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Abstract— We consider the problem of devising optimal
bidding strategies for electricity suppliers in a day-ahead
market where each supplier bids a linear non-decreasing
function of its generating capacity for each of the 24 hours.
The market operator schedules suppliers based on their bids
to meet demand during each hour and determines hourly
market clearing prices. Each supplier strives to submit bids that
maximize her individual profit, conditional upon other suppliers
bids. This process achieves a Nash equilibrium when no supplier
is motivated to modify her bid. Solving the profit maximization
problem requires information of rivals’ bids which are typically
not available. We develop an inverse optimization approach for
estimating rivals’ cost functions given historical market clearing
prices and production levels, and use these functions to compute
the Nash equilibrium bids. We propose sufficient conditions
for the existence and uniqueness of the Nash equilibrium,
and provide out-of-sample performance guarantees for the
estimated cost parameters. Numerical experiments show that
our approach achieves higher profit than the one proposed
in [16], which relies instead on the assumption that other
suppliers’ bids are normally distributed.

I. INTRODUCTION

In the past several decades, the electricity industry has
been experiencing a transformation from vertical integrated
regulated monopolies to competitive supply and demand
market participants with equal access to a regulated transmis-
sion and distribution network. Nevertheless, due to special
features of the power industry, such as a limited num-
ber of producers, large capital investments which introduce
barriers to entry, and congestion caused by occasionally
binding transmission constraints, the electricity market is
characterized by oligopolistic conditions [7]. Whereas under
perfect competition, suppliers bid their marginal costs, a
condition for social welfare and efficiency maximization,
in an imperfect (perhaps real) oligopolistic energy market,
suppliers can exploit market manipulation opportunities to
increase their profits by bidding above their marginal cost, a
behavior referred to as strategic bidding, whose investigation
is of dual interest. First, to power suppliers, who wish to
devise optimal bidding strategies allowing them to stand out
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among competitors and realize profits that exceed those that
a perfectly competitive market would warrant. Second, it is
also of interest to market regulators, helping them to identify
abuse of market power and develop policies to regulate it in
the interest of economic efficiency and social welfare.

Electricity markets are generally auction based. The auc-
tion models can be classified as static or dynamic accord-
ing to whether bidders are allowed to modify their bids
sequentially. The most widely used type is the sealed single
energy part bid auction resulting in a single Market Clearing
Price (MCP) employed to credit all suppliers and charge all
consumers. An exception is the England-Wales electricity
market where the market clears with multiple bilateral trans-
actions involving multi-part bids that include separate prices
for start-up costs, shut-down costs, no-load operation, and
energy. Multiple part bids, often called complex bids, are
also used in the Spanish day-ahead market. Wholesale elec-
tricity markets in the U.S., (ISONE, NYISO, PJM, ERCOT,
CAISO, MISO), Canada and most European markets involve
single-part bids for energy and result in a single clearing
price. In this paper we focus on the California Independent
System Operator (CAISO) single-part bid protocol.

[7], [12] are good literature surveys on strategic bidding in
electricity markets. There are mainly two types of methods
for constructing optimal bidding strategies. One is concerned
with solving a single supplier profit-maximization problem
by estimating the bidding behavior of rivals, while the other
models the interaction among all participants and relies
on game theoretic methods to solve for Nash equilibrium
strategies that, as a whole, render each participant unable
to improve her individual profit by changing her individual
bid. [8] proposes a recursive dynamic programming approach
for determining the optimal bid price for each block of
generation. In this approach, each supplier maximizes her
individual profit while modeling the uncertainty about com-
petitor bid prices by a probability distribution. In [16], two
different bidding schemes are developed; one maximizes the
hourly profit assuming all other producer bids are represented
by a multivariate normal distribution whose parameters are
estimated from historical data. If a supplier cannot be
dispatched using this scheme, then an alternative bidding
strategy, which guarantees production at the minimum stable
output level, is used. [17] proposes a decomposition-based
particle swarm optimization method to solve the expected
profit maximization problem with MCP being the uncertain,
exogenous variable. [14] presents a Q-Learning algorithm to
find the optimal bidding strategies in Iran’s power market
with a pay-as-bid auction rule.



The game theory based approaches can be further classi-
fied into three subgroups based on the competition rules:
Bertrand (price competition) [5], [6], Cournot (quantity
competition) [4], and Supply Function Equilibrium (SFE)
[15]. These methods analyze the economic equilibria of the
electricity market by focusing on the mutual interactions
among participants. In [6], a decentralized Nash equilibrium
learning strategy is presented in a Bertrand competition
framework to solve the economic dispatch problem. In [11],
the authors study the problem of building bidding strategies
in oligopolistic dynamic electricity double-sided auctions
(both supply and demand bids are submitted) from a Nash-
Cournot point of view. The SFE, as the most widely analyzed
model in this category, assumes that participants set supply
functions which link the bidding prices with their generation
quantities. It has been recognized that the SFE model consti-
tutes a good compromise between the Cournot and Bertrand
models, and most accurately reflects the behavior of suppliers
in real power markets [12]. For more SFE related work, see
(31, [9], [10], [13].

In this paper we solve the SFE-based equilibrium strate-
gies for suppliers in a California type electricity market.
There have been two main criticisms regarding game-
theoretic approaches. One is concerned with the unrealistic
assumption that the payoff functions of all participants are
publicly available. The other points to the multiple equilibria
issue. We propose to use an inverse optimization [2] approach
for the estimation of payoff functions. As such, our method
could be easily applied without the need to know all profit
functions. In addition, we propose a sufficient condition
that is easy to satisfy in real systems and guarantees the
uniqueness of the Nash equilibrium.

The rest of the paper is organized as follows. In Section
II, we formulate the strategic bidding problem. Section III
gives conditions for the existence and uniqueness of the
Nash equilibrium and establishes out-of-sample performance
guarantees for the estimated cost parameters. The algorithms,
as well as numerical results are presented in Section IV. We
conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider a day-ahead California type electricity mar-
ket which is composed of n energy suppliers, a group
of customers, and a market operator instantiating a Power
Exchange (PX). For each of the 24 hours in the next day,
every supplier submits a bid curve (or supply curve) that de-
scribes the relationship between energy price and production
quantity. In real power markets, this is a piecewise constant
curve [15] reflecting the constant bid price for each block of
generation. Nonetheless, we assume the affine bid curve as
commonly used in the SFE literature to facilitate our analy-
sis. After receiving the bidding functions from all suppliers,
the PX clears the market by balancing aggregate supply
and demand, and derives the hourly MCP and supplier-
specific dispatch schedule. This market clearing process
is repeated for each of the 24 hours simultaneously and
independently, since we assume no intertemporal coupling.
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Suppliers determine the bidding coefficients in such a way
as to maximize their own profits based on the historical
information about past bids.

Since the auctions for different hours are performed sepa-
rately and independently, we will only consider the bidding
strategy for a specific hour and omit the time index in the
following analysis. Assume that supplier ¢ submits a linear
non-decreasing bid function to PX,

3 )

where B; is the price per unit of power at production level
P;, and «;, (3; are the bidding coefficients to be determined.
With these linear bidding functions, the PX solves the
following system to derive the MCP and dispatch plans:

R:al—i—ﬂlPZ, i:1,...7n,

Q=>_p, (1)
i=1

PMn < P < P™ j=1,...,n,

where R is the MCP; @ is the demand forecast known
by all participants; and P™" P™* are the minimum and
maximum generation levels of supplier ¢, respectively. Define
a2 (ai,...,an), B2 (B1,...,3,). Ignoring the capacity
constraints, the solution to (1) is,
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where we write R(«, 3), Pi(a, 8) to explicitly express the
dependency of these quantities on the bids.

Remark: The P;(«,3) derived from (2) might be infea-
sible. If it is below P™" we set Pi(c,3) to zero and
this supplier is not dispatched. On the other hand, if it
is above P, we set P;(a,3) = PM*. Essentially, we
want to project the P;(a,3) from Eq. (2) onto the interval
[pmin - pmax] Instead of directly projecting Pi(c,3), we
consider projecting the bidding intercepts «;, which allows
us to retain the closed form expression of (2) and facilitates
the following analysis. (We do not project [3; here since
it is considered to be a fixed constant; the reason will be
explained in Section II-A.) Specifically, «; is restricted to
the interval [R(cv, B) — 3; P™™, R(cx, 3) — (3;P™"], where
R(c, 3) admits the form in (2). It is worth mentioning that
the projected «; is no longer the true bidding intercept.
However, using this projected version gives us the same
amount of information and greatly simplifies our further
analysis. With a little abuse of notation, we use «; to denote
the projected bidding intercept.



A. Forward Problem

Supplier 4 determines the bidding curve («;, 3;) in such a
way as to maximize its own profit, which is formulated as:

max di(e, B) = R(e, B)Pi(e, B) — Ci(Pi(ex, B))

st. R(a,B) — BiP™™ < a; < R(ax, B) — BiPM™, G
ﬂi Z 07
where C; (P; (e, B)) is the production cost at generation level
Pi(a, B) and ¢;(ax, B) is the profit. If we assume a quadratic
cost structure, i.e.,

Ci(P;) =050+ 0 P, + 91'2131-2,

where 6,9, 6;1, 0;2 are the cost parameters for supplier i, then
based on (2), the profit could be expressed as:

gbi(avﬁ) R(aﬂB)Pi(a7ﬁ) - Ci(Pi(awa))
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Remark: We assume that 3; is a fixed, known constant
and only the intercept o; can be manipulated. The capacity
and technology of individual generating plants is public
information that provides useful partial information about
their cost functions. Nevertheless, their fuel and variable
maintenance cost, and their exact heat rate (efficiency),
reflected primarily in the parameter o, is proprietary and
not known or easy to estimate. Assuming a known slope
(; at which the bid increases over the generator’s capacity
is reasonable. It reflects (¢) the smoothing/regularization of
the bid conforming to the monotonically increasing market
rule requirement (marginal costs are physically not strictly
monotonic), and (é¢) the advantage of and desire for achiev-
ing unique price-directed marginal generator schedules.
Since all suppliers choose their bids by solving the profit
maximization problem (3), it is reasonable to construct a
SFE model describing the game among all generators where
the actions are the bids and the payoffs are the profits. We
say that o is a Nash equilibrium if no single supplier can
increase her profit by unilaterally changing her own bid.
Note that for each supplier i, ¢;(c,3) is determined
by the actions of all players and its own cost parameter
0; £ (0i0,01,0:2) (cf. Eq. (4)), and thus, henceforth, we
write ¢;(a, 8;) to emphasize this dependency (3 is removed
since it is fixed and known). In order to solve her own profit
maximization problem, supplier ¢ must have knowledge of
how her rivals behave. Historical data could be utilized to
infer the behavior of competitors. Suppose that we have
obtained the MCP, as well as the corresponding dispatch
plans, for the same time period in the past N days, denoted
by (R,P},...,PJ), j = 1,...,N. Then the bids o/ =

rtn
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(af,...,ad), j 1,..., N, could be computed via the

market clearing condition in (1) (ﬂg’s are assumed to be
known). Given these past bidding histories, we propose to
first estimate rivals’ profit functions (or cost parameters)
and then compute the current equilibrium bids using these
estimated profit functions.

B. Inverse Problem

The inverse problem deals with the task of estimating com-
petitors’ cost parameters. The main theoretical foundation
is attributed to [2], where the authors estimate the utility
functions of players in a game from their observed actions
by combining ideas from inverse optimization with the theory
of variational inequalities. In our case, we are given the past
bids @/ = (af,...,ad), 7 =1,...,N, and are interested
in obtaining estimates of 8;, ¢ = 1,...,n. We assume that
each of these bids lies in the interval [0, @], where & is an
upper bound known a priori. According to Theorem 3 in [2],
which is derived through duality, the solution to the following
optimization problem gives us the estimated cost parameters.

min | €l|oo
vi€
01,...,0,
sty >0,i=1,...,n; j=1,...,N,
yi ZViQSz(ajvez)vZ:lv»nv j: 1;3Na
n
Z(O_Zyg _ag Vi ¢Z(a7701)> < €5, .7 = 13"'7N7
=1
’ (5)
where |||l is the infinity norm operator defined as the

maximum of the absolute elements of the argument; and
Vidi(a?, 0;) is the partial derivative of ¢; w.r.t. a; evaluated

at (a?, 0;), which is given by:
Vidi(al,8;) =
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where 7 is the demand level for the jth day and ﬂf is
the known bidding slope for supplier ¢ on the jth day.
Note that (5) is a Linear Programming (LP) problem and
can be solved to optimality very efficiently. We note that
this inverse optimization technique still applies even when
more constraints (the network flow constraints) are imposed
in the forward problem setup, or when the bid function is
changed, as long as R and P; have closed form expressions
w.r.t. the bidding coefficients. This can be achieved by the
projection trick used to incorporate the production capacity
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1

18]
= 1/8]

5

(6)

— 0,1 -
J 1/
7

-1

)

—




constraints. In addition to estimating competing generators’
cost functions, our method is particularly useful in estimating
the underlying cost functions of market participants who bid
synthetic or virtual generators corresponding to contracts
with either physical generation owners or a portfolio of
demand-response-capable consumers.

Remark: Our method appears to assume away the fact
that network connected markets result in location dependent
clearing price differentials driven by (i) small effects of
location-specific line loss contributions, but also, (ii) sig-
nificant contributions during network congestion events. It
can capture and address the significant congestion caused
differentials by detecting market-splitting occurrences that
result in “price islands” with essentially homogeneous prices
within each island. Although this limits the number of
relevant observations when price islanding occurs, it utilizes
the unusually high or low price events associated with
congestion.

III. THEORETICAL GUARANTEES

Theorem III.1 provides sufficient conditions for the ex-
istence and uniqueness of the Nash equilibrium, which
coincides with the 1954 Arrow-Debreu Theorem [1]. It
essentially requires the convexity of all cost functions, which
is a reasonable and practically meaningful assumption. We
omit the proof due to space limitations.

Theorem II1.1. Suppose that for every supplier i, its cost
function C;(P;i(a,B)) is convex in Pi(e,3), ie, iz >
0, VY i. Then, there exists a unique Nash equilibrium o* =
(af,...,ar) for the SFE model we defined.

The quality of the computed equilibrium strategies de-
pends heavily on the reliability of the estimated cost param-
eters. Intuitively, good estimators should be able to explain
well new, future equilibria. The following theorem, which is
a restatement of Theorem 6 in [2], ensures the quality of the
estimated cost functions under some mild conditions.

Theorem IIL.2. Suppose that o, j = 1,..., N are i.id.
realizations of a random variable &, and & € {a : 0 <
a; < @&, V i} almost surely. Then, for any 0 < § < 1, with
probability at least 1 — n w.r.t. the sampling,

P(d is a z-approximate equilibrium for the game
. R (7
with payoffs defined through 0, . . ., Bn) >1-9,
N—i.

where 11 = ZZQZO (f)&i(l — 0)N 7% z is the optimal value
of problem (5); and 0+, ...,0,, are the optimal solutions to

(5).

Remarks: For the definition of z-approximate equilibrium,
see [2, Section 2.2]. Roughly speaking, it describes the
situation where each generator does not necessarily play its
best action given what others are doing, but plays a strategy
which is no worse than z from the best response.

There are two probability measures in the statement of
Theorem III.2. One is related to the new data ¢, while the
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other is related to the samples ', ..., . The probability
in (7) is taken w.r.t. the new data &. For a fixed set of
samples, (7) holds with probability at least 1 — n w.rt.
the measure of samples. Theorem III.2 essentially says that
given typical samples, the probability that the estimated cost
functions explain well new, future equilibria is bounded
below. It guarantees the accuracy of the estimated cost
parameters under mild conditions.

IV. NUMERICAL IMPLEMENTATIONS

In this section we use synthetic input data to test the
validity of our approach and compare it with the one used
in [16] (referred to as Wen & David’s method). It has
been observed that multiple optimal solutions to (5) often
exist, which implies that potentially many cost functions
could generate the same observed equilibria. We design two
algorithms to find practically meaningful cost parameters
from the set of all optimal solutions, based on the principle
that only estimators close to true costs have good out-of-
sample performance. One is termed random search, which
searches randomly in the set of optimal solutions until the
one that performs well on a validation dataset is found, see
Section IV-A. The other is called box search, which narrows
down the search region and is thus more efficient compared
to random search, see Section IV-B.

Wen & David’s method solves the profit maximization
problem (3) under the assumption that the bidding coef-
ficients of any other generator follow a bivariate normal
distribution whose mean and covariance could be inferred
from historical bids. We will see from the experimental
results that the performance of their approach relies heavily
on the normal distribution hypothesis. There is no evidence
that generator’s bids behave like a normal random variable.
In addition, the hypothesis ignores the potential correlation
among generators’ actions.

A. Random Search

We first describe the experimental setup. Suppose there are
2 suppliers, whose bidding slopes 3;, ¢ = 1,2 are uniformly
distributed in [0.01,0.1] and [0.05,0.2], respectively. We
obtain NV 300 past bids o/, j = 1,...,300, where
o’ is generated as the equilibrium bid to the game with
demand Q7 = 40MW, & = 20, and 3;’s coming from the
uniform distributions specified above. Several sets of true
cost parameters are tested, see Table I. We note that in all
tables, within each cell the first number is for supplier 1, and
the second is for supplier 2. In all scenarios it is ensured that
the cost functions are convex and non-decreasing in P;. & is
changed to 100 for Scenario 4 and 50 for Scenario 5.

Our first step is to estimate the cost functions based on
past bidding data by solving problem (5). Note that 6,
only serves as a constant term in the profit function (4)
and thus does not play a role in the determination of c.
We therefore do not need to estimate 0,9, 7 = 1,...,n.
It is worth mentioning that (5) might give multiple optimal
solutions. Our goal is to recover the true cost parameters
from this set of optima. Although there might be multiple

)



TABLE I
TRUE COST PARAMETERS FOR SUPPLIERS.

Bio 0i1 0i2
Scenario 1 (S1) (10, 10) (13, 15) (0.01, 0.05)
Scenario 2 (S2) (5, 10) @3,5) (0.1, 0.2)
Scenario 3 (S3) A3, 5) 0.1, 0.2) (0.05, 0.05)
Scenario 4 (S4) (20, 10) (20, 50) 1,2
Scenario 5 (S5) (30, 50) (10, 5) (0.5, 1.5)

cost functions that can explain the observed equilibria well,
only true costs have good out-of-sample performance. The
following Algorithm 1 is thus proposed to identify the true
cost functions, based on which current equilibrium bids
could be easily computed. Given the cost estimators and
the bidding slopes, the equilibrium strategies are obtained
through an iterative process in which each player plays her
best response given others’ actions.

Algorithm 1 Random Search

1: Input: Demand (), the number of past bids N, the num-
ber of producers n, the percentage of training samples p,
tolerance level 7, upper bound for bidding intercepts &,
bidding slopes ,Bj , 7 =1,...,N, as well as the mean
value of the 3 distribution: 3 = (31, ..., 3,), past bids
o, j=1,...,N.

2: Initialize: c = 1

3: while ¢ > 7 do

Randomly choose M = | Np| samples from all past
bids to constitute the training dataset, and use the rest
as the validation set.

5: Obtain 91», 1 = 1,...,n, by solving problem (5)
using the training dataset.

6: Compute equilibrium strategies dial, j=1...,N—
M, on the validation dataset using 6;, i = 1,...,n,
and the bidding slopes on the validation set 37, j =
1,...,N - M.

7: Evaluate the average discrepancy between computed
and true bids on the validation dataset as,
1 , ,
— J o
c= N,MZ”aV"‘l_avalHl (8)
J

where aﬂal is the j-th true bid on the validation set, and
I-1]1 is the ¢; norm operator defined as the sum of the
absolute elements of the argument.

8: end while

9: Compute current equilibrium bids using 0;,, i =
1,...,n, and B.

One may argue that it could take infinite long time
to find the estimators éi, i = 1,...,n with satisfactory
performance on the validation data. Instead of using the
while loop, we could search the optimal solution set of (5)
for a fixed number of times. In Section IV-B we present
a different search algorithm to improve efficiency. Table II
shows the comparison with Wen & David’s method. The

loop in Algorithm 1 is executed for 100 times. The profit
is computed for the current equilibrium bids using true cost
functions and mean bidding slopes 3.

B. Box Search

To resolve the issue of a possibly endless loop with
random search, we propose the box search method. The
idea is to partition the feasible region and search under
the guidance of the out-of-sample performance. Specifically,
starting with some lower and upper bounds on the cost
parameters, we divide the box-shaped region formed by these
bounds into several subregions and solve problem (5) within
these smaller sets. Compute the out-of-sample performance
of the optimal solution from each subregion and proceed with
the set that performs the best. By repeating this process,
we expect to finally obtain some accurate estimators. See
Algorithm 2.

Algorithm 2 Box Search

1: Input: Demand @), the number of past bids NV, the num-
ber of producers n, the percentage of training samples p,
tolerance level 7, upper bound for bidding intercepts &,
bidding slopes 87, j=1,...,N, as well as the mean
value of the 3 distribution: 3 = (B4, ..., 3n), past bids
o, j=1,...,N.

2: Randomly choose M = | Np| samples from all past bids
to constitute the training dataset, and use the rest as the
validation set.

3: Initialize: Set the lower and upper bounds for the
2n cost parameters, denoted as lbo,x1; and ubo,x1,
respectively.

4: inter = ub — lb.

5. while ||inter||s > 7 do

Divide the box-shaped region into 22 subregions by
cutting the interval for each variable in half.

7: Solve problem (5) within each subset using training
samples.
8: Compute the out-of-sample performance on the vali-

dation data of the optimal solutions from all subproblems
as in Eq. (8), denoted as ¢, k=1,...,22",

9: Form a probability vector p based on ¢, as in (9). py
denotes the probability of proceeding within subregion
k:

e—(lk /T

pkzw,kzl,...,an, (9)

where T is a temperature variable inversely proportional
to the square of the iteration number.

10: Choose a subregion based on p and update lb, ub
and inter.

11: end while

12: 8 = (Ib 4 ub)/2. R B
13: Compute current equilibrium bids using 6 and 3.

The reason for the randomized selection in Step 10 lies in
that simply choosing the subregion which gives the best out-
of-sample performance might miss the subset that contains



the true cost parameters, especially when there exist multiple
optimal solutions in the subregion. On the other hand,
the randomized selection will become more deterministic
(controlled by the temperature variable 7T") as the subregion
becomes smaller.

TABLE II
COMPARISON BETWEEN RANDOM SEARCH / BOX SEARCH AND WEN &
DAVID’S METHOD.

Equilibrium bids Profit
Random Search (15.85, 15.80) (112.48, 21.69)
S1 Box Search (15.51, 15.37) (100.69, 17.47)
Wen & David’s method (15.20, 15.32) (93.81, 14.86)
Random Search (11.16, 10.80) (180.54, 67.22)
S2 Box Search (10.67, 10.26) (166.35, 60.54)
Wen & David’s method (9.74, 9.62) (144.70, 50.45)
Random Search (3.54, 1.28) (53.58, 72.90)
S3 Box Search (3.65, 1.18) (50.82, 76.02)
Wen & David’s method (2.83, 0.82) (47.81, 56.88)
Random Search (96.35, 96.85) (1450.10, 275.50)
S4 Box Search (87.03, 87.12) (1139.60, 177.30)
Wen & David’s method (84.12, 84.87) (1080.40, 161.81)
Random Search (47.05, 47.22) (697.03, 301.34)
S5 Box Search (40.46, 40.46) (502.78, 228.05)
Wen & David’s method (39.77, 39.97) (485.02, 221.49)

From Table II we see that both random search and box
search achieve higher profits than Wen & David’s method,
which is reasonable since the normal distribution assumption
embedded in their method becomes invalid. In addition, in
almost all scenarios random search performs better than
box search; the reason for this lies in that there is some
chance of proceeding with the wrong subregion due to the
probabilistic subset selection embedded in box search. By
contrast, random search always deals with the whole feasible
region. Moreover, when we fix the number of iterations in
Algorithm 1, which in our case is 100, it is approximately 4
times faster than Algorithm 2. The running time for random
search was about 10.82 seconds on a Dell Precision T7810
workstation with a 2.2 GHz dual Intel Xeon processor,
compared with 42.72 seconds for box search. To summarize,
random search finds better cost estimates and generates more
profitable bids in a more efficient way.

V. CONCLUSIONS

We propose an inverse optimization method to estimate
the cost functions of suppliers in the electricity market
based on historical bidding data. Then, the problem of
computing the optimal bidding strategies can be casted as an
equilibrium computation problem given the estimated payoff
functions. We present a sufficient condition for the existence
and uniqueness of the Nash equilibrium, and provide out-
of-sample performance guarantees for the estimated cost
functions. Numerical experiments have shown the superiority
of our approach compared to Wen & David’s method which
is designed on the basis of normally distributed bids.

Regarding future research directions, assuming that the
specific form of the cost function is unknown, the parametric
formulation (5) is not applicable any more. It would be of
interest to develop non-parametric approaches that do not
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require to assume a specific parametric form for the cost
functions.
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