

require backpropogation to train the NN upon the receipt of

each reward which is extremely computation and memory

heavy.

Bringing general-purpose AI to autonomous edge devices

requires a co-design of the algorithm and architecture to

synergistically solve all four challenges listed above. This work

attempts to do that. We present GENESYS, a system targeted

towards energy-efficient acceleration of neuro-evolutionary

(NE) algorithms. NE algorithms are akin to RL algorithms,

but attempt to “evolve” the topology and weights of a NN via

genetic algorithms, as shown in Fig. 2. NEs show surprisingly

high robustness against the first 3 challenges mentioned earlier,

and have seen a resurgence over the past year through work by

OpenAI [3], Google Brain [4] and Uber AI Labs [5]. However,

these demonstrations have still relied on big compute and

memory (challenge #4), which we attempt to solve in this

work via clever HW-SW co-design. We make the following

contributions:

• We characterize a NE algorithm called NEAT [6], identify-

ing the compute and memory requirements across a suite

of environments from OpenAI gym [7].

• We identify opportunities for parallelism (population-level

parallelism or PLP and gene-level parallelism or GLP) and

data reuse (genome-level reuse or GLR) unique to NE

algorithms, providing architects with insights on designing

efficient systems for running such algorithms.

• We discuss the key attributes of compute and communica-

tion within NE algorithms that makes them inefficient to

run on GPUs and other DNN accelerators. We design two

novel accelerators, EVOLUTION ENGINE (EVE) and AC-

CELERATOR FOR DENSE ADDITION & MULTIPLICATION

(ADAM), optimized for running the learning and inference

of NE respectively in hardware, presenting architectural

trade-offs along the way. Fig. 1(b) shows an overview.

• We build a GENESYS SoC in 15nm, and evaluate it against

optimized NE implementations over latest embedded and

desktop CPUs and GPUs. We observe 2-5 orders of

magnitude improvement in runtime and energy-efficiency.

Just like optimized hardware ushered in the Deep Learning

revolution, we believe that GENESYS and subsequent follow

on work can enable mass deployment of intelligent devices at

the edge capable of learning autonomously.

II. BACKGROUND

Before we start with the description of our work, we would

like to give a brief introduction to some concepts which we

hope will help the reader to appreciate the following discussion.

A. Supervised Learning

Supervised learning is arguably the most widely used

learning method used at present. It involves creating a ‘policy

function” (e.g., a NN topology) (via a process of trial and error

by ML researchers) and then running it through tremendous

amounts of labelled data. The output of the model is computed

for a given set of inputs and compared against an existing label

to generate an error value. This error is then backpropogated [8]

(BP) via the NN to compute error gradients and update weights.

This is done iteratively till convergence is achieved.

Supervised learning has the following limitations as the

learning/training engine for general purpose AI:

• Dependence on large structured & labeled datasets to

perform effectively without overfitting [9], [10]

• Effectiveness is heavily tied to the NN topology, as we

witnessed with deeper convolution topologies [11], [12]

that led to the birth of Deep Learning.

• Extreme compute and memory requirements [13], [14]. It

often takes weeks to train a deep network on a compute

cluster consisting of several high end GPUs.

B. Reinforcement Learning (RL)

Reinforcement learning is used when the structure of the

underlying policy function is not known. For instance, suppose

we have a a robot learning how to walk. The system has

a finite set of outputs (say which leg to move when and

in what direction), and the aim is to learn the right policy

function so that the robot moves closer to its target destination.

Starting with some random initialization, the agent performs a

set of actions, and receives an reward from the environment

for each of them, which is a metric for success or failure for

the given goal. The goal of the RL algorithm is to update

its policy such that future reward could be maximized. This

is done by iteratively perturbing the actions and computing

the corresponding update to the NN parameters via BP. RL

algorithms can learn in environments with scarce datasets and

without any assumption on the underlying NN topology, but the

reliance on BP makes them computationally very expensive.

C. Evolutionary Algorithms (EA)

Evolutionary algorithms get their name from biological

evolution, since at an abstract level they be seen as sampling

a population of individuals and allowing the successful in-

dividuals to determine the constitution of future generations.

Fig. 3(a) illustrates the flow. The algorithm starts with a pool

of individuals/agents, each one of which independently tries to

perform some action on the environment to solve the problem.

Each individual is then assigned a fitness value, depending

upon the effectiveness of the action(s) taken by them. Similar

to biological systems, each individual is called a genome, and

is represented by a list of parameters called genes that each

encode a particular characteristic of the individual. After the

fitness calculation is done for all, next generation of individuals

are created by crossing over and mutating the genomes of

the parents. This step is called reproduction and only a few

individuals, with highest fitness values are chosen to act as

parents in-order to ensure that only the fittest genes are passed

into the next generation. These steps are repeated multiple

times until some completion criteria is met.

Mathematically EAs can be viewed as a class of black-box

stochastic optimization techniques [3], [5]. The reason they

are “black-box” is because they do not make any assumptions

about the structure of the underlying function being optimized,

they can only evaluate it (like a lookup function). This leads

Create parent pool

Add to

offspring pool
Choose parents MutationCrossover

Num

offsprings

= N?

START

STOP

Yes

Probability Probability

No

Interaction with

environment

Start

Stop

Desired

fitness

achieved?

Reproduce next

generation

Generate intial

population

Evaluate

population fitness

NEAT

Yes

No

Fitness

Function

Child Genomes

Parent Genomes

Operation Description

Crossover

Mutation: Perturb

Mutation: Add

Gene

Mutation: Delete

Gene

Change the attributes of the child

gene by perturbing the values by

small amounts

Remove a node or a connection

from the child genome

Add a new gene in the child

genome with default attributes

Create a new gene by picking up

attributes from parent genes based

on relative fitness of parents

(d)(b)(a)

configurable parameters

(c)

Genome

Gene

Fig. 3: (a) Flow chart of an evolutionary algorithm (b) The NEAT algorithm (c) Genes & Genomes in context of NNs (d) Ops in NEAT.

to the fundamental difference between RL and EA. Both try to

optimize the expected reward, but RL perturbs the action space

and uses backpropagation (which is computation and memory

heavy) to compute parameter updates, while EA perturbs the

parameter space (e.g., nodes and connections inside a NN)

directly. The “black-box” property makes EAs highly robust -

the same algorithm can learn how to solve various problems

as from the algorithm’s perspective the task in hand remains

the same: perturb the parameters to maximize reward.

D. The NEAT Algorithm

TWEANNS are a class of EAs which evolve both the

topology and weights for given NN simultaneously. Neuro-

Evolution for Augmented Topologies (NEAT) is one of the

algorithms in this class developed by Stanley et al [6]. We use

NEAT to drive the system architecture of GENESYS in this

work, though it can be extended to work with other TWEANNs

as well. Fig. 3(b) depicts the steps and flow of the NEAT

algorithm, and Fig. 3(d) lists the terminology we will use

throughout this text.

Population. The population in NEAT is the set of NN

topologies in every generation that each run in the environment

to collect a fitness score.

Genes. The basic building block in NEAT is a gene, which

can represent either a NN node (i.e., neuron), or a connection

(i.e., synapse), as shown in Fig. 3(c). Each node gene can

uniquely be described by an id, the nature of activation (e.g.,

ReLU) and the bias associated with it. Each connection can

be described by its starting and end nodes, and its hyper-

parameters (such as weight, enable).

Genome. A collection of genes that uniquely describes one

NN in the population, as Fig. 3(c) highlights.

Initialization. NEAT starts with a initial population of very

simple topologies comprising only the input and the output

layer. It evolves into more complex and sophisticated topologies

using the mutation and crossover functions.

Mutation. Akin to biological operation, mutation is the

operation in which a child gene is generated by tweaking the

parameters of the parent gene. For instance, a connection gene

can be mutated by modifying the weight parameter of the

parent gene. Mutations can also involve addition or deletion

of genes, with a certain probability.

Crossover. Crossover is the name of the operation in which

a child gene for the next generation is created by cherry picking

parameters from two parent genes.

Speciation and Fitness Sharing. Evolutionary algorithms

in essence work by pitting the individuals against each other

in a given population and competitively selecting the fittest.

However, it is not difficult to see that this scheme can

prematurely prune individuals with useful topological features

just because the new feature has not been optimized yet

and hence did not contribute to the fitness. NEAT has two

interesting features to counteract that, called speciation and

fitness sharing. Speciation works by grouping a few individuals

within the population with a particular niche. Within a species,

the fitness of the younger individuals is artificially increased

so that they are not obliterated when pitted against older, fitter

individuals, thus ensuring that the new innovations are protected

for some generations and given enough time to optimize. Fitness

sharing is augmenting fitness of young genomes to keep them

competitive.

III. COMPUTATIONAL BEHAVIOR OF EAS

This section characterizes the computational behavior of

EAs, using NEAT as a case study, providing specific insights

relevant for computer architects.

A. Target Environments

We use a suite of environments described in Table I from

OpenAI gym [7]. Each of these environments involves a

learning task, which we ran through an open-source python

implementation of NEAT [15].

B. Accuracy and Robustness

All experiments start with the same simple NN topology

- a set of input nodes (equal to the observation space of the

environment) and a set of output nodes (equal to the action

space of the environment). These are fully-connected but the

weight on each connection is set to zero. We ran the same

codebase for different applications, changing only the fitness

function between these different runs. All environments reached

the target fitness - demonstrating the robustness of NEAT1.

Fig. 4(a) demonstrates the evolution behavior of four of these

environments across multiple runs. We make two observations.

First, across environments, there can be variance in the average

1We also ran the same environments with open-source implementations of
A3C and DQN, two popular RL algorithms, and found that certain OpenAI
environments never converged, or required a lot of tuning of the RL parameters
for them to converge. However, a comprehensive comparison of RL vs. NE is
beyond the scope of this paper.

following an evolution step, multiple genomes undergo the

inference step concurrently (Fig. 3(a)). As there is no depen-

dence within the genomes, a different opportunity of parallelism

arises. We term this as population level parallelism (PLP).

D. Memory Behavior

Fig. 4(b) plots the total number of genes as the NN evolves.

1) Memory Footprint.

It is important to note that the memory footprint for EAs at

any time is simply the space required to store all the genes of all

genomes within a generation. The algorithm does not need to

store any state from the previous generations (which effectively

gets passed on in the form of children) to perform the learning.

From a learning/training point of view, this makes EAs highly

attractive - they can have much lower memory footprint than BP,

which requires error gradients and datasets from past epochs

to be stored in order to run stochastic gradient descent. From

an inference point of view, however, the lack of regularity

and layer structure means that genomes cannot be encoded as

efficiently as convolutional neural networks today are. There

have been other NE algorithms such as HyperNEAT [16] which

provide a mechanism to encode the genomes more efficiently,

which can be leveraged if need be.

For all the applications in the Open AI gym we looked

at, the overall memory footprint per generation was less than

1MB, as Fig. 5(b) shows. While larger applications may have

larger memory footprints per generation, the total memory is

still expected to be much less than that required by training

algorithms due to the reasons mentioned above, enabling a lot

of the memory required by the EA to be cached on-chip.

2) Communication Bandwidth

Leveraging GLP and PLP requires streaming millions of

genes to compute units, increasing the memory bandwidth

pressure. Caching the necessary genes/genomes on-chip, and

leveraging a high-bandwidth network-on-chip (NoC) can help

provide this bandwidth, as we demonstrate via GENESYS.

3) Opportunity for Data Reuse

Data reuse is one of the key techniques used by most

accelerators [17]. Unlike DNN inference accelerators which

have regular layers like convolutions that directly expose reuse

across filter weights, the NN itself is expected to be highly

irregular in an evolutionary algorithm. However, we identify

a different kind of reuse: genome level reuse (GLR). In

every generation, the same fit parent is often used to generate

multiple children. We quantify this opportunity in Fig. 5(c).

For most applications, the fittest parent in every generation

was reused close to 20 times, and for some applications like

Cartpole and Lunar lander, this number increased up to 80. In

other words, one parent genome was used to generate 80 of

the 150 children required in the next generation, offering a

tremendous opportunity to read this genome only once from

memory and store it locally. This can save both energy and

memory bandwidth.

TABLE II: Comparing DQN with EA

DQN EA

Compute 3M MAC ops in forward pass, 680K

gradient calculations in BP

115K MAC ops in inference, 135K

crossover + mutations in evolution

Memory 50 MB for replay memory of 100

entries, 4 MB for parameters and

activation given mini-batch size of 32

<1MB to fit entire generation

Parallelism MAC and gradient updates can paral-

lelized per layer

GLP and PLP as described in Sec-

tion III-C2 and Section III-C1

Regularity Dense CNN with high regularity and

opportunity of reuse

Highly sparse and irregular net-

works

E. A case for acceleration
In this section we present the key takeaways from the

compute and memory analysis of EA. We also compare

compute-memory requirements of EA with conventional RL in

Table II with DQN [18] as a candidate, both running ATARI.

We notice that EA has both low memory and compute cost

when compared to DQN. Given the the reasonable memory

foot print (less than 1MB for the applications we looked at) and

GLR opportunity, it is evident that a sufficiently sized on chip

memory can help remove/reduce off-chip accesses significantly,

saving both energy and bandwidth. Also the compute operations

in EA (crossover and mutations) are simple and hardware

friendly. Furthermore, the absence of gradient calculation and

significant communication overheads facilitate scalability [3],

[5]. The inference phase of EAs is akin to graph processing or

sparse matrix multiplication, and not traditional dense GEMMs

like conventional DNNs, dictating the choice of the hardware

platform on which they should be run.

If we can reduce the energy consumption of the compute

ops by implementing them in hardware, pack a lot of compute

engines in a small form factor, and store all the genomes

on-chip, complex behaviors can be evolved even in mobile

autonomous agents. This is what we seek to do with GENESYS,

which we present next.

IV. GENESYS: SYSTEM AND MICROARCHITECTURE

A. System overview

GENESYS is a SoC for running evolutionary algorithms in

hardware. This is the first system, to the best of our knowledge,

to perform evolutionary learning and inference on the same

chip. Fig. 6 present an overview of our design. There are four

main components on the SoC:

• Learning Engine (EvE): EvE is the accelerator proposed in

this work. It is responsible for carrying out the selection and

reproduction part of the NEAT algorithm parts of the NEAT

algorithm across all genomes of the population. It consists

of a collection of processing elements (PEs), designed for

power efficient implementation of crossover and mutation

operations. Along with the PEs, there is a gene split unit to

split the parent genome into individual genes, an on-chip

interconnect to send parent genes to the PEs and collect

child genes, and a gene merge unit to merge the child genes

into a full genome.

• Inference Engine (ADAM): We observed in Section III-C2,

the neural nets generated by NEAT are highly irregular in

nature. This irregularity deems traditional DNN accelerators

unfit for inference in this case, as they are optimized with

• Step 9: The PEs receive the parent genes from the

interconnect, perform crossovers and mutations to produce

the child genes, and send these genes back to interconnect.

• Step 10: The gene merge logic organizes the child genes

and produces the entire genome. Then this genome is

written back into the genome buffer, overwriting the

genomes from the previous generation. As each child

genome becomes ready, it can be launched over ADAM

once again, repeating the whole process.

The system stops when the CPU detects that the target

fitness for that application has been achieved. Steps 1 to 6 can

leverage PLP, while steps 8 to 10 can leverage GLP. Step 7

(fittest parent selection) is the only serial step.

C. Microarchitecture of EVE

1) Gene Level Parallelism (GLP)
We leverage parallelism within the evolutionary part - namely

at the gene level. As discussed earlier, the operations in an

EA can broadly be categorized in two classes: crossover and

mutation. In NEAT, there are three kinds of mutations (per-

turbations, additions and deletions). These four operations are

described in Fig. 3(d). While these four operations themselves

are serial, they do not have any dependence with other genes.

Moreover, the high operation counts per generation (Fig. 5(a))

indicates massive GLP which we exploit in our proposed

microarchitecture via multiple PEs.

2) Gene Encoding
Fig. 6 shows the structure for a gene we use in our design.

NEAT uses two types of genes to construct a genome, a node

gene which describe vertices and the connection gene which

describe the edges in the neural network graph. We use 64 bits

to capture both types of genes. Node genes have four attributes

- {Bias, Response, Activation, Aggregation} [6]. Connection

genes have two attributes - source and destination node ids.

3) Processing Element (PE)
Fig. 6 shows the schematic of the EvE PE. It has a four-

stage pipeline. These stages are shown in Fig. 7. Perturbation,

Delete Gene and Add Gene are three kinds of mutations that

our design supports.

Crossover Engine. The crossover engine receives two genes,

one from each parent genome. As described in Section II-D,

crossover requires picking different attributes from the parent

genome to construct the child genome. The random number

from the PRNG is compared against a bias and used to select

one of the parents for each of the attributes. We provide the

ability to program the bias, depending on which of the two

parents contributes more attributes (i.e., is preffered) to the

child. The default is 0.5. This logic is replicated for each of

the 4 attributes.

Perturbation Engine. A perturbation probability is used to

generate a set of mutated values for each of the attributes in

the child gene that was generated by the crossover engine.

Delete Gene Engine. There are two types of genes in a

given genome - node and connection - and implementing

gene deletion for each of them differs. Irrespective of the

type, the decision to delete a gene is taken by comparing the

deletion probability with a number generated by PRNG. For

node deletion, in addition to the probability, the number of

previously deleted nodes is also checked. If a threshold amount

of nodes are previously deleted, no mode deletion happens

in order to keep the genome alive. If not then the node is

nullified and its ID is stored. This ID is later compared with

the source and destination IDs of any of the connection genes

to ensure no dangling connection exist in the genome. Deletion

of connections, is fairly straight forward, but deletion decision

is taken either by comparing the gene IDs as mentioned above

or by comparing deletion probabilities.

Add Gene Engine. This is the fourth and final stage of the

PE pipeline. As in the case of the previous stage, depending

upon the type of the gene, the implementation varies. To

add a new node gene, the logic inserts a new gene with

default attributes and a node ID greater than any other node

present in the network. Additionally two new connection genes

are generated and the incoming connection gene is dropped.

The addition of a new connection gene is carried out in two

cycles. When a new connection gene arrives, the selection logic

compares a random number with the addition probability. If the

random number is higher, then the source of the incoming gene

is stored. When the next connection gene arrives, the logic

reads the destination for that gene, appends the stored source

value and default attributes, and creates a new connection gene.

This mechanism ensures that any new connection gene that is

added by this stage always has valid source and destinations.

4) Gene Movement

Here, we describe the blocks that manage gene movement.

Gene Selector. As we discussed in Section II-D, only a

few individuals in a given population get the opportunity to

contribute towards the reproduction of the next generation. In

very simple terms, selection is performed by determining a

fitness threshold and then eliminating the individuals below the

threshold. In Section II-D we have seen that NEAT provides a

mechanism to keep new features in the population by speciation

and fitness sharing. The selection logic in our design works in

three steps. First, the fitness values of the individuals in the

present generation and read and adjusted to implement fitness

sharing. Next, the threshold is calculated using the adjusted

fitness values. Finally the parents for the next generation are

chosen and the list of parents for the children is forwarded to

the gene splitting logic. This is handled by a software thread

on the CPU, as shown in Fig. 6.

Gene Split.. The Gene Split block orchestrates the movement

of genes from the Genome Buffer to the PEs inside EvE. In

the crossover stage, the keys (i.e., node id) for both the parent

genes need to be the same. However both the parents need not

have the same set of genes or there might be a misalignment

between the genes with the same key among the participating

parents. The gene split block therefore sits between the PEs and

the Genome Buffer to ensure that the alignment is maintained

and proper gene pairs are sent to the PEs every cycle.

In addition, this block receives the list of children and their

parents from the Gene Selector and takes care of assigning the

}

Select

gene

+
Num deleted

nodes

>

Deletion

Probability

Rand

1
Node

Type

Node

ID

Gene from

Perturbation Engine

Demux Select

Node IDs

Child Gene

>

Addition

Probability

Rand

Default Node Gene

Default Conn Gene

from Node

ID regs

Select

Gene}

Gene from

Delete Gene

Engine

Child Genes

Delete Gene Engine Add Gene Engine

0.
5

Ran

d

>
Sel

0.5

Ran

d

>
Sel

0.5

Ran

d

>
Sel

Bias

0.5

Rand

> Sel
 Gene 2

Gene 1

Crossover

Gene

Mutated

Val
Mutated

Val
Mutated

Val

Rand

Limit &

Quantize

Mutated

Val

Mutated

value

Ra

nd

Rand

>
Perturb

Prob
Sel Mutation

select
Child gene

Gene

type

Parent Gene 1 Parent Gene 2

Child Gene

Attributes

Crossover Engine

Perturbation Engine

Node ID

regs

- Deleted

- Interm

- Max

Config: Crossover and Mutation (Perturb, Add, Delete) Probability Random number from PRNG

Fig. 7: Schematic depicting the various modules of the Eve PE.

PEs to generate the child genome. We describe the assignment

policy and benefits in Section IV-C5.

Gene Merge. Once a child gene is generated, it is written

back to the Gene Memory as part of the larger genome it is

part of. This is handled by the Gene Merge block.

Pseudo Random Number Generators (PRNG). The

PRNG feeds a 8-bit random numbers every cycle to all the

PEs, as shown in Fig. 6. We use the XOR-WOW algorithm,

also used within NVIDIA GPUs, to implement our PRNG.

Network-on-Chip (NoC) A NoC manages the distribution

of parent genes from the Gene Split to the PEs and collection of

child genes at the Gene Merge. We explored two design options

for this network. Our base design is separate high-bandwidth

buses, one for the distribution and one for the collection

However, recall that the NEAT algorithm offers opportunity

for reuse of parent genomes across multiple children, as we

showed in Section III-D3. Thus we also consider a tree-based

network with multicast support and evaluate the savings in

SRAM reads in Section VI.

5) Integration

In this section we will briefly describe how the different

components are tied together to build the complete system.

Genome organization. As described in earlier sections, we

have two types of genes, nodes and connection. As shown in

Fig. 6 each gene can be uniquely identified by the gene IDs.

In this implementation we identify node genes with positive

integers, and the connection genes by a pair of node IDs

representing the source and the destination. Within a genome,

the genes are stored in two logical clusters, one for each type.

Within each cluster, the genes are stored by sorting them in

ascending order of IDs. Ensuring this organization eases up the

implementation of the Add Gene engine. During reproduction,

since the child gene gets the key of the parent genes, which in

turn are streamed in order, ordering is maintained. For newly

added genes, the Gene Merge logic ensures that they sequenced

in the right order when put together in memory.

EvE Dataflow. After the Gene Selector finalizes the parents

and their respective children, the list is passed to the Gene Split

block. The Gene Split logic then allocates PEs for generation

of the children. In this implementation we allocate only one

PE per child genome2. The PE allocation is done with a greedy

policy, such that maximum number of children can be created

from the parents currently in the SRAM. This is done to exploit

the reuse opportunity provided by the reproduction algorithm

and minimize SRAM reads.

When streaming into the PE, the node genes are streamed

first. This is done in order to keep track of the valid node IDs in

the genome, which will then be used in the gene addition and

deletion mutations. Information about valid nodes are required

to prune out dangling connections and assignment of node IDs

in case of a new node or connection addition. Once the nodes

are streamed, connection genes are streamed until the complete

genome of the child is created. Before the genes are streamed,

it takes 2 cycles to load the parents’ fitness values and other

control information.

D. Microarchitecture of ADAM

As mentioned in Section IV-A, ADAM evaluates NNs

generated by EVE by processing vertices in the irregular

NN graph. We had two design choices - either go with a

conventional graph accelerator like Graphicionado [19], or

pack the irregular NN into dense matrix-vector multiplications.

Recall that EAs have a small memory requirement (unlike

conventional graph workloads) and do not require caching

optimizations. Moreover, given that our workloads are neural

networks, vertex operations are nothing but multiply and

accumulate. We thus decided to go with the latter approach.

ADAM performs multiple vertex updates concurrently, by

posing the individual vector-vector multiplications into a packed

matrix-vector multiplication problem. Systolic array of Multiply

and Accumulate (MAC) elements is a well known structure

for energy efficient matrix-vector multiplication in hardware,

and is essentially the heart of ADAM’s microarchitecture.

However, picking the ready node values to create input

vectors for packed matrix-vector multiplication is a task with

heavy serialization. We use the System CPU to generate

required vectors from the node genomes. As both systolic

arrays and graph processing are heavily investigated techniques

in literature [19]–[24], we omit details of implementation for

the sake of brevity.

2It is possible to spread the genome across multiple PEs as well but might
lead to different genes of a genome arriving out-of-order at the Gene Merge
block complicating its implementation.

1.0
0E+001.0
0E+021.0
0E+041.0
0E+061.0
0E+081.0
0E+10

Cart
Pole

_v0

M
ounta

in
Car_

v0

Lu
narL

an
der_

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

R
u

n
ti

m
e

 (
Lo

g
 S

ca
le

)

CPU_a CPU_c

(c) Evolution per generation

1.0
0E+001.0
0E+031.0
0E+061.0
0E+091.0
0E+12

Cart
Pole

_v0

M
ounta

in
Car_

v0

Lu
narL

an
der_

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

E
n

e
rg

y
 (

Lo
g

 S
ca

le
)

GPU_a GPU_c Genesys

(d) Evolution per generation

1.0
0E+001.0
0E+031.0
0E+061.0
0E+091.0
0E+12

Cart
Pole

_v0

M
ounta

in
Car-

v0

Lu
narL

an
der-

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

R
u

n
ti

m
e

 (
Lo

g
 S

ca
le

)
CPU_a CPU_b GPU_a GPU_b

1.0
0E+001.0
0E+031.0
0E+061.0
0E+091.0
0E+121.0
0E+15

Cart
Pole

_v0

M
ounta

in
Car-

v0

Lu
narL

an
der-

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

E
n

e
rg

y
 (

Lo
g

 S
ca

le
)

CPU_c CPU_d GPU_c GPU_d GENESYS

(b) Inference per generation(a) Inference per generation

Fig. 9: Runtime and Energy for OpenAI gym environments across CPU, GPU and GeneSys. (a) Runtime, (b) Energy for Inference; and (c)
Runtime, (d) Energy of Evolution

(d) Memory footprint

1
.0
0
E
+
0
0

1
.0
0
E
+
0
2

1
.0
0
E
+
0
4

1
.0
0
E
+
0
6

1
.0
0
E
+
0
8

MountainCar_v0 Amidar-ram_v0

M
e

m
o

ry
 r

e
q

u
ir

e
m

e
n

t
(L

o
g

 S
c
a

le
)

(B
y

te
s)

GPU_a GPU_b GENESYS

Cart
Pole

_v0

M
ounta

in
Car_

v0

Lu
narL

an
der_

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

MemCpyHtoD MemCpyDtoH Kernel

(b) GPU_b

1.0
0E+001.0
0E+011.0
0E+021.0
0E+031.0
0E+04

Cart
Pole

_v0

M
ounta

in
Car_

v0

Lu
narL

an
der_

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

D
is

tr
ib

u
ti

o
n

 o
f

ti
m

e
 s

p
e

n
t

d
u

ri
n

g

in
fe

re
n

ce
 (

m
s)

MemCpyHtoD MemCpyDtoH Kernel

(a) GPU_a

0.0
1

0.1

1

10

100

Cart
Pole

_v0

M
ounta

in
Car_

v0

Lu
narL

an
der_

v2

AirR
ai

d-r
am

-v
0

Am
id

ar-
ra

m
-v

0

Alie
n-r

am
-v

0

Scratchpad to ADAM ADAM to Scratchpad

Inference in ADAM

(c) GENESYS

Fig. 10: Distribution of time spent in data-transfer and compute in (a) GPU a config, (b) GPU b config and (c) GENESYS; (d) depicts the
variation in memory footprints for given application on various platforms

mentation by 100x in inference. Next, we describe our GPU

implementations and discuss our observations.

GPU deep dive. GPU a exploits GLP by forming com-

paction on input vectors serially and evaluating multiple vertices

in parallel for each genome. In GPU b, multiple vertices across

genomes are evaluated in parallel thus exploiting both GLP

and PLP. However the inputs and weights could no longer

be compacted resulting in large sparse tensors. Fig. 10(a,b,c)

depict the contribution of memory transfer in total runtime. We

observed memory transfers take 70% of runtime in GPU a,

while GPU b takes to 20% of total runtime for memory transfer.

GENESYS in comparison also take about 15% for memory

transfers; however since all the data is on chip, the actual

runtime is 1000x smaller. Fig. 10(d) depicts the overall on-chip

memory requirement in the GPU a, GPU b and GENESYS.

We see that GPU b has a much higher footprint as all sparse

weight and input matrices are kept around, while for GPU a

only compact matrices for one genome is required at a time.

GENESYS stores entire population in memory, thus we see

100x more footprint than GPU a, which is expected as we have

a population size of 150. GENESYS has 100x less footprint

than both GPU b as GPU b as genomes rather than sparse-

matrices are stored on chip. Fig. 11(a) shows the distribution

of connections and nodes in various workloads. The more the

number of connection genes means denser weight matrices

during inference hence higher utilization in ADAM.

C. Energy consumption

Fig. 9(b) and (d) shows the energy consumption per gen-

erations for OpenAI gym workloads on different platforms.

ADAM contributes to 100x more energy efficiency, while EVE

turns out to be 4 to 5 orders of magnitude more efficient than

GPU c, the most energy efficient among our platforms.

D. Design choices: PEs, SRAMs and Interconnect

Impact of Network-on-Chip Neural network accelerators

often take advantage of the reuse in data flow to reduce SRAM

reads and hence lower the energy consumption. The idea is

that, if same data is used in multiple PEs, there is a natural win

by reading the data once and multicasting to the consumers.

In our case, we see reuse in the parents while producing

multiple children of a single parent. Therefore we can use

similar methods to reduce reads as well. Fig. 11(b) shows the

number of SRAM reads with a simple point-to-point network

versus a multicast tree network. We observe more than a 100×

reduction in SRAM reads when supporting multicasts in the

network, motivating an intelligent interconnect design. An

intelligent interconnect can also help support multiple mapping

strategies of genes across the PEs, and is an interesting topic

for future research.

Parallelizing Evolution Till now we have talked about EvE

PE in terms of GLP and reducing compute cost by implement-

ing GA operations in hardware. This line of reasoning can lead

to the question that weather GLP can be traded-off for energy-

benefits. The answer to this lies in Fig. 11(c), where we show

the SRAM energy consumption for evolution (Read+Write) and

generation time as a function of EvE PEs; size of ADAM and

SRAM are constant. The SRAM energy curve indicates that

there is almost monotonic improvement in energy efficiency as

more EvE PEs are added. The linear decrease in energy (the

curve shows exponential decrease for exponential increase in

number of PEs) is a direct consequence of GLR. At lower PE

counts, child genomes sharing same parent PEs are generated

over time, thus requiring a single operand to be read over and

0

1000

2000

3000

4000

5000

6000

7000

Cartpole Lunar

Lander

Mountain

Car

N
u

m
b

e
r
 o

f
G

e
n

e
s

Num Connection

0

20000

40000

60000

80000

100000

120000

140000

160000

Airaid-RAM Alien-RAM Amidar-RAM

Num Node

Airraid

RAM

Alien

RAM

Amidar

RAM

(a) (b) (c)

0

5

10

15

20

25

0

10000

20000

30000

40000

50000

60000

70000

2 4 8 16 32 64 128 256 512

S
R

A
M

 R
D

+
W

R
 E

n
e

rg
y

 (
u

J)

G
e

n
e

ra
ti

o
n

 R
u

n
ti

m
e

 (
cy

cl
e

s)

num EvE PE

EvE runtime (cycles)

ADAM runtime (cycles)

SRAM Energy

0

100

200

300

400

500

600

2 4 8 16 32 64 128 256

S
R

A
M

 r
e

a
d

s
p

e
r

c
y

c
le

num EvE PE

Point-to-Point

Muticast Tree

Fig. 11: (a) Composition of gene-types in genomes for different workloads (b) SRAM reads per cycle in Point-to-Point vs Multicast tree (c)
SRAM energy consumption and runtime per generation as a function of number of EvE PE averaged for Atari workloads

over again. As the number of PEs increase multiple children

sharing the same parent can be serviced by one read if we

employ an appropriate interconnect capable of multicasting.

Diverting attention to the runtime plot reveals a couple of

interesting trends. First the cycle count for inference is far

less than intuitively expected for typical neural networks. This

is attributed to two factors, (i) The networks generated by

NEAT are significantly simple and small than traditional Deep

MLPs, and (ii) ADAM’s high throughput aids fast Vector-

Matrix computations we use to implement vertex updates. The

other more interesting trend that we see is that at lower EvE PE

counts the evolution runtime is disproportionately larger than

inference! The exponential fall off depicts that performance

wise evolution is compute-bound, which is in agreement to our

observations on GLP and PLP in Section III-C

Decreasing the generation runtime has further benefits than

it meets the eye. In our work we used simulated environments

with which we can interact instantly. However, for real life

workloads, the interactions will be much slower. This enables

us to use circuit level techniques like clock and power gating

to save even more power. The lower the compute window

for GENESYS the more time is used to interact with the

environment thus saving more energy as we hinted in Section V.

The tapering off of the trends in Fig. 11(c) at 256 PEs is due

to the fact that we exploit only PLP for our experiments and at

population size of 150 we intentionally restrict the exploitable

parallelism.

VII. DISCUSSION AND RELATED WORK

Future Directions. It is important to note that the success

of evolutionary algorithms is tied to the nature of application.

From a very high level what EA does, is search for optimal

parameters guided by the fitness function and reward value.

Naturally, as the parameter space for a problem becomes

large, the convergence time of EAs increase as well. In

such a scenario, we believe that GENESYS can be run in

conjunction with supervised learning, with the former enabling

rapid topology exploration and then using conventional training

to tune the weights. Neuro-evolution to generate deep neural

networks [4], [29]–[33] falls in this category. The only thing

that would change is the definition of gene.

Neuro-evolution. Research on EAs has been ongoing for

several decades. [34]–[37] are some examples of early works in

using evolutionary techniques for topology generations. Apart

from NEAT [6], other algorithms like Hyper-NEAT and CPPN

[16], [38] for evolution of NNs have also been reported in the

last decade [39]–[41].

Online Learning. Traditional reinforcement learning meth-

ods have also gained traction in the last year with Google

announcing AutoML [42]–[44]. In situ learning from the

environment has also been approached from the direction of

spiking neural nets (SNN) [45]–[47]. Recently intel released a

SNN based online learning chip Loihi [48]. IBM’s TrueNorth

is also a SNN chip. SNNs have however not managed to

demonstrate accuracy across complex learning tasks.

DNN Acceleration. Hardware acceleration of neural net-

works is a hot research topic with a lot of architecture choices

[17], [49]–[56] and silicon implementations [25]–[28]. These

accelerators can replace ADAM for inference, when genes

are used to represent layers in MLPs as discussed above.

However, EVE remains non-replaceable as there is no hardware

platform for efficient evolution in the present to the best of

our knowledge.

VIII. ACKNOWLEGEMENTS

We would like to thank Hyoukjun Kwon, Yu-Hsin Chen,

Neal Crago, Michael Pellauer, Sudhakar Yalamanchili, Suvinay

Subramanian, and the anonymous reviewers for their insights

on the paper.

IX. CONCLUSION

This work presents GENESYS, a system to perform automat-

ing NN topology and weight generation completely in hardware.

We first characterize a NE algorithm called NEAT, and identify

massive opportunities for parallelism. Exploiting this, we design

two accelerators, EvE and ADAM to accelerate the learning

and inference components of NEAT in hardware. We also

perform optimized CPU and GPU implementations and find

that they suffer from high power consumption (as expected)

and low performance due to extensive memory copies. We

believe that this work takes a first key step in co-optimizing

NE algorithms and hardware, and opens up lots of exciting

avenues for future research.

REFERENCES

[1] “Alphago.” https://deepmind.com/research/alphago, 2017.

[2] “Atari open ai environments.” https://gym.openai.com/envs/#atari, 2017.

[3] T. Salimans et al., “Evolution strategies as a scalable alternative to
reinforcement learning,” arXiv preprint arXiv:1703.03864, 2017.

[4] E. Real et al., “Large-scale evolution of image classifiers,” arXiv preprint

arXiv:1703.01041, 2017.

[5] F. P. Such et al., “Deep neuroevolution: genetic algorithms are a com-
petitive alternative for training deep neural networks for reinforcement
learning,” arXiv preprint arXiv:1712.06567, 2017.

[6] K. O. Stanley and R. Miikkulainen, “Efficient reinforcement learning
through evolving neural network topologies,” in GECCO, pp. 569–577,
Morgan Kaufmann Publishers Inc., 2002.

[7] “Openai gym.” https://github.com/openai/gym, 2017.

[8] D. E. Rumelhart et al., “Learning representations by back-propagating
errors,” Cognitive modeling, vol. 5, no. 3, p. 1.

[9] O. Russakovsky et al., “Imagenet large scale visual recognition challenge,”
IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[10] M. Everingham et al., “The pascal visual object classes (voc) challenge,”
IJCV, 2010.

[11] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in NIPS, pp. 1097–1105, 2012.

[12] K. He et al., “Deep residual learning for image recognition,” in CVPR,
pp. 770–778, 2016.

[13] Y. You et al., “Scaling deep learning on gpu and knights landing clusters,”
in SC, p. 9, ACM, 2017.

[14] M. Rhu et al., “vdnn: Virtualized deep neural networks for scalable,
memory-efficient neural network design,” in MICRO, pp. 1–13, IEEE,
2016.

[15] “Neat python.” https://github.com/CodeReclaimers/neat-python, 2017.

[16] K. O. Stanley et al., “A hypercube-based indirect encoding for evolving
large-scale neural networks,”

[17] Y.-H. Chen et al., “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” in ISCA, pp. 367–379, 2016.

[18] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv

preprint arXiv:1312.5602, 2013.

[19] T. J. Ham et al., “Graphicionado: A high-performance and energy-efficient
accelerator for graph analytics,” in MICRO, pp. 1–13, IEEE, 2016.

[20] H. Kung, “Algorithms for vlsi processor arrays,” Introduction to VLSI

systems, pp. 271–292, 1980.

[21] D. I. Moldovan, “On the design of algorithms for vlsi systolic arrays,”
Proceedings of the IEEE, vol. 71, no. 1, pp. 113–120, 1983.

[22] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel
graph processing,” ACM SIGARCH Computer Architecture News, vol. 43,
no. 3, pp. 105–117, 2016.

[23] G. Dai et al., “Fpgp: Graph processing framework on fpga a case study
of breadth-first search,” in FPGA, pp. 105–110, ACM, 2016.

[24] W.-S. Han et al., “Turbograph: a fast parallel graph engine handling
billion-scale graphs in a single pc,” in KDD, pp. 77–85, ACM, 2013.

[25] Y.-H. Chen et al., “Eyeriss: An Energy-Efficient Reconfigurable Acceler-
ator for Deep Convolutional Neural Networks,” in ISSCC, pp. 262–263,
2016.

[26] J. Sim et al., “14.6 a 1.42 tops/w deep convolutional neural network
recognition processor for intelligent ioe systems,” in ISSCC, pp. 264–265,
IEEE, 2016.

[27] G. Desoli et al., “14.1 a 2.9 tops/w deep convolutional neural network soc
in fd-soi 28nm for intelligent embedded systems,” in ISSCC, pp. 238–239,
IEEE, 2017.

[28] B. Moons et al., “Envision: A 0.26-to-10 tops/w subword-parallel
dynamic-voltage-accuracy-frequency-scalable convolutional neural net-
work processor in 28nm fdsoi,” in ISSCC, pp. 246–257, 2017.

[29] J. Bayer et al., “Evolving memory cell structures for sequence learning,”
Artificial Neural Networks–ICANN 2009, pp. 755–764, 2009.

[30] P. Verbancsics and J. Harguess, “Generative neuroevolution for deep
learning,” arXiv preprint arXiv:1312.5355, 2013.

[31] L. Xie and A. Yuille, “Genetic cnn,” arXiv preprint arXiv:1703.01513,
2017.

[32] K. Ghazi-Zahedi, “Nmode—neuro-module evolution,” arXiv preprint

arXiv:1701.05121, 2017.

[33] R. Miikkulainen et al., “Evolving deep neural networks,” arXiv preprint

arXiv:1703.00548, 2017.

[34] C. M. Taylor, “Selecting neural network topologies: A hybrid approach
combining genetic algorithms and neural networks,” Master of Science,

University of Kansas, 1997.
[35] D. Larkin et al., “Towards hardware acceleration of neuroevolution

for multimedia processing applications on mobile devices,” in NIPS,
pp. 1178–1188, Springer, 2006.

[36] S. Ding et al., “Using genetic algorithms to optimize artificial neural
networks,” in JCIT, Citeseer, 2010.

[37] G. I. Sher, “Dxnn platform: the shedding of biological inefficiencies,”
arXiv preprint arXiv:1011.6022, 2010.

[38] K. O. Stanley, “Compositional pattern producing networks: A novel ab-
straction of development,” Genetic programming and evolvable machines,
vol. 8, no. 2, pp. 131–162, 2007.

[39] D. B. D’Ambrosio and K. O. Stanley, “Generative encoding for multiagent
learning,” in GECCO, pp. 819–826, ACM, 2008.

[40] D. Ha et al., “Hypernetworks,” arXiv preprint arXiv:1609.09106, 2016.
[41] C. Fernando et al., “Convolution by evolution: Differentiable pattern

producing networks,” in GECCO, pp. 109–116, ACM, 2016.
[42] “Using machine learning to explore neural network architec-

ture.” https://research.googleblog.com/2017/05/using-machine-learning-
to-explore.html, 2017.

[43] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[44] B. Baker et al., “Designing neural network architectures using reinforce-
ment learning,” arXiv preprint arXiv:1611.02167, 2016.

[45] D. Roggen et al., “Hardware spiking neural network with run-time
reconfigurable connectivity in an autonomous robot,” in Evolvable

hardware, 2003. proceedings. nasa/dod conference on, pp. 189–198,
IEEE, 2003.

[46] N. Kasabov et al., “Dynamic evolving spiking neural networks for on-
line spatio-and spectro-temporal pattern recognition,” Neural Networks,
vol. 41, pp. 188–201, 2013.

[47] C. D. Schuman et al., “An evolutionary optimization framework for neural
networks and neuromorphic architectures,” in IJCNN, pp. 145–154, IEEE,
2016.

[48] “Intels new self-learning chip promises to accelerate artificial intel-
ligence.” https://newsroom.intel.com/editorials/intels-new-self-learning-
chip-promises-accelerate-artificial-intelligence/, 2017.

[49] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in ASPLOS, pp. 269–284, 2014.

[50] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in
MICRO, pp. 609–622, IEEE Computer Society, 2014.

[51] Z. Du et al., “Shidiannao: Shifting vision processing closer to the sensor,”
in ACM SIGARCH Computer Architecture News, vol. 43, pp. 92–104,
ACM, 2015.

[52] C. Zhang et al., “Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in FPGA, pp. 161–170, 2015.

[53] A. Parashar et al., “Scnn: An accelerator for compressed-sparse convolu-
tional neural networks,” in ISCA, pp. 27–40, ACM, 2017.

[54] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in ISCA, pp. 1–13, 2016.

[55] S. Han et al., “Eie: efficient inference engine on compressed deep neural
network,” in ISCA, 2016.

[56] J. Kung et al., “Dynamic approximation with feedback control for energy-
efficient recurrent neural network hardware,” in ISLPED, pp. 168–173,
2016.

