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  35 
Abstract 36 
A wide range of research shows that nutrient availability strongly influences terrestrial carbon (C) 37 
cycling and shapes ecosystem responses to environmental changes and hence terrestrial feedbacks 38 
to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly 39 
quantified, at least partly due to a lack of informative, comparable, and accessible datasets at 40 
regional-to-global scales. A growing research infrastructure of multi-site networks are providing 41 
valuable data on C fluxes and stocks and are monitoring their responses to global environmental 42 
change and measuring responses to experimental treatments. These networks thus provide an 43 
opportunity for improving our understanding of C-nutrient cycle interactions and our ability to model 44 
them. However, coherent information on how nutrient cycling interacts with observed C cycle 45 
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patterns is still generally lacking. Here, we argue that complementing available C-cycle measurements 46 
from monitoring and experimental sites with data characterizing nutrient availability will greatly 47 
enhance their power and will improve our capacity to forecast future trajectories of terrestrial C 48 
cycling and climate. Therefore, we propose a set of complementary measurements that are relatively 49 
easy to conduct routinely at any site or experiment and that, in combination with C cycle observations, 50 
can provide a robust characterization of the effects of nutrient availability across sites. In addition, we 51 
discuss the power of different observable variables for informing the formulation of models and 52 
constraining their predictions. Most widely available measurements of nutrient availability often do 53 
not align well with current modelling needs. This highlights the importance to foster the interaction 54 
between the empirical and modelling communities for setting future research priorities.  55 
 56 
 57 
 58 
Abbreviations of and weblinks to research infrastructures and networks mentioned in 59 
the text: 60 
 61 
Research Infrastructures 62 
ANAEE: Analysis and experimentation on ecosystems (https://www.anaee.com/) 63 
ICOS: Integrated carbon observation system (https://www.icos-ri.eu/)  64 
LTER: Long term ecological research (https://lternet.edu/)  65 
NEON: National ecological observatory network (https://www.neonscience.org/)  66 
CZO: Critical zone observatory (http://criticalzone.org/national/) 67 
 68 
Research networks 69 
ClimMani: Climate change manipulation experiments in terrestrial ecosystems: networking and 70 
outreach (http://climmani.org/)  71 
DroughtNet: Network of drought experiments (http://drought-net.colostate.edu/)  72 
Fluxnet: Global network of meteorological sensors measuring atmospheric state variables, like 73 
temperature, humidity, wind speed, rainfall, and atmospheric carbon dioxide. 74 
INTERFACE: An integrated network for terrestrial ecosystem research on feedbacks to the 75 
atmosphere and climate (https://www.bio.purdue.edu/INTERFACE/experiments.php)  76 
LIDET: Long-term inter-site decomposition experiment team 77 
(https://andrewsforest.oregonstate.edu/sites/default/files/lter/pubs/webdocs/reports/lidet.htm)  78 
NutNet: Nutrient Network (http://www.nutnet.umn.edu/)  79 
TERN: Australia’s land ecosystem observatory http://www.tern.org.au/ 80 
INCyTE: Investigating Nutrient Cycling in Terrestrial Ecosystems (NSF network) 81 
 82 
 83 
 84 

1. Introduction 85 

More than a century of research has shown that nutrient availability, such as nitrogen (N) and 86 
phosphorus (P), is a key determinant of ecosystem community composition, diversity, architecture, 87 
and functioning (Borer et al 2014, Chapin 1980, Elser et al 2000, Peñuelas et al 2013, von Liebig 1841). 88 
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Nutrient availability can influence, plant activity and growth (Fay et al 2015, Vitousek et al 2010a, 89 
Verlinden et al 2018), as well as microbial activity (Janssens et al 2010, and consequently has a strong 90 
influence on terrestrial carbon (C) cycling (De Vries et al 2009). Nutrient availability is also an 91 
important modulator of the effect of environmental changes on terrestrial ecosystems, and hence the 92 
terrestrial feedback to anthropogenic climate change (Melillo et al 2011, Sardans and Peñuelas 2012). 93 
For example, nutrient availability has been shown to have a fundamental control over plant responses 94 
to elevated CO2 (De Graaff and Van Groenigen 2006). Despite the critical role of nutrients in terrestrial 95 
C cycling, however, we still lack comprehensive, comparable datasets to fully unravel the influence of 96 
nutrients and the varied mechanisms through which they interact with environmental change to 97 
influence ecosystem functioning (Box 1). The lack of coordinated assessments of multiple elements in 98 
concert not only limits our fundamental understanding of the role of nutrients, but also hinders model 99 
evaluation and development.  100 
 101 
The strong evidence for nutrient effects on C cycling in terrestrial ecosystems has motivated their 102 
explicit representation in process-based terrestrial biogeochemistry (BGC) models, (Medvigy et al 103 
2009, Parton et al 2010, Reed et al 2015, Smith et al 2014, Thornton et al 2007, Wang et al 2010, 104 
Zaehle and Friend 2010). . Taking nutrient limitations into account, these models generally simulate a 105 
reduced sensitivity of plant growth to increasing CO2 and strongly reduced C uptake by the terrestrial 106 
biosphere under future climate and atmospheric CO2 concentration scenarios (Achat et al 2016, 107 
Peñuelas et al 2013, Thornton et al 2007, Wang et al 2015, Wieder et al 2015a, Zaehle and Dalmonech 108 
2011). This is in line with evidence from manipulation experiments and remote sensing results, which 109 
imply that allowable emissions to keep global warming below a given target are much lower than 110 
emission estimates from models without C-nutrient interactions (Ciais et al 2013, Smith et al 2015, 111 
Zaehle et al 2010, 2014a, Zhang et al 2014). However, detailed comparisons of models with interactive 112 
C and N cycles against field experiments revealed that key mechanisms determining the uptake and 113 
recycling of nutrients are poorly simulated by the current generation of BGC models (Medlyn et al 114 
2015, Piao et al 2013, Zaehle et al 2014b) and the uncertainty arising from missing empirical data and 115 
poor process understanding remains a serious limitation for model projections (Thomas et al 2013, 116 
Meyerholt and Zaehle 2015, Meyerholt et al 2016). Information on soil properties, nutrient 117 
availability, allocation and plant stoichiometry, along with site-level terrestrial C cycle data, is 118 
therefore critical to inform the formulation of models and to establish new benchmarks. 119 
 120 
A range of large scale research infrastructures (e.g. ICOS, ANAEE, NEON, LTER, TERN, CZO) and 121 
research networks (e.g., Fluxnet, ClimMani, INCyTE, INTERFACE, LIDET, NutNet, DroughtNet, TERN) 122 
have been initiated to collect empirical data from terrestrial ecosystem monitoring and manipulation 123 
experiments with a focus on characterising the cycling of C and its response to environmental change 124 
(Hinckley et al 2016, Richter et al 2018). While ample data are commonly available for accompanying 125 
measurements of meteorological variables, background climate, vegetation cover, and soil moisture, 126 
an assessment of how nutrient cycling may modulate terrestrial C cycling across networks and in 127 
experiments is often missing. Here, we argue that the additional provision of coherent and 128 
comprehensive observations of nutrient availability, soil properties, and plant stoichiometry would 129 
greatly enhance the power of these networks and experiments to generate mechanistic insights for 130 
understanding how and why nutrient availability interacts with ecosystem functioning and structure 131 
to shape their response to global environmental change.  132 
 133 

Page 3 of 26 AUTHOR SUBMITTED MANUSCRIPT - ERL-105217.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



4 
 

To support the coupling of nutrient cycling measurements with those being made for C in large scale 134 
cross-site infrastructures and global change experiments, we highlight research gaps and the types of 135 
measurements that could be particularly valuable for: (1) Developing a solid empirical basis and 136 
identifying general patterns of how nutrient availability interacts with C cycling; and (2) 137 
Parameterizing and evaluating BGC models, especially their representation of mechanisms by which 138 
nutrients affect C cycling and ecosystem feedbacks to climate and environmental change. We first 139 
focus on how to characterize and compare the nutrient status and propose combining a set of 140 
complementary measurements to assess nutrient availability among sites and experiments. 141 
Subsequently, we discuss the power of different variables of ecosystem nutrient cycling to inform and 142 
evaluate process-based BGC models. The primary aims of this work are to raise awareness about the 143 
need for comparable nutrient cycling measurements. To facilitate a wide implementation, we focus 144 
on common biogeochemical measurements that are relatively easy to make and interpret. We focus 145 
on N and P as nutrients shown to strongly affect C cycling (although we recognize other nutrients have 146 
poorly represented importance as well (Kaspari and Powers 2016)).  147 
 148 
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BOX 1: A need for a coordinated assessment of coupled biogeochemical cycles  
Targeted measurements of specific nutrient pools and fluxes performed across a range of locations 

can directly inform a unified understanding of how variation in nutrients helps dictate ecosystem 

structure and function. Yet, relatively few synthesis studies on terrestrial C cycling have taken 

nutrient availability into account, and those that exist, have typically focused on N - the element 

often considered most limiting for plant growth outside the tropics (Augusto et al 2017, LeBauer 

and Treseder 2008) - using a single indicator for N availability (e.g., N addition in van Groenigen et 

al (2006), C:N ratio in Alberti et al (2015), or total N stock in Stevens et al (2015)).  In an attempt to 

create a more comprehensive understanding of the role of nutrient availability in mediating 

ecosystem carbon cycling and its responses to environmental perturbations, a coarse classification 

was developed based on the sparsely available data and on expert knowledge (Alberti et al 2015, 

Campioli et al 2015, Fernandez-Martinez et al 2014, Terrer et al 2016, Vicca et al 2012). These data 

syntheses provided powerful insight into the ways nutrients influence ecosystem responses to 

environmental changes, but they also revealed that our understanding of the role that nutrients 

play in the terrestrial C cycle is hampered by the limited comparability of datasets where soil 

nutrient information was provided. While carbon cycle data are increasingly becoming available, 

and the comparability of these data among sites and networks is improving, standardized 

assessment of ecosystem nutrient dynamics are less common (Fig. 1). These data gaps hinder inter-

site comparison of the influence of nutrient availability on ecosystem processes and their responses 

to environmental change. 

 

Figure 1: The availability of data for 13 soil variables in a global dataset of 125 forests and a Venn diagram 

showing the overlap for four soil measurements of these variables. These four variables were chosen because 

of their complementary information regarding nutrient availability and because they are among the most 

commonly measured soil properties in the database. The number of sites providing any single variable is shown 

by n, some combination of two of these variables is shown by n where two polygons overlap, and the 

combination of all four is shown in bold text. Abbreviations are for bulk density (BD), soil organic matter (SOM), 

cation exchange capacity (CEC), and total exchangeable bases (TEB). For SOM, n includes also sites that 

provided soil organic carbon (SOC) instead of SOM, and pH includes measurements performed using H2O, CaCl2 

or KCl solutions. For both SOM and pH, the variable of interest can be obtained through conversion (Ahern et 

al 1995, Pribyl 2010). All data are provided in Table S1. 
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2. Integrated assessment of nutrient availability  149 

Comparing nutrient availability among sites remains challenging due to the large variability in edaphic 150 
properties that modify nutrient availability (e.g. soil pH) and due to varying plant strategies of nutrient 151 
acquisition (e.g. cluster roots, mycorrhizal fungi). This complicates the interpretation of chemical 152 
assays used to assess N and P availability (Binkley and Hart 1989, Darch et al 2016, DeLuca et al 2015, 153 
Holford 1997, Inselsbacher and Näsholm 2012, Neyroud and Lischer 2003). Nonetheless, 154 
characterizing and comparing nutrient availability within and among sites can be accomplished by 155 
combining key soil properties with indicators of N and P availability. The simultaneous measurement 156 
of multiple aspects of nutrient cycling can help reduce the caveats associated with any single 157 
measurement. Such integrated metrics could provide a broad indication of site nutrient availability an 158 
provide new insights into how it influences C cycling.  159 
 160 
Qualitative proxies of nutrient availability among sites can be made using relatively common metrics. 161 
This integrative approach was applied in a few synthesis studies that used a nutrient availability 162 
classification (Vicca et al 2012, Campioli et al 2015, Fernandez-Martinez et al 2014) and could help 163 
bring quantitative capacity to coupled biogeochemical perspectives. However, large data gaps persist. 164 
For example, Figure 1 shows the availability and overlap of a few of the most commonly measured 165 
soil variables that are available for a set of 125 forest sites, including sites that are part of networks 166 
such as Fluxnet and LTER (Luyssaert et al 2007, Campioli et al 2015, Vicca et al 2012). Here, we used 167 
all forests for which aboveground primary production data were available (Table S1). Although some 168 
soil data (especially texture and soil C:N ratio) were available for the majority of the sites, overlap in 169 
the combination of soil variables providing complementary information was very limited. Using these 170 
sparse data (see Fig. 1), Vicca et al (2012) developed a nutrient availability classification based on 171 
information such as soil texture, soil organic matter (SOM), pH, C:N ratio, and cation exchange 172 
capacity (CEC). This categorical classification explained significant differences in biomass production 173 
efficiency and ecosystem carbon use efficiency across forests (Fernandez-Martinez et al 2014, Vicca 174 
et al 2012). Hence, integrated assessments of ecosystem nutrient availability could provide a means 175 
to assess nutrient effects on broad differences in ecosystem function and productivity. Such 176 
classifications would become more accurate and powerful if more comprehensive and comparable 177 
datasets were available, such that the same set of variables can be considered for all sites.  178 
 179 
Adding to this qualitative approach, quantitative metrics that integrate information about key soil 180 
properties and nutrients can be used in inter-site comparisons. For example, Van Sundert et al (2018) 181 
and Fischer et al (2012) developed site fertility indices from commonly used measurements to broadly 182 
assess nutrient availability. Briefly, these metrics consider three or four soil factors that influence 183 
nutrient availability (attributes like SOM, pH, texture, C:N ratio, total exchangeable bases (TEB, i.e., 184 
the sum of K, Ca, Mg and Na)). Each attribute included in the metric received a rating that decreases 185 
as it diverges from a predefined optimal range. Thus, nonlinear relationships and interactions among 186 
attributes are taken into account. For example, at low pH, differences in N availability may be less 187 
influential than at optimal pH because at pH < 4.5 plant growth is commonly limited by Al toxicity 188 
and/or P deficiency (Chapin 2002, Cross and Schlesinger 1995). This approach requires further 189 
investigation, development, and testing, as its potential for wider applications requires the 190 
establishment of comprehensive datasets of soil properties and nutrients (Van Sundert et al 2018). In 191 
future availability of a larger number of data for multiple edaphic factors and nutrient availability 192 
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measurements, along with C cycle variables, may enable machine learning-based approaches to 193 
identify such patterns from the data alone. 194 
 195 
As illustrated by the variables included in both the nutrient availability classification and in 196 
quantitative nutrient metrics, some soil characteristics seem consistently indicative of site nutrient 197 
status and can help to estimate ecosystem nutrient availability (Andrianarisoa et al 2009, Van Sundert 198 
et al 2018). These include SOM, CEC and TEB, texture, bulk density, and pH. SOM is a source of 199 
nutrients and both organic matter and clay colloids are important exchange sites for nutrients (Roy et 200 
al 2006, Schroeder 1984). CEC represents the capacity of soil to avoid leaching of essential nutrients, 201 
including N (Robertson et al 1999). Bulk density indicates the porosity of the soil and is particularly 202 
relevant where gravel and stones reduce the ‘fine earth’ volume from which plants acquire essential 203 
nutrients. Bulk density is also necessary to convert concentration data into stocks. Soil pH is a critical 204 
determinant of nutrient availability, especially for P, and also has strong relationships with soil 205 
microbial communities (Fierer and Jackson 2006). Thus, these relatively straightforward soil assays 206 
are useful for developing proxies of nutrient availability across sites (see also box 1). 207 
 208 
Pairing these simple assays of soil characteristics with direct, targeted measurements of ecosystem N 209 
and P availability provides additional information about nutrient-carbon cycle interactions from 210 
monitoring programs, networks, and global change experiments. An indicator of N availability that is 211 
comparable across a wide range of environmental conditions is the soil C:N ratio (e.g. Alberti et al 212 
2015, Andrianarisoa et al 2009, Wang et al 2014). The soil C:N ratio has the advantage of being fairly 213 
straightforward to determine and it does not change on short temporal scales, thus the timing of 214 
measurements is less influential. This variable was also included in the metric developed by Van 215 
Sundert et al (2018). A high soil C:N ratio indicates a relatively low N availability, and several studies 216 
have reported a significantly negative relationship between soil C:N ratio and N mineralization rates 217 
(Andrianarisoa et al 2009, Yan et al 2012), plant biomass (Grau et al 2017), organic matter 218 
decomposition, and plant productivity (Van Sundert et al 2018, Yan et al 2012). Similarly, assessment 219 
of foliar N and P stoichiometry suggests broad scale indicators of relative nutrient limitation in plants 220 
(McGroddy et al 2004, Reich and Oleksyn 2004, Vitousek 1984). Although caution in inferring nutrient 221 
limitation from stoichiometry is warranted (e.g., because of a strong phylogeny effects; Asner et al 222 
2014, Sardans et al 2015, Townsend et al 2007, Zechmeister-Boltenstern et al 2015), we contend that 223 
these metrics offer powerful indicators of ecosystem nutrient availability, especially when paired with 224 
other measurements. 225 
 226 
Ecosystem P status regulates productivity and ecosystem function at multiple spatial and temporal 227 
scales (Cleveland et al 2011, Peñuelas et al 2013, Vitousek et al 2010b). Despite the central role of 228 
coupled C-N-P dynamics, a reliable, widely applicable indicator for P availability for inter-site 229 
comparisons is challenging to suggest, as the accuracy of different indicators of P availability depends 230 
strongly on soil properties (especially pH) and on the dominant P acquisition strategy (e.g. 231 
carboxylate-releasing cluster roots, roots releasing phosphatase enzymes, or mycorrhizal fungi;  232 
Raven et al 2018, Zemunik et al 2018). We therefore advocate that inter-site comparisons (e.g., in 233 
meta-analyses) and models should always take the P-acquisition strategy of plants into account, and 234 
combine this with data on total soil P and the most suited extraction methods for the study soils (Olsen 235 
P, Bray P, Colwell P (Colwell 1963), Resin P (Turner and Romero 2009)) (Table 1). These extraction 236 
methods have been widely applied (Bolland 1997, Colwell 1963, Dalling et al 2016, Turner et al 237 
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2018a,b). While Olsen P is considered to best reflect P extractability in soils of alkaline to neutral pH 238 
(Olsen et al 1954), Bray P and Colwell P provide a more accurate estimate of extractable P at lower 239 
pH (Wolf and Baker 1985). We recommend prioritizing the Resin-P extraction method, as it measures 240 
P that is in solution, independent of soil pH. P in the soil solution is available for all plants, but because 241 
species with P-mining strategies have access to a greater pool (Lambers et al 2018), we advise 242 
measuring also other P indicators most relevant to the system (e.g., total P, Olsen P, Bray P). 243 
 244 
Except for the P extraction methods, the measurements of soil properties and indicators of N and P 245 
availability suggested above are all relatively stable at short time scales. While this is advantageous 246 
for a nutrient availability characterization of different sites (avoiding confounding effects of the time 247 
of sampling), these measurements may miss short-term responses to natural or imposed 248 
environmental changes. A particularly useful method that can be added to capture short-term 249 
dynamics are resin membranes, with which the availability of a suite of nutrients that can be 250 
estimated in an integrated fashion through time. Resin membranes (or bags) absorb anions and/or 251 
cations that are in the soil solution, and hence provide an estimate of the relative availabilities 252 
(“supply rates”) of various ions during the time resins are in the soil (Qian and Schoenau 2002). These 253 
membranes also provide unique information about the relative abundance of different elements in 254 
soil solution, a measure that is comparable among study sites. Nonetheless, the potential for 255 
comparing changes in nutrient availability among sites and in response to environmental perturbation 256 
is challenging, in part because supply rates depend on soil moisture and temperature (Qian and 257 
Schoenau 2002), and the units (e.g. µg N cm-2 membrane-1 burial time-1) differ from those of fluxes 258 
actually occurring in the ecosystem. Nevertheless, relative differences in measured supply rates 259 
among treatments or sites provide valuable information, useful for interpreting observations (Dijkstra 260 
et al 2010, 2012) and for informing models. Overall, ion exchange resins can offer a good additional 261 
measurement for comparing nutrient availability among treatments within a site, as well as the 262 
elemental ratios among sites, and for indicating strong differences in individual nutrient availabilities 263 
among sites. 264 
 265 
In Table 1, we summarize the measurements that we consider of primary relevance for inter-site 266 
comparison - in addition to (already available) data on major C pools and fluxes of ecosystems (e.g., 267 
net C exchange fluxes, plant and soil C stocks, microbial respiration). We focus on measurements that 268 
are comparable across a wide range of environmental conditions, that provide complementary 269 
information, and that are relatively simple to make. We suggest that, for the aim of inter-site 270 
comparison, variables with low seasonal variability are preferred over variables that exhibit 271 
considerable variability at short temporal and spatial scales, as the latter require high spatial and 272 
temporal resolution of measurements or spatial and seasonal integrations, and would substantially 273 
complicate robust comparisons across biomes and climatic regions. Of course, the measurements in 274 
Table 1 can be complemented by other measurements that help advance process understanding of 275 
nutrient cycling or fit specific project goals.  276 
 277 
 278 
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Table 1: List of suggested soil measurements to characterize sites in terms of nutrient availability and 279 
additional data needs for model development and evaluation. Foliar stoichiometry refers to the ratios 280 
of the elements: C, N, P, Ca, Mg, K, Zn, Fe, Mn, S. 281 
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text) 283 
 284 
This article focusses on the type of data that are needed, without providing or discussing specific 285 
protocols for sample timing, depth or spatial representation. However, standardized measurement 286 
protocols are critical for enabling comparability of data across sites. Concerted research within multi-287 
site networks offers an opportunity for designing and disseminating common protocols. This has been 288 
put into practice within some networks (see e.g., NutNet http://www.nutnet.org/methods and NEON 289 
https://www.neonscience.org/data-collection/protocols-standardized-methods). In future, more 290 
effort should be made to adopt standard protocols more widely and harmonize them across networks. 291 
In addition, publicly accessible and usable datasets from monitoring and experimental sites and 292 
networks is needed to greatly enhance the power of data synthesis as well as model development 293 
and evaluation.    294 

3. Data and process understanding for model development and 295 

evaluation 296 

Data from research networks and experimental manipulations are already critical for developing and 297 
evaluating BGC models (Hinckley et al 2016, Luo et al 2012, Schaefer et al 2012, Zaehle et al 2014b). 298 
Expanded measurements that facilitate the characterization and comparison of nutrient status among 299 
different sites would also enable additional insights into the representation of nutrient controls on 300 
biogeochemical cycles in models. BGC models provide process-based representations of 301 
biogeochemistry and vegetation dynamics and are the primary tool for integrating knowledge about 302 
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the functioning of the terrestrial C cycle and its interaction with nutrient cycles. Here we provide a 303 
brief overview of the development of C-nutrient interactions in BGC models and summarize data-304 
model linkages that would be enabled by systematic, targeted data collection across existing research 305 
infrastructures. An overview of the interplay of relevant processes and fluxes is given in Fig. 2. 306 

3.1 Carbon-nutrient relationships in terrestrial biogeochemistry models 307 

While the explicit representation of C and N interactions is becoming common in BGC models, and 308 
recent developments have been aimed at explicitly simulating P cycling (Achat et al 2016, Goll et al 309 
2017, Wang et al 2010, Yang et al 2014), other nutrients and additional soil properties that modulate 310 
nutrient availability to plants (e.g, pH, CEC, texture) remain largely ignored by the suite of models 311 
available today. This historical legacy resulted from the origin of these models, which were developed 312 
and applied mainly with the aim of simulating C cycle changes and their feedbacks with climate. The 313 
motivation for including effects of nutrients has primarily been to increase confidence in model 314 
projections of future C cycle trajectories in response to environmental change (Hungate et al 2003, 315 
Wieder et al 2015a, Zaehle et al 2014a). However, substantial uncertainties remain in how to 316 
adequately represent ecological processes that determine C-nutrient cycle interactions in global-scale 317 
models (Brovkin and Goll 2015, Meyerholt and Zaehle 2015, Wieder et al 2015b,c). This challenge also 318 
presents new opportunities to test alternative hypotheses and refine ecological understanding of how 319 
nutrients shape the C cycle at centennial time scales and across the globe (Fowler et al 2015, Medlyn 320 
et al 2015, Tian et al 2018).  321 

The key mechanistic relationships between C and nutrient cycles represented in models are related to 322 
allocation and stoichiometry. Allocation defines the partitioning of assimilated C into different plant 323 
organs and functions. Key for simulating C-nutrient interactions in BGC models is the partitioning into 324 
above- and belowground biomass pools (foliage and wood vs. roots). The size of these pools is related 325 
to the efficiency at which above- and belowground resources are acquired. Stoichiometric 326 
relationships in models define particular C:nutrient ratios in simulated ecosystem pools. Despite 327 
widespread observational evidence for adaptive flexibility in plant C allocation and stoichiometry in 328 
response to nutrient availability and environmental manipulations, appropriately simulating these 329 
changes remains a significant challenge  (Ghimire et al 2016, Terrer et al 2018, Vicca et al 2012, Zaehle 330 
et al 2014b).This challenge is particularly acute for belowground processes, where allocation and 331 
stoichiometry affect root function and plant-soil interactions that control nutrient uptake (Fig. 2). 332 
While many BGC models only have a rudimentary representation of functional relationship between 333 
roots and nutrient uptake, recent model developments have been aimed at better resolving this 334 
process (Iversen et al 2017, McMurtrie and Näsholm 2018). Despite this progress, significant 335 
knowledge and data gaps persist. 336 

 337 
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 338 

Figure 2: Schematic representation of the link between carbon and nutrient cycles as considered in 339 
biogeochemistry models. ‘Belowground C allocation’ subsumes different components and functions, including 340 
fine root production, fine root respiration, export to mycorrhizae and symbiotic bacteria (e.g. rhizobium for N 341 
fixation), and exudation of labile C compounds into the rhizosphere. The thickness of arrows approximately 342 
indicate the relative magnitudes of the fluxes. Blue arrows indicate nutrient fluxes, green arrows indicate carbon 343 
fluxes. Fluxes specific to nitrogen are given by arrows with a dashed outline. Boxes indicate pools. 344 

3.2 Data-model linkages 345 

To address knowledge and data gaps, we call on existing research infrastructure and networks to 346 
collect data that help to clarify and quantify key functional relationships between allocation, 347 
stoichiometry and ecological function that are to be represented in models. Broadly, measurements 348 
are needed : (1) to reveal insights into allometric and stoichiometric changes and how they vary across 349 
ecosystems, over time, and under experimental manipulations; and (2) to link observed plant 350 
adaptations with observed variations in nutrient availability. We acknowledge a significant disconnect 351 
between suggested measurements for characterization of the nutrient status (Section 2) and 352 
modelling needs (below), which underscores opportunities to better align future research activities. 353 
Below we briefly summarize the approach commonly taken to simulate nutrient limitations in global 354 
models and discuss the power of different observable variables for informing and evaluating modelled 355 
relationships. 356 

Belowground C allocation is directly affected by nutrient availability and the balance between above- 357 
(light, CO2) and belowground (water, nutrients) resource availabilities (Poorter et al 2012). The 358 
magnitude of belowground C allocation indicates how much of the assimilated C is spent on nutrient 359 
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and water acquisition. Without explicitly resolving how much C is allocated to different nutrient 360 
uptake mechanisms and plant-soil interactions, total belowground C allocation is the most relevant 361 
quantity for providing information on overall C costs of nutrient uptake (Gill and Finzi 2016) and can 362 
directly be related to variables simulated in BGC models (Shi et al 2016). Therefore, we highly 363 
recommend a strengthened focus on measuring belowground C pools and its change under 364 
experimental treatments and along environmental gradients (Iversen et al 2017). In the field, 365 
belowground C allocation is commonly estimated by subtracting litterfall and the changes in soil 366 
organic matter pool from the soil CO2 efflux (Davidson et al 2002, Litton et al 2007). Direct estimates 367 
of root production are rarely available since they are highly labour-intensive. However, root mass 368 
estimates can be more easily obtained by soil core sampling, and may be used as alternative total 369 
belowground C allocation under some simplifying assumptions. Instead of relying on absolute 370 
estimates of root mass, relative differences across sites and experimental manipulations may be a 371 
useful constraint on the model sensitivity of root allocation to environmental conditions (see Terrer 372 
et al 2018). Interpretation of relationships between belowground C allocation and nutrients has to 373 
take into account that belowground C allocation and root biomass are affected by water availability, 374 
especially where deep rooting is a common plant strategy to access water stored in deep layers during 375 
prolonged dry periods.  376 

Plant tissue stoichiometry and its response to nutrient availability is critical for the degree to which 377 
nutrient uptake limits plant growth. Particularly critical is to appropriately simulate the flexibility in 378 
leaf stoichiometry in response to environmental change. Current N-enabled BGC models explicitly 379 
resolve the C:N stoichiometry in plant tissue (Ghimire et al 2016). An evaluation by (Zaehle et al 2014b) 380 
showed that available models generally overestimate the flexibility in tissue stoichiometry in response 381 
to elevated CO2. This ensemble of models also simulated a feedback of increased foliar C:N under 382 
elevated CO2 which (erroneously) tended to induce a progressively enhanced N limitation effect on 383 
plant growth due to greater N immobilisation at high C:N ratios of litter inputs. Empirical data 384 
documenting how stoichiometry varies with experimental treatments and across environmental 385 
gradients is therefore important as a constraint for models and model-data evaluations should be 386 
extended to investigate P-related stoichiometry. 387 

Soil C:N is typically prescribed in models for different SOM compartments (e.g., slow and fast turnover 388 
SOM). Hence, it is treated as constant in time and independent of environmental factors. Therefore, 389 
although soil C:N emerges as a good indicator for explaining variations in C cycling in observational 390 
datasets (see Section 2), it cannot be used as a direct observational constraint on simulated nutrient 391 
dynamics in models. Furthermore, prescribed soil C:N ratios do not directly determine N availability in 392 
models. Until the complex nature of soil C:N as both a predictor and result of coupled ecosystem C 393 
and N cycling is accurately simulated by a next generation of models, its use for constraining current 394 
BGC models remains limited.  395 

Plant nutrient uptake rates from the soil are useful for quantifying the “return” on a given 396 
“investment” of belowground C allocation (Terrer et al 2018). While these fluxes cannot directly be 397 
observed, field data can be obtained indirectly, based on litterfall, biomass increment, and tissue 398 
nutrient concentration data (Finzi et al  2007). Hence, the power of such data and the usefulness as 399 
an independent model benchmarking variable is limited. Nevertheless, comparing modelled and 400 
observation-derived nutrient uptake rates may serve as a practical way for model evaluation and has 401 
previously generated valuable insights (Zaehle et al 2014b).  402 
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Net mineralisation rates represent the balance between gross mineralization from organic matter and 403 
the simultaneous immobilization in microbial biomass. While gross mineralisation and immobilisation 404 
are usually simulated separately by models, these are not readily measurable quantities in the field 405 
(Schimel and Bennett 2004). Net mineralisation rates quantify the total nutrient “throughput” through 406 
the system (Fig. 2) and are used to estimate nutrient availability for plants in the field (Gill and Finzi 407 
2016). However, the use and interpretability of net mineralization data is not straightforward due to 408 
large seasonal variations, requiring repeated measurements, and due to the varying importance of 409 
nutrient losses (leakage and gaseous N loss) in confounding the relationship between net 410 
mineralisation rates and nutrient availability. The value of net mineralisation data for models 411 
therefore lies primarily in constraining simulated nutrient cycling rates and, in combination with 412 
estimates of nutrient inputs or losses and resorption, they can indicate the openness of nutrient 413 
cycling (Cleveland et al 2013). 414 

N fixation is an important component of the ecosystem N balance and provides information about the 415 
degree of biological control on N availability and therefore on the potential of plants and the 416 
ecosystem as a whole to relieve limiting effects of low N availability, especially in global change 417 
scenarios (Menge et al 2014, Meyerholt et al 2016, Wieder et al 2015c). N fixation is increasingly 418 
recognised as a key variable that should be modelled based on the balance between N availability in 419 
the soil and plant demand (Medlyn et al 2015). Reliable measurements are therefore crucial for 420 
constraining models, but extrapolations based on field measurements and isotopic data produce 421 
varied estimates of global N fixation rates that still lack spatial or temporal resolution (Vitousek et al 422 
2013). While estimates of ecosystem-level N fixation rates are difficult to achieve, especially where 423 
contributions from diverse N-fixing processes are substantial (e.g. free-living microbes, bryophytes; 424 
Reed et al 2011), information about relative differences in fixation rates or the fraction of N in biomass 425 
derived from N fixation (Schneider et al 2004) can also be used as a valuable constraint for models.  426 

Resorption coefficients are typically prescribed and constant parameters in models (but see Shi et al 427 
2016). Since they are thus not internally predicted, they cannot directly be used as an observational 428 
constraint. Nonetheless, a wider availability of observational data can provide a solid empirical basis 429 
for how resorption coefficients vary along environmental gradients (Reed et al 2012) and are therefore 430 
important for robust model parameterisations and as a target for future modelling efforts, where 431 
resorption coefficients may be treated as an internally predicted quantity. 432 

Atmospheric deposition of nutrients is a key quantity that determines ecosystem nutrient balances 433 
and the degree to which nutrients limit or support additional C sequestration (De Vries et al 2009). 434 
CN-models commonly use prescribed spatial data of atmospheric deposition derived from large-scale 435 
atmospheric chemistry and transport models (Lamarque et al 2011, 2013, Mahowald et al 2008). 436 
However, these global datasets have a relatively coarse resolution spatially and temporally, may not 437 
resolve all local processes affecting deposition velocities, and comparisons to local measurements 438 
indicate a tendency for underestimated rates in global datasets (Sutton et al 2011), at least partly 439 
owing to challenges in estimating dry N deposition rates. This underlines the value of using specific 440 
measurements of deposition rates for interpreting results in empirical studies and as model forcing 441 
for site-level simulations. 442 

The sizes of inorganic soil nutrient pools (NO3
-, NH4

+, PO4
3-) are often simulated explicitly in models and 443 

typically determine plant uptake and loss rates. The temporal dynamics of inorganic nutrient pools are 444 
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highly variable and subject to different biotic and abiotic factors. Hence, reliable model-data 445 
comparisons require frequently repeated sampling and standardised measurement protocols. 446 
However, the response of these pools to experimental manipulations and environmental changes 447 
yield insights into how nutrient pools, and therefore nutrient availability, change and how these 448 
changes relate to C cycling. More robust and accurate measurements, integrated over relevant 449 
timescales may be obtained from resin membrane methods (see above). These methods are 450 
particularly useful for assessing relative differences among sites or experiments that can be highly 451 
informative for network syntheses and for model-data comparisons. Field estimates typically quantify 452 
the inorganic pool size per unit soil volume or mass. In contrast, pool size per unit surface area is 453 
typically, but not always (Koven et al 2013), simulated in models. Quantities integrated over the entire 454 
soil profile are generally difficult to measure, suggesting that an explicit representation of the vertical 455 
distribution of SOM dynamics in models will contribute to a better capacity to evaluate models. Due 456 
to the key role of triggering plant responses and its explicit treatment and equally central role in 457 
models, we highly encourage the wide application of measurements of the size and availability of 458 
inorganic nutrient pools, and recommend methods that provide temporally integrated information 459 
(e.g., resin membranes). 460 

Additional edaphic factors for modelling, including several soil properties (pH, CEC, texture, etc.) 461 
influence soil chemistry and nutrient availability and can explain substantial additional variability of 462 
terrestrial C cycling across sites (Fernandez-Martinez et al 2014, Vicca et al 2012). These empirically 463 
based studies established the utility of using multiple edaphic factors to develop qualitative or 464 
quantitative metrics as proxies to understand ecosystem C responses across fertility gradients (Section 465 
2). Applying a similar methodology in models may help simulate cross-site variation in C cycle 466 
responses to environmental change, or the efficiency by which assimilated C is converted to biomass 467 
(Vicca et al 2012). To our knowledge, such a “phenomenological” approach that accounts for multiple 468 
indicators of soil nutrient availability remains untested in BGC models. Alternatively, soil properties 469 
may serve as covariates in functions describing nutrient transformations and fluxes. For example, soil 470 
texture and pH modify transfer coefficients and C turnover times in several soil biogeochemical 471 
models, although recent analyses call in the question the underlying assumptions applied in these 472 
models (Rasmussen et al 2018, Rowley et al 2017). Moreover, although it is tempting to explicitly 473 
represent fine scale soil processes and nuances, attention should be given to the main application of 474 
BGC models’ to predicting large-scale biosphere dynamics and fluxes, especially under global change 475 
scenarios. The aim of using edaphic properties in conjunction with models should be to identify robust 476 
patterns in these relationships and will be important to guide future model developments to account 477 
for additional edaphic factors. Simultaneously, these efforts should identify additional data needs or 478 
availability to better constrain novel model formulations.  479 

The imperfect overlap between field measurement options (Section 2, Table 1) and current model 480 
representations (Section 3) speaks to the challenges and opportunities for incorporating empirical 481 
data into models, as well as for using models to help inform our understanding of terrestrial processes 482 
that are difficult to measure. For example, many of the processes central to regulating nutrient cycling 483 
in models are not easy to gather data for in the field (e.g., belowground C allocation, gross 484 
mineralization). Moreover, many of the field measurements are not straightforward to incorporate 485 
into our existing models (e.g., spatial variation in site nutrient availability). Cross-site evaluations and 486 
global change manipulations offer strong possibilities to address the lack of overlap in what is 487 
measured empirically and what is represented numerically. In particular, the physical edaphic 488 
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characteristics discussed above may be a common ground where increased data collection and 489 
incorporation into models could improve both approaches and our overall understanding. Further, 490 
components of models that are difficult but not impossible to measure well in the field could be 491 
collected across sites or treatments in an organized way, knowing the data would be critical for model 492 
evaluation. Improved knowledge of coupled C and nutrient cycles from separated empirical and 493 
modelling approaches will advance understanding, but joining these approaches through data 494 
collection, analysis, and interpretation would be the strongest way forward.   495 
 496 

Supplementary files 497 

Table S1: Dataset of forest sites with aboveground primary production data (ANPP), taken from the 498 
database presented in Luyssaert et al (2007) and updated in Vicca et al (2012) and Campioli et al 499 
(2015). For the purpose of illustrating availability of soil data, this dataset was updated with the 500 
available soil variables listed in Fig. 1. Abbreviations are listed in the legend of Fig. 1. 501 
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