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Abstract

A wide range’ of research shows that nutrient availability strongly influences terrestrial carbon (C)
cyclingand shapes ecosystem responses to environmental changes and hence terrestrial feedbacks
to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly
quantified, at least partly due to a lack of informative, comparable, and accessible datasets at
regional-to-global scales. A growing research infrastructure of multi-site networks are providing
valuable data on C fluxes and stocks and are monitoring their responses to global environmental
change and measuring responses to experimental treatments. These networks thus provide an
opportunity for improving our understanding of C-nutrient cycle interactions and our ability to model
them. However, coherent information on how nutrient cycling interacts with observed C cycle
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patterns is still generally lacking. Here, we argue that complementing available C-cycle measurements
from monitoring and experimental sites with data characterizing nutrient availability will greatly
enhance their power and will improve our capacity to forecast future trajectories of terrestrialnC
cycling and climate. Therefore, we propose a set of complementary measurements.that arg relatively
easy to conduct routinely at any site or experiment and that, in combination with C cycleiebservations,
can provide a robust characterization of the effects of nutrient availability across sitessIn addition, we
discuss the power of different observable variables for informing the formulation of models and
constraining their predictions. Most widely available measurements of nutrient availability,often do
not align well with current modelling needs. This highlights the importance to fostersthe/interaction
between the empirical and modelling communities for setting future research priorities.

Abbreviations of and weblinks to research infrastructures and networks mentioned in
the text:

Research Infrastructures
ANAEE: Analysis and experimentation on ecosystems (https://Www.anaee.com/)

ICOS: Integrated carbon observation system (https://Www.icos-ri.eu/)

LTER: Long term ecological research (https://lternet.edu/)
NEON: National ecological observatory network (https://Www.neonscience.org/)

CZO: Critical zone observatory (http://criticalzone.org/national/)

Research networks

ClimMani: Climate change manipulation experiments in terrestrial ecosystems: networking and
outreach (http://climmani.org/)

DroughtNet: Network of drought experiments (http://drought-net.colostate.edu/)

Fluxnet: Global network of meteorologicalsensors measuring atmospheric state variables, like
temperature, humidity, wind speed;.rainfall, and atmospheric carbon dioxide.

INTERFACE: An integrated network for terrestrial ecosystem research on feedbacks to the
atmosphere and climate (https://www.bio.purdue.edu/INTERFACE/experiments.php)

LIDET: Long-term inter-site decomposition experiment team
(https://andrewsforest.oregonstate.edu/sites/default/files/Iter/pubs/webdocs/reports/lidet.htm)

NutNet: Nutrient Network (http://www.nutnet.umn.edu/)

TERN: Australia’s'land ecosystem observatory http://www.tern.org.au/

INCYTE: Investigating Nutrient Cycling in Terrestrial Ecosystems (NSF network)

1. Introduction

More than a century of research has shown that nutrient availability, such as nitrogen (N) and
phosphorus (P), is a key determinant of ecosystem community composition, diversity, architecture,
andfunctioning (Borer et al 2014, Chapin 1980, Elser et al 2000, Pefiuelas et a/ 2013, von Liebig 1841).
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Nutrient availability can influence, plant activity and growth (Fay et al 2015, Vitousek et a/ 2010a,
Verlinden et al 2018), as well as microbial activity (Janssens et al 2010, and consequently has a strong
influence on terrestrial carbon (C) cycling (De Vries et al 2009). Nutrient availability is’ also an
important modulator of the effect of environmental changes on terrestrial ecosystems, and hence the
terrestrial feedback to anthropogenic climate change (Melillo et al 2011, Sardans and Pefiuelas 2012).
For example, nutrient availability has been shown to have a fundamental control overplantresponses
to elevated CO, (De Graaff and Van Groenigen 2006). Despite the critical role of nutrients in terrestrial
C cycling, however, we still lack comprehensive, comparable datasets to fully unravel the.influence of
nutrients and the varied mechanisms through which they interact with environmental change to
influence ecosystem functioning (Box 1). The lack of coordinated assessments'of multiple elements in
concert not only limits our fundamental understanding of the role of nutriénts, butalso hinders model
evaluation and development.

The strong evidence for nutrient effects on C cycling in terrestrial ecosystems has motivated their
explicit representation in process-based terrestrial biogeochemistry»(BGC) models, (Medvigy et a/
2009, Parton et al 2010, Reed et al 2015, Smith et al 2014 /Thornton et al 2007, Wang et al 2010,
Zaehle and Friend 2010). . Taking nutrient limitations into account, these models generally simulate a
reduced sensitivity of plant growth to increasing CO, and strongly.reduced C uptake by the terrestrial
biosphere under future climate and atmospheric CO, coneentration scenarios (Achat et al 2016,
Pefiuelas et al 2013, Thornton et al 2007, Wanget al 2015, Wieder et al 2015a, Zaehle and Dalmonech
2011). This is in line with evidence from manipulation experiments and remote sensing results, which
imply that allowable emissions to keep global warming:below a given target are much lower than
emission estimates from models without-C-nutrient interactions (Ciais et al 2013, Smith et al 2015,
Zaehle et al 2010, 2014a, Zhang et al 2014);However, detailed comparisons of models with interactive
C and N cycles against field experiments revealed that key mechanisms determining the uptake and
recycling of nutrients are poorly:simulated by the current generation of BGC models (Medlyn et a/
2015, Piao et al 2013, Zaehle et al.2014b) and the uncertainty arising from missing empirical data and
poor process understanding remains a serious limitation for model projections (Thomas et al 2013,
Meyerholt and Zaehle 2015, Meyerholt et al 2016). Information on soil properties, nutrient
availability, allocation and plant stoichiometry, along with site-level terrestrial C cycle data, is
therefore critical to inform'the formulation of models and to establish new benchmarks.

A range of large scale research infrastructures (e.g. ICOS, ANAEE, NEON, LTER, TERN, CZO) and
research networks (e.g., Fluxnet, ClimMani, INCyTE, INTERFACE, LIDET, NutNet, DroughtNet, TERN)
have been initiated.to collect empirical data from terrestrial ecosystem monitoring and manipulation
experimentsWith a focus on characterising the cycling of C and its response to environmental change
(Hinckley et al 2016, Richter et al 2018). While ample data are commonly available for accompanying
measurements.ef‘meteorological variables, background climate, vegetation cover, and soil moisture,
an assessment of how nutrient cycling may modulate terrestrial C cycling across networks and in
experiments/is often missing. Here, we argue that the additional provision of coherent and
comprehensive observations of nutrient availability, soil properties, and plant stoichiometry would
greatly enhance the power of these networks and experiments to generate mechanistic insights for
understanding how and why nutrient availability interacts with ecosystem functioning and structure
to shape their response to global environmental change.



oNOYTULT D WN =

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

AUTHOR SUBMITTED MANUSCRIPT - ERL-105217.R2

To support the coupling of nutrient cycling measurements with those being made for Cin large'scale
cross-site infrastructures and global change experiments, we highlight research gaps and the types of
measurements that could be particularly valuable for: (1) Developing a solid empirical basis and
identifying general patterns of how nutrient availability interacts with C _cycling; and (2)
Parameterizing and evaluating BGC models, especially their representation of mechanijsms by which
nutrients affect C cycling and ecosystem feedbacks to climate and environmental change:We first
focus on how to characterize and compare the nutrient status and propose combining a set of
complementary measurements to assess nutrient availability among sites and experiments.
Subsequently, we discuss the power of different variables of ecosystem nutrient cycling to/inform and
evaluate process-based BGC models. The primary aims of this work are to raise.awareness about the
need for comparable nutrient cycling measurements. To facilitate a wide implementation, we focus
on common biogeochemical measurements that are relatively easy to make and interpret. We focus
on N and P as nutrients shown to strongly affect C cycling (although werecognize’other nutrients have
poorly represented importance as well (Kaspari and Powers 2016)).

Page 4 of 26
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BOX 1: A need for a coordinated assessment of coupled biogeochemical cycles

Targeted measurements of specific nutrient pools and fluxes performed across a range of locations
can directly inform a unified understanding of how variation in nutrients helps dictate ecosystem
structure and function. Yet, relatively few synthesis studies on terrestrial C cycling have taken
nutrient availability into account, and those that exist, have typically focused on N/-"the element
often considered most limiting for plant growth outside the tropics (Augusto et al 2017, LeBauer,
and Treseder 2008) - using a single indicator for N availability (e.g., N addition in van,Groenigen et
al (2006), C:N ratio in Alberti et al (2015), or total N stock in Stevens et al (2015)). In an attempt to
create a more comprehensive understanding of the role of nutrient availability, in mediating
ecosystem carbon cycling and its responses to environmental perturbations, a coarse classification
was developed based on the sparsely available data and on expert knowledge (Alberti et al 2015,
Campioli et al 2015, Fernandez-Martinez et al 2014, Terrer et al 2016, Vicca et.al 2012). These data
syntheses provided powerful insight into the ways nutrients influence ecosystem responses to
environmental changes, but they also revealed that our undérstanding of the role that nutrients
play in the terrestrial C cycle is hampered by the limited:ecomparability of datasets where soil
nutrient information was provided. While carbon cycle data are inereasingly becoming available,
and the comparability of these data among sites and networks is improving, standardized
assessment of ecosystem nutrient dynamics are less’common (Fig. 1). These data gaps hinder inter-
site comparison of the influence of nutrientavailability on ecosystem processes and their responses
to environmental change.

n
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Figure 1: The availability of data for 13 soil variables in a global dataset of 125 forests and a Venn diagram
showing thesoverlap for four soil measurements of these variables. These four variables were chosen because
of their,complementary information regarding nutrient availability and because they are among the most
commonly measured soil properties in the database. The number of sites providing any single variable is shown
by n).some combination of two of these variables is shown by n where two polygons overlap, and the
combination of all four is shown in bold text. Abbreviations are for bulk density (BD), soil organic matter (SOM),
cation exchange capacity (CEC), and total exchangeable bases (TEB). For SOM, n includes also sites that
provided soil organic carbon (SOC) instead of SOM, and pH includes measurements performed using H20, CaCl»
or KCl solutions. For both SOM and pH, the variable of interest can be obtained through conversion (Ahern et
al 1995, Pribyl 2010). All data are provided in Table S1.
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2. Integrated assessment of nutrient availability

Comparing nutrient availability among sites remains challenging due to the large variability in edaphic
properties that modify nutrient availability (e.g. soil pH) and due to varying plant strategies of hutrient
acquisition (e.g. cluster roots, mycorrhizal fungi). This complicates the interpretation of chemical
assays used to assess N and P availability (Binkley and Hart 1989, Darch et a/ 2016, DeLucaet a/ 2015,
Holford 1997, Inselsbacher and Nasholm 2012, Neyroud and Lischer 2003). Nonetheless,
characterizing and comparing nutrient availability within and among sites can be accomplished by
combining key soil properties with indicators of N and P availability. The simultaneous measurement
of multiple aspects of nutrient cycling can help reduce the caveats associated with any single
measurement. Such integrated metrics could provide a broad indication ofsite nutrient availability an
provide new insights into how it influences C cycling.

Qualitative proxies of nutrient availability among sites can be made‘usingrelatively common metrics.
This integrative approach was applied in a few synthesis studiesithat used a nutrient availability
classification (Vicca et al 2012, Campioli et al 2015, Fernandez-Martinez et al 2014) and could help
bring quantitative capacity to coupled biogeochemical perspectives.However, large data gaps persist.
For example, Figure 1 shows the availability and overlap of'afew of the most commonly measured
soil variables that are available for a set of 125 forestsites, including sites that are part of networks
such as Fluxnet and LTER (Luyssaert et al 2007, Campioli et al 2015, Vicca et al 2012). Here, we used
all forests for which aboveground primary production data,were available (Table S1). Although some
soil data (especially texture and soil C:N ratio) were available for the majority of the sites, overlap in
the combination of soil variables providing complementary information was very limited. Using these
sparse data (see Fig. 1), Vicca et al (2012) developed a nutrient availability classification based on
information such as soil texture, soil organic matter (SOM), pH, C:N ratio, and cation exchange
capacity (CEC). This categorical.classification explained significant differences in biomass production
efficiency and ecosystem carbon use efficiency across forests (Fernandez-Martinez et al 2014, Vicca
et al 2012). Hence, integrated assessments,of ecosystem nutrient availability could provide a means
to assess nutrient effects on broad differences in ecosystem function and productivity. Such
classifications would becomé more accurate and powerful if more comprehensive and comparable
datasets were available, suchsthat the same set of variables can be considered for all sites.

Adding to this qualitativesapproach, quantitative metrics that integrate information about key soil
properties and nutfients can be used in inter-site comparisons. For example, Van Sundert et al (2018)
and Fischer et a/(2012) developed site fertility indices from commonly used measurements to broadly
assess nutrient availability. Briefly, these metrics consider three or four soil factors that influence
nutrient availability. (attributes like SOM, pH, texture, C:N ratio, total exchangeable bases (TEB, i.e.,
the sum of K; Ca, Mg and Na)). Each attribute included in the metric received a rating that decreases
as it diverges from a predefined optimal range. Thus, nonlinear relationships and interactions among
attributes are taken into account. For example, at low pH, differences in N availability may be less
influential-than at optimal pH because at pH < 4.5 plant growth is commonly limited by Al toxicity
and/or\P deficiency (Chapin 2002, Cross and Schlesinger 1995). This approach requires further
investigation, development, and testing, as its potential for wider applications requires the
establishment of comprehensive datasets of soil properties and nutrients (Van Sundert et al 2018). In
future availability of a larger number of data for multiple edaphic factors and nutrient availability

Page 6 of 26
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measurements, along with C cycle variables, may enable machine learning-based approaches to
identify such patterns from the data alone.

As illustrated by the variables included in both the nutrient availability classification.and in
quantitative nutrient metrics, some soil characteristics seem consistently indicative ofsite nutrient
status and can help to estimate ecosystem nutrient availability (Andrianarisoa et a/ 2009, Van:Sundert
et al 2018). These include SOM, CEC and TEB, texture, bulk density, and pH. SOM is a source of
nutrients and both organic matter and clay colloids are important exchange sites for nutrients (Roy et
al 2006, Schroeder 1984). CEC represents the capacity of soil to avoid leaching of essential nutrients,
including N (Robertson et al 1999). Bulk density indicates the porosity of the soil and is particularly
relevant where gravel and stones reduce the ‘fine earth’ volume from which plantsacquire essential
nutrients. Bulk density is also necessary to convert concentration data inte'stocks. Soil pH is a critical
determinant of nutrient availability, especially for P, and also has strong«relationships with soil
microbial communities (Fierer and Jackson 2006). Thus, these relatively straightforward soil assays
are useful for developing proxies of nutrient availability across sites(see also box 1).

Pairing these simple assays of soil characteristics with direct; targeted measurements of ecosystem N
and P availability provides additional information about nutrient-carbon cycle interactions from
monitoring programs, networks, and global change experiments.‘An indicator of N availability that is
comparable across a wide range of environmental conditions is the soil C:N ratio (e.g. Alberti et a/
2015, Andrianarisoa et al 2009, Wang et al 2014). The soil C:N ratio has the advantage of being fairly
straightforward to determine and it does not change on’short temporal scales, thus the timing of
measurements is less influential. This'variable was also included in the metric developed by Van
Sundert et al (2018). A high soil C:N ratiotindicates a'relatively low N availability, and several studies
have reported a significantly negative relationship/between soil C:N ratio and N mineralization rates
(Andrianarisoa et al 2009, Yannet al 2012), plant biomass (Grau et al 2017), organic matter
decomposition, and plant productivity,(Van Sundert et al 2018, Yan et al 2012). Similarly, assessment
of foliar N and P stoichiometry suggests broad scale indicators of relative nutrient limitation in plants
(McGroddy et al 2004, Reich and Oleksyn'2004, Vitousek 1984). Although caution in inferring nutrient
limitation from stoichiometry jis warranted (e.g., because of a strong phylogeny effects; Asner et al
2014, Sardans et al 2015, Townsend et al 2007, Zechmeister-Boltenstern et al 2015), we contend that
these metrics offer powerful indicators of ecosystem nutrient availability, especially when paired with
other measurements.

Ecosystem P status,regulates productivity and ecosystem function at multiple spatial and temporal
scales (Cleveland et al 2011, Pefiuelas et al 2013, Vitousek et al 2010b). Despite the central role of
coupled C-N-P dynamics, a reliable, widely applicable indicator for P availability for inter-site
comparisonsisiehallenging to suggest, as the accuracy of different indicators of P availability depends
strongly on ‘soil properties (especially pH) and on the dominant P acquisition strategy (e.g.
carboxylate-releasing cluster roots, roots releasing phosphatase enzymes, or mycorrhizal fungi;
Raven et al 2018, Zemunik et al 2018). We therefore advocate that inter-site comparisons (e.g., in
meta-analyses) and models should always take the P-acquisition strategy of plants into account, and
combine this with data on total soil P and the most suited extraction methods for the study soils (Olsen
P, Bray P, Colwell P (Colwell 1963), Resin P (Turner and Romero 2009)) (Table 1). These extraction
methods have been widely applied (Bolland 1997, Colwell 1963, Dalling et al 2016, Turner et al

7
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2018a,b). While Olsen P is considered to best reflect P extractability in soils of alkaline to neutral’pH
(Olsen et al 1954), Bray P and Colwell P provide a more accurate estimate of extractable P at lower
pH (Wolf and Baker 1985). We recommend prioritizing the Resin-P extraction method, as it measures
P that is in solution, independent of soil pH. P in the soil solution is available for all plants, but because
species with P-mining strategies have access to a greater pool (Lambers et al 2018), we advise
measuring also other P indicators most relevant to the system (e.g., total P, Olsen P, Bray P):

Except for the P extraction methods, the measurements of soil properties and indicators of N and P
availability suggested above are all relatively stable at short time scales. While this is advantageous
for a nutrient availability characterization of different sites (avoiding confounding effects of the time
of sampling), these measurements may miss short-term responses to natural or imposed
environmental changes. A particularly useful method that can be added to capture short-term
dynamics are resin membranes, with which the availability of afsuite ofynutrients that can be
estimated in an integrated fashion through time. Resin membranes (or bags) absorb anions and/or
cations that are in the soil solution, and hence provide an estimate of the relative availabilities
(“supply rates”) of various ions during the time resins are in the soil (Qian and Schoenau 2002). These
membranes also provide unique information about the relative abundance of different elements in
soil solution, a measure that is comparable among study sites, Nonetheless, the potential for
comparing changes in nutrient availability among sites and inrresponse to environmental perturbation
is challenging, in part because supply rates/depend on’ soil. moisture and temperature (Qian and
Schoenau 2002), and the units (e.g. pg N cm%membrane® burial time™?) differ from those of fluxes
actually occurring in the ecosystem. Nevertheless, relative differences in measured supply rates
among treatments or sites provide valdable.information; useful for interpreting observations (Dijkstra
et al 2010, 2012) and for informing models. Overall,"ion exchange resins can offer a good additional
measurement for comparing nutrient availabilityyamong treatments within a site, as well as the
elemental ratios among sites, and.for indicating strong differences in individual nutrient availabilities
among sites.

In Table 1, we summarize the measurements that we consider of primary relevance for inter-site
comparison - in addition to (already available) data on major C pools and fluxes of ecosystems (e.g.,
net C exchange fluxes, plantand soil C stocks, microbial respiration). We focus on measurements that
are comparable acrossna wide range of environmental conditions, that provide complementary
information, and that are relatively simple to make. We suggest that, for the aim of inter-site
comparison, variables “with low seasonal variability are preferred over variables that exhibit
considerable variability at short temporal and spatial scales, as the latter require high spatial and
temporal resolution of ‘measurements or spatial and seasonal integrations, and would substantially
complicate robust comparisons across biomes and climatic regions. Of course, the measurements in
Table 1 can be:eomplemented by other measurements that help advance process understanding of
nutrient cycling or fit specific project goals.

Page 8 of 26
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Table 1: List of suggested soil measurements to characterize sites in terms of nutrient availability and
additional data needs for model development and evaluation. Foliar stoichiometry refers to the ratios
of the elements: C, N, P, Ca, Mg, K, Zn, Fe, Mn, S.

Primary advantage

= pH

§ g Texture Generalist and

'.g_ g  Bulkdensity integrative indicators of

3 S Organic matter concentration soil nutrient availability
Cation exchange capacity

E " Total N

;‘ 'q:j C:N ratio Indicative of/the stock

f‘é ‘E Total P size and av.ailability of

o < P extraction* nutrients

_E’ El Total exchangeable bases (K, Ca, Mg, Na)

E’; -‘% Resin membranes Ability to capture short-

,‘:" Foliar stoichiometry term changes

E Belowground C allocation Essential for

g § Plant nutrient uptake rates mechanistic

Tc“ o N fixation ur‘mderstan'ding of.

o8 . . - nutrient cycling and its

% s Nutrient resorption coefficients Jelationship with C

2 Inorganic nutrient pools (NOs, NH,*; POz%) cycling

* P extraction refers to Resin P, Olsen P, Bray P, Colwell'P, etc. depending on the soil condition (see
text)

This article focusses on the type of data that are needed, without providing or discussing specific
protocols for sample timing, depth.or spatial representation. However, standardized measurement
protocols are critical for enabling/comparability of data across sites. Concerted research within multi-
site networks offers an opportunity for designing and disseminating common protocols. This has been
put into practice within somemnetworks(see e.g., NutNet http://www.nutnet.org/methods and NEON

https://www.neonsciencelorg/datazcollection/protocols-standardized-methods). In future, more

effort should be made to adopt.standard protocols more widely and harmonize them across networks.
In addition, publicly laccessible and usable datasets from monitoring and experimental sites and
networks is needed to,greatly enhance the power of data synthesis as well as model development
and evaluation.

3. Data and, precess understanding for model development and
evaluation

Data from research networks and experimental manipulations are already critical for developing and
evaluatingsBGC models (Hinckley et al 2016, Luo et al 2012, Schaefer et al 2012, Zaehle et al 2014b).
Expanded measurements that facilitate the characterization and comparison of nutrient status among
different sites would also enable additional insights into the representation of nutrient controls on
biogeochemical cycles in models. BGC models provide process-based representations of
biogeochemistry and vegetation dynamics and are the primary tool for integrating knowledge about
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the functioning of the terrestrial C cycle and its interaction with nutrient cycles. Here we provide a
brief overview of the development of C-nutrient interactions in BGC models and summarize data-
model linkages that would be enabled by systematic, targeted data collection across existing fesearch
infrastructures. An overview of the interplay of relevant processes and fluxes is given in Fig. 2.

3.1 Carbon-nutrient relationships in terrestrial biogeochemistry models

While the explicit representation of C and N interactions is becoming common in BGC models, and
recent developments have been aimed at explicitly simulating P cycling (Achat-et al 2016,/Goll et al
2017, Wang et al 2010, Yang et al 2014), other nutrients and additional soil propertiesithat modulate
nutrient availability to plants (e.g, pH, CEC, texture) remain largely ignored by:the suite of models
available today. This historical legacy resulted from the origin of these models, which were developed
and applied mainly with the aim of simulating C cycle changes and their feedbacks with climate. The
motivation for including effects of nutrients has primarily been to increasée confidence in model
projections of future C cycle trajectories in response to environmental change (Hungate et al 2003,
Wieder et al 2015a, Zaehle et al 2014a). However, substantial uncertainties remain in how to
adequately represent ecological processes that determine C-nutrient cycle interactions in global-scale
models (Brovkin and Goll 2015, Meyerholt and Zaehle 2015, Wieder et al 2015b,c). This challenge also
presents new opportunities to test alternative hypothesesiand refiné ecological understanding of how
nutrients shape the C cycle at centennial time scales and acrossthe globe (Fowler et al 2015, Medlyn
et al 2015, Tian et al 2018).

The key mechanistic relationships between C and nutrient cycles represented in models are related to
allocation and stoichiometry. Allocation:defines the partitioning of assimilated C into different plant
organs and functions. Key for simulating C=nutrientinteractions in BGC models is the partitioning into
above- and belowground biomass pools (foliage,and wood vs. roots). The size of these pools is related
to the efficiency at which @bove- and belowground resources are acquired. Stoichiometric
relationships in models define particular C:nutrient ratios in simulated ecosystem pools. Despite
widespread observational evidence for adaptive flexibility in plant C allocation and stoichiometry in
response to nutrient availability and._environmental manipulations, appropriately simulating these
changes remains a significant challenge (Ghimire et al 2016, Terrer et al 2018, Vicca et al 2012, Zaehle
et al 2014b).This challengenis particularly acute for belowground processes, where allocation and
stoichiometry affect root function and plant-soil interactions that control nutrient uptake (Fig. 2).
While many BGC models only.have a rudimentary representation of functional relationship between
roots and nutrient uptake, recent model developments have been aimed at better resolving this
process (lversen et al 2017, McMurtrie and Ndsholm 2018). Despite this progress, significant
knowledge and'data gaps persist.
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30 339  Figure 2: Schematic representation of (thewlink between/carbon and nutrient cycles as considered in
31 340  biogeochemistry models. ‘Belowground’C allecation” subsumes different components and functions, including
32 341  fine root production, fine root respiration, export'to mycorrhizae and symbiotic bacteria (e.g. rhizobium for N
33 342  fixation), and exudation of labile(€.compounds into jthe rhizosphere. The thickness of arrows approximately
34 343  indicate the relative magnitudes of the fluxes. Blue arrows indicate nutrient fluxes, green arrows indicate carbon
35 344  fluxes. Fluxes specific to nitrogen are given by.arrows with a dashed outline. Boxes indicate pools.

36

37 345 3.2 Data-model linkages

38

39 346 To address knowledge and.data gaps, we call on existing research infrastructure and networks to
40 347  collect data that help'to clarify and quantify key functional relationships between allocation,
j; 348  stoichiometry and ecological function that are to be represented in models. Broadly, measurements
43 349  are needed: (1) to'revealinsights into allometric and stoichiometric changes and how they vary across
44 350 ecosystems, over time, and under experimental manipulations; and (2) to link observed plant
45 351  adaptations with observed variations in nutrient availability. We acknowledge a significant disconnect
46 352  between suggested measurements for characterization of the nutrient status (Section 2) and
j; 353 modelling needs (below), which underscores opportunities to better align future research activities.
49 354  Below we briefly summarize the approach commonly taken to simulate nutrient limitations in global
50 355 models and discuss the power of different observable variables for informing and evaluating modelled
51 356 relationships.

52

53 357 'Belowground C allocation is directly affected by nutrient availability and the balance between above-
gg 358 (light, CO;) and belowground (water, nutrients) resource availabilities (Poorter et al 2012). The
56 359 magnitude of belowground C allocation indicates how much of the assimilated C is spent on nutrient
57
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and water acquisition. Without explicitly resolving how much C is allocated to different nutrient
uptake mechanisms and plant-soil interactions, total belowground C allocation is the most relevant
quantity for providing information on overall C costs of nutrient uptake (Gill and Finzi 2016)‘and can
directly be related to variables simulated in BGC models (Shi et al 2016). Therefore, we highly
recommend a strengthened focus on measuring belowground C pools and its change under
experimental treatments and along environmental gradients (lversen et al 2017). In the field,
belowground C allocation is commonly estimated by subtracting litterfall and the changes)in soil
organic matter pool from the soil CO, efflux (Davidson et al 2002, Litton et al 2007). Direct estimates
of root production are rarely available since they are highly labour-intensive. However, root mass
estimates can be more easily obtained by soil core sampling, and may be used as alternative total
belowground C allocation under some simplifying assumptions. Instead™of relying on absolute
estimates of root mass, relative differences across sites and experimental manipulations may be a
useful constraint on the model sensitivity of root allocation to environmental,eonditions (see Terrer
et al 2018). Interpretation of relationships between belowground C allocation and nutrients has to
take into account that belowground C allocation and root biomass are,affected by water availability,
especially where deep rooting is a common plant strategy to access.water stored in deep layers during
prolonged dry periods.

Plant tissue stoichiometry and its response to nutrient availability is critical for the degree to which
nutrient uptake limits plant growth. Particularly critical is to appropriately simulate the flexibility in
leaf stoichiometry in response to environmental .change. €drrent N-enabled BGC models explicitly
resolve the C:N stoichiometry in plant tissue (Ghimire et.a/ 2016). An evaluation by (Zaehle et a/ 2014b)
showed that available models generally. overestimate the flexibility in tissue stoichiometry in response
to elevated CO,. This ensemble of models also simulated a feedback of increased foliar C:N under
elevated CO; which (erroneously) tended totinduce a progressively enhanced N limitation effect on
plant growth due to greater N.immobilisation at high C:N ratios of litter inputs. Empirical data
documenting how stoichiometry varies with experimental treatments and across environmental
gradients is therefore important as a constraint for models and model-data evaluations should be
extended to investigate P-related stoichiometry.

Soil C:N is typically prescribed in models for different SOM compartments (e.g., slow and fast turnover
SOM). Hence, it is treated as constant in time and independent of environmental factors. Therefore,
although soil C:N emerges.as a good indicator for explaining variations in C cycling in observational
datasets (see Sectioni2), it cannot be used as a direct observational constraint on simulated nutrient
dynamics in models. Furthermore, prescribed soil C:N ratios do not directly determine N availability in
models. Until the complex nature of soil C:N as both a predictor and result of coupled ecosystem C
and N cycling is accurately. simulated by a next generation of models, its use for constraining current
BGC models remains limited.

Plant/ nutrient uptake rates from the soil are useful for quantifying the “return” on a given
“investment”/of belowground C allocation (Terrer et al 2018). While these fluxes cannot directly be
observed, field data can be obtained indirectly, based on litterfall, biomass increment, and tissue
nutrient concentration data (Finzi et a/ 2007). Hence, the power of such data and the usefulness as
an independent model benchmarking variable is limited. Nevertheless, comparing modelled and
observation-derived nutrient uptake rates may serve as a practical way for model evaluation and has
previously generated valuable insights (Zaehle et al 2014b).
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Net mineralisation rates represent the balance between gross mineralization from organic matterand
the simultaneous immobilization in microbial biomass. While gross mineralisation and immobilisation
are usually simulated separately by models, these are not readily measurable quantities inthe field
(Schimel and Bennett 2004). Net mineralisation rates quantify the total nutrient “throughput” through
the system (Fig. 2) and are used to estimate nutrient availability for plants in the field (Gill and Finzi
2016). However, the use and interpretability of net mineralization data is not straightforward due to
large seasonal variations, requiring repeated measurements, and due to the varying importance of
nutrient losses (leakage and gaseous N loss) in confounding the relationship  between net
mineralisation rates and nutrient availability. The value of net mineralisation data for models
therefore lies primarily in constraining simulated nutrient cycling rates and,.in combination with
estimates of nutrient inputs or losses and resorption, they can indicaté the openness of nutrient
cycling (Cleveland et al 2013).

N fixation is an important component of the ecosystem N balance and provides information about the
degree of biological control on N availability and therefore on the potential of plants and the
ecosystem as a whole to relieve limiting effects of low N availability, especially in global change
scenarios (Menge et al 2014, Meyerholt et al 2016, Wieder et al'2015c). N fixation is increasingly
recognised as a key variable that should be modelled based on'the balance between N availability in
the soil and plant demand (Medlyn et al 2015). Reliablesxmeasurements are therefore crucial for
constraining models, but extrapolations based on field /measurements and isotopic data produce
varied estimates of global N fixation rates that still.lack spatial or temporal resolution (Vitousek et al
2013). While estimates of ecosystem-level N fixation rates are difficult to achieve, especially where
contributions from diverse N-fixing processes are substantial (e.g. free-living microbes, bryophytes;
Reed et a/2011), information about relative differences in fixation rates or the fraction of N in biomass
derived from N fixation (Schneider et al 2004).can also be used as a valuable constraint for models.

Resorption coefficients are typically.prescribed and constant parameters in models (but see Shi et al
2016). Since they are thus not internally.predicted, they cannot directly be used as an observational
constraint. Nonetheless, a wideriavailability of observational data can provide a solid empirical basis
for how resorption coefficientsvaryalong environmental gradients (Reed et al 2012) and are therefore
important for robust model parameterisations and as a target for future modelling efforts, where
resorption coefficients may be treated as an internally predicted quantity.

Atmospheric deposition of nutrients is a key quantity that determines ecosystem nutrient balances
and the degree to which nutrients limit or support additional C sequestration (De Vries et al 2009).
CN-models commonly use prescribed spatial data of atmospheric deposition derived from large-scale
atmosphericschemistry'and transport models (Lamarque et al 2011, 2013, Mahowald et al 2008).
However, these global datasets have a relatively coarse resolution spatially and temporally, may not
resolve all local-processes affecting deposition velocities, and comparisons to local measurements
indicate a tendency for underestimated rates in global datasets (Sutton et a/ 2011), at least partly
owing to challenges in estimating dry N deposition rates. This underlines the value of using specific
measurements of deposition rates for interpreting results in empirical studies and as model forcing
for site-level simulations.

The sizes of inorganic soil nutrient pools (NOs, NH,*, PO,>) are often simulated explicitly in models and
typically determine plant uptake and loss rates. The temporal dynamics of inorganic nutrient pools are
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highly variable and subject to different biotic and abiotic factors. Hence, reliable model-data
comparisons require frequently repeated sampling and standardised measurement protocols.
However, the response of these pools to experimental manipulations and environmental/changes
yield insights into how nutrient pools, and therefore nutrient availability, change and how these
changes relate to C cycling. More robust and accurate measurements, integrated over relevant
timescales may be obtained from resin membrane methods (see above). These methods, are
particularly useful for assessing relative differences among sites or experiments that can be highly
informative for network syntheses and for model-data comparisons. Field estimates typically quantify
the inorganic pool size per unit soil volume or mass. In contrast, pool size per unit\surface area is
typically, but not always (Koven et al 2013), simulated in models. Quantities integrated/over the entire
soil profile are generally difficult to measure, suggesting that an explicit representation of the vertical
distribution of SOM dynamics in models will contribute to a better capacity to evaluate models. Due
to the key role of triggering plant responses and its explicit treatment andwequally central role in
models, we highly encourage the wide application of measurements of the size and availability of
inorganic nutrient pools, and recommend methods that provide temporally integrated information
(e.g., resin membranes).

Additional edaphic factors for modelling, including several soil_properties (pH, CEC, texture, etc.)
influence soil chemistry and nutrient availability and can explain substantial additional variability of
terrestrial C cycling across sites (Fernandez-Martinez et gl 2014, Vicca et al 2012). These empirically
based studies established the utility of using multiple ‘edaphic factors to develop qualitative or
quantitative metrics as proxies to understand ecosystem,C responses across fertility gradients (Section
2). Applying a similar methodology in_models may help simulate cross-site variation in C cycle
responses to environmental change,/or the efficiency by which assimilated C is converted to biomass
(Vicca et al 2012). To our knowledge, such a “phenomenological” approach that accounts for multiple
indicators of soil nutrient availability remains untested in BGC models. Alternatively, soil properties
may serve as covariates in functions'describing nutrient transformations and fluxes. For example, soil
texture and pH modify transfen coefficients and C turnover times in several soil biogeochemical
models, although recent analyses:call in/the question the underlying assumptions applied in these
models (Rasmussen et al 2018, Rowley et al 2017). Moreover, although it is tempting to explicitly
represent fine scale soil processes and nuances, attention should be given to the main application of
BGC models’ to predicting large=scale biosphere dynamics and fluxes, especially under global change
scenarios. The aim of usingedaphic properties in conjunction with models should be to identify robust
patterns in these relationships and will be important to guide future model developments to account
for additional edaphic factors. Simultaneously, these efforts should identify additional data needs or
availability to_better constrain novel model formulations.

The imperfect overlap between field measurement options (Section 2, Table 1) and current model
representations (Section 3) speaks to the challenges and opportunities for incorporating empirical
data into models, as well as for using models to help inform our understanding of terrestrial processes
that are difficult to measure. For example, many of the processes central to regulating nutrient cycling
in models are not easy to gather data for in the field (e.g., belowground C allocation, gross
mineralization). Moreover, many of the field measurements are not straightforward to incorporate
into our existing models (e.g., spatial variation in site nutrient availability). Cross-site evaluations and
global change manipulations offer strong possibilities to address the lack of overlap in what is
measured empirically and what is represented numerically. In particular, the physical edaphic
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characteristics discussed above may be a common ground where increased data collection and
incorporation into models could improve both approaches and our overall understanding. Further,
components of models that are difficult but not impossible to measure well in the field could be
collected across sites or treatments in an organized way, knowing the data would be critical for model
evaluation. Improved knowledge of coupled C and nutrient cycles from separated empirical and
modelling approaches will advance understanding, but joining these approaches, through data
collection, analysis, and interpretation would be the strongest way forward.

Supplementary files

Table S1: Dataset of forest sites with aboveground primary production data (ANPP), taken from the
database presented in Luyssaert et al (2007) and updated in Vicca et al (2012) and Campioli et a/
(2015). For the purpose of illustrating availability of soil data,/this dataset was updated with the
available soil variables listed in Fig. 1. Abbreviations are listed.in the legend of Fig. 1.
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