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Abstract— We consider the problem of devising optimal
bidding strategies for electricity suppliers in a day-ahead
market where each supplier bids a linear non-decreasing
function of its generating capacity for each of the 24 hours.
The market operator schedules suppliers based on their bids
to meet demand during each hour and determines hourly
market clearing prices. Each supplier strives to submit bids that
maximize her individual profit, conditional upon other suppliers
bids. This process achieves a Nash equilibrium when no supplier
is motivated to modify her bid. Solving the profit maximization
problem requires information of rivals’ bids which are typically
not available. We develop an inverse optimization approach for
estimating rivals’ cost functions given historical market clearing
prices and production levels, and use these functions to compute
the Nash equilibrium bids. We propose sufficient conditions
for the existence and uniqueness of the Nash equilibrium,
and provide out-of-sample performance guarantees for the
estimated cost parameters. Numerical experiments show that
our approach achieves higher profit than the one proposed
in [16], which relies instead on the assumption that other
suppliers’ bids are normally distributed.

I. INTRODUCTION

In the past several decades, the electricity industry has

been experiencing a transformation from vertical integrated

regulated monopolies to competitive supply and demand

market participants with equal access to a regulated transmis-

sion and distribution network. Nevertheless, due to special

features of the power industry, such as a limited num-

ber of producers, large capital investments which introduce

barriers to entry, and congestion caused by occasionally

binding transmission constraints, the electricity market is

characterized by oligopolistic conditions [7]. Whereas under

perfect competition, suppliers bid their marginal costs, a

condition for social welfare and efficiency maximization,

in an imperfect (perhaps real) oligopolistic energy market,

suppliers can exploit market manipulation opportunities to

increase their profits by bidding above their marginal cost, a

behavior referred to as strategic bidding, whose investigation

is of dual interest. First, to power suppliers, who wish to

devise optimal bidding strategies allowing them to stand out
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among competitors and realize profits that exceed those that

a perfectly competitive market would warrant. Second, it is

also of interest to market regulators, helping them to identify

abuse of market power and develop policies to regulate it in

the interest of economic efficiency and social welfare.

Electricity markets are generally auction based. The auc-

tion models can be classified as static or dynamic accord-

ing to whether bidders are allowed to modify their bids

sequentially. The most widely used type is the sealed single

energy part bid auction resulting in a single Market Clearing

Price (MCP) employed to credit all suppliers and charge all

consumers. An exception is the England-Wales electricity

market where the market clears with multiple bilateral trans-

actions involving multi-part bids that include separate prices

for start-up costs, shut-down costs, no-load operation, and

energy. Multiple part bids, often called complex bids, are

also used in the Spanish day-ahead market. Wholesale elec-

tricity markets in the U.S., (ISONE, NYISO, PJM, ERCOT,

CAISO, MISO), Canada and most European markets involve

single-part bids for energy and result in a single clearing

price. In this paper we focus on the California Independent

System Operator (CAISO) single-part bid protocol.

[7], [12] are good literature surveys on strategic bidding in

electricity markets. There are mainly two types of methods

for constructing optimal bidding strategies. One is concerned

with solving a single supplier profit-maximization problem

by estimating the bidding behavior of rivals, while the other

models the interaction among all participants and relies

on game theoretic methods to solve for Nash equilibrium

strategies that, as a whole, render each participant unable

to improve her individual profit by changing her individual

bid. [8] proposes a recursive dynamic programming approach

for determining the optimal bid price for each block of

generation. In this approach, each supplier maximizes her

individual profit while modeling the uncertainty about com-

petitor bid prices by a probability distribution. In [16], two

different bidding schemes are developed; one maximizes the

hourly profit assuming all other producer bids are represented

by a multivariate normal distribution whose parameters are

estimated from historical data. If a supplier cannot be

dispatched using this scheme, then an alternative bidding

strategy, which guarantees production at the minimum stable

output level, is used. [17] proposes a decomposition-based

particle swarm optimization method to solve the expected

profit maximization problem with MCP being the uncertain,

exogenous variable. [14] presents a Q-Learning algorithm to

find the optimal bidding strategies in Iran’s power market

with a pay-as-bid auction rule.
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The game theory based approaches can be further classi-

fied into three subgroups based on the competition rules:

Bertrand (price competition) [5], [6], Cournot (quantity

competition) [4], and Supply Function Equilibrium (SFE)
[15]. These methods analyze the economic equilibria of the

electricity market by focusing on the mutual interactions

among participants. In [6], a decentralized Nash equilibrium

learning strategy is presented in a Bertrand competition

framework to solve the economic dispatch problem. In [11],

the authors study the problem of building bidding strategies

in oligopolistic dynamic electricity double-sided auctions

(both supply and demand bids are submitted) from a Nash-

Cournot point of view. The SFE, as the most widely analyzed

model in this category, assumes that participants set supply

functions which link the bidding prices with their generation

quantities. It has been recognized that the SFE model consti-

tutes a good compromise between the Cournot and Bertrand

models, and most accurately reflects the behavior of suppliers

in real power markets [12]. For more SFE related work, see

[3], [9], [10], [13].

In this paper we solve the SFE-based equilibrium strate-

gies for suppliers in a California type electricity market.

There have been two main criticisms regarding game-

theoretic approaches. One is concerned with the unrealistic

assumption that the payoff functions of all participants are

publicly available. The other points to the multiple equilibria

issue. We propose to use an inverse optimization [2] approach

for the estimation of payoff functions. As such, our method

could be easily applied without the need to know all profit

functions. In addition, we propose a sufficient condition

that is easy to satisfy in real systems and guarantees the

uniqueness of the Nash equilibrium.

The rest of the paper is organized as follows. In Section

II, we formulate the strategic bidding problem. Section III

gives conditions for the existence and uniqueness of the

Nash equilibrium and establishes out-of-sample performance

guarantees for the estimated cost parameters. The algorithms,

as well as numerical results are presented in Section IV. We

conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider a day-ahead California type electricity mar-

ket which is composed of n energy suppliers, a group

of customers, and a market operator instantiating a Power
Exchange (PX). For each of the 24 hours in the next day,

every supplier submits a bid curve (or supply curve) that de-

scribes the relationship between energy price and production

quantity. In real power markets, this is a piecewise constant

curve [15] reflecting the constant bid price for each block of

generation. Nonetheless, we assume the affine bid curve as

commonly used in the SFE literature to facilitate our analy-

sis. After receiving the bidding functions from all suppliers,

the PX clears the market by balancing aggregate supply

and demand, and derives the hourly MCP and supplier-

specific dispatch schedule. This market clearing process

is repeated for each of the 24 hours simultaneously and

independently, since we assume no intertemporal coupling.

Suppliers determine the bidding coefficients in such a way

as to maximize their own profits based on the historical

information about past bids.

Since the auctions for different hours are performed sepa-

rately and independently, we will only consider the bidding

strategy for a specific hour and omit the time index in the

following analysis. Assume that supplier i submits a linear

non-decreasing bid function to PX,

Bi = αi + βiPi, i = 1, . . . , n,

where Bi is the price per unit of power at production level

Pi, and αi, βi are the bidding coefficients to be determined.

With these linear bidding functions, the PX solves the

following system to derive the MCP and dispatch plans:

R = αi + βiPi, i = 1, . . . , n,

Q =
n∑

i=1

Pi,

P min
i ≤ Pi ≤ P max

i , i = 1, . . . , n,

(1)

where R is the MCP; Q is the demand forecast known

by all participants; and P min
i , P max

i are the minimum and

maximum generation levels of supplier i, respectively. Define

α � (α1, . . . , αn), β � (β1, . . . , βn). Ignoring the capacity

constraints, the solution to (1) is,

R(α,β) =
Q +

∑n
i=1 αi/βi∑n

i=1 1/βi
,

Pi(α,β) =
R− αi

βi
, i = 1, . . . , n,

(2)

where we write R(α,β), Pi(α,β) to explicitly express the

dependency of these quantities on the bids.

Remark: The Pi(α,β) derived from (2) might be infea-

sible. If it is below P min
i , we set Pi(α,β) to zero and

this supplier is not dispatched. On the other hand, if it

is above P max
i , we set Pi(α,β) = P max

i . Essentially, we

want to project the Pi(α,β) from Eq. (2) onto the interval

[P min
i , P max

i ]. Instead of directly projecting Pi(α,β), we

consider projecting the bidding intercepts αi, which allows

us to retain the closed form expression of (2) and facilitates

the following analysis. (We do not project βi here since

it is considered to be a fixed constant; the reason will be

explained in Section II-A.) Specifically, αi is restricted to

the interval [R(α,β) − βiP
max
i , R(α,β) − βiP

min
i ], where

R(α,β) admits the form in (2). It is worth mentioning that

the projected αi is no longer the true bidding intercept.

However, using this projected version gives us the same

amount of information and greatly simplifies our further

analysis. With a little abuse of notation, we use αi to denote

the projected bidding intercept.
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A. Forward Problem

Supplier i determines the bidding curve (αi, βi) in such a

way as to maximize its own profit, which is formulated as:

max
αi,βi

φi(α,β) = R(α,β)Pi(α,β)− Ci(Pi(α,β))

s.t. R(α,β)− βiP
max
i ≤ αi ≤ R(α,β)− βiP

min
i ,

βi ≥ 0,

(3)

where Ci(Pi(α,β)) is the production cost at generation level

Pi(α,β) and φi(α,β) is the profit. If we assume a quadratic

cost structure, i.e.,

Ci(Pi) = θi0 + θi1Pi + θi2P
2
i ,

where θi0, θi1, θi2 are the cost parameters for supplier i, then

based on (2), the profit could be expressed as:

φi(α,β) = R(α,β)Pi(α,β)− Ci(Pi(α,β))

=
Q +

∑n
i=1 αi/βi∑n

i=1 1/βi

Q+
Pn

i=1 αi/βiPn
i=1 1/βi

− αi

βi

− θi0 − θi1

Q+
Pn

i=1 αi/βiPn
i=1 1/βi

− αi

βi

− θi2

( Q+
Pn

i=1 αi/βiPn
i=1 1/βi

− αi

βi

)2

.

(4)

Remark: We assume that βi is a fixed, known constant

and only the intercept αi can be manipulated. The capacity

and technology of individual generating plants is public

information that provides useful partial information about

their cost functions. Nevertheless, their fuel and variable

maintenance cost, and their exact heat rate (efficiency),

reflected primarily in the parameter αi, is proprietary and

not known or easy to estimate. Assuming a known slope

βi at which the bid increases over the generator’s capacity

is reasonable. It reflects (i) the smoothing/regularization of

the bid conforming to the monotonically increasing market

rule requirement (marginal costs are physically not strictly

monotonic), and (ii) the advantage of and desire for achiev-

ing unique price-directed marginal generator schedules.

Since all suppliers choose their bids by solving the profit

maximization problem (3), it is reasonable to construct a

SFE model describing the game among all generators where

the actions are the bids and the payoffs are the profits. We

say that α is a Nash equilibrium if no single supplier can

increase her profit by unilaterally changing her own bid.

Note that for each supplier i, φi(α,β) is determined

by the actions of all players and its own cost parameter

θi � (θi0, θi1, θi2) (cf. Eq. (4)), and thus, henceforth, we

write φi(α,θi) to emphasize this dependency (β is removed

since it is fixed and known). In order to solve her own profit

maximization problem, supplier i must have knowledge of

how her rivals behave. Historical data could be utilized to

infer the behavior of competitors. Suppose that we have

obtained the MCP, as well as the corresponding dispatch

plans, for the same time period in the past N days, denoted

by (Rj , P j
1 , . . . , P j

n), j = 1, . . . , N . Then the bids αj =

(αj
1, . . . , α

j
n), j = 1, . . . , N , could be computed via the

market clearing condition in (1) (βj
i ’s are assumed to be

known). Given these past bidding histories, we propose to

first estimate rivals’ profit functions (or cost parameters)

and then compute the current equilibrium bids using these

estimated profit functions.

B. Inverse Problem

The inverse problem deals with the task of estimating com-

petitors’ cost parameters. The main theoretical foundation

is attributed to [2], where the authors estimate the utility

functions of players in a game from their observed actions

by combining ideas from inverse optimization with the theory

of variational inequalities. In our case, we are given the past

bids αj = (αj
1, . . . , α

j
n), j = 1, . . . , N , and are interested

in obtaining estimates of θi, i = 1, . . . , n. We assume that

each of these bids lies in the interval [0, ᾱ], where ᾱ is an

upper bound known a priori. According to Theorem 3 in [2],

which is derived through duality, the solution to the following

optimization problem gives us the estimated cost parameters.

min
y,ε

θ1,...,θn

‖ε‖∞

s.t. yj
i ≥ 0, i = 1, . . . , n; j = 1, . . . , N,

yj
i ≥ �iφi(αj , θi), i = 1, . . . , n; j = 1, . . . , N,
n∑

i=1

(
ᾱyj

i − αj
i �i φi(αj ,θi)

)
≤ εj , j = 1, . . . , N,

(5)

where ‖· ‖∞ is the infinity norm operator defined as the

maximum of the absolute elements of the argument; and

�iφi(αj ,θi) is the partial derivative of φi w.r.t. αi evaluated

at (αj , θi), which is given by:

�iφi(αj , θi) =

1/βj
i∑n

i=1 1/βj
i

·
Qj+

Pn
i=1 αj

i /βj
iPn

i=1 1/βj
i

− αj
i

βj
i

+
Qj +

∑n
i=1 αj

i /βj
i∑n

i=1 1/βj
i

·
1/βj

iPn
i=1 1/βj

i

− 1

βj
i

− θi1 ·
1/βj

iPn
i=1 1/βj

i

− 1

βj
i

− 2θi2

Qj+
Pn

i=1 αj
i /βj

iPn
i=1 1/βj

i

− αj
i

βj
i

·
1/βj

iPn
i=1 1/βj

i

− 1

βj
i

,

(6)

where Qj is the demand level for the jth day and βj
i is

the known bidding slope for supplier i on the jth day.

Note that (5) is a Linear Programming (LP) problem and

can be solved to optimality very efficiently. We note that

this inverse optimization technique still applies even when

more constraints (the network flow constraints) are imposed

in the forward problem setup, or when the bid function is

changed, as long as R and Pi have closed form expressions

w.r.t. the bidding coefficients. This can be achieved by the

projection trick used to incorporate the production capacity
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constraints. In addition to estimating competing generators’

cost functions, our method is particularly useful in estimating

the underlying cost functions of market participants who bid

synthetic or virtual generators corresponding to contracts

with either physical generation owners or a portfolio of

demand-response-capable consumers.

Remark: Our method appears to assume away the fact

that network connected markets result in location dependent

clearing price differentials driven by (i) small effects of

location-specific line loss contributions, but also, (ii) sig-

nificant contributions during network congestion events. It

can capture and address the significant congestion caused

differentials by detecting market-splitting occurrences that

result in “price islands” with essentially homogeneous prices

within each island. Although this limits the number of

relevant observations when price islanding occurs, it utilizes

the unusually high or low price events associated with

congestion.

III. THEORETICAL GUARANTEES

Theorem III.1 provides sufficient conditions for the ex-

istence and uniqueness of the Nash equilibrium, which

coincides with the 1954 Arrow-Debreu Theorem [1]. It

essentially requires the convexity of all cost functions, which

is a reasonable and practically meaningful assumption. We

omit the proof due to space limitations.

Theorem III.1. Suppose that for every supplier i, its cost
function Ci(Pi(α,β)) is convex in Pi(α,β), i.e., θi2 ≥
0, ∀ i. Then, there exists a unique Nash equilibrium α∗ =
(α∗

1, . . . , α
∗
n) for the SFE model we defined.

The quality of the computed equilibrium strategies de-

pends heavily on the reliability of the estimated cost param-

eters. Intuitively, good estimators should be able to explain

well new, future equilibria. The following theorem, which is

a restatement of Theorem 6 in [2], ensures the quality of the

estimated cost functions under some mild conditions.

Theorem III.2. Suppose that αj , j = 1, . . . , N are i.i.d.
realizations of a random variable α̃, and α̃ ∈ {α : 0 ≤
αi ≤ ᾱ, ∀ i} almost surely. Then, for any 0 < δ < 1, with
probability at least 1− η w.r.t. the sampling,

P

(
α̃ is a z-approximate equilibrium for the game

with payoffs defined through θ̂1, . . . , θ̂n

)
≥ 1− δ,

(7)

where η =
∑2n

i=0

(
N
i

)
δi(1 − δ)N−i; z is the optimal value

of problem (5); and θ̂1, . . . , θ̂n are the optimal solutions to
(5).

Remarks: For the definition of z-approximate equilibrium,

see [2, Section 2.2]. Roughly speaking, it describes the

situation where each generator does not necessarily play its

best action given what others are doing, but plays a strategy

which is no worse than z from the best response.

There are two probability measures in the statement of

Theorem III.2. One is related to the new data α̃, while the

other is related to the samples α1, . . . ,αN . The probability

in (7) is taken w.r.t. the new data α̃. For a fixed set of

samples, (7) holds with probability at least 1 − η w.r.t.

the measure of samples. Theorem III.2 essentially says that

given typical samples, the probability that the estimated cost

functions explain well new, future equilibria is bounded

below. It guarantees the accuracy of the estimated cost

parameters under mild conditions.

IV. NUMERICAL IMPLEMENTATIONS

In this section we use synthetic input data to test the

validity of our approach and compare it with the one used

in [16] (referred to as Wen & David’s method). It has

been observed that multiple optimal solutions to (5) often

exist, which implies that potentially many cost functions

could generate the same observed equilibria. We design two

algorithms to find practically meaningful cost parameters

from the set of all optimal solutions, based on the principle

that only estimators close to true costs have good out-of-

sample performance. One is termed random search, which

searches randomly in the set of optimal solutions until the

one that performs well on a validation dataset is found, see

Section IV-A. The other is called box search, which narrows

down the search region and is thus more efficient compared

to random search, see Section IV-B.

Wen & David’s method solves the profit maximization

problem (3) under the assumption that the bidding coef-

ficients of any other generator follow a bivariate normal

distribution whose mean and covariance could be inferred

from historical bids. We will see from the experimental

results that the performance of their approach relies heavily

on the normal distribution hypothesis. There is no evidence

that generator’s bids behave like a normal random variable.

In addition, the hypothesis ignores the potential correlation

among generators’ actions.

A. Random Search

We first describe the experimental setup. Suppose there are

2 suppliers, whose bidding slopes βi, i = 1, 2 are uniformly

distributed in [0.01, 0.1] and [0.05, 0.2], respectively. We

obtain N = 300 past bids αj , j = 1, . . . , 300, where

αj is generated as the equilibrium bid to the game with

demand Qj = 40MW, ᾱ = 20, and βi’s coming from the

uniform distributions specified above. Several sets of true

cost parameters are tested, see Table I. We note that in all

tables, within each cell the first number is for supplier 1, and

the second is for supplier 2. In all scenarios it is ensured that

the cost functions are convex and non-decreasing in Pi. ᾱ is

changed to 100 for Scenario 4 and 50 for Scenario 5.

Our first step is to estimate the cost functions based on

past bidding data by solving problem (5). Note that θi0

only serves as a constant term in the profit function (4)

and thus does not play a role in the determination of α.

We therefore do not need to estimate θi0, i = 1, . . . , n.

It is worth mentioning that (5) might give multiple optimal

solutions. Our goal is to recover the true cost parameters

from this set of optima. Although there might be multiple
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TABLE I

TRUE COST PARAMETERS FOR SUPPLIERS.

θi0 θi1 θi2

Scenario 1 (S1) (10, 10) (13, 15) (0.01, 0.05)
Scenario 2 (S2) (5, 10) (3, 5) (0.1, 0.2)
Scenario 3 (S3) (3, 5) (0.1, 0.2) (0.05, 0.05)
Scenario 4 (S4) (20, 10) (20, 50) (1, 2)
Scenario 5 (S5) (30, 50) (10, 5) (0.5, 1.5)

cost functions that can explain the observed equilibria well,

only true costs have good out-of-sample performance. The

following Algorithm 1 is thus proposed to identify the true

cost functions, based on which current equilibrium bids

could be easily computed. Given the cost estimators and

the bidding slopes, the equilibrium strategies are obtained

through an iterative process in which each player plays her

best response given others’ actions.

Algorithm 1 Random Search

1: Input: Demand Q, the number of past bids N , the num-

ber of producers n, the percentage of training samples p,

tolerance level τ , upper bound for bidding intercepts ᾱ,

bidding slopes βj , j = 1, . . . , N , as well as the mean

value of the β distribution: β̄ = (β̄1, . . . , β̄n), past bids

αj , j = 1, . . . , N .

2: Initialize: c = 1
3: while c ≥ τ do
4: Randomly choose M = �Np	 samples from all past

bids to constitute the training dataset, and use the rest

as the validation set.

5: Obtain θ̂i, i = 1, . . . , n, by solving problem (5)

using the training dataset.

6: Compute equilibrium strategies α̂j
val, j = 1, . . . , N−

M , on the validation dataset using θ̂i, i = 1, . . . , n,

and the bidding slopes on the validation set βj
val, j =

1, . . . , N −M .

7: Evaluate the average discrepancy between computed

and true bids on the validation dataset as,

c =
1

N −M

∑
j

‖αj
val − α̂j

val‖1 (8)

where αj
val is the j-th true bid on the validation set, and

‖· ‖1 is the 
1 norm operator defined as the sum of the

absolute elements of the argument.

8: end while
9: Compute current equilibrium bids using θ̂i, i =

1, . . . , n, and β̄.

One may argue that it could take infinite long time

to find the estimators θ̂i, i = 1, . . . , n with satisfactory

performance on the validation data. Instead of using the

while loop, we could search the optimal solution set of (5)

for a fixed number of times. In Section IV-B we present

a different search algorithm to improve efficiency. Table II

shows the comparison with Wen & David’s method. The

loop in Algorithm 1 is executed for 100 times. The profit

is computed for the current equilibrium bids using true cost

functions and mean bidding slopes β̄.

B. Box Search

To resolve the issue of a possibly endless loop with

random search, we propose the box search method. The

idea is to partition the feasible region and search under

the guidance of the out-of-sample performance. Specifically,

starting with some lower and upper bounds on the cost

parameters, we divide the box-shaped region formed by these

bounds into several subregions and solve problem (5) within

these smaller sets. Compute the out-of-sample performance

of the optimal solution from each subregion and proceed with

the set that performs the best. By repeating this process,

we expect to finally obtain some accurate estimators. See

Algorithm 2.

Algorithm 2 Box Search

1: Input: Demand Q, the number of past bids N , the num-

ber of producers n, the percentage of training samples p,

tolerance level τ , upper bound for bidding intercepts ᾱ,

bidding slopes βj , j = 1, . . . , N , as well as the mean

value of the β distribution: β̄ = (β̄1, . . . , β̄n), past bids

αj , j = 1, . . . , N .

2: Randomly choose M = �Np	 samples from all past bids

to constitute the training dataset, and use the rest as the

validation set.

3: Initialize: Set the lower and upper bounds for the

2n cost parameters, denoted as lb2n×1 and ub2n×1,

respectively.

4: inter = ub− lb.

5: while ‖inter‖2 ≥ τ do
6: Divide the box-shaped region into 22n subregions by

cutting the interval for each variable in half.

7: Solve problem (5) within each subset using training

samples.

8: Compute the out-of-sample performance on the vali-

dation data of the optimal solutions from all subproblems

as in Eq. (8), denoted as ck, k = 1, . . . , 22n.
9: Form a probability vector p based on ck as in (9). pk

denotes the probability of proceeding within subregion

k:

pk =
e−ck/T∑
i e−ci/T

, k = 1, . . . , 22n, (9)

where T is a temperature variable inversely proportional

to the square of the iteration number.

10: Choose a subregion based on p and update lb, ub
and inter.

11: end while
12: θ̂ = (lb + ub)/2.

13: Compute current equilibrium bids using θ̂ and β̄.

The reason for the randomized selection in Step 10 lies in

that simply choosing the subregion which gives the best out-

of-sample performance might miss the subset that contains
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the true cost parameters, especially when there exist multiple

optimal solutions in the subregion. On the other hand,

the randomized selection will become more deterministic

(controlled by the temperature variable T ) as the subregion

becomes smaller.

TABLE II

COMPARISON BETWEEN RANDOM SEARCH / BOX SEARCH AND WEN &

DAVID’S METHOD.

Equilibrium bids Profit

S1
Random Search (15.85, 15.80) (112.48, 21.69)

Box Search (15.51, 15.37) (100.69, 17.47)
Wen & David’s method (15.20, 15.32) (93.81, 14.86)

S2
Random Search (11.16, 10.80) (180.54, 67.22)

Box Search (10.67, 10.26) (166.35, 60.54)
Wen & David’s method (9.74, 9.62) (144.70, 50.45)

S3
Random Search (3.54, 1.28) (53.58, 72.90)

Box Search (3.65, 1.18) (50.82, 76.02)
Wen & David’s method (2.83, 0.82) (47.81, 56.88)

S4
Random Search (96.35, 96.85) (1450.10, 275.50)

Box Search (87.03, 87.12) (1139.60, 177.30)
Wen & David’s method (84.12, 84.87) (1080.40, 161.81)

S5
Random Search (47.05, 47.22) (697.03, 301.34)

Box Search (40.46, 40.46) (502.78, 228.05)
Wen & David’s method (39.77, 39.97) (485.02, 221.49)

From Table II we see that both random search and box

search achieve higher profits than Wen & David’s method,

which is reasonable since the normal distribution assumption

embedded in their method becomes invalid. In addition, in

almost all scenarios random search performs better than

box search; the reason for this lies in that there is some

chance of proceeding with the wrong subregion due to the

probabilistic subset selection embedded in box search. By

contrast, random search always deals with the whole feasible

region. Moreover, when we fix the number of iterations in

Algorithm 1, which in our case is 100, it is approximately 4

times faster than Algorithm 2. The running time for random

search was about 10.82 seconds on a Dell Precision T7810

workstation with a 2.2 GHz dual Intel Xeon processor,

compared with 42.72 seconds for box search. To summarize,

random search finds better cost estimates and generates more

profitable bids in a more efficient way.

V. CONCLUSIONS

We propose an inverse optimization method to estimate

the cost functions of suppliers in the electricity market

based on historical bidding data. Then, the problem of

computing the optimal bidding strategies can be casted as an

equilibrium computation problem given the estimated payoff

functions. We present a sufficient condition for the existence

and uniqueness of the Nash equilibrium, and provide out-

of-sample performance guarantees for the estimated cost

functions. Numerical experiments have shown the superiority

of our approach compared to Wen & David’s method which

is designed on the basis of normally distributed bids.

Regarding future research directions, assuming that the

specific form of the cost function is unknown, the parametric

formulation (5) is not applicable any more. It would be of

interest to develop non-parametric approaches that do not

require to assume a specific parametric form for the cost

functions.
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