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Abstract
The strong light–matter coupling attainable in optical cavities enables the generation of highly
squeezed states of atomic ensembles. It was shownby Sørensen andMølmer (2002 Phys. Rev.A 66
022314) how an effective one-axis twistingHamiltonian can be realized in a cavity setup.Here, we
extend this work and showhow an effective two-axis twistingHamiltonian can be realized in a similar
cavity setup.We compare the two schemes in order to characterize their advantages. In the absence of
decoherence, the two-axisHamiltonian leads tomore squeezing than the one-axisHamiltonian. If
limited by decoherence from spontaneous emission and cavity decay, we find roughly the same level of

squeezing for the two schemes scaling as NC whereC is the single atom cooperativity andN is the
total number of atoms.When compared to an ideal squeezing operation, we find that for specific
initial states, a dissipative version of the one-axis scheme attains higherfidelity than the unitary one-
axis scheme or the two-axis scheme.However, the unitary one-axis and two-axis schemes perform
better for general initial states.

1. Introduction

Spin squeezed states of atomic ensembles havemany applications as resources for quantum enhancedmetrology
[1–5], continuous variable quantum information processing [6], andmultipartite entanglement [7–9]. Various
methods for generating spin squeezed states in atomic ensembles have been proposed [10–15] and realized
experimentally [4, 16–21]. In particular, cavity-based schemeswhere the light–matter interaction is enhanced by
placing the atoms in an optical cavity have have shown impressive results and have realized highly squeezed
states [5, 13, 21]. To take full advantage of these experimental advances and to ensure a continued increase in
their capabilities, it is important to determine the ideal operation conditions and the squeezing attainable with
such cavity based approaches.

A commonly usedmeasure for the degree of squeezing in an ensemble is the possible gain in precision by
using the squeezed state for interferometry.Wineland et al [22] showed that this can be quantified by
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q q
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ˆ ˆ )
ˆ ( )N J J

J
min , 1

z

2
2 2

2

where á ñ »Ĵ N 2z is themean spin and q q= +q̂ ( ) ˆ ( ) ˆJ J Jcos sinx y . Here, Ĵx y z, , are the collective spin operators
defined in the usualmanner [22]. For x < 12 a gain in interferometric precision is possible compared to using a
coherent spin state.

In general, cavity based schemes are known to exhibit a NC1 scaling of x2when limited by dissipation.
Here,C is the single atom cooperativity (defined below) andN is the total number of atoms. This scaling is
obtained as a tradeoff between the competing processes of the coherent evolution causing squeezing and the
dissipative processes of spontaneous emission and cavity decay [11, 14, 15].

The squeezing parameter x2 is, however, not a complete characterization of the dynamics. The precise figure
ofmerit will depend on the application for which the squeezing operation is used, and somay the optimal
method of squeezing. For example, if the objective is to prepare a specific squeezed state formetrology,
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dissipative schemes [12, 14]where the system is driven into a squeezed dark statemay be beneficial. However, in
continuous variable quantum information processing applications [6]where the objective is to implement a
squeezing operation on a generic input state, coherent schemes [11, 13, 23–25]may be advantageous.

A demonstrated approach to coherent spin squeezing is to implement a one-axis twistingHamiltonian [26]:

a= q-ˆ ˆ ( )H J . 21 axis
2

This nonlinearHamiltonian has already been realized for atoms in optical cavities [11, 15, 26, 27], and in several
other physical systems [28–30]. Theoretically, squeezing can also be induced by the two-axis countertwisting
Hamiltonian

a= -q q- + p
ˆ ( ˆ ˆ ) ( )H J J , 32 axis

2 2

2

whichmay offer advantages over one-axis twisting. In the absence of decoherence, -Ĥ2 axis leads toHeisenberg
limited squeezing, x ~ N12 , which is the fundamental limit [26]. This is in contrast to the one-axis twisting
Hamiltonian(2), which has a theoretical limit of x ~ N12 2

3 arising from the curvature of the Bloch sphere
[26, 31]. Furthermore, the two-axisHamiltonian squeezes exponentially in timewhile the one-axisHamiltonian
squeezes only polynomially [26, 32]. This hasmotivated efforts to realize two-axisHamiltonians in various
settings [32–34].

In this article, we extend the cavity-based one-axis twisting scheme of [11] to showhow an effective two-axis
twistingHamiltonian can be engineered. For atoms strongly coupled to the cavity such that dissipation can be
neglected, the two-axis scheme creates stronger squeezing than the one axis scheme.However, for weakly
coupled atoms the situation is different.Wefind that when limited by decoherence, x2 scales as NC1 for both
the one- and two-axis schemes and the two schemes exhibit similar amounts of squeezing.Wefind that this is
because the collective decay addsmore noise to the squeezed quadrature in the two-axis scheme than the one-
axis scheme, as shownqualitatively infigure 1. For quantum information processing, not only the amount of
squeezing but also the purity of the squeezing operationmatters [6].We therefore also compare the performance
of both schemes to an ideal squeezing operation.Wefind that also in this case, the one-axis scheme performs
similar to or better than the two-axis schemewhen limited by decoherence.

In the one-axis twisting scheme of [11], a collection of atoms is placed in a cavity such that two ground states
are both coupled off-resonantly through the cavity field to an excited state (figure 2). By illuminating the atoms
with bichromatic light, pairwise exchange between the ground states can be realized, resulting in the quadratic

Hamiltonian a= q-ˆ ˆH J1 axis
2
. Below, wefirst show that by adding a second bichromatic laser to the setup of [11],

the effective dynamics can be described by a two-axis twistingHamiltonian of the form in equation (3).We then
proceed by analyzing and comparing the squeezing properties of both the original one-axis scheme and the
modified two-axis scheme, including the effects of dissipation. Finally, we elaborate on the requirements for the
validity of the effective dynamics considered.

2. Effective dynamics

Weassume that the atoms have two stable ground states ñ∣a and ñ∣b and an excited level ñ∣e . The ground states are
coupled to the excited level through four laser couplings and two cavity couplings with coupling constants ga
and gb as shown infigure 2. In a suitable rotating frame, theHamiltonian describing the system is

Figure 1. Schematic illustration of unitary evolution and added noise due to collective dissipation in both the one-axis twisting and

two-axis countertwisting schemes. Row (a) shows one-axis twisting: in (i) the coherent spin state deforms under a=-ˆ ˆH Jx1 axis
2
as

indicated by the blue flow lines, resulting in a squeezed state (ii). In practice, collective dissipation broadens the state along Ĵy (orange
flow lines in (ii)), resulting in added noise (iii)which ismostly in the anti-squeezed quadrature. Row (b) shows the two-axis
countertwisting evolution: in (i) the coherent spin state deforms under -Ĥ2 axis as indicated by the blue flow lines, resulting in a
squeezed state (ii). Collective dissipation broadens the state in all directions in the xy-plane (orange flow lines in (ii)), resulting in
added noise (iii)which affects the squeezed and anti-squeezed quadrature in a similarmanner.
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whereH.c. is theHermitian conjugate. TheN atoms are labeled by the subscript k andwe have defined the
detunings w wD = -1 e L1, wD = D - b2 1 , dD = D + 23 1 , dD = D + 24 2 , and d w w w= - -L1 b cav . Here,
we (wb) is the transition frequency between level ñ∣a and ñ∣e ( ñ∣b ), w xL is the frequency of laser x, and wcav is the
cavity resonance frequency. The four laser couplings are denoted W -1 4 and ga (gb) is the cavity coupling of level
ñ∣a ( ñ∣b ).We have assumed the frequencies of the upper of the two lasers addressing different transitions to differ

by twice the ground state splitting w w w- = 2 bL1 L2 and similarly the lower twofields differ by the same
amount w w w- = 2 bL3 L4 . Furthermore, we have assumed that the laserfields addressing the same transitions
differ in frequency by d2 so that w w w w d- = - = 2L1 L3 L2 L4 . The decay of state ñ∣e k is assumed to be

described by the Lindblad operators g= ñ áˆ ∣ ∣( )
L x ex

k
x k , where gx is the decay rate into state ñ∣x and

Î { }x a b o, , . The state ñ∣o represents all other ground states than ñ∣a and ñ∣b . The total decay rate of the excited
state is g g gG = + +a b o. The decay of the cavity field is assumed to be described by the Lindblad operator

k=ˆ ˆL cc , whereκ is the intensity decay rate of the cavity and ĉ is the annihilation operator of the cavityfield.
We assume that both atomic ground states are coupled to the excited state through the same cavity field.

The basicmechanism behind the scheme can be understood from considering the various transitions
mediated by the laser and cavity fields. Assuming large detunings, the couplings from laser 1 and 2 allows a two-
photon resonant transitions of the form ñ  ñ∣ ∣aa bb ( ñ  ñ∣ ∣bb aa ). Here, an atom in state ñ∣a ( ñ∣b ) absorbs a
photon from laser 1 (2) and emits a cavity photon that is absorbed by another atom in state ñ∣a ( ñ∣b ), which then
emits into laser 2 (1) resulting in the simultaneous transfer of two atoms from ñ∣a to ñ∣b ( ñ∣b to ñ∣a ). Since laser 1 is
detuned by δ and laser 2 by d- , processes involving only a single atom are off resonant andwill be suppressed. In
the two atomprocess, however, the two detunings cancel,making the total two atomprocess ñ  ñ∣ ∣aa bb

( ñ  ñ∣ ∣bb aa ) resonant. The resulting dynamics can thus be described by a term +̂J
2
( -̂J

2
) in an effective

Hamiltonian for the ground states where = å ñ á+̂ ∣ ∣J a bk k and =- +
ˆ ˆ†
J J . Other resonant processes are transitions

of the form ñ  ñ∣ ∣ab ba ( ñ  ñ∣ ∣ba ab )where an atom in state ñ∣a ( ñ∣b ) absorbs a photon from laser 1 (2) and
emits a cavity photon that is absorbed by an atom in state ñ∣b ( ñ∣a ), which then emits into laser 1 (2). These
processes are described by a term - +ˆ ˆJ J ( + -ˆ ˆJ J ) in theHamiltonian. As a consequence, the effectiveHamiltonian
describing the evolution due to laser 1 and 2 is

* * * *

d d d d
~
W

D
+
W

D
+
W W

DD
+
W W

DD
+ - - + + -

ˆ ∣ ∣ ∣ ∣ ˆ ˆ ∣ ∣ ∣ ∣ ˆ ˆ ˆ ˆ ( )H
g

J J
g

J J
g g

J
g g

J
4 4 4 4

, 5b a b a a b
eff

1
2 2

1
2

2
2 2

2
2

1 2

1 2

2 2 1

1 2

2

as shown in [11]. Tuning the strength of the laser couplings such that * * *W D = W D = W D∣ ∣ ∣ ∣ ∣ ∣g g g
b a1 1 2 2 ,

Ĥeff reduces to the one-axisHamiltonian a= q-ˆ ˆH J1 axis
2
with a d= W D∣ ∣ ∣ ∣g2 2 2 and

* *

* *
=q- W W

W W∣ ∣
e

g g

g g
2i 1 b a 2

1 b a 2
[11]. By

adding lasers 3 and 4, we basically add the same effective terms to theHamiltonian aswith laser 1 and 2, except
they are nowproportional to W3, W4, and d-1 instead of W W,1 2, and d1 (see figure 2).Matching the strengths
of the lasers results in destructive interference of the - +ˆ ˆJ J and + -ˆ ˆJ J terms. In addition, a relative phase ofπ

between laser 1 and 3while laser 2 and 4 are in phasewith each other ensures constructive interference of the +̂J
2

and -̂J
2
terms resulting in an effective two-axisHamiltonian of the form in equation (3).

We nowproceed by deriving the effectiveHamiltonian describing the system.Motivated by the above
considerations, we assume that we are in the far detuned limit where dD W g, , . Consequently, we can
adiabatically eliminate the excited states of the atoms using the effective operator formalism introduced in [35].
We neglect fast oscillating terms (~ we t2i b ) in theHamiltonian and assume dD » D +( )1 1 21 1 and

dD » D +( )1 1 22 2 sincewe are considering the limit dD  . After some algebra, we end upwith an

Figure 2. (a)Atomic level structurewith two ground states ñ ñ∣ ∣a b, and one excited state ñ∣e . The laserfields (Ω) and cavity couplings
(g) are shown together with the atomic detuningsD1,2 and the two-photon detuning δ. (b) Joint level structure of two three-level
atoms. The laserfields and cavity couplingsmediate resonant four-photon transitions between ñ∣aa and ñ∣bb .
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Thefirst four terms in equation (6) are theAC Stark shifts from the laserfields while the next two terms are the
cavity induced shifts of the ground states. The termsµ de t2i in the AC Stark shifts are fast oscillating for large δ
and can therefore be neglected in this limit. Furthermore, the constant terms can be compensated by properly
adjusting the frequency of the laserfields.Wewill therefore neglect the AC Stark shifts inwhat follows5. In
addition, we also neglect the cavity induced shifts since under the right conditions, these give negligible phase
shifts to the ground states as wewill discuss later. The remaining terms in equation (6) describe Raman
transitions from ñ  ñ∣ ∣a b ( ñ  ñ∣ ∣b a ) through laser 1 or 3 (2 or 4) and the cavity field.

Assuming that the cavityfield is weakly populated, we nowproceed by adiabatic eliminating the cavity field
(see appendix A). For laserfields tuned such that
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and W = -W1 3, W = W2 4, we find an effective two-axis twistingHamiltonian,
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is themodified decay rate of the cavity due to the atom–cavity coupling. Here = å ñ áˆ ∣ ∣N a aa k k and
= å ñ áˆ ∣ ∣N b bb k k are the atomic number operators. These have been replacedwith their average values in deriving

the effective dynamics assuming that we can neglect fluctuations around themean for the calculation of k̃. Note
that the effectiveHamiltonian in equation (9) corresponds to setting a c d d k= +∣ ∣ ( ˜ )16 42 2 2 and q p= - 4
in equation (3)6. The effective Lindblad operators are
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For the one-axis scheme, it is found in [11] and below, that itmay be desirable to operate with d = 0. In this case theAC-Stark shifts can be

completely compensated by adjusting the frequency of the laserfields.
6
By choosing the relative phase between *W gb1 and *W ga2 differently, any generic two-axisHamiltonian µ -q q+ p( ˆ ˆ )J J

2 2

2
can be realized.
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Wenowproceed by deriving the evolution of the collective spin state predicted by the effective operators.

2.1. Equations ofmotion (EOM)
EOMfor themean of an atomic operator á ñÔ can be found from theHeisenberg–Langevin equation
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To obtain a closed set of EOM,we linearize the noise of the atomic operators in the limit of N 1 similar to
whatwas done in [11]. The linearization of the noise can be described asmaking the transformation
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in the EOMand only keeping terms to second order inλ. Here d = - á ñˆ ˆ ˆO O O describe thefluctuations around
themean. The result of this is a closed set of EOM that can be solved numerically (see appendix B).

In the absence of decoherence, it is also possible to numerically solve the Schrödinger equation for a given
initial state without performing any linearization of the noise. In order to investigate the accuracy of the
linearization performed above, we have therefore evaluated the evolution dictated by a two-axis twisting

Hamiltonian of the form a= -p p- -
ˆ ( ˆ ˆ )H J J2 axis 4

2
4

2
both by directly solving the Schrödinger equation

numerically and by performing the linearization of the noise. The squeezing parameter, x2 calculated fromboth
methods are shown infigure 3.We have assumedN=1000 atoms and that all atoms start out in state ñ∣a . Near

theminimumof x2, Ĵz begins to decrease rapidly and as a result, our linearization begins to break down. For
smaller times, the linearization however captures the dynamics quite accurately. Since dissipationwill result in a
differentminimumof x2 at an earlier time than for the bareHamiltonian evolution, we expect our linearization
to be valid alsowhen the squeezing is limited by dissipation.

For comparison, we have also plotted the squeezing parameter for a one-axis twistingHamiltonian of the
form in equation (2) using both the directmethod and the linearization of the noise. Aswith the two-axis
Hamiltonian, the linearization breaks downnear theminimumof x2 though the effect ismore severe.We
believe the reason for this is that the atomic spin is not only squeezed but also twisted into a non-gaussian state
for a high amount of squeezing [26, 31, 36]. This is not captured by the linearization. Hence the results of the
linearization of the one axisHamiltonian should not be trustedwhen the squeezing is close to theminimum
obtained from theHamiltonian. Figure 3 also shows how the two-axisHamiltonian results in higher squeezing
and squeezes faster than the one-axisHamiltonian in the absence of decoherence.

Figure 3. Squeezing parameter, x2 as a function of time for a two-axisHamiltonian of the form a= -p p- -
ˆ ( ˆ ˆ )H J J2 axis 4

2
4

2
and a one-

axisHamiltonian of the form a=-ˆ ˆH Jx1 axis
2
. The evolution has been calculated both by direct numerical solution of the Schrödinger

equation (direct) and by linearization of the noise. For -Ĥ2 axis, the linearization breaks downnear theminimumof x2where á ñJz
changes significantly from its initial value although it is fairly well described by the linearization. For -Ĥ1 axis on the other hand, the
breakdown happens due to distortions of the squeezing ellipse, which is not contained in the linearized description [26, 36]. The
calculations assumeN=1000 atoms initially in state ñ∣a .
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3. Squeezing analysis

In order to include the effect of decoherence, we numerically solve the EOM from the effective operators. First,
however, wemake some analytical estimates of what to expect in order to better understand the numerical
results.We approximately solve the EOM for the evolution of the squeezing parameter x2 under Ĥeff2, starting
froma coherent spin state polarized along z.We assume that dissipation is sufficiently weak that =J N 2 is
preserved, andwe consider the planar limit where »J N 2z throughout the squeezing. From equations (8) and
(9), wefind the effective interaction strength a c d d» » W D∣ ∣ ( )g4 2 2 2 2 , wherewe have defined a generic
laser couplingΩ, cavity coupling g and detuningΔ to characterize the system.We assume the limit of large

detuningΔwhere the twofirst terms of the Lindblad operators ˆ ( )
Lx

k
,eff2 describing spontaneous emission in

equation (11) are dominant (see discussion below).
From theHeisenberg–Langevin equation, wefind that

a
k
d

á ñ
» - á ñ +

W
D

+
GW
D

( )J

t
N J

N g
N

d

d
2

4 8
, 15x

x

2
2

2 2 2

2 2

2

2

wherewe have assumed that a GW DN 2 2. The resulting evolution of the squeezing parameter is

x
a x

k
d

d
k

» - + +⎜ ⎟⎛
⎝

⎞
⎠ ( )

t
N N

C

d

d
2

1

2
, 16

2
2

where k= G( )C g 2 is the single-atom cooperativity. Thefirst term in equation (16) is the unitary evolution
from the two-axisHamiltonianwhile the second and third terms describe noise added by cavity decay and
spontaneous emission from the atoms, respectively.

In the limit of large single-atom cooperativityC, where spontaneous emission becomes negligible,
dissipation via the cavity can be suppressed by operating at large detuning δ from cavity resonance. Atfinite
cooperativity, however, the squeezing is optimized at a detuning d d k~ = NCs thatminimizes the combined
effect of the two forms of dissipation. Squeezing at all requires x <td d 02 at x = 1, corresponding to a large
collective cooperativity >NC 1. The squeezing parameter then initially decays until reaching aminimum
value of x ~ NC12 after a time a~ ( ) ( )t NC Nlns , where the rate of squeezing can no longer compete
with the rate of adding noise.

The scaling of the squeezing parameter obtained above is the same as the scaling for the one axis scheme
derived in [11]. Onemight have expected amore favorable scaling of x2 for the two-axisHamiltonian than for
the one-axisHamiltonian since, in the absence of noise, the former gives an exponential decrease of x2while the
latter only leads to a decrease of the form a( )Nt1 . However, for the coupling configuration leading to the one-

axisHamiltonian a=-ˆ ˆH Jx1 axis
2
, the effective Lindblad operator describing the cavity decay isµĴx (see

appendix A). For large at , the squeezed component from theHamiltonian is almost entirely described by Ĵx
with only a small admixture of Ĵz . The cavity decay thus nearly conserves the value of the squeezed component
and primarily adds noise to the anti-squeezed component~Ĵy (figure 1(a)). Consequently, the one-axis scheme
ismore stable against cavity decay than onewould naively expect. For the two-axisHamiltonian scheme, cavity
decay adds noise to both the squeezed and anti-squeezed components (see appendix C andfigure 1(b)), which
counteracts the faster squeezing such that the scaling of x2 becomes the same for the two schemes.

Without the assumptions of =J N 2z and constant = +J N Na b, we can numerically solve the EOMgiven
in appendix B to evaluate x2 in the limit N NC , where the scheme is limited by dissipation. From the
Lindblad operators in equation (11), we can estimate the effect of spontaneous decay of the atoms on the
collective atomic state. To determine the ideal operating conditions we note that the effect of the twofirst terms
in equation (11)will not decrease with increasingD D,1 2, since we expect µ D W G( )t 2 2 . The other termswill,
however, be suppressed for large detunings (Δ). In the numerical simulations, wefind that these terms have a
detrimental effect on the squeezing and the detunings should therefore be chosen large enough for these terms to
be negligible compared to the twofirst termsWe include these terms in our numerical optimizations, but
chooseD D,1 2 sufficiently large that they are negligible. The result are then almost independent ofD D,1 2 and
we do not optimize over these parameters.

We numericallyminimize x2 for the two-axis schemewhile requiring the laser fields to be tuned such that
W = W2 4 and W = -W1 3 (this assumption forces theHamiltonian to remain of the two-axis form and not cross
into the one-axisHamiltonian in the numerical optimization).Weminimize in the interaction time ts, the two-
photon detuning δ, and the ratio W W2 1which can be an imaginary number reflecting a phase difference
between the two laser fields. Note that we keep W D 1 501,2 1,2 to ensure the validity of the adiabatic
elimination (see below). The result of the optimization is shown infigure 4(a), which also shows the optimal
squeezing for the one-axis scheme considered in [11]. The effective operators for the one-axis scheme can be
obtained from the effective operators of the two-axis scheme by simply setting W = W = 03 4 (see appendix A).
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The numerical simulations confirm the NC1 scaling of x2 for both schemes and it is seen that the one-axis
scheme reaches slightly higher squeezing than the two-axis scheme.

The numerically optimized detuning and squeezing time for the two-axis scheme are shown infigure 4(b)
and are in good agreementwith the analytical estimates of d k~ NC and ~ D

W G
( )t NC

NC

ln 12

2
. In contrast to this,

themaximum squeezing for the one-axis scheme is found for d = 0where the effectiveHamiltonian is
vanishing. This was already noted in [11] but the origin of this result was not clear at the time. Fromour analysis,
we observe that the optimumcorresponds to a dissipative scheme, very similar to [14]. In both schemes, the
effective Lindblad operator associatedwith the cavity decay drives the system into a squeezed state for non-
balanced laser couplings (W ¹ W2 1). Themain difference between [14] and the dissipative scheme considered
here is that while we consider a three level systemwith one excited state and two different detunings (D D,1 2),
the scheme in [14] considers a four level systemwith two excited states and equal detunings.

3.1. Squeezingfidelity
Even though the degree of squeezing obtainable with the two-axis and one-axis scheme are similar, the
squeezing operations are very different. In particular, we found that the one-axis scheme leads tomaximum
squeezingwhen operated in a dissipative fashion. To further compare the performance of the two schemeswe
consider thefidelity of the squeezing operation for both schemes when compared to a perfect squeezing
operation on a coherent spin state.We define canonical position andmomentumoperators [37]

= á ñˆ ˆ ˆ ( )x J J , 17x z

= á ñˆ ˆ ˆ ( )p J J , 18y z

to describe the spin ensemble.We assume that the ensemble is initially prepared in a coherent spin state and that
á ñ » Ĵ N 2 1z . In this regime, the canonical operators have the usual canonical commutation relation,

»[ ˆ ˆ]x p i, and the spin ensemble is described by aGaussian state characterized by x̂ and p̂. The perfect squeezing
operation amounts to performing the transformation { ˆ ˆ} { ˆ ˆ }x p sx p s, , , where < <s0 1 is squeezing in the
x̂ quadrature ( >s 1 is squeezing in p̂). For a given amount of squeezing, we perform a numerical optimization
of the fidelity between the perfectly squeezedGaussian state and the state produced by either the one-axis or two-
axis squeezing scheme. The output states of the squeezing schemes are approximately Gaussian since the initial

Figure 4. (a)Minimized squeezing parameter x2 as a function of the collective cooperativityNC for the two-axis scheme (two-axis)
and the one-axis scheme of [11] (one-axis). Both schemes exhibit the same NC1 scaling but the one-axis scheme reaches slightly
stronger squeezing than the two-axis scheme. (b) Squeezing time ts (left axis) and optimal detuning ds (right axis) for the two-axis
scheme. The dashed/dot-dashed lines show the analytical estimates of the parameters G = ( )t NC NClns and d k = NC1s .
For both plots, we have assumed that kG = , g g g= =a b o, =g ga b, w = G10b

3 ,D = GNC201 , W D ~ 1 501,2 1,2 , and N NC .
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state is a coherent spin state andwe are considering squeezingwell above theHeisenberg limit. Since all
operations and states are Gaussian they are completely characterized by the first and secondmoments of x̂ and
p̂.Wefind these fromnumerical integration of the EOMas before and calculate thefidelity between the perfectly
squeezed state and the output state of the squeezing schemes as described in [38].

We optimize in the interaction time ts, the two-photon detuning δ, and the ratio W W2 1 assuming that
W = -W3 1 and W = W4 2 in the two-axis scheme.We also allow for initial andfinal rotations of the spin state and
optimize in the rotation angles. The unitary evolution from the one-axis and two-axis schemeswill, in general,
squeeze a linear combination of x̂ and p̂ depending on the initial state and the amount of squeezing. Initial and
final rotations ensure that the output state is squeezed in x̂. In the previous squeezing analysis, we simply
considered an initial state at the origin (á ñ = á ñ =ˆ ˆx p 0) in our numerical simulations sincewewere only
interested in themaximal amount of squeezing obtainable with the two schemes. However, if the squeezing
operation is to be performed as part of a continuous variable quantum information protocol [6] or to enhance
themeasured signal in a quantummetrology protocol [27, 31, 39], the initial state will in general not be at the
origin.We therefore consider a distribution of initial states around the origin to ensure a fair comparison.We

consider rotation symmetric distributions of initial states with equal distance to the origin, = á ñ + á ñˆ ˆr x p2 2

and calculate the average squeezing fidelity for a given distance.
Infigures 5(a) and (b)we show the resulting infidelity  = - F1 for the one- and two-axisHamiltonians. In

figure 5(c), we compare the ratio of the infidelities. For both approaches, the infidelity vanishes for weak
squeezing ( )slog 0, where the system is almost unperturbed, and increases as the squeezing is increased. For
the two-axis scheme, the error is almost independent of the displacement, whereas the one axis scheme display a
cross over between twomodes of operation. For small displacements, the dissipative approach yields amuch
better performance, whereas for large displacements, unitary operation is desirable resulting in afidelity almost
independent of the size of the displacement.

The reason for this is that the dissipative scheme drives the system towards a squeezed dark state at the origin
i.e. it decreases both á ñx̂ and á ñp̂ and as a result, thefidelity with the perfectly squeezed state decreases as wemove
away from the origin. This is not the case for the unitary one-axis scheme, which therefore performs better away
from the origin and leads to similar but slightly better fidelities than the two-axis scheme. The relative
performance of the one-axis and two-axis schememight change if onemoves out of the planar limit considered
herewhere á ñ »Ĵ N 2z . Since the one-axisHamiltonian distorts the state quite severely for high squeezing [31],
itmight performworse than the two-axisHamiltonian in this limit when compared to an ideal squeezing
operation. As the initial statemoves away from the pole of the Bloch sphere, this effectmight also becomemore
severe. It is, however, beyond the scope of this work to consider the non-planar limit.

3.2. Validity of effective dynamics
In our analysis so far, we have neglected the cavity shifts in the effectiveHamiltonian Ĥeff1 in equation (6).
Furthermore, we have neglected terms oscillating as de t2i or faster in the EOMof the two-axis scheme. In order to

investigate these assumptions, we have performed numerical simulations using Ĥeff1 and ˆ ( )
Lx

k
,eff1without

adiabatically eliminating the cavity field and only neglecting terms oscillating faster than de t2i .We still neglect the
AC Stark shiftsµ W∣ ∣2 in Ĥeff1 since the constant part of these can be compensated by adjusting the frequencies of
the lasers, and it is clear that the fast oscillating terms are negligible for weak driving.We do, however, keep the
cavity induced shifts where the requirements for negligible shifts aremore subtle.We perform a linearization of
the noise as before, but now include the cavity field operator in the transformation. This allows us to obtain a
closed set of EOM for the samemean values as before, and also for á ñ á ñ á ñ+ +ˆ ˆ ˆ ˆ ˆ†J c J c c, , 2 ,á ñˆ ˆ†c c and theirHermitian
conjugates. These expressions thus replace the EOMpresented in appendix B but for brevity, we do not
reproduce themhere. From these equations, we can investigate under which conditions the adiabatic
elimination of the cavity field is valid.Wefind that a sufficient condition to neglect the cavity shifts is that
D G NC1,2 and furthermore, we need k c d d k+ ∣ ∣ ( )N8 42 2 2 in order for the adiabatic elimination of the

cavity to be valid. For d d= s the latter criterion translates into kG W D ( )∣ ∣ NC11,2
2

1,2
2 . Thus, we can

always ensure the validity of the adiabatic elimination if we keep the dynamics slow enough using sufficiently
weak laser fields and large detuningsD1,2. Figure 6 shows how themodel where the cavity field has been
adiabatically eliminated compares to the onewithout the adiabatic elimination confirming the above
conclusion.

4. Conclusion anddiscussion

Wehave shown how an effective two-axis twistingHamiltonian can be realizedwith a collection of atoms inside
an optical cavity. The resulting dynamics of thisHamiltonian leads to spin squeezing of the atoms and, in the
absence of dissipation, reaches the idealHeisenberg limit formetrology.However, themaximum squeezing
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obtainable in the presence of dissipation is similar towhatwas found for the one-axis twistingHamiltonian in
[11] and scales as NC1 , whereNC is the collective cooperativity. The reasonwhy the two-axis scheme does
not squeezemore strongly than the one-axis scheme—despite squeezingmore quickly—is that collective decay
through the cavitymode adds significantlymore noise to the squeezed quadrature in the two-axis scheme. It is
therefore expected that if the collective decay can be suppressed, the two-axis schemewould outperform the
one-axis scheme. Thismotivates schemeswithout strong collective decay, such as squeezing through the
Rydberg blockade [40].

We have furthermore compared the fidelities of both the one-axis scheme and the two-axis schemewith
respect to a perfect squeezing operation.We found that a dissipative operation of the one-axis scheme
performed significantly better than the two-axis scheme for squeezing of a state near the origin in phase space.
Away from the origin, however, the unitary versions of both the one-axis and two-axis schemes outperform the
dissipative scheme and lead to similar fidelities. Unitary versionsmay therefore be desirable for continuous
variable quantum information processing [6] or surpassing detection noise in quantummetrology [27, 31, 39].

Figure 5.Errors for the one-axis (a) and two-axis (b) squeezing schemes and the ratio of these (c) as a function of the squeezing
parameter s and canonical displacement r of the initial state. The errors are defined as  = - F1 where F is thefidelity of the output
state with a perfectly squeezed state. The transition fromdissipative to unitary operation of the one-axis scheme is seen in (a) and (c) as
the transition between the regions with strong andweak r-dependence.We have assumed that kG = , g g g= =a b o, =g ga b,
w = G10b

3 ,D = GNC201 , W D ~ 1 501,2 1,2 and =N NC 1000. Log10 refers to the logarithmwith base 10.
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Approximately unitary dynamicsmight be realized by quantum erasure schemes [13, 25] orwith small
ensembles in the ultra-strong coupling regime ~C N .

The twisting schemes can be implementedwith87Rb atoms trapped in an optical lattice, as demonstrated in
[13, 19, 21, 41]. One option is to realize the ground states on the hyperfine clock transition = = ñ «∣F m1, 0F

= = ñ∣F m2, 0F with a quantization axis along the cavity, and the excited state in the P5 3 2manifold. The drive
fields should then have a linear polarization orthogonal to the cavity axis, and the cavitymode of the opposite
linear polarizationwillmediate the four-photon processes giving rise to the twistingHamiltonians.

In our analysis, we have assumed that all atoms are equally coupled to the cavityfield. For uneven couplings,
if the atoms are subject to a uniformdrivingΩ and do notmove, the dynamics are expected to resemble the
homogeneous case andwe thus expect similar results also for inhomogeneous coupling [37, 41, 42]. An
extension of this workwould be to includefluctuating couplings of the atoms, which e.g. would be the case for
systemswhere a large atomic ensemble is trapped inside a glass cell [20]. Such systems can containmanymillions
of atoms, which could compensate a smaller coupling to the cavity field since the relevant parameter is the
collective cooperativityNC. Furthermore, by allowing the atoms to transverse the beam sufficientlymany times
during the interaction, one can obtain amotional averaging such that the interaction is effectively with the
symmetric collectivemode despite the randompositions of the atoms [43]. As a result, large atomic squeezed
states could be realized.

During the preparation of thismanuscript, we became aware of relatedwork on realizing a two-axis twisting
Hamiltonian in a cavity setup [44, 45]. The setup described in [44] is very similar to ours and they alsofind
Heisenberg limited squeezingwhen not limited by dissipation. In contrast to [44], however, we also analyze the
performance of the scheme in the presence of strong dissipation andfind a similar performance as for the one-
axis scheme. Furthermore, [44] operates with amore advanced level structure requiring four atomic levels
compared to the three-level structure considered here. The scheme in [45] is related in the sense that the
squeezing operation can be described by an effective two-axis squeezing operation but themechanism is quite
different fromwhat is described here and the squeezing is assumed to happen on an optical transition.
Nevertheless, this work obtains the same scaling of the squeezing parameter as NC1 .We also note that [32]
suggests an alternative approach to engineering a two-axis twistingHamiltonian, namely, converting the one-
axis scheme considered here into two-axis twisting in the xz-plane by tuning the relative strength of the two
lasers. The performance of such a scheme could be investigated in futurework using the techniques
demonstrated here.
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AppendixA. Effective operators

Herewe give the effective operators describing the dynamics after adiabatically eliminating the excited states of
the atoms and the cavity field.We have neglected the AC Stark shifts and cavity shifts of the atomic ground states
as described in themain text. Furthermore, we have not assumed that the laserfields are tuned according to
equation (8). The effectiveHamiltonian is
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The effective Lindblad operators describing atomic decay are
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while the effective Lindblad operator describing the cavity decay is
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Appendix B. Equations ofmotion

Herewe give the expression for the linearized EOM for themodel where the cavity field has been eliminated.
Note that we have neglected all terms oscillating as de t2i or faster in the two-axis scheme. The validity of this is
discussed in themain text. In order to simplify the expressions, wewrite the effective operators defined in
appendix A as

= - + ++- + - ++ + +ˆ ( ˆ ˆ ˆ ˆ ) ( )H H J J H J J
1

2
H.c. , B1eff2

g c c c c c c= ñ á + ñ á + ñ á + ñ á + ñ á + ñ á+ - - +ˆ ( ∣ ∣ ∣ ∣ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ) ( )( )
L x a x b x a J x b J x a J x b J , B2x

k
x k k k k k k,eff2 1 2 3 4 5 6
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k k= +- +ˆ ˆ ˆ ( )L J J . B3c,eff2 1 2

With these definitions, the EOMs are
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AppendixC. Effects of cavity dissipation

In this appendix, we provide some intuition for the effects of cavity dissipation in the two-axis twisting scheme.
With appropriate laser detunings, we can engineer the following effectiveHamiltonian and collective Lindblad
operator (which appear as equations (9) and (12) in themain text):

a a
= - = - - ++ -
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2 2
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where a c d d k= +∣ ∣ ( ˜ )16 42 2 2 , g c k d k= +∣ ∣ ( ˜ )16 4c
2 2 , and f d k= +( ˜ )iArg 2 . The dynamics of the

quantum state under Ĥeff2 and L̂c,eff2 are described by the quantummaster equation:

r r r r
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The Lindblad operator L̂c,eff2 consists of two terms that accumulate opposite phases de ti . If we expand each
term in themaster equation, we get some termswhose phase factors cancel, and others with phases at de t2i , e.g.:

g
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+ - +

d f p

d f p

+ +
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2 2 i2 i2 i 2

i2 i2 i 2

Appealing to an argument similar to the rotatingwave approximation, we can neglect the pair of rapidly
oscillating terms, so long aswe are interested in timescales that are long compared to the detuning δ. This
approximation decouples the two terms in the original Lindblad operator, and gives a pair of two newLindblad
operators instead:
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This pair of operators generates isotropic spreading of theWigner function in the Jx–Jy plane, as sketched in
figure (1) in themain text. In fact, one can show that the action of this pair of operators is equivalent to any pair
of Lindblad operators of the form:

g q q

g q q

= +

= - +
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( )
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which implies that there is no preferred axis for this dissipation.
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