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Abstract

The strong light—matter coupling attainable in optical cavities enables the generation of highly
squeezed states of atomic ensembles. It was shown by Serensen and Mglmer (2002 Phys. Rev. A 66
022314) how an effective one-axis twisting Hamiltonian can be realized in a cavity setup. Here, we
extend this work and show how an effective two-axis twisting Hamiltonian can be realized in a similar
cavity setup. We compare the two schemes in order to characterize their advantages. In the absence of
decoherence, the two-axis Hamiltonian leads to more squeezing than the one-axis Hamiltonian. If
limited by decoherence from spontaneous emission and cavity decay, we find roughly the same level of
squeezing for the two schemes scaling as v/ NC where Cis the single atom cooperativity and Nis the
total number of atoms. When compared to an ideal squeezing operation, we find that for specific
initial states, a dissipative version of the one-axis scheme attains higher fidelity than the unitary one-
axis scheme or the two-axis scheme. However, the unitary one-axis and two-axis schemes perform
better for general initial states.

1. Introduction

Spin squeezed states of atomic ensembles have many applications as resources for quantum enhanced metrology
[1-5], continuous variable quantum information processing [6], and multipartite entanglement [7-9]. Various
methods for generating spin squeezed states in atomic ensembles have been proposed [10—15] and realized
experimentally [4, 16-21]. In particular, cavity-based schemes where the light-matter interaction is enhanced by
placing the atoms in an optical cavity have have shown impressive results and have realized highly squeezed
states [5, 13, 21]. To take full advantage of these experimental advances and to ensure a continued increase in
their capabilities, it is important to determine the ideal operation conditions and the squeezing attainable with
such cavity based approaches.

A commonly used measure for the degree of squeezing in an ensemble is the possible gain in precision by
using the squeezed state for interferometry. Wineland et al [22] showed that this can be quantified by

& — min | NG = ()
0 ()

where ( ];) ~ N/2isthemeanspinand jy = cos(#)J, + sin(6) ]} Here, ]Ax)),,z are the collective spin operators
defined in the usual manner [22]. For £2 < 1a gain in interferometric precision is possible compared to using a
coherent spin state.

In general, cavity based schemes are known to exhibit a 1,/y/NC scaling of £2 when limited by dissipation.
Here, Cis the single atom cooperativity (defined below) and N is the total number of atoms. This scaling is
obtained as a tradeoff between the competing processes of the coherent evolution causing squeezing and the
dissipative processes of spontaneous emission and cavity decay [11, 14, 15].

The squeezing parameter £? is, however, not a complete characterization of the dynamics. The precise figure
of merit will depend on the application for which the squeezing operation is used, and so may the optimal
method of squeezing. For example, if the objective is to prepare a specific squeezed state for metrology,

> (1)
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Figure 1. Schematic illustration of unitary evolution and added noise due to collective dissipation in both the one-axis twisting and
two-axis countertwisting schemes. Row (a) shows one-axis twisting: in (i) the coherent spin state deforms under H s = afxz as
indicated by the blue flow lines, resulting in a squeezed state (ii). In practice, collective dissipation broadens the state along ]Ay (orange
flow lines in (ii)), resulting in added noise (iii) which is mostly in the anti-squeezed quadrature. Row (b) shows the two-axis
countertwisting evolution: in (i) the coherent spin state deforms under H, _ ;s as indicated by the blue flow lines, resulting in a
squeezed state (ii). Collective dissipation broadens the state in all directions in the xy-plane (orange flow lines in (ii)), resulting in
added noise (iii) which affects the squeezed and anti-squeezed quadrature in a similar manner.

dissipative schemes [12, 14] where the system is driven into a squeezed dark state may be beneficial. However, in
continuous variable quantum information processing applications [6] where the objective is to implement a
squeezing operation on a generic input state, coherent schemes [11, 13, 23—25] may be advantageous.

A demonstrated approach to coherent spin squeezing is to implement a one-axis twisting Hamiltonian [26]:

A a2
I_Il—axis - OJ& . (2)

This nonlinear Hamiltonian has already been realized for atoms in optical cavities [11, 15, 26, 27], and in several
other physical systems [28—30]. Theoretically, squeezing can also be induced by the two-axis countertwisting
Hamiltonian

A A2 a2
H27axis - 04(]0 - ]6+%)) (3)

which may offer advantages over one-axis twisting. In the absence of decoherence, H, _,;; leads to Heisenberg
limited squeezing, £2 ~ 1/N, which is the fundamental limit [26]. This is in contrast to the one-axis twisting
Hamiltonian (2), which has a theoretical limit of £ ~ 1/N ; arising from the curvature of the Bloch sphere

[26, 31]. Furthermore, the two-axis Hamiltonian squeezes exponentially in time while the one-axis Hamiltonian
squeezes only polynomially [26, 32]. This has motivated efforts to realize two-axis Hamiltonians in various
settings [32—34].

In this article, we extend the cavity-based one-axis twisting scheme of [ 11] to show how an effective two-axis
twisting Hamiltonian can be engineered. For atoms strongly coupled to the cavity such that dissipation can be
neglected, the two-axis scheme creates stronger squeezing than the one axis scheme. However, for weakly
coupled atoms the situation is different. We find that when limited by decoherence, £2 scales as 1/+/NC for both
the one- and two-axis schemes and the two schemes exhibit similar amounts of squeezing. We find that this is
because the collective decay adds more noise to the squeezed quadrature in the two-axis scheme than the one-
axis scheme, as shown qualitatively in figure 1. For quantum information processing, not only the amount of
squeezing but also the purity of the squeezing operation matters [6]. We therefore also compare the performance
of both schemes to an ideal squeezing operation. We find that also in this case, the one-axis scheme performs
similar to or better than the two-axis scheme when limited by decoherence.

In the one-axis twisting scheme of [11], a collection of atoms is placed in a cavity such that two ground states
are both coupled off-resonantly through the cavity field to an excited state (figure 2). By illuminating the atoms
with bichromatic light, pairwise exchange between the ground states can be realized, resulting in the quadratic
Hamiltonian H, s = « f; . Below, we first show that by adding a second bichromatic laser to the setup of [11],
the effective dynamics can be described by a two-axis twisting Hamiltonian of the form in equation (3). We then
proceed by analyzing and comparing the squeezing properties of both the original one-axis scheme and the
modified two-axis scheme, including the effects of dissipation. Finally, we elaborate on the requirements for the
validity of the effective dynamics considered.

2. Effective dynamics

We assume that the atoms have two stable ground states |a) and |b) and an excited level |e). The ground states are
coupled to the excited level through four laser couplings and two cavity couplings with coupling constants g,
and g, as shown in figure 2. In a suitable rotating frame, the Hamiltonian describing the system is
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Figure 2. (a) Atomic level structure with two ground states |a), |b) and one excited state |e). The laser fields (£2) and cavity couplings
(g) are shown together with the atomic detunings A, , and the two-photon detuning 6. (b) Joint level structure of two three-level
atoms. The laser fields and cavity couplings mediate resonant four-photon transitions between |aa) and |bb).

H — i(&eiAl 423 Q 1A3t + ei(Az+5)t6)|e> <a| + (Q 1Ayt 4+ Q 1A4t + el(Al+5)t )|€> <b| + H.c
=\ 2 L ¢ 2 2 &

(4)

where H.c. is the Hermitian conjugate. The N atoms are labeled by the subscript k and we have defined the
detunings &) = we — wip, Ay = A — wp, Az = Ay + 26, Ay = Ay + 20,and § = wy) — Wp — Weay- Here,
w, (wp) is the transition frequency between level |a) and |e) (b)), wy, is the frequency of laser x, and we,y is the
cavity resonance frequency. The four laser couplings are denoted €, _4 and g, (g,) is the cavity coupling of level
|a) (b)). We have assumed the frequencies of the upper of the two lasers addressing different transitions to differ
by twice the ground state splitting wi; — wi, = 2wy, and similarly the lower two fields differ by the same
amount w3 — wia = 2wp. Furthermore, we have assumed that the laser fields addressing the same transitions
differ in frequency by 26 so that wy; — w3 = wiy — wig = 26. The decay of state |e)y is assumed to be

described by the Lindblad operators L:Ek) = /% |x)k (el, where -, is the decay rate into state |x) and

x € {a, b, 0}. The state |0) represents all other ground states than |a) and |b). The total decay rate of the excited
stateis I' = v, + 7, + ~,. The decay of the cavity field is assumed to be described by the Lindblad operator

L. = JF ¢, where x is the intensity decay rate of the cavity and ¢ is the annihilation operator of the cavity field.
We assume that both atomic ground states are coupled to the excited state through the same cavity field.

The basic mechanism behind the scheme can be understood from considering the various transitions
mediated by the laser and cavity fields. Assuming large detunings, the couplings from laser 1 and 2 allows a two-
photon resonant transitions of the form |aa) — |bb) (bb) — |aa)). Here, an atom in state |a) (b)) absorbs a
photon from laser 1 (2) and emits a cavity photon that is absorbed by another atom in state |a) (b)), which then
emits into laser 2 (1) resulting in the simultaneous transfer of two atoms from |a) to |b) (b) to |a)). Since laser 1 is
detuned by ¢ and laser 2 by — &, processes involving only a single atom are off resonant and will be suppressed. In
the two atom process, however, the two detunings cancel, making the total two atom process |aa) — |bb)

(bb) — |aa)) resonant. The resulting dynamics can thus be described by a term ]Aj ( ]:2) in an effective

Hamiltonian for the ground states where I = > ila) (bland = fi Other resonant processes are transitions
ofthe form |ab) — |ba) (ba) — |ab)) where an atom in state |a) (b)) absorbs a photon from laser 1 (2) and
emits a cavity photon that is absorbed by an atom in state |b) (|a)), which then emits into laser 1 (2). These
processes are described by aterm J_f, (J.J)in the Hamiltonian. As a consequence, the effective Hamiltonian
describing the evolution due to laser 1 and 2 is

SN L1 S LU AP L AL # AP

H., +
ARYN; JJ- N T + ANDS T AN

)

asshown in [11]. Tuning the strength of the laser couplings such that (g, a / Ay = Qg o / A, = Qg% / A,

nghgaQ2
g LBy

addinglasers 3 and 4, we basically add the same effective terms to the Hamiltonian as with laser 1 and2, except
they are now proportional to 23, €4, and —1/6 instead of €2y, €25, and 1/6 (see figure 2). Matching the strengths
of the lasers results in destructive interference of the J_J; and J,J_ terms. In addition, a relative phase of

H.¢ reduces to the one-axis Hamiltonian H; s = 01]9 with a = |Q|g|* /A% and e~ =

. . . .. )
between laser 1 and 3 while laser 2 and 4 are in phase with each other ensures constructive interference of the J.

and ]12 terms resulting in an effective two-axis Hamiltonian of the form in equation (3).

We now proceed by deriving the effective Hamiltonian describing the system. Motivated by the above
considerations, we assume that we are in the far detuned limit where A > €, 4, g. Consequently, we can
adiabatically eliminate the excited states of the atoms using the effective operator formalism introduced in [35].
We neglect fast oscillating terms (~e?“"*) in the Hamiltonian and assume 1/A, ~ 1/(A; + 26)and
1/A; = 1/(A; + 26) since we are considering the limit A > . After some algebra, we end up with an
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effective Hamiltonian

N * iot
A (lQI|2 + |Q3|2)A1 Ql Q362
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The effective Lindblad operators describing the atomic decay are

N 0+ Q3ezi6t A 2g ei(BAa+0)t
Liwn=Vi|| ———e®"+ =2 ||x)i(a
effl ﬁl[ Y A, T %)k (al
Q, + Qe A ngei(A1+5)t
B [P - n— | PO )T 7
(2A21r N L @

The first four terms in equation (6) are the AC Stark shifts from the laser fields while the next two terms are the
cavity induced shifts of the ground states. The terms e’ in the AC Stark shifts are fast oscillating for large §
and can therefore be neglected in this limit. Furthermore, the constant terms can be compensated by properly
adjusting the frequency of the laser fields. We will therefore neglect the AC Stark shifts in what follows”. In
addition, we also neglect the cavity induced shifts since under the right conditions, these give negligible phase
shifts to the ground states as we will discuss later. The remaining terms in equation (6) describe Raman
transitions from |a) — |b) (b) — |a)) throughlaser 1 or 3 (2 or 4) and the cavity field.

Assuming that the cavity field is weakly populated, we now proceed by adiabatic eliminating the cavity field
(see appendix A). For laser fields tuned such that

Zng;kAl . ZIng:Az .

= = 8
4NF + T2 4N 4 T2 ®
and Q) = —Q3, Q, = Qy, we find an effective two-axis twisting Hamiltonian,
N o 8i IXIP6 2 2
HeffZ ~ 4(52——|—I~€2U+ - ]7], (9)
where
4N g2 4(N) g2
4N; + T2 4A7 +T7

is the modified decay rate of the cavity due to the atom—cavity coupling. Here N, = > ila) (aland

Nj, = 3,|b) (b| are the atomic number operators. These have been replaced with their average values in deriving
the effective dynamics assuming that we can neglect fluctuations around the mean for the calculation of &. Note
that the effective Hamiltonian in equation (9) corresponds to setting o« = 16 |x|*6/(46% + £?)and § = —7/4
in equation (3)°. The effective Lindblad operators are

N QleiAlt %is QZeiAzt )
Lo = V| ————(1 — ¥ |x) {a]| + ————(1 + e¥®)|x) (b
ez = 7 [zAl—iF( )|x)x (al 2A2—iF( ) |x) (I
2i axeiAzt 2 XeiAlt iA _f iA i P
_ g . |x>k <a| + 8b . |x>k <b| % ]+ .~] _ ]+ .~] eZlét (11)
20, — il 24 — il 6+1ik/2 6 —iR/2

> For the one-axis scheme, itis found in [11] and below, that it may be desirable to operate with § = 0. In this case the AC-Stark shifts can be
completely compensated by adjusting the frequency of the laser fields.

By choosing the relative phase between 2, gb* and €2, gﬂ* differently, any generic two-axis Hamiltonian oc(f,)z — f,,z J%) can be realized.

4
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Figure 3. Squeezing parameter, £2 as a function of time for a two-axis Hamiltonian of the form B s = @ (]12,/4 — f:/4) and a one-
axis Hamiltonian of the form Hj _ i = o, xz . The evolution has been calculated both by direct numerical solution of the Schrodinger
equation (direct) and by linearization of the noise. For H,_ s, the linearization breaks down near the minimum of &2 where (J,)
changes significantly from its initial value although it is fairly well described by the linearization. For Hj _ s on the other hand, the
breakdown happens due to distortions of the squeezing ellipse, which is not contained in the linearized description [26, 36]. The
calculations assume N = 1000 atoms initially in state |a).

(12)

Leeir = —ﬁXeiéf[ LAl SRS e o amt].

§+iR/2 8 —iR/2
We now proceed by deriving the evolution of the collective spin state predicted by the effective operators.

2.1. Equations of motion (EOM)
EOM for the mean of an atomic operator (O) can be found from the Heisenberg—Langevin equation

d A A A NCINPYIG! 1, Aotk wr)
E<O> = i([Hetrz, O) 4 > > ((Lyef) OLy efn) — E<O(Lx,eff2)TLx,eff2>
x k
1, 2t wr) A
- E<(Lx,eff2)TLx,effZO>' (13)

To obtain a closed set of EOM, we linearize the noise of the atomic operators in the limit of N >> 1 similar to
what was done in [11]. The linearization of the noise can be described as making the transformation

I = ) + Al N, — (N.)
Jo— )+ NT, Ny — (Np)
L. = (L) (14)

in the EOM and only keeping terms to second order in \. Here 60 = O — (O) describe the fluctuations around
the mean. The result of this is a closed set of EOM that can be solved numerically (see appendix B).

In the absence of decoherence, it is also possible to numerically solve the Schrodinger equation for a given
initial state without performing any linearization of the noise. In order to investigate the accuracy of the
linearization performed above, we have therefore evaluated the evolution dictated by a two-axis twisting
Hamiltonian of the form H,_ . = o (]:27r J4— ]A,f /4) both by directly solving the Schrédinger equation
numerically and by performing the linearization of the noise. The squeezing parameter, &2 calculated from both
methods are shown in figure 3. We have assumed N = 1000 atoms and that all atoms start out in state |a). Near
the minimum of €2, J, begins to decrease rapidly and as a result, our linearization begins to break down. For
smaller times, the linearization however captures the dynamics quite accurately. Since dissipation will resultin a
different minimum of £2 at an earlier time than for the bare Hamiltonian evolution, we expect our linearization
to be valid also when the squeezing is limited by dissipation.

For comparison, we have also plotted the squeezing parameter for a one-axis twisting Hamiltonian of the
form in equation (2) using both the direct method and the linearization of the noise. As with the two-axis
Hamiltonian, the linearization breaks down near the minimum of €2 though the effect is more severe. We
believe the reason for this is that the atomic spin is not only squeezed but also twisted into a non-gaussian state
for a high amount of squeezing [26, 31, 36]. This is not captured by the linearization. Hence the results of the
linearization of the one axis Hamiltonian should not be trusted when the squeezing is close to the minimum
obtained from the Hamiltonian. Figure 3 also shows how the two-axis Hamiltonian results in higher squeezing
and squeezes faster than the one-axis Hamiltonian in the absence of decoherence.
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3. Squeezing analysis

In order to include the effect of decoherence, we numerically solve the EOM from the effective operators. First,
however, we make some analytical estimates of what to expect in order to better understand the numerical
results. We approximately solve the EOM for the evolution of the squeezing parameter £2 under Hgp, starting
from a coherent spin state polarized along z. We assume that dissipation is sufficiently weak that ] = N /2 is
preserved, and we consider the planar limit where J, ~ N /2 throughout the squeezing. From equations (8) and
(9), we find the effective interaction strength « ~ 4 |x|>/§ ~ Q%¢%/(A?5), where we have defined a generic
laser coupling €2, cavity coupling g and detuning A to characterize the system. We assume the limit of large
detuning A where the two first terms of the Lindblad operators fg{e)ffz describing spontaneous emission in
equation (11) are dominant (see discussion below).

From the Heisenberg—Langevin equation, we find that

d({J?) ,o N2k TQ?
~ —2Na(J;) +
dt oo+ —ne T n

N, (15)

where we have assumed that Na > I'2?/ A2, The resulting evolution of the squeezing parameter is

Sy a(—2N§2 +NE 4 ié), (16)
dt 6 2Ck

where C = g?/(xI) is the single-atom cooperativity. The first term in equation (16) is the unitary evolution

from the two-axis Hamiltonian while the second and third terms describe noise added by cavity decay and

spontaneous emission from the atoms, respectively.

In the limit of large single-atom cooperativity C, where spontaneous emission becomes negligible,
dissipation via the cavity can be suppressed by operating at large detuning ¢ from cavity resonance. At finite
cooperativity, however, the squeezing is optimized at a detuning § ~ & = ~/NC r that minimizes the combined
effect of the two forms of dissipation. Squeezing at all requires d¢?/dt < 0 at £ = 1, corresponding to a large
collective cooperativity /NC > 1. The squeezing parameter then initially decays until reaching a minimum
value of €2 ~ 1/+/NC afteratime t, ~ In(~/NC) /(aN), where the rate of squeezing can no longer compete
with the rate of adding noise.

The scaling of the squeezing parameter obtained above is the same as the scaling for the one axis scheme
derived in [11]. One might have expected a more favorable scaling of £2 for the two-axis Hamiltonian than for
the one-axis Hamiltonian since, in the absence of noise, the former gives an exponential decrease of £2 while the
latter only leads to a decrease of the form 1/ (aNt). However, for the coupling configuration leading to the one-
axis Hamiltonian H; s = ]sz , the effective Lindblad operator describing the cavity decay is o< T (see
appendix A). For large ot the squeezed component from the Hamiltonian is almost entirely described by Ji
with only a small admixture of J,. The cavity decay thus nearly conserves the value of the squeezed component
and primarily adds noise to the anti-squeezed component ~ fy (figure 1(a)). Consequently, the one-axis scheme
is more stable against cavity decay than one would naively expect. For the two-axis Hamiltonian scheme, cavity
decay adds noise to both the squeezed and anti-squeezed components (see appendix C and figure 1(b)), which
counteracts the faster squeezing such that the scaling of £2 becomes the same for the two schemes.

Without the assumptions of J, = N /2 and constant ] = N, + Nj, we can numerically solve the EOM given
in appendix B to evaluate £ in the limit N > NC, where the scheme is limited by dissipation. From the
Lindblad operators in equation (11), we can estimate the effect of spontaneous decay of the atoms on the
collective atomic state. To determine the ideal operating conditions we note that the effect of the two first terms
in equation (11) will not decrease with increasing A;, A,, since we expect t oc A?/(Q2I"). The other terms will,
however, be suppressed for large detunings (A). In the numerical simulations, we find that these terms have a
detrimental effect on the squeezing and the detunings should therefore be chosen large enough for these terms to
be negligible compared to the two first terms We include these terms in our numerical optimizations, but
choose A, A, sufficiently large that they are negligible. The result are then almost independent of A;, A, and
we do not optimize over these parameters.

We numerically minimize &2 for the two-axis scheme while requiring the laser fields to be tuned such that
Q, = Qgand O = —Q; (this assumption forces the Hamiltonian to remain of the two-axis form and not cross
into the one-axis Hamiltonian in the numerical optimization). We minimize in the interaction time ¢, the two-
photon detuning 6, and the ratio €2, /€); which can be an imaginary number reflecting a phase difference
between the two laser fields. Note that we keep §2; , /A, < 1/50 to ensure the validity of the adiabatic
elimination (see below). The result of the optimization is shown in figure 4(a), which also shows the optimal
squeezing for the one-axis scheme considered in [ 11]. The effective operators for the one-axis scheme can be
obtained from the effective operators of the two-axis scheme by simply setting 23 = 2, = 0 (see appendix A).
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Figure 4. (a) Minimized squeezing parameter £ as a function of the collective cooperativity NC for the two-axis scheme (two-axis)
and the one-axis scheme of [11] (one-axis). Both schemes exhibit the same 1/+/NC scaling but the one-axis scheme reaches slightly
stronger squeezing than the two-axis scheme. (b) Squeezing time ¢, (left axis) and optimal detuning &, (right axis) for the two-axis
scheme. The dashed/dot-dashed lines show the analytical estimates of the parameters I't; = In(NC) /NC and 6;/x = 1/+/NC.
Forboth plots, we have assumed that I' = k, v, = v, = 7,, 8§, = g, W» = 10°T, A = 20'NC, /A1, ~ 1/50,and N > NC.

The numerical simulations confirm the 1,/+/NC scaling of £ for both schemes and it is seen that the one-axis
scheme reaches slightly higher squeezing than the two-axis scheme.
The numerically optimized detuning and squeezing time for the two-axis scheme are shown in figure 4(b)

[ 2
and are in good agreement with the analytical estimates of 6 ~ VNCrand ¢ ~ %% In contrast to this,

the maximum squeezing for the one-axis scheme is found for § = 0 where the effective Hamiltonian is
vanishing. This was already noted in [11] but the origin of this result was not clear at the time. From our analysis,
we observe that the optimum corresponds to a dissipative scheme, very similar to [14]. In both schemes, the
effective Lindblad operator associated with the cavity decay drives the system into a squeezed state for non-
balanced laser couplings (2, = €);). The main difference between [14] and the dissipative scheme considered
here is that while we consider a three level system with one excited state and two different detunings (4;, A,),
the scheme in [14] considers a four level system with two excited states and equal detunings.

3.1. Squeezing fidelity

Even though the degree of squeezing obtainable with the two-axis and one-axis scheme are similar, the
squeezing operations are very different. In particular, we found that the one-axis scheme leads to maximum
squeezing when operated in a dissipative fashion. To further compare the performance of the two schemes we
consider the fidelity of the squeezing operation for both schemes when compared to a perfect squeezing
operation on a coherent spin state. We define canonical position and momentum operators [37]

2=J /R, a7)
b=1/E), (18)

to describe the spin ensemble. We assume that the ensemble is initially prepared in a coherent spin state and that
(I.) &~ N /2 > 1.In this regime, the canonical operators have the usual canonical commutation relation,

[X, p] ~ iand the spin ensemble is described by a Gaussian state characterized by £ and p. The perfect squeezing
operation amounts to performing the transformation {&, p} — {sX, p/s}, where 0 < s < 1issqueezing in the
% quadrature (s > 1issqueezingin p). For a given amount of squeezing, we perform a numerical optimization
of the fidelity between the perfectly squeezed Gaussian state and the state produced by either the one-axis or two-
axis squeezing scheme. The output states of the squeezing schemes are approximately Gaussian since the initial
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state is a coherent spin state and we are considering squeezing well above the Heisenberg limit. Since all
operations and states are Gaussian they are completely characterized by the first and second moments of X and
p. We find these from numerical integration of the EOM as before and calculate the fidelity between the perfectly
squeezed state and the output state of the squeezing schemes as described in [38].

We optimize in the interaction time t,, the two-photon detuning 6, and the ratio 2, /€2, assuming that
Q3 = —Qyand Q, = €, in the two-axis scheme. We also allow for initial and final rotations of the spin state and
optimize in the rotation angles. The unitary evolution from the one-axis and two-axis schemes will, in general,
squeeze alinear combination of £ and p depending on the initial state and the amount of squeezing. Initial and
final rotations ensure that the output state is squeezed in . In the previous squeezing analysis, we simply
considered an initial state at the origin ((£) = (p) = 0) in our numerical simulations since we were only
interested in the maximal amount of squeezing obtainable with the two schemes. However, if the squeezing
operation is to be performed as part of a continuous variable quantum information protocol [6] or to enhance
the measured signal in a quantum metrology protocol [27, 31, 39], the initial state will in general not be at the
origin. We therefore consider a distribution of initial states around the origin to ensure a fair comparison. We
consider rotation symmetric distributions of initial states with equal distance to the origin, r = /(£)? + (p)?
and calculate the average squeezing fidelity for a given distance.

In figures 5(a) and (b) we show the resulting infidelity ¢ = 1 — F for the one- and two-axis Hamiltonians. In
figure 5(c), we compare the ratio of the infidelities. For both approaches, the infidelity vanishes for weak
squeezing log(s) — 0, where the system is almost unperturbed, and increases as the squeezing is increased. For
the two-axis scheme, the error is almost independent of the displacement, whereas the one axis scheme display a
cross over between two modes of operation. For small displacements, the dissipative approach yields a much
better performance, whereas for large displacements, unitary operation is desirable resulting in a fidelity almost
independent of the size of the displacement.

The reason for this is that the dissipative scheme drives the system towards a squeezed dark state at the origin
i.e.it decreases both (X) and (p) and as a result, the fidelity with the perfectly squeezed state decreases as we move
away from the origin. This is not the case for the unitary one-axis scheme, which therefore performs better away
from the origin and leads to similar but slightly better fidelities than the two-axis scheme. The relative
performance of the one-axis and two-axis scheme might change if one moves out of the planar limit considered
here where (J,) &~ N /2. Since the one-axis Hamiltonian distorts the state quite severely for high squeezing [31],
it might perform worse than the two-axis Hamiltonian in this limit when compared to an ideal squeezing
operation. As the initial state moves away from the pole of the Bloch sphere, this effect might also become more
severe. [tis, however, beyond the scope of this work to consider the non-planar limit.

3.2. Validity of effective dynamics

In our analysis so far, we have neglected the cavity shifts in the effective Hamiltonian H.q in equation (6).
Furthermore, we have neglected terms oscillating as " or faster in the EOM of the two-axis scheme. In order to
investigate these assumptions, we have performed numerical simulations using Heg; and I:;i)fﬂ without
adiabatically eliminating the cavity field and only neglecting terms oscillating faster than e?®. We still neglect the
AC Stark shifts oc| Q2 in Heg, since the constant part of these can be compensated by adjusting the frequencies of
the lasers, and it is clear that the fast oscillating terms are negligible for weak driving. We do, however, keep the
cavity induced shifts where the requirements for negligible shifts are more subtle. We perform a linearization of
the noise as before, but now include the cavity field operator in the transformation. This allows us to obtain a
closed set of EOM for the same mean values as before, and also for (&), (f,¢"), (¢2),(¢7¢) and their Hermitian
conjugates. These expressions thus replace the EOM presented in appendix B but for brevity, we do not
reproduce them here. From these equations, we can investigate under which conditions the adiabatic
elimination of the cavity field is valid. We find that a sufficient condition to neglect the cavity shifts is that

A, > NCT and furthermore, we need x >> 8N |x[*6/(46% + k?) in order for the adiabatic elimination of the
cavity to be valid. For § = ¢, the latter criterion translates into (I" / k)| Q2 / Alz,z <1 / JNC. Thus, we can
always ensure the validity of the adiabatic elimination if we keep the dynamics slow enough using sufficiently
weak laser fields and large detunings A, ,. Figure 6 shows how the model where the cavity field has been
adiabatically eliminated compares to the one without the adiabatic elimination confirming the above
conclusion.

4. Conclusion and discussion

We have shown how an effective two-axis twisting Hamiltonian can be realized with a collection of atoms inside
an optical cavity. The resulting dynamics of this Hamiltonian leads to spin squeezing of the atoms and, in the
absence of dissipation, reaches the ideal Heisenberg limit for metrology. However, the maximum squeezing

8



10P Publishing

NewJ. Phys. 19 (2017) 093021 J Borregaard et al

SR
S

TR

T

S
NSO
SRS
ARsses AN
e X
D
AN

=3
SSo
S
SN

Figure 5. Errors for the one-axis (a) and two-axis (b) squeezing schemes and the ratio of these (c) as a function of the squeezing
parameter sand canonical displacement r of the initial state. The errors are defined as ¢ = 1 — F where Fis the fidelity of the output
state with a perfectly squeezed state. The transition from dissipative to unitary operation of the one-axis scheme is seen in (a) and (c) as
the transition between the regions with strong and weak r-dependence. We have assumed that I' = , 7, = v, = 7,, &, = &>

wp = 10°T, A} = 20I'NC, y,/A;5 ~ 1/50 and N > NC = 1000. Log,, refers to the logarithm with base 10.

obtainable in the presence of dissipation is similar to what was found for the one-axis twisting Hamiltonian in
[11]and scales as 1,/+/NC, where NCis the collective cooperativity. The reason why the two-axis scheme does
not squeeze more strongly than the one-axis scheme—despite squeezing more quickly—is that collective decay
through the cavity mode adds significantly more noise to the squeezed quadrature in the two-axis scheme. It is
therefore expected that if the collective decay can be suppressed, the two-axis scheme would outperform the
one-axis scheme. This motivates schemes without strong collective decay, such as squeezing through the
Rydberg blockade [40].

We have furthermore compared the fidelities of both the one-axis scheme and the two-axis scheme with
respect to a perfect squeezing operation. We found that a dissipative operation of the one-axis scheme
performed significantly better than the two-axis scheme for squeezing of a state near the origin in phase space.
Away from the origin, however, the unitary versions of both the one-axis and two-axis schemes outperform the
dissipative scheme and lead to similar fidelities. Unitary versions may therefore be desirable for continuous
variable quantum information processing [6] or surpassing detection noise in quantum metrology [27, 31, 39].
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Figure 6. Evolution of the squeezing parameter &2 as a function of the rescaled time (¢, where 8 = 2I'Q?A?/(4A? + T2)2 =
2TO3A2/(4A3 + T2)2. Curve 1 (black) is calculated for the model where the cavity has been eliminated for A,/ ~ 50 and
A} = 20NC while curves 2 (green), 3 (orange), and 4 (purple) have been calculated for the cavity model with parameters
A/, ~ 50, 16, 50 and A; = 20NC, 20NC, 2NC, respectively. Curve 2 satisfies the criterion for adiabatic elimination while
curves 3 and 4 violate the condition on 2 and A, respectively. The effect of too strong driving is that £2 has large oscillations on a
timescale of 1/6 as shown by curve 3. Hence the seemingly colored orange and green areas are not colored, but are curves with very
fast oscillations (see inset). Curve 4 shows how the cavity induced shift introduce a deviation from the desired behavior resulting in a
weaker squeezing £2 when A is to small to neglect cavity shifts. The calculations were performed with the same parameters as in
figure 4 for NC = 10*and § = 100k ~ §; assuming the laser fields to be tuned according to equation (8).

Approximately unitary dynamics might be realized by quantum erasure schemes [13, 25] or with small
ensembles in the ultra-strong coupling regime C ~ N.

The twisting schemes can be implemented with ¥’Rb atoms trapped in an optical lattice, as demonstrated in
[13,19,21,41]. One option is to realize the ground states on the hyperfine clock transition |F = 1, mp = 0) <
|F = 2, mp = 0) with a quantization axis along the cavity, and the excited state in the 5P; /, manifold. The drive
fields should then have a linear polarization orthogonal to the cavity axis, and the cavity mode of the opposite
linear polarization will mediate the four-photon processes giving rise to the twisting Hamiltonians.

In our analysis, we have assumed that all atoms are equally coupled to the cavity field. For uneven couplings,
if the atoms are subject to a uniform driving {2 and do not move, the dynamics are expected to resemble the
homogeneous case and we thus expect similar results also for inhomogeneous coupling [37, 41, 42]. An
extension of this work would be to include fluctuating couplings of the atoms, which e.g. would be the case for
systems where a large atomic ensemble is trapped inside a glass cell [20]. Such systems can contain many millions
of atoms, which could compensate a smaller coupling to the cavity field since the relevant parameter is the
collective cooperativity NC. Furthermore, by allowing the atoms to transverse the beam sufficiently many times
during the interaction, one can obtain a motional averaging such that the interaction is effectively with the
symmetric collective mode despite the random positions of the atoms [43]. As a result, large atomic squeezed
states could be realized.

During the preparation of this manuscript, we became aware of related work on realizing a two-axis twisting
Hamiltonian in a cavity setup [44, 45]. The setup described in [44] is very similar to ours and they also find
Heisenberg limited squeezing when not limited by dissipation. In contrast to [44], however, we also analyze the
performance of the scheme in the presence of strong dissipation and find a similar performance as for the one-
axis scheme. Furthermore, [44] operates with a more advanced level structure requiring four atomic levels
compared to the three-level structure considered here. The scheme in [45] is related in the sense that the
squeezing operation can be described by an effective two-axis squeezing operation but the mechanism is quite
different from what is described here and the squeezing is assumed to happen on an optical transition.
Nevertheless, this work obtains the same scaling of the squeezing parameter as 1/ JNC.Wealso note that [32]
suggests an alternative approach to engineering a two-axis twisting Hamiltonian, namely, converting the one-
axis scheme considered here into two-axis twisting in the xz-plane by tuning the relative strength of the two
lasers. The performance of such a scheme could be investigated in future work using the techniques
demonstrated here.
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Appendix A. Effective operators

Here we give the effective operators describing the dynamics after adiabatically eliminating the excited states of
the atoms and the cavity field. We have neglected the AC Stark shifts and cavity shifts of the atomic ground states
as described in the main text. Furthermore, we have not assumed that the laser fields are tuned according to
equation (8). The effective Hamiltonian is

a1 g, P A7 102 2 s -
eff = —— 3 W) — — — T
2\ @A +T2/2)2\ 6 —ik/2 6+ ik/2
ALY |24 %P ); 5
QA2 + 1222\ 5 —ik/2 &+ iR/2
2.8, Ao G0 o9 )
QA +T2/2)A2 + T2\ 6 —ik/2  §+ik/2)

N 8,812, oo, o,
QA2+ T2/2)QA2 + T2\ 6 —iR/2 6+ iR/2

)ﬁﬁ) + H.c. (A1)

The effective Lindblad operators describing atomic decay are

A (K) QleiA,t + Q3eiA3t Q elAzt + Q elA4t

Loy e = ﬁ(—.lxﬂ (a] +

2A1 — il ZAZ |x> <

B |ga|2 QeZuSt 1A2t|x a'f
2A2 +T2/2 A, — lr/z —iR/2 5+ /2 -

Igb|2 216t
2A2+F2/2 A — 1I‘/ (5 m/Z 6+1/<;/2

216
8.8 ( e )1A2r|x Y (alf-

1A|t|x bl]

_2A2 P2/2A2—1F/ 6§ —ik/2 5—|—1/<:/2

B g gb Q4e216t
202+ T2/2 A — 1F/2 6 —1iRk/2 6—{—1/1/

el &)y (b ]+], (A2)

while the effective Lindblad operator describing the cavity decay is

R A (), e~ it (OS] . g*A ), it QO eidt .
Loer = VR [ =5 ss ] | A ) |
207 + T2/2\ 6 +ik/2 6 —iR/2 A5+ T2 /2\ 6 +ik/2 6 —iR/2

(A3)

Appendix B. Equations of motion

Here we give the expression for the linearized EOM for the model where the cavity field has been eliminated.
Note that we have neglected all terms oscillating as 2 or faster in the two-axis scheme. The validity of this is
discussed in the main text. In order to simplify the expressions, we write the effective operators defined in
appendix A as

~ 1 NN P
Hem, = —E(H+J+L + Hy 1)+ + He), (BD)

P8 = V3 Calidal + Xl (bl + xalxhe (alle + xabh (BIF- + Xk (all + xelehi (bIF),  (B2)
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ic,effz =mf + /fzf+- (B3)

With these definitions, the EOMs are

d . A PN . PN . .
a<]+2> =200 (GHY, — me)(F1) + GHY, + med) (1) + QIR(H,_) + s — k) FD)

— TP + PP D) + WGP+ gD GED TP + 3010 (702 — 51D P (7))

+ AP + PGID P + 302 (0 — ST P)

+2(F) <fi>(< Rl = bl + () el = )

+XGR) + N) L) + 200 (R

+ Q06XE — X ) + Caxt + X (R + @) (7D

+ XX + N ) = 200 L) + 0oxE + X 62 (D) = 5009
2

+ OGXs + X XD W) + 2D + 2000 PAR) + (1) = 51014 (B4)

= 4()IH L TD) + 20mP U — 1P UED ) = DAl + ho G0

— DGPRL A+ (Xl + IXGPY2 ) + G022 + 4GP = 51001
— 20 (o) + Dl (No)) () (T — Dl (N (F-) — Il (Na) ()
(Il + P20 + 20 + 1) PALL) + <11 >> =51 1H

+ 2006P (0 + P ) () (7 1) + 2RO (1)} (NG —

+ 2R {0 (R) — D) + 2% 0¢8N () — DL + zm{x2x5< ) — 1
— 2R{(Xix6 + Xa XD W2 + 200

+ 31D PUD) = ST = Xixe () (T )

%P + DGP UL 4 IxsP U (N + Uxal + Il 0o + Ixal? Go7e)) ()

F 2RI UD Y + 2R 00 L) + 208G (L)

+ 2R%{06XE + XX ) + s M) T D

/\\/

(B5)

= 4R IH (D) + 20mP ) — kP I () — DAl + o) )

— PR + (Gl + P2 UD) + G202 + 4l PO — 51001
+ 2006 (N) + IxeP (o) () TT4) — DGl (N6 UoT) — I () (i)
X+ W2 T + G20 + 10D PGULY + (L)) — S 1D
— 20X (K0 + PR () ) + 298006 T (NG — 1)
+ 2RO () — DI + 280G (N0 — DULED + 2R 0o () — 1)
— 2R((xaXi + X WD2QUT) + T )

+ 31 P = U210 - x3x5<Nb> 7
+ (X + DGP U + P BTN (G + (Xl + Ixel? UTe) + Ixal? G o)) (%)
F 2R U + 280 ) ) + 280G )

+ 2R{0GNE + 6 E W)+ X M) )
(B6)

“23{H, (I} — 16T + 10T + %6l () + (Gl — bl () (%)

+2 |X6|2<Nb> <fj+> + 2m{Xisz< +>} + ZW{Xsz} <] ]+> + 2%{X4X6<]+>}< b))
— W+ WXl + 2 PO () + AxalP Fo) = Ixel> ) (N) + 2R {0 ) U4

+2R0OGXEID ) + 2R 06D (W)
(B7)
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%<Nb> = 23(H (IO} + KAL) = 1810 T — (a+ W P 1) — P ) ()

DGR + 2 xR FF2) + 2R 0% T} + 280G T 1) + 2R 00 ) 1 (RL)
+ ’Vb((|X1|2 +2 |X5|2<f+] N {Na) + (|X4|2<f+]l> - |X6|2<]Aj+>)<l\7b> + 2m{XfX4}<f+]l>

"
+2ROGXEID T + 2R DG W)
(BS)

— () = 2i(L)R{H Y J3) + HEL) + (L) — D = kP EN ) + mrs(l)

2 2
+ (GG + I M) (L) () — xslP () + I (Ne)) (1) ()

bl + PGl gy <j+> + 2<f+> <f+f_> = 2L

2 2 2 2
F(Mm PPN Gy a7 — 210 P

2
= xixa ) (1) + x1x4 + (KB
% S
5 X4Xe T X3X A N A
R ) )+ s + T g

+ (X;k)@ 5

+ w((m]_) + JINT) + ) <] ) = 21T PO + xaxg (Na) <f—>]

(B9)

A ~ A N A ~ 0\ F
Furthermore, we have that £-(f) = 1(£(X,) —§<Nb>),§<]_>:(§<ﬁ>) and $(7) = (£(1)) .

Appendix C. Effects of cavity dissipation

In this appendix, we provide some intuition for the effects of cavity dissipation in the two-axis twisting scheme.
With appropriate laser detunings, we can engineer the following effective Hamiltonian and collective Lindblad
operator (which appear as equations (9) and (12) in the main text):

A

Hep = %[ﬁ — = %[U; — 7% = (e + 1), (C1)

Lo = E [Gfy + J)el o — (if, — J)em=i9]
e [(fx _ fy)ei§t+i¢+i7r/4
+ (i + Jye ior—io—in/4) )

where o = 16 |x[*6/(46% + &?), 7, = 16 |x[*k/(46* + R),and ¢ = Arg(é + i%/2). The dynamics of the
quantum state under H.p and ic,effz are described by the quantum master equation:

d .
d—p = —i[Hefrz, p1 + Leetr p(Lereri)t — —P(Lc i) Leeft2

- E(Lc,effZ)TLc,effZ ﬁ (C3)

The Lindblad operator L. ., consists of two terms that accumulate opposite phases e, If we expand each
term in the master equation, we get some terms whose phase factors cancel, and others with phases at e %%  e.g.:

(ic,effZ)Tflc,effZ = %[(ix - fy)z + (fx + fy)z + (fx + fy) (fx - fy)ei25t+i2®+iﬂ/2

+ (jx _ jy)(jx + ]Ay)e—iz&—im—m/z].

Appealing to an argument similar to the rotating wave approximation, we can neglect the pair of rapidly
oscillating terms, so long as we are interested in timescales that are long compared to the detuning 6. This
approximation decouples the two terms in the original Lindblad operator, and gives a pair of two new Lindblad

operators instead:
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~(1) o o
Li e, = % Ux + ]y]

~(2) A A
Lc,effZ = % Ux - ]y] (C4)

This pair of operators generates isotropic spreading of the Wigner function in the J,—J, plane, as sketched in
figure (1) in the main text. In fact, one can show that the action of this pair of operators is equivalent to any pair
of Lindblad operators of the form:

]:c(,le)ffz = /%l cosf + J,sin 0]
L2 = Jl=fesin6 + J, cos 1, )

which implies that there is no preferred axis for this dissipation.
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