′ ∈ C2 such that for all
x ∈ X , |c(x) − c′(x)| ≤ ǫ.

Suppose C can be ǫ-approximated in the above sense by the hypothesis class Hψ = {x →
〈v, ψ(x)〉|v ∈ Kψ, 〈v,v〉 ≤ B} for some B and kernel function kψ. We further assume that
the kernel is bounded, that is, |kψ(x,x’)| ≤ M for some M > 0 for all x,x’ ∈ X . Thus, the
problem relaxes to the following,

Optimization Problem 2

minimize
v∈Kψ

1

m

m
∑

i=1

(〈v, ψ(xi)〉 − yi)
2 subject to 〈v,v〉 ≤ B

Using the Representer theorem, we have that the optimum solution for the above is of the
form v∗ =

∑m
i=1 αiψ(xi) for some α ∈ R

n. Denoting the sample kernel matrix be K such that
Ki,j = kψ(xi,xj), the above optimization problem is equivalent to the following optimization
problem,

Optimization Problem 3

minimize
α∈Rm

1

m
||Kα− Y ||22 subject to αTKα ≤ B

6



where Y is the vector corresponding to all yi and ||Y ||∞ ≤ 1 since ∀i ∈ [m], yi ∈ [0, 1]. Let
αB be the optimal solution of the above problem. This is known to be efficiently solvable in
poly(m,n) time as long as the kernel function is efficiently computable.

Applying Rademacher complexity bounds to Hψ yields generalization error bounds that
decrease, roughly, on the order of B/

√
m (Theorem 4 and 5). If B is exponential in 1/ǫ, the

accuracy parameter, or in n, the dimension, as in the case of bounded depth networks of ReLUs,
then this dependence leads to exponential sample complexity. As mentioned in Section 1.2, in
the context of eigenvalue decay, various results [46, 4, 5] have been obtained to improve the
dependence of B/

√
m to B/m, but little is known about improving the dependence on B.

Our goal is to show that eigenvalue decay of the empirical Gram matrix does yield general-
ization bounds with better dependence on B. The key is to develop a novel compression scheme
for kernelized ridge regression. We give a step-by-step analysis for how to generate an approx-
imate, compressed version of the solution to Optimization Problem 3. Then, we will carefully
analyze the bit complexity of our approximate solution and realize our compression scheme.
Finally, we can put everything together and show how quantitative bounds on eigenvalue decay
directly translate into compressions schemes with low generalization error.

4 Compressing the Kernel Solution

Through a sequence of steps, we will sparsify α to find a solution of much smaller bit complexity
that is still an approximate solution (to within a small additive error). The quality and size of
the approximation will depend on the eigenvalue decay.

4.1 Lagrangian Relaxation

We relax Optimization Problem 3 and consider the Lagrangian version of the problem to account
for the norm bound constraint. This version is convenient for us, as it has a nice closed-form
solution.

Optimization Problem 4

minimize
α∈Rm

1

m
||Kα− Y ||22 + λαTKα

We will later set λ such that the error of considering this relaxation is small. It is easy to
see that the optimal solution for the above lagrangian version is α = (K + λmI)−1 Y .

4.2 Preconditioning

To avoid extremely small or non-zero eigenvalues, we consider a perturbed version of K, Kγ =
K + γmI. This gives us that the eigenvalues of Kγ are always greater than or equal to γm.
This property is useful for us in our later analysis. Henceforth, we consider the following
optimization problem on the perturbed version of K:

7



Optimization Problem 5

minimize
α∈Rm

1

m
||Kγα− Y ||22 + λαTKγα

The optimal solution for perturbed version is αγ = (Kγ + λmI)−1 Y = (K + (λ+ γ)mI)−1 Y .

4.3 Sparsifying the Solution via Nyström Sampling

We will now use tools from Nyström Sampling to sparsify the solution obtained from Opti-
mzation Problem 5. To do so, we first recall the definition of effective dimension or degrees of
freedom for the kernel [46]:

Definition 9 (η-effective dimension). For a positive semidefinite m×m matrix K and param-
eter η, the η-effective dimension of K is defined as dη(K) = tr(K(K + ηmI)−1).

Various kernel approximation results have relied on this quantity, and here we state a recent
result due to [31] who gave the first application independent result that shows that there is an
efficient way of computing a set of columns of K such that K̄, a matrix constructed from the
columns is close in terms of 2-norm to the matrix K. More formally,

Theorem 10 ([31]). For kernel matrix K, there exists an algorithm that gives a set of
O (dη(K) log (dη(K)/δ)) columns, such that K̄ = KS(STKS)†STK where S is the matrix that
selects the specific columns, satisfies with probability 1− δ, K̄ � K � K̄ + ηmI.

It can be shown that K̄ is positive semi-definite. Also, the above implies ||K − K̄||2 ≤ ηm.
We use the decay to approximate the Kernel matrix with a low-rank matrix constructed using
the columns of K. Let K̄γ be the matrix obtained by applying Theorem 10 to Kγ for η > 0
and consider the following optimization problem,

Optimization Problem 6

minimize
α∈Rm

1

m
||K̄γα− Y ||22 + λαT K̄γα

The optimal solution for the above is ᾱγ =
(

K̄γ + λmI
)−1

Y . Since K̄γ = KγS(S
TKγS)

†STKγ ,
solving for the above enables us to get a solution α∗ = S(STKγS)

†STKγᾱγ , which is a k-sparse
vector for k = O (dη(Kγ) log (dη(Kγ)/δ)).

4.4 Bounding the Error of the Sparse Solution

We bound the additional error incurred by our sparse hypothesis α∗ compared to αB . To
do so, we bound the error for each of the approximations: sparsification, preconditioning and
lagrangian relaxation in the following lemma.

Lemma 11. The errors due to the following approximations can be bounded as follows.

1. Error due to sparsification: ||K̄γᾱγ − Y ||2 ≤ ||Kγαγ − Y ||2 + η
√
m

λ+γ

8



2. Error due to preconditioning: ||Kγαγ − Y ||2 ≤ ||Kα− Y ||2 + γ
√
m

λ+γ

3. Error due to lagrangian relaxation: ||Kα− Y ||2 ≤ ||KαB − Y ||2 +
√
λmB

Proof. The errors can be bounded as follows.

1. We have,

||K̄γᾱγ − Y ||2 − ||Kγαγ − Y ||2
≤ ||K̄γᾱγ −Kγαγ ||2 (2)

= ||K̄γ

(

K̄γ + λmI
)−1

Y −Kγ (Kγ + λmI)−1 Y ||2 (3)

= λm||
(

−
(

K̄γ + λmI
)−1

+ (Kγ + λmI)−1
)

Y ||2 (4)

= λm||
(

K̄γ + λmI
)−1 (

K̄γ −Kγ

)

(Kγ + λmI)−1 Y ||2 (5)

≤ λm||
(

K̄γ + λmI
)−1 ||2||K̄γ −Kγ ||2|| (K + (λ+ γ)mI)−1 ||2||Y ||2 (6)

≤ ||K̄γ −Kγ ||2
(λ+ γ)

√
m

≤ η
√
m

λ+ γ
. (7)

Here 2 follows from triangle inequality, 3 follows from substitution and 4 follows from
using A (A+ cI)−1 = (A+ cI − cI) (A+ cI)−1 = I − c (A+ cI)−1. 5 follows from a−1 −
b−1 = −a−1 (a− b) b−1 and 6 follows from ||AB||2 ≤ ||A||2||B||2. Lastly 7 follows from
||A−1||2 = λmin (A)

−1, λmin (A+ cI) ≥ c for psd A. We also use Kγ = K + γmI and
||Y ||2 ≤

√
m.

2. Similar to the above proof, we have,

||Kγαγ − Y ||2 − ||Kα− Y ||2
≤ ||Kγαγ −K(K + λmI)−1Y ||2 (8)

= ||Kγ (Kγ + λmI)−1 Y −K (K + λmI)−1 Y ||2 (9)

= λm|| (Kγ + λmI)−1 (Kγ −K) (K + λmI)−1 Y ||2 (10)

≤ λm|| (K + (λ+ γ)mI)−1 ||2||γmI||2|| (K + λmI)−1 ||2||Y ||2 (11)

≤ γ
√
m

λ+ γ
. (12)

3. Since α minimizes Optimization Problem 4, we have

||Kα− Y ||22 ≤||Kα− Y ||22 + λmαTKα (13)

≤ ||KαB − Y ||22 + λmαTBKαB (14)

≤ ||KαB − Y ||22 + λmB (15)

where the last inequality follows from αTBKαB ≤ B by the constraint of the bounded
optimization problem. Taking the square-root, we get,

||Kα− Y ||2 ≤
√

||KαB − Y ||22 + λmB ≤ ||KαB − Y ||2 +
√
λmB (16)

9



We now combine the above to give the following theorem.

Theorem 12 (Total Error). For λ = ǫ2

81B , η ≤ ǫ3

729B and γ ≤ ǫ3

729B , we have

1

m
||Kγα

∗ − Y ||22 ≤ 1

m
||KαB − Y ||22 + ǫ.

Proof. Note that K̄ᾱγ = Kγα
∗ by the definition of α∗, from the previous lemma, we have,

||K̄ᾱγ − Y ||2 − ||KαB − Y ||2 ≤
η
√
m

λ+ γ
+
γ
√
m

λ+ γ
+

√
λmB = β (17)

where β = (η+γ)
√
m

λ+γ +
√
λmB. Squaring and then dividing by m on both sides, we get

1

m
||K̄γ ᾱγ − Y ||22 ≤

1

m
||KαB − Y ||22 + 2

β

m
||KαB − Y ||2 +

β2

m
(18)

≤ 1

m
||KαB − Y ||22 + 2

β√
m

+
β2

m
(19)

≤ 1

m
||KαB − Y ||22 + 3

β√
m

(20)

The second inequality follows from ||KαB − Y ||22 ≤ ||Y ||22 ≤ m since 0 is a feasible solution for
Optimization Problem 3. The last inequality follows from assuming β√

m
≤ 1 which holds for

our choice of β. Setting the values in the lemma satisfies the last inequality gives us β ≤ ǫ
√
m
3

giving us the desired bound.

4.5 Computing the Sparsity of the Solution

To compute the sparsity of the solution, we need to bound dη(Kβ). We consider the following
different eigenvalue decays.

Definition 13 (Eigenvalue Decay). Let the real eigenvalues of a symmetric m×m matrix A
be denoted by λ1 ≥ · · · ≥ λm.

1. A is said to have (C, p)-polynomial eigenvalue decay if for all i ∈ {1, . . . ,m}, λi ≤
Ci−p.

2. A is said to have C-exponential eigenvalue decay if for all i ∈ {1, . . . ,m}, λi ≤ Ce−i.

Note that in the above definitions C and p are not necessarily constants. We allow C
and p to depend on other parameters (the choice of these parameters will be made explicit
in subsequent theorem statements). We can now bound the effective dimension in terms of
eigenvalue decay:

Theorem 14 (Bounding effective dimension). For γm ≤ η, the η-effective dimension of Kγ

can be bounded as follows,

1. If K/m has (C, p)-polynomial eigenvalue decay for p > 1 then dη(Kγ) ≤
(

C
(p−1)η

)1/p
+

2.

10



2. If K/m has C-exponential eigenvalue decay then dη(Kγ) ≤ log
(

C
(e−1)η

)

+ 2.

Proof. Observe that,

dη(Kγ) = tr(Kγ(Kγ + ηmI)−1)

=

m
∑

i=1

λi(Kγ)

λi(Kγ) + ηm

≤
j
∑

i=1

λi(Kγ)

λi(Kγ)
+

m
∑

i=j+1

λi(Kγ)

ηm

≤ j +
m
∑

i=j+1

γm+ λi(K)

ηm

≤ j + 1 +

m
∑

i=j+1

λi(K)

ηm

Here the second equality follows from trace of matrix being equal to the sum of the eigenvalues
and the last follows from γm ≤ η.

1. For (C, p)-polynomial eigenvalue decay with p > 1,

m
∑

i=k+1

λi(K)

ηm
=

m
∑

i=k+1

Ci−p

η
≤ C

η

∫ ∞

k+1
i−pdi =

C(k + 1)−p+1

(p− 1)η

Substituting j =
(

C
(p−1)η

)1/p
we get the required bound.

2. For C-exponential eigenvalue decay,

m
∑

i=k+1

λi(K)

ηm
=

m
∑

i=k+1

Ce−i

η
≤

∞
∑

i=k+1

Ce−i

η
=

Ce−k

(e− 1)η

Substituting j = log
(

C
(e−1)η

)

we get the required bound.

Remark: Based on the above analysis, observe that we only need the eigenvalue decay to
hold after the jth eigenvalue for j defined above. Thus the top j − 1 eigenvalues need not be
constrained.

5 Bounding the Size of the Compression Scheme

The above analysis gives us a sparse solution for the problem and, in turn, an ǫ-approximation
for the error on the overall sample S with probability 1− δ. We can now fully define our com-
pression scheme for the hypothesis class Hψ with respect to samples satisfying the eigenvalue
decay property.

11



• Selection Scheme κ: Given input S = (xi, yi)
m
i=1,

1. Use RLS-Nyström Sampling [31] to compute K̄γ = KγS(S
TKγS)

†STKγ for η =
ǫ3

5832B and γ = ǫ3

5832Bm . Let I be the sub-sample corresponding to the columns
selected using S.

2. Solve Optimization Problem 6 for λ = ǫ2

324B to get ᾱγ .

3. Compute the |I|-sparse vector α∗ = S(STKγS)
†STKγᾱγ = K−1

γ K̄γᾱγ (Kγ is in-
vertible as all eigenvalues are non-zero).

4. Output subsample I along with α̃∗ which is α∗ truncated to precision ǫ
4M |I| per

non-zero index.

• Reconstruction Scheme ρ: Given input subsample I and α̃∗, output hypothesis,

hS(x) = clip0,1(w
T α̃∗)

where w is a vector with entries K(xi,x) + γm1[x = xi] for i ∈ I and 0 otherwise where

γ = ǫ3

5832Bm . Note, clipa,b(x) = max(a,min(b, x)) for some a < b.

The size of the above scheme can be bounded using the following lemma.

Lemma 15. The bit complexity of the side information of the selection scheme κ given above

is O
(

d log
(

d
δ

)

log
(√

mBMd log(d/δ)
ǫ4

))

where d is the η-effective dimension of Kγ for η = ǫ3

5832B

and γ = ǫ3

5832Bm .

Proof. From the selection scheme we can bound the norm of α∗ = K−1
γ K̄γᾱγ for γ = ǫ3

5832Bm ,
the side information, as follows,

||α∗||2 = ||K−1
γ K̄γᾱγ ||2 (21)

= ||K−1
γ K̄γ(K̄γ + λmI)−1Y ||2 (22)

≤ ||K−1
γ ||2||K̄γ(K̄γ + λmI)−1||2||Y ||2 (23)

≤ 1

γm
· 1 · √m (24)

=
1

γ
√
m

=
5832

√
mB

ǫ3
. (25)

Thus we can upper bound the bit complexity of the non-decimal part of α∗ as,

∑

i∈I
log (|α∗

i |) =
1

2

|I|
∑

i=1

log
(

(α∗
i )

2
)

≤ |I|
2

log

(

∑|I|
i=1 (α

∗
i )

2

|I|

)

≤ |I| log
(

||α∗||2
√

|I|

)

≤ |I| log
(

5832
√
mB

ǫ3

)

where |I| = O
(

d log
(

d
δ

))

according to Theorem 10. Since each non-zero index has ǫ
4M |I|

precision, we need |I| log
(

4M |I|
ǫ

)

bits for the decimal part. Combining the two-parts we get

the required bound.
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The following theorem shows that the above is a compression scheme for Hψ.

Theorem 16. (κ, ρ) is an (ǫ, δ)-approximate agnostic compression scheme for the hypothesis

class Hψ for sample S of size k(m, ǫ, δ,B,M) = O
(

d log
(

d
δ

)

log
(√

mBMd log(d/δ)
ǫ4

))

where d is

the η-effective dimension of Kγ for η = ǫ3

5832B and γ = ǫ3

5832Bm .

Proof. For S = (xi, yi)
m
i=1 and hS the output of the compression scheme, we have

1

m

m
∑

i=1

(hS(xi)− yi)
2 ≤ 1

m

m
∑

i=1





∑

j∈I
(K(xj ,xi) + γm1[xj = xi])α̃

∗
j − yi





2

(26)

≤ 1

m

m
∑

i=1





∑

j∈I
(K(xj ,xi) + γm1[xj = xi])α

∗
j − yi





2

+
ǫ

2
(27)

=
1

m
||Kγα

∗ − Y ||22 +
ǫ

2
(28)

=
1

m
||K̄γᾱγ − Y ||22 +

ǫ

2
(29)

=
1

m
||KαB − Y ||22 +

ǫ

2
+
ǫ

2
(30)

= min
h∈Hψ

(

1

m

m
∑

i=1

(h(xi)− yi)
2

)

+ ǫ (31)

Here 26 follows from the fact that since the output is in [0, 1] clipping only reduces the loss,
27 follows from the precision used while compressing and since square loss is 2-Lipschitz, 28
follows from representing it in the matrix form, 29 follows since α∗ = K−1

γ K̄γᾱγ by definition,
30 follows from Theorem 12 with the given parameters satisfying the theorem for ǫ/2 and lastly
31 follows from the definition of αB . Thus, this gives us our result.

6 Putting It All Together: From Compression to Learning

We now present our final algorithm: Compressed Kernel Regression (Algorithm 1). Note that
the algorithm is efficient and takes at most O(m3) time.

For our learnability result, we restrict distributions to those that satisfy eigenvalue decay.
More formally,

Definition 17 (Distribution Satisfying Eigenvalue Decay). Consider distribution D over X
and kernel function kψ. Let S be a sample drawn i.i.d. from the distribution D and K be the
empirical gram matrix corresponding to kernel function kψ on S.

• D is said to satisfy (C, p,N)-polynomial eigenvalue decay if with probability 1− δ over the
drawn sample of size m ≥ N , K/m satisfies (C, p)-polynomial eigenvalue decay.

• D is said to satisfy (C,N)-exponential eigenvalue decay if with probability 1− δ over the
drawn sample of size m ≥ N , K/m satisfies C-exponential eigenvalue decay.

Our main theorem proves generalization of the hypothesis output by Algorithm 1 for dis-
tributions satisfying eigenvalue decay in the above sense.
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Algorithm 1 Compressed Kernel Regression

Input: Samples S = (xi, yi)
m
i=1, gram matrix K on S, constants ǫ, δ > 0, norm bound B

and maximum kernel function value M on X .
1: Using RLS-Nyström Sampling [31] with input (Kγ , ηm) for γ = ǫ3

5832Bm and η = ǫ3

5832B
compute K̄γ = KγS(S

TKγS)
†STKγ . Let I be the subsample corresponding to the columns

selected using S. Note that the number of columns selected depends on the η effective
dimension of Kγ .

2: Solve Optimization Problem 6 for λ = ǫ2

324B to get ᾱγ over S
3: Compute α∗ = S(STKγS)

†STKγᾱγ = K−1
γ K̄γᾱγ

4: Compute α̃∗ by truncating each entry of α∗ up to precision ǫ
4M |I|

Output: hS such that for all x ∈ X , hS(x) = clip0,1(w
T α̃∗) where w is a vector with

entries K(xi,x) + γm1[x = xi] for i ∈ I and 0 otherwise.

Theorem 18 (Formal for Theorem 1). Fix function class C with output bounded in [0, 1] and
M -bounded kernel function kψ such that C is ǫ0-approximated by Hψ = {x → 〈v, ψ(x)〉|v ∈
Kψ, 〈v, v〉 ≤ B} for some ψ,B. Consider a sample S = {(xi, yi)mi=1} drawn i.i.d. from D on
X × [0, 1]. There exists an algorithm A that outputs hypothesis hS = A(S), such that,

1. If DX satisfies (C, p,m)-polynomial eigenvalue decay with probability 1 − δ/4 then with
probability 1− δ for m = Õ((CB)1/p log(M)/ǫ2+3/p),

E(x,y)∼D(hS(x)− y)2 ≤ min
c∈C

(

E(x,y)∼D(c(x)− y)2
)

+ 2ǫ0 + ǫ

2. If DX satisfies (C,m)-exponential eigenvalue decay with probability 1 − δ/4 then with
probability 1− δ for m = Õ(logCB log(M)/ǫ2),

E(x,y)∼D(hS(x)− y)2 ≤ min
c∈C

(

E(x,y)∼D(c(x)− y)2
)

+ 2ǫ0 + ǫ

Algorithm A runs in time poly(m,n).

Proof. Since C is ǫ0-approximated by Hψ we have,

min
h∈Hψ

(

1

m

m
∑

i=1

(h(xi)− yi)
2

)

≤ min
c∈C

(

1

m

m
∑

i=1

(c(xi)− yi)
2

)

+ 2ǫ0 ≤
1

m

m
∑

i=1

(c∗(xi)− yi)
2 + 2ǫ0

where c∗ ∈ C be such that it minimizes E(x,y)∼D(c(x) − y)2 over all c ∈ C. The first inequality
follows from square loss being 2-Lipschitz and the last inequality follows from c∗ being a feasible
solution.

Let K be the empirical gram matrix corresponding to kψ on S. Let hS be the hypothesis
output by Algorithm 1 with input (S,K, ǫ1, δ/4, B,M) for ǫ1 > 0 chosen later. From Theorem
16 with probability 1− δ/4, we have

1

m

m
∑

i=1

(hS(xi)− yi)
2 ≤ min

h∈Hψ

(

1

m

m
∑

i=1

(h(xi)− yi)
2

)

+ ǫ1.
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We know that for every c ∈ C, the square loss is bounded by 1, thus using Chernoff-Hoeffding
inequality, with probability 1− δ/4, we have

1

m

m
∑

i=1

(c∗(xi)− yi)
2 ≤ E(x,y)∼D(c

∗(x)− y)2 + ǫ2

where ǫ2 =

√

log(4/δ)
2m .

Now the output of hS lies in [0, 1] thus for all (x, y), (y−hS(x))2 lies in [0, 1]. Thus viewing
hS as the output of the compression scheme (κ, ρ) of size k (Theorem 16), by Theorem 7, we
have with probability 1− δ/4,

∣

∣

∣

∣

∣

E(x,y)∼D(hS(x)− y)2 − 1

m

m
∑

i=1

(hS(xi)− yi)
2

∣

∣

∣

∣

∣

≤

√

√

√

√

ǫ3
m

m
∑

i=1

(hS(xi)− yi)2+ǫ3 ≤ ǫ3+
√
ǫ3 ≤ 2

√
ǫ3

where ǫ3 = 50 · k log(m/k)+log(4/δ)
m .

Combining the above, we have with probability 1− δ,

E(x,y)∼D(hS(x)− y)2 ≤ 1

m

m
∑

i=1

(hS(xi)− yi)
2 + 2

√
ǫ3 (32)

≤ min
h∈Hψ

(

1

m

m
∑

i=1

(h(xi)− yi)
2

)

+ ǫ1 + 2
√
ǫ3 (33)

≤ 1

m

m
∑

i=1

(c∗(xi)− yi)
2 + 2ǫ0 + ǫ1 + 2

√
ǫ3 (34)

≤ min
c∈C

(

E(x,y)∼D(c(x)− y)2
)

+ 2ǫ0 + ǫ1 + ǫ2 + 2
√
ǫ3 (35)

Using Theorem 14 we can bound k depending on the different eigenvalue decay assumption.
Now we set ǫ1 = ǫ/3 and substituting for m. Recall that ǫ2 and ǫ3 are functions of m and for
the chosen m, they are bounded by ǫ/3 giving us the desired bound. Since Algorithm 1 runs
in time poly(m, n) we get the required time complexity.

Remark: The above theorem can be extended to different rates of eigenvalue decay. For
example, it can be shown that finite rank r would give a bound independent of B but dependent
instead on r. Also, as in the proof of Theorem 14, it suffices for the eigenvalue decay to hold
only for i sufficiently large.

7 Learning Neural Networks

Here we apply our main theorem to the problem of learning neural networks. For technical
definitions of neural networks, we refer the reader to [47]. We define the class of neural networks
as follows.

Definition 19 (Class of Neural Networks [16]). Let N [σ,D,W, T ] be the class of fully-connected,
feed-forward networks with D hidden layers, activation function σ and quantities W and T de-
scribed as follows:
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1. Weight vectors in layer 0 have 2-norm bounded by T .

2. Weight vectors in layers 1, . . . ,D have 1-norm bounded by W .

3. For each hidden unit σ(w · z) in the network, we have |w · z| ≤ T (by z we denote the
input feeding into unit σ from the previous layer).

We consider activation functions σrelu(x) = max(0, x) and σsig = 1
1+e−x , though other

activation functions fit within our framework. Goel et al. [16] showed that the class of Re-
LUs/Sigmoids along with their compositions can be approximated by linear functions in a high
dimensional Hilbert space (corresponding to a particular type of polynomial kernel). We use
the following theorem that follows directly from the structural results in [16] (and uses the
composed-kernel technique of Zhang et al. [47]).

Theorem 20. Consider the following hypothesis class HMKd
= {x → 〈v, ψ(x)〉|v ∈ KMKd

, 〈v, v〉 ≤
B} where KMKd

is the Hilbert space corresponding to the Multinomial Kernel 2 and ψ is
the corresponding feature vector. For D > 0, consider the composed class H(D) = {x →
〈v, ψ(D)(x)〉|v ∈ K(D), 〈v, v〉 ≤ B} where ψ(D) is the feature vector of the D-times composed
kernel K(D) 3. Then for X = S

n−1,

1. Single ReLU: Crelu = N [σrelu, 0, ·, 1] is ǫ-approximated by Hd for d = O(1/ǫ) and
B = 2(τ/ǫ) with M = d+ 1,

2. Network of ReLUs: Crelu−D = N [σrelu,D,W, T ] is ǫ-approximated by H(D) for B =

2(τW
DDT/ǫ)D with M = 2,

3. Network of Sigmoids: Csig−D = N [σsig,D,W, T ] is ǫ-approximated by H(D) for B =

2(τT log(WDD/ǫ))D with M = 2,

for some sufficiently large constant τ > 0.

As mentioned earlier, the sample complexity of prior work depends linearly on B, which,
for even a single ReLU, is exponential in 1/ǫ. Assuming sufficiently strong eigenvalue decay,
we can show that we can obtain fully polynomial time algorithms for the above classes.

Theorem 21. For ǫ, δ > 0, consider D on S
n−1 × [0, 1] such that,

1. For Crelu, DX satisfies (C, p,m)-polynomial eigenvalue decay for p ≥ ξ/ǫ,

2. For Crelu−D, DX satisfies (C, p,m)-polynomial eigenvalue decay for p ≥ (ξWDDT/ǫ)D,

3. For Csig−D, DX satisfies (C, p,m)-polynomial eigenvalue decay for p ≥ (ξT log(WDD/ǫ)))D,

where DX is the marginal distribution on X = S
n−1, ξ > 0 is some sufficiently large constant

and C ≤ (n · 1/ǫ)ζp for some constant ζ > 0. The value of m is obtained from Theorem 18 as
m = Õ((CB)1/p log(M)/ǫ2+3/p) where the values of B,M are derived from Theorem 20.

Each decay assumption above implies an algorithm for agnostically learning the correspond-
ing class on S

n−1 × [0, 1] with respect to the square loss in time poly(n, 1/ǫ, log(1/δ)).

2The multinomial kernel defined by [16] is MKd(x,x
′) =

∑d

i=0(x · x′)i.
3[47] defined kernel K(1)(x,x′) = 1

2−(x·x′)
. The corresponding composed kernel function is defined as

K(D)(x,x′) = 1

2−K(D−1)(x,x′)
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Proof. The proof follows from applying Theorem 18 to the appropriate kernel from Theorem
20 and substituting the corresponding eigenvalue decays to compute the sample size needed
by Algorithm 1 for learnability. For example, for the case of single ReLU, M = poly(1/ǫ),
B = 2(τ/ǫ) and we take p ≥ ξ/ǫ. So for any C = (n · 1/ǫ)ζp, we obtain sample complexity
m = Õ((C2(τ/ǫ))1/p log(M)/ǫ2+3/p) = poly(n, 1/ǫ). Since the algorithm takes time at most
poly(m,n), we obtain the required result.

Note that assuming an exponential eigenvalue decay (stronger than polynomial) will result
in efficient learnability for much broader classes of networks.

Since it is not known how to agnostically learn even a single ReLU with respect to arbitrary
distributions on S

n−1 in polynomial-time4, much less a network of ReLUs, we state the following
corollary highlighting the decay we require to obtain efficient learnability for simple networks:

Corollary 22 (Restating Corollary 2). Let C be the class of all fully-connected networks of
ReLUs with one-hidden layer of size ℓ feeding into a final output ReLU activation where the
2-norms of all weight vectors are bounded by 1. Then, (suppressing the parameter m for sim-
plicity), assuming (C, i−ℓ/ǫ)-polynomial eigenvalue decay for C = poly(n, 1/ǫ, ℓ), C is learnable
in polynomial time with respect to square loss on S

n−1. If ReLU is replaced with sigmoid, then

we require eigenvalue decay of i−
√
ℓ log(

√
ℓ/ǫ).

Proof. By assumption the 2-norm of each weight vector is bounded by 1, which implies that
the 1-norm of the weight vector to the one hidden unit at layer two is at most

√
ℓ. Also observe

that, the maximum 2-norm of any input vector z to a hidden unit with weight vector w is
bounded by

√
ℓ hence |w · x| ≤

√
ℓ. Using these properties we can apply Theorem 21 with

parameters W =
√
ℓ, T =

√
ℓ and D = 1 to obtain the required result.

8 Conclusions and Future Work

We have proposed the first set of distributional assumptions that guarantee fully polynomial-
time algorithms for learning expressive classes of neural networks (without restricting the struc-
ture of the network). The key abstraction was that of a compression scheme for kernel approx-
imations, specifically Nyström sampling. We proved that eigenvalue decay of the Gram matrix
reduces the dependence on the norm B in the kernel regression problem.

Prior distributional assumptions, such as the underlying marginal equaling a Gaussian,
neither lead to fully polynomial-time algorithms nor are representative of real-world data sets5.
Eigenvalue decay, on the other hand, has been observed in practice and does lead to provably
efficient algorithms for learning neural networks.

A natural criticism of our assumption is that the rate of eigenvalue decay we require is
too strong. In some cases, especially for large depth networks with many hidden units, this
may be true6. Note, however, that our results show that even moderate eigenvalue decay will

4Goel et al. [16] show that agnostically learning a single ReLU over {−1, 1}n is as hard as learning sparse
parities with noise. This reduction can be extended to the case of distributions over S

n−1 [3].
5Despite these limitations, we still think uniform or Gaussian assumptions are worthwhile and have provided

highly nontrivial learning results.
6It is useful to keep in mind that agnostically learning even a single ReLU with respect to all distributions

seems computationally intractable, and that our required eigenvalue decay in this case is only a function of the
accuracy parameter ǫ.
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lead to improved algorithms. Further, it is quite possible our assumptions can be relaxed. An
obvious question for future work is what is the minimal rate of eigenvalue decay needed for
efficient learnability? Another direction would be to understand how these eigenvalue decay
assumptions relate to other distributional assumptions.

Acknowledgements. We would like to thank Misha Belkin and Nikhil Srivastava for very
helpful conversations regarding kernel ridge regression and eigenvalue decay. We also thank
Daniel Hsu, Karthik Sridharan, and Justin Thaler for useful feedback. The analogy between
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