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ABSTRACT

Memory is becoming increasingly heterogeneous with the emer-
gence of disparate memory technologies ranging from non-volatile
memories like PCM, STT-RAM, and memristors to 3D-stacked mem-
ories like HBM. In such systems, data is often migrated across
memory regions backed by different technologies for better overall
performance. An effective migration mechanism is a prerequisite
in such systems.

Prior works on OS-directed page migration have focused on
what data to migrate and/or on when to migrate. In this work, we
demonstrate the need to investigate another dimension — how much
to migrate. Specifically, we show that the amount of data migrated
in a single migration operation (called “migration granularity”) is
vital to the overall performance. Through analysis on real hardware,
we further show that different applications benefit from different
migration granularities, owing to their distinct memory access
characteristics. Since this preferred migration granularity may not
be known a priori, we propose a novel scheme to infer this for any
given application at runtime. When implemented in the Linux OS,
running on a current hardware, the performance improved by up
to 36% over a baseline with a fixed migration granularity.
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1 INTRODUCTION

Scaling of DRAM capacity has slowed down due to challenges in
designing charge-based memories with smaller transistors. For-
tunately, several non-volatile memory (NVM) technologies like
Phase Change Memory (PCM) [55], STT-RAM, memristor [15], and
MRAM are emerging as potential supplements to the DRAM [50].
NVMs are denser (higher capacity) and scale well with smaller
transistors [27]. In an orthogonal technology trend, 3D integration
techniques have allowed the stacking of DRAM chips to give rise

“The author contributed while he was an intern at AMD Research.
The author contributed while he was a member of technical staff at AMD Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS 18, June 12-15, 2018, Beijing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5783-8/18/06...$15.00
https://doi.org/10.1145/3205289.3208064

Lizy K. John
The University of Texas at Austin
Austin, Texas
ljohn@ece.utexas.edu

Arkaprava Basu®
Indian Institute of Science
Bangalore, India
arkapravab@iisc.ac.in

to the high-bandwidth memories [17]. Each of these disparate tech-
nologies has different access latency, bandwidth, energy dissipation,
and density. Consequently, memory systems of future computers
are becoming increasingly heterogeneous.

Irrespective of the combination of memory technologies de-
ployed, a common aspect of any system with heterogeneous mem-
ory is that the technology with relatively superior access charac-
teristics (e.g., lower latency, more bandwidth) is also more capacity
constrained. For example, in a system with DRAM and PCM [42],
DRAM is faster, but the PCM has higher capacity. Alternatively, if
the memory system is composed of 3D-stacked memory like high
bandwidth memory (HBM) and conventional DRAM [31], then
HBM provides much higher bandwidth, but has a comparatively
smaller capacity. For the ease of reference, we will refer the memory
region backed by the technology with superior access characteris-
tics as the fast memory and the rest as the slow memory. For example,
HBM is the fast memory in a system with DRAM and HBM while
DRAM is the fast memory in a system with DRAM and PCM.

Servicing application memory accesses from the fast memory is
preferable for better performance. However, if the memory footprint
of an application exceeds the capacity of the fast memory, then
migrating data between the fast and slow memory is critical to
service larger fraction of accesses from the fast memory (referred
as the fast memory hit ratio) [18]. Thus, an effective migration
mechanism is essential for any heterogeneous memory system.

Data can be migrated under the hardware or the software con-
trol. Hardware-managed migration allows fine-grain migrations
(e.g., 64B cache-line size) [31] with low overheads and does not
require software modifications. But they require intrusive hard-
ware modifications and adds significant hardware overheads (~13%
capacity loss of fast memory [18]). Importantly, the jury is still out
on what hardware is essential for migration, and consequently, the
proposed hardware enhancements are yet to become commercially
available. Alternatively, an application-managed migration [28]
can avoid hardware modifications and utilize application-specific
knowledge, but needs to re-write applications. A third approach
is an OS-directed page migration [39] that avoids both custom
hardware and application modifications. Instead, the OS initiates a
migration as and when deemed necessary. However, the migration
has to happen at a coarser granularity of pages (e.g., 4KB) and thus,
also called page migration. Importantly, previous works [39] have
shown that OS-directed migration can add significant overhead
due to long-latency TLB shootdown operations. Shootdown is nec-
essary to alter the virtual-to-physical address mapping of a page
after the migration [39]. In this work, we show how the efficacy of
OS-directed migration mechanisms can be improved through the
novel use of adaptive granularity of migration.
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Prior works [31] on page migration have focused on primarily
two aspects — what page to migrate and when to migrate. In this
work, we demonstrate the need to explore another dimension, - how
much to migrate. We find that the migration granularity significantly
impacts the performance of a migration scheme. We define the
migration granularity as the size of a contiguous virtual memory
region ! in an application’s address space that is migrated in one
migration operation. A larger granularity amortizes the overheads
of migration better. For example, only a single TLB shootdown
is needed to complete a migration, irrespective of its granularity.
However, precious capacity in the fast memory is wasted if an
application does not utilize the larger chunk of data migrated into
the fast memory due to the larger granularity. This could lower fast
memory hit ratio and increase the total number of migrations.

Our empirical analysis performed, on current hardware running
Linux®, showed that the migration granularity that leads to the
best performance for a given application varies across applications.
Specifically, we studied three different migration granularities as
an example — 4KB, 64KB and 2MB. We found that applications like
xsbench, which demonstrate near-random memory access patterns,
perform best with the smallest granularity (here, 4KB). Applications
with a streaming behavior (e.g., lulesh) prefer a large migration
granularity (here, 2MB). They benefit from the better amortization
of migration overheads and the implicit prefetch of useful data
to the fast memory. Interestingly, for applications like graph50e,
use of smallest granularity adds to migration overheads, but the
performance drops with the largest granularity due to extraneous
migration. Such applications have some spatial reuse across, but
not as much as a streaming application.

Unfortunately, the preferred migration granularity for an appli-
cation is not known a priori. Applications also demonstrate phase
behaviors, and thus, may prefer different granularities during differ-
ent phases of execution. We thus, propose a dynamic scheme that
adjusts the migration granularity at runtime based upon application
behavior. We monitor page-grain meta-data (e.g., access bits) in the
OS to estimate application’s spatial access locality across different
migration granularities. This information is then used to employ
the largest granularity that is estimated to contain enough spatial
locality. This ensures that the overhead of migration is amortized
as much as possible without wasting fast memory capacity. An
implementation of this scheme in Linux® is projected to improve
application performance by up to 36% and by 11% on average, over
a baseline page migration scheme using a fixed granularity.

Our contributions in this paper are as follows:

e We demonstrate the need to consider the migration granu-
larity in designing OS-directed page migration scheme.

e By analyzing a wide range of applications on real hardware,
we show that different applications perform better with dif-
ferent page migration granularities.

e We propose and evaluate a novel dynamic scheme in the OS
to adapt migration granularity at runtime.

Not necessarily contiguous in physical memory, unlike large pages. More details are
in Section 7.1
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2 BACKGROUND

We now discuss technologies behind the emergence of heterogene-
ity in the memory and approaches to managing this heterogeneity.

2.1 Emerging Memory Technologies

Scaling of DRAM technology is reaching its limit due to physical
design constraints. This can stifle the growth of memory capacity in
DRAM-only systems. Fortunately, emerging NVM technologies are
denser than DRAM and scale better with shrinking transistor size.
However, they are often slower than the DRAM and provide limited
write endurance. Thus, NVMs are emerging as supplement rather
than alternative to DRAM [31]. Consequently, memory subsystems
of future computers are likely to have both DRAM and NVMs.

Beyond NVMs, 3D-stacked DRAM technologies like High Band-
width Memory (HBM) is adding to the heterogeneity [39, 40, 48].
HBM is even more capacity-constrained than DRAM but provides
higher bandwidth [34]. HBM’s limited capacity means that the
memory system cannot solely comprise of HBM. It needs to be
complemented by DRAM and/or NVM.

2.2 Managing Heterogeneous Memory

A common characteristic of any heterogeneous memory system is
that the fast memory is always relatively more capacity constrained,
irrespective of the specific technologies employed. Thus, a goal of
any such system is to service a larger fraction of an application’s
memory accesses from the fast memory for better overall perfor-
mance - i.e., to achieve higher fast memory hit ratio (henceforth,
referred as FM-hit ratio). However, an application’s memory foot-
print may not fit in the capacity-constrained fast memory. Thus, an
effective migration mechanism between the fast and slow memory
is key to achieving a high FM-hit ratio.

From software’s perspectives, it is best if hardware manages the
fast memory as a cache [16, 18-20, 31, 32, 41, 47]. This requires no
software modifications but comes with typical costs of hardware
caching. Significant hardware resources have to be devoted to book-
keeping (e.g., tags). Moreover, it hides the capacity of fast memory
from the software. Thus, this approach is applicable only when the
fast memory capacity is very limited.

On the other extreme, an application writer can be tasked to
manage the heterogeneity in the memory [5, 28]. Here, the applica-
tion writer can choose to place data in either fast or slow memory
through specific APIs (e.g., “malloc-fast” and “malloc-slow”) and/or
request to migrate data [28]. While this approach requires no hard-
ware modification, rewriting applications is a herculean task.

Alternatively, the OS can dynamically migrate data between the
fast and slow memory based on application’s (perceived) needs [11,
14, 22, 36, 39]. However, this has its own challenges. First, since the
OS has no visibility to application’s loads/stores, it is a challenge to
decide which data is most beneficial to migrate. In one approach,
Oskin et al. [39] proposed to monitor loads/stores to slow mem-
ory by generating page faults each such access. Unfortunately, a
page fault requires several microseconds to service. Alternatively,
Meswani et al. [35] proposed to modify the hardware to extend each
Page Table Entry (PTE) to keep access counts to identify frequently
accessed pages. It then migrates these hot pages to the fast memory.
Unfortunately, such hardware does not exist today.
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Figure 1: Impact of migration granularity.

Researchers have also proposed to use already-existing access
bits in PTEs to approximate the frequency of access [35]. Mod-
ern commercial processors set this access bit (if unset) in the PTE
whenever the corresponding page is accessed. This approach does
not require any hardware modifications. We use this approach to
identify hot pages and therefore, do not require custom hardware.

The other challenge for OS-directed migration is that it can
add significant overheads due to associated slow operations like
TLB shootdown (e.g., 13.2 usec) [39]. Migration alters the virtual-
to-physical address mapping. However, address mapping could
be cached in CPU’s Translation Lookaside Buffers 2 (TLBs). TLB
shootdown is the process of purging such stale mapping from TLBs.
A shootdown typically involves slow operations such as issuing
inter-process-interrupts (IPIs) by the OS. We empirically found that
such TLB shootdowns can dominate the cost of a page migration
(Section 3), corroborating previous work [28, 39].

In summary, OS-directed page migration requires no applica-
tion or hardware modifications. However, it can add significant
performance overhead. We explore ways to reduce this overhead.

3 THE NEED TO CONSIDER MIGRATION
GRANULARITY

Migration is anything but a free lunch. We consider any time spent
beside copying of the data from one type of memory to the other as
the overhead of migration. For example, TLB shootdowns and the
software cost of invoking migration [35, 39, 53] is pure overhead.

We quantify the impact of granularity on migration overhead
on a x86-64 hardware running Linux (details in Table 1). Figure 1a

2TLBs are hardware structures in processors that cache recently used PTEs to make
address translation process fast. Typically, each CPU core has its own TLB hierarchy

ICS ’18, June 12-15, 2018, Beijing, China

[ w4KB m64KB 02MB ]

h Ik

XS 500 lul

of shootdowns

Relative number
COOLE -

SNhaoNRS

Figure 2: Number of TLB shootdowns (lower is better).

shows the normalized time spent to migrate a varying amount of
data at different granularities across two NUMA memory zones.
We used numa_move_pages() to migrate a desired number of pages
between different NUMA nodes. The x-axis shows the amount
of data being migrated. The y-axis shows the time required to
migrate. The migrated data is allocated contiguously in the virtual
memory, which is key to leverage larger granularities. Three lines
in the graph represent three different granularities of migration.
We observe that as the amount of data being migrated increases,
the larger granularity takes less time to migrate a given amount of
data by amortizing overheads.

Figure 1b breaks down normalized execution time (normalized to
4KB granularity) while migrating a fixed amount data (here, 256 MB)
to depict sources of overhead. Each bar shows the time spent on
copying the data, TLB shootdown and other software overheads
such as initiating the process of migration. We observe that the cost
of copying data remains same irrespective of migration granularity
since the total amount of data copied remains unaltered. We note
that TLB shootdowns are important contributors to migration over-
heads. Importantly, overheads due to TLB shootdown and other
sources scale down with increasing migration granularity. This is
expected since the number of shootdowns decreases in proportion
to the increasing migration granularity as long as the data being mi-
grated is contiguous in the virtual memory. For example, migrating
a given amount of virtually contiguous data using 2MB granularity
incurs 512X fewer shootdowns than 4KB granularity. The key is to
define the migration granularity as a contiguous virtual memory
region instead of a contiguous physical memory region. This allows
a single TLB shootdown to complete a migration irrespective of
its granularity since a shootdown invalidates a contiguous virtual
address range, by definition.

However, a larger migration granularity does not always improve
an application’s performance. A larger granularity is beneficial if
an application demonstrates mostly streaming behavior since they
benefit from migrating contiguously allocated data together (i.e.,
larger migration granularity). It decreases the total number of mi-
grations, and consequently, the number of TLB shootdowns 3. Other
migration overheads decrease too. Additionally, larger granularity
implicitly prefetches data to be accessed next by the application into
the fast memory. However, a larger granularity can waste precious
fast-memory capacity for applications with low spatial reuse. Addi-
tional data migrated due to larger granularity can evict otherwise
useful data from the fast memory. The evicted data may later need

3In all our experiments, the number of TLB shootdowns are exactly twice the number
of migrations, and thus, the number of shootdowns is a good estimator of the relative
overhead of migration both due to shootdown and other software invocations.
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to be migrated back again. This could increase the total number of
migrations (thus shootdowns), and consequently, add to overheads.

To empirically understand how an application’s performance is
impacted by migration granularity, we measured the number of
TLB shootdowns and the fast memory hit ratio. The number of
shootdowns is a good indicator of the migration overheads (lower
is better) while the fast memory hit ratio captures usefulness of
migration (higher is better). Together, they provide an effective
estimate of how migration aids (or hurts) application-performance
in a heterogeneous memory system. We counted the number of
migration (shootdowns) inside the Linux and measured the fast-
memory hit ratio using Instruction Based Sampling (IBS) [8] feature
in AMD processors. Methodology is detailed in Section 5.

Figure 2 shows the relative number of migrations (thus TLB
shootdowns) for three representative applications with different
migration granularities (4KB, 64KB and 2MB). Each subgraph rep-
resents one application, and three bars in each subgraph represents
the number of migrations under three different granularities. The
number of migrations is normalized to that with the default 4KB
granularity for each application. Figure 3 shows similarly structured
graph for the fast-memory hit ratio (henceforth, FM-hit ratio).

We observe that the application xsbench (“xs”) shows the least
number of migrations (Figure 2) while experiencing a better FM-
hit ratio (Figure 3) with the smallest migration granularity (4KB).
As the granularity increases, both metrics worsen for xsbhench.
In hindsight, this is expected since xsbench demonstrates near-
random access patterns. On the other end of the spectrum is lulesh
(“lu”). It incurs the least number of migrations and the highest
FM-hit ratio with the largest granularity (2MB). This workload
demonstrates streaming behavior, and thus, benefits by migrating
larger chunks of contiguous virtual memory together. Application
graph500 (“g500”) falls somewhere in the middle where it performs
best with 64KB granularity. It has spatial locality that benefits from
a larger granularity, but the locality falls off beyond 64KB region.

Figure 4 shows the normalized projected runtime (lower is better)
of these example applications with different migration granularities
(Section 5 details methodology) in a system with heterogeneous
memory. The ratio of the fast to slow memory latency is 1:3 in these
experiments. The figure is arranged similarly to previous ones. The
y-axis represents projected runtime of each application normal-
ized to application’s runtime when the fast memory capacity is
configured to fit the entire memory footprint (i.e., when no migra-
tion is incurred). We observe that the migration granularity could
significantly impact the performance of an application running
on a system with heterogeneous memory (e.g., 23% for lulesh).
As expected from the data presented in the Figure 2 and Figure 3,
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application xsbench performs the best with the smallest migration
granularity of 4KB, lulesh prefers 2MB granularity, and graph500
works the best with 64KB granularity.

Summary: (1) By defining migration granularity as contiguous
virtual memory region rather than physical memory, we enable
potential amortization of migration overheads with a larger gran-
ularity. (2) We demonstrate that the migration granularity is a
key factor in an OS-directed page migration mechanism. @ The
preferred migration granularity can differ across applications.

4 DYNAMICALLY SELECTING MIGRATION
GRANULARITY

While the migration granularity is important, an application’s pre-
ferred granularity may not be known a priori. Further, applications
are known to demonstrate phase behaviors [45], and thus, may
prefer different granularities during different execution phases.
Therefore, we propose a novel dynamic scheme that adapts the
migration granularity depending upon memory access pattern of
an application. This can enhance the efficacy of, not just ours, but
any, OS-directed page migration scheme.

Our goal is to conceive a simple scheme, implementable in the
OS, to adapt the migration granularity for an application at runtime
to: (1) reduce the number of TLB shootdowns (thus reduce the mi-
gration overhead), (2) increase the FM-hit ratio (thus enhancing the
usefulness of a migration). We achieve this by employing the largest
migration granularity as long as the migrated data is used enough
by the application. This amortize overheads of migration without
migrating useless data into the capacity-constrained fast memory.
A way to infer if a larger migration granularity could be helpful is
to monitor application’s spatial access locality across contiguous
virtual memory regions (i.e., migration granularities). If there ex-
ists substantial locality within a larger contiguous virtual memory
region, then we use a larger migration granularity. However, if we
observe low spatial locality within a given virtual memory region
of an application, then we fall back to using a smaller granularity.

We keep a per-application variable that records the migration
granularity at any given time. Its value could be 4KB, 64KB or
2MB in our experiments. However, our proposal works with any
granularity that is a multiple of 4KB (base page size). Our dynamic
algorithm alters the value of this variable at runtime based on the
application behavior as follows.

For ease of explanation, we divide our proposal in move-in and
move-out path. In the move-in path, data is migrated from the slow
to fast memory while, in the move-out path, migration happens
in the opposite direction. The decision on whether to increase the
migration granularity is taken in the move-in path, and whether to
decrease the migration granularity is decided in the move-out path.

The move-in and move-out mechanisms are executed as part
of two independent OS threads. Both threads independently per-
form the periodic scanning of contiguous virtual memory ranges
to ascertain application’s access locality over the scanned region
and then decide on migration. Scanning is performed by examining
access bits of PTEs of 4KB (base) pages in a given region to identify
which of those pages are accessed (Figure 5). This is a key innova-
tion of our proposal — scanning on virtual memory for deciding
what to migrate, instead of physical memory, unlike previous works
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Figure 4: Impact of migration granularity on application performance.

(e.g., [14, 22, 35]). This helps to ascertain an application’s access
locality accurately by ignoring the mapping between virtual and
physical memory which is unrelated to application behavior.

Each periodic scan starts on a physical page frame just after
where the previous scan stopped. In case of the move-in path, this
will be the page frame in the slow memory. It then reverse-maps
the physical address to the virtual page address and starts scan-
ning contiguously on the virtual address space starting from that
address. The scanning continues until a pre-configured number of
pages that maps to the slow memory is scanned (a typical value
is 4,096). During the scan, it examines the access bit of 4KB pages
in the region. It uses this information to ascertain how many 2MB
contiguous virtual memory regions in the scanned memory have
more than a threshold number of 4KB pages with access bit set
(thr_high_2MB). This essentially counts the number of 2MB con-
tiguous virtual memory regions with enough spatial locality. Simi-
larly, it also collects how many 64KB contiguous regions that have
more than a threshold number of 4KB pages (thr_high_64KB) with
the access bit set. At the end of the scan, if the number of such
2MB regions with enough spatial locality is above a given threshold
(thr_high_num_reg_2MB), then it sets the migration granularity to
2MB. Otherwise, if there is more than a threshold number of such
64KB regions (thr_high_num_reg_64KB) with high spatial locality,
then the granularity is set to 64KB. Typical values of thresholds are —
thr_high_2MB: 480, thr_high_64KB: 10, thr_high_num_reg_2MB:
3, thr_high_num_reg_64KB: 3.

The move-out path similarly scans contiguous virtual memory
but starts with a physical page frame in the fast memory instead
of slow memory. Similar to the move-in path, it also scans con-
tiguous virtual memory regions. Differently, though, it ascertains

A: Accessed 4KB Page
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Slow Memory

virtually
contiguous

Region with
High
Spatial Locali

virtually
contiguous
pages

Region with
Low Spatial Locality

Move Active Pages to Fast Memory

Figure 5: Overview of dynamic scheme for assessing locality.

Processor Values
Number of Cores 4
Frequency 4.1 GHz
Caches Values

L1 I-Cache 128 KB, 2 way
L1 D-Cache 64 KB, 4 way
L2 Cache 4 MB, 16 way
Fast Memory Values
Type DDR3-1866
Capacity 400 MB
Slow Memory Values
Type PCM (emulated)
Capacity 8 GB

Table 1: System parameters

which 2MB and 64KB regions have not experienced enough spa-
tial access locality. As before, we use access bits in PTEs of 4KB
pages within scanned regions for this purpose. Specifically, dur-
ing a scan, it counts the number of 2MB regions that have fewer
than a threshold number of 4KB pages with their access bits set
(thr_low_2MB). Similarly, we track access locality in 64KB regions
using another threshold thr_low_64KB). At the end of a scan, if the
number of sparsely accessed 2MB and 64KB regions are above two
thresholds, thr1_downgrade_2MB and thr_low_num_reg_64KB re-
spectively, then the migration granularity is changed to 4KB. If the
number of sparsely accessed 64KB regions is below the threshold
thr_low_num_reg_64KB, and the current granularity is 2MB, then
the granularity is set to 64KB. Typical threshold values are as follows
— thr_low_2MB: 480, thr_low_64KB: 10, thr_low_num_reg_2MB: 3,
thr_low_num_reg_64KB: 3.

Note that since we scan the virtually contiguous memory, the
4KB pages in the scanned regions can fall either in the fast or slow
memory. However, in the move-in path, we should consider only
pages in the slow memory, and in the move-out path, we need to
consider only pages in the fast memory. Therefore, our scanning
algorithm in the move-in path ignores the access bit information
of any pages mapped to the fast memory. In the move-out path, it
ignores pages mapped to slow memory.

5 IMPLEMENTATION AND METHODOLOGY

We now describe how we prototyped the above-mentioned granularity-

aware migration mechanism in Linux. We then present our evalua-
tion methodology. Finally, we briefly describe the baseline and the
workloads.
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Implementation: We evaluate our proposal on an AMD A10-
6800K® processor running Linux (kernel version 3.16.36). Table 1
lists the configuration of our experimental platform. Our goal is
to evaluate the granularity-aware migration scheme in a heteroge-
neous memory system with DRAM and NVM. While non-volatile
memory technologies like Intel 3DXpoint are emerging, they are
still neither commercially prevalent nor easily affordable. Therefore,
we emulate the heterogeneous memory with a DRAM-only system
as done in almost all recent work [14, 22].

We use Linux’s NUMA emulation feature to divide the aggregate
physical memory available in the system (32GB) into equally sized
contiguous physical memory zones. Pages can then be migrated
across these zones. We then make one memory zone to act as the fast
memory and another as the slow memory. We needed to ensure that
applications’ memory footprint surpasses the capacity of the fast
memory in order to observe any meaningful number of migrations.
We utilized Linux’s Memory HotPlug feature offline part of physical
memory in the fast memory node as if it did not exist. This way we
limited the capacity of the fast memory to 400MB in the baseline
configurations to emulate the real-world scenario where the fast
memory is a fraction of application’s memory footprint. We list
memory footprint of our workloads in Table 2. However, we also
varied this fast memory capacity in sensitivity studies (Section 6.1).

We then extended Linux to support three different migration
granularities — 4KB, 64KB, and 2MB. Each migration operation re-
quires one TLB shootdown irrespective of its granularity. However,
each shootdown routine is slightly different depending upon the
migration granularity. For 4KB granularity, the shootdown routine
executes x86-64’s invipg instruction to invalidate the stale address
mapping in local TLBs of each (receiving) core (background in Sec-
tion 2). For 64KB, the shootdown routine at each core executes 16
invlpg instructions to invalidate all sixteen 4KB pages that the 64KB
region maps to. For 2MB pages, instead of looping over 512 pages,
it writes to the local core’s cr3 register. Writing to cr3 flushes all
entries belonging to the user applications from the local TLBs.

We separately implemented a driver for dynamically altering
the migration granularity. The driver monitors access patterns of
applications and alters the page migration granularity by setting
a variable that encodes the migration granularity (description in
Section 4).

Evaluation methodology: To evaluate the granularity-aware
migration mechanism, we collect two key statistics ~(1) the num-
ber of TLB shootdowns and the time spent on them, and (2) the
fast-memory hit ratio (FM-hit ratio). The first metric is a good indi-
cator of the overheads of migration, while the later estimates the
usefulness of migrations (Section 3). While the shootdown informa-
tion is easily obtained by minimally instrumenting the kernel, the
FM-hit ratio is not readily available since the OS has no visibility
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Figure 7: Leading load performance model extended for sys-
tem with heterogeneous memory and page migration.

to individual memory accesses by an application. To address this,
we utilize a hardware feature called Instruction Based Sampling
(IBS) [8] available in AMD CPUs. IBS can track every n' instruction
(user settable) that goes through CPU core’s pipeline. As the instruc-
tion flows through the CPU pipeline, information about several
events caused by that instruction is gathered by the hardware. Then,
when a tracked instruction completes, the collected information is
logged in a kernel buffer. Each sample includes, among others, the
type of the instruction, whether it missed processor caches, and
virtual/physical address of the access (if load/store). We use the
open source IBS driver for Linux [12] to sample one in every one
thousand instructions to collect a trace of sampled instructions. We
post-process this trace to find the fraction of physical addresses
accessed by an application (after missing in processor caches) falls
in NUMA zone of the fast memory. This estimates the FM-hit ratio.

The measured numbers of TLB shootdowns, the number of mi-
grations, and estimated FM-hit ratio determine both the overheads
and usefulness of any OS-directed migration scheme. However, this
does not immediately allow us to estimate the performance of an
application with migrations and with different access latencies of
fast and slow memory.

We, therefore, used a previously validated leading-load model
for projecting performance under varying CPU core frequency and
memory latency [49]. The key idea of this model is to break the

Notation Suite Workloads | Input RSS

500 - graph500 - 761MB
gups HPC gups - 2.00GB
str HPC stream - 1.08GB
cg NAS cg C 890MB
ft NAS ft B 1.26GB
is NAS is C 1.03GB
mg NAS mg B 490MB
ua NAS ua C 483MB

can PARSEC
freq PARSEC

canneal native | 939MB
freqmine | native | 678MB

lul CORAL lulesh - 696MB
mini Mantevo minife - 642MB
XS CORAL | xsbench large | 5.55GB

Table 2: Workload descriptions
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Figure 8: Normalized to execution time with no migration (entire memory footprint in fast memory, lower is better).

execution time of an application in two parts as shown in the top
part of Figure 6: (1) compute cycles — the portion of execution
cycles that scales with CPU core frequency, and (2) memory cycles
— the portion of execution cycles that is dependent on memory
latency. In general, memory cycles are the cycles during which the
CPU is blocked waiting for memory accesses . The lower part of
Figure 6 shows how this model can predict the performance of an
application with different memory latency by scaling the memory
cycles proportionally while keeping compute cycles unaltered. This
model is shown to predict performance with an average error under
2.7% across a range of workloads under varying core frequencies
and memory latencies [49]. We directly measure the memory cycles
using a performance counter as in the previous work [49].

The above model, however, works only if the latency of all mem-
ory accesses is increased or decreased equally. We thus extended
this leading load model as shown in the Figure 7. From the IBS,
we measured the FM-hit ratio that helps identify the fraction of
accesses to the fast versus slow memory. We used this fraction
to partition the measured memory cycles into two: those due to
accesses to fast memory and those to slow memory. We then scaled
the slow memory cycles by the ratio of the slow to fast memory
latency (Shown in the bottom part of Figure 7). We assumed the
slow memory is 3X slower but we also vary this for sensitivity
studies in Section 6.1.

Further, the original leading-load model did not account for the
overheads of migration. We measured TLB shootdown overheads
in the kernel, and this remains unaltered with a larger number
of accesses to the slow memory °. We also measured the time
needed to copy the data between the fast and slow memory. The
data copy latency is scaled in proportion to the ratio of the fast
to slow memory latency. These two are shown in the green and
yellow portion (rightmost two partitions) in Figure 7. Finally, our
workloads (described next) are multi-threaded. We apply the above-
mentioned model for each application thread that is bound to a core
using Linux® taskset utility. The projected application runtime is
then maximum of the projected runtime of each of its thread.

Baseline: We implemented an OS-directed baseline migration
scheme on existing hardware by modifying Linux. Like most previ-
ous work [14, 22], our baseline migrates frequently accessed pages
from the slow to fast memory. Cold (less frequently accessed) pages
are migrated from the fast to slow memory to make space.

“4These stalling instructions are generally referred as leading load.
SWe assume the kernel memory resides in the fast memory zone.

We made the baseline as similar as possible to our granularity-
aware migration scheme; except where our key innovations lie (i.e.,
altering the migration granularity and scanning in virtual memory).
This provides a fair estimation of benefits from our innovations.

Similar to our dynamic scheme, two independent OS threads
perform the periodic scanning in the fast and slow memory for
finding the access frequencies to pages. However, the scanning
operation in the baseline examines the access bits in PTEs of a
batch of physically contiguous pages. This is different from our
dynamic scheme where virtually contiguous pages are scanned. We
set the scanning frequency to 100us across all experiments. During
a scanning pass in the slow memory, any page with its access bit
set is selected as a candidate for migration to the fast memory. In
contrast, for the fast memory, any page with its access bit unset is
selected as a candidate to be migrated back to the slow memory
to make space (if needed). Most importantly, the baseline always
migrates 4KB of memory (default page size) at a time.

Workloads: We evaluated our proposal using a wide range of
workloads drawn from Parsec [4], NAS Parallel benchmarks [3],
HPC Challenge [33], Mantevo [23], CORAL [1, 51], and graph500 [38].
Table 2 lists the individual applications used from these benchmark
suites. The table also lists the working/resident set size (RSS) of
each application as reported by Linux. This will help the reader to
understand the memory footprint of each application in relation
to the emulated fast memory capacity. All applications are multi-
threaded and made to use at least 8 threads. Workloads from Parsec
use pthread while all others use OpenMP for multi-threading.

6 RESULTS

We evaluate our proposal through a quantitative analysis to fol-
lowing questions. (1) How does a migration granularity affect the
efficacy of page migration? (2) How does the proposed dynamic
scheme for finding the preferred granularity, perform? @ What are
the sources of improvements (degradations)? (4) How sensitive are
the results to different fast memory capacity and access latencies?

Performance: Figure 8 shows the normalized execution time
(lower is better) of the baseline, migration scheme under three differ-
ent statically fixed migration granularities and our dynamic scheme.
The height of each bar is normalized to the execution time of the
application running on a system with the fast memory capacity
exceeding the application’s memory footprint, and thus, incurring
zero migrations. Each application has five bars — the first bar is
the baseline as described in previous section. The next three bars
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Figure 9: Relative number of shootdowns (lower is better).

are for static migration granularities where the scheme works as
described in Section 4 except that the migration granularity is fixed
at 4KB, 64KB, and 2MB, respectively. The last bar represents our
dynamic scheme that alters the migration granularity at runtime.

First, from the first two bars we observe that the baseline per-
forms close to or slightly less than the static migration granularity of
4KB. The only difference between these two is that the 4KB-static
scheme is able to exploit application’s spatial access locality by
scanning virtually contiguous pages, instead of scanning the physi-
cal memory. Also, among static migration granularities, we observe
that five out of thirteen applications studied (gups, cg, ft, is,
and xsbench) perform best with 4KB. Four applications (graph500,
mg, ua, and minife) prefer the 64KB static granularity while the
rest (stream, can, luesh, and fregmine) prefer 2MB granular-
ity. This demonstrates the preferred granularity of migration varies
across applications.

Most importantly, we find that our dynamic scheme yields the
runtime close to or even slightly better than the best performing
static migration granularity across the board. The dynamic scheme
was able to achieve this by altering the migration granularity for
an application at runtime based on application’s execution phases.
Specifically, the dynamic scheme performs the best for eight ap-
plications (stream, cg, mg, ua, canneal, lulesh, miniapp
and xsbench), and close to the best static granularity for the rest.

Analysis: Two metrics capture the efficacy of any OS-directed
migration scheme —(1) the number of TLB shootdowns, and (2)
the fast memory hit ratio While the former is an indicator of the
migration overheads, the later captures the usefulness of migration.
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Figure 10: Fast memory hit ratio (higher is better).

Figure 9 shows the number of TLB shootdowns for the baseline,
three static, and the dynamic scheme. Similar to the previous figure,
the first bar is for baseline, next three bars are for static granular-
ities, and the last one is for the dynamic scheme. The height of
each bar is normalized to the number of shootdowns with static
4KB granularity. First, the baseline and the static-4KB scheme has a
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Figure 11: Breakdown of dynamic migration granularity alter-
ations.

similar number of shootdowns, as expected. We observe that the ap-
plications that performed the best with 4KB granularity (in Figure 8)
also, have the lowest number of TLB shootdowns with 4KB. The
same is also true for the other two migration static granularities.
Importantly, the number of shootdowns in our dynamic scheme
remains close to that in the best-performing static granularity.

Figure 10 shows the fast-memory hit ratio (FM-hit ratio) mea-
sured by processor’s IBS feature. Here also, we observe that the
dynamic scheme yields the FM-hit ratio very close to the best per-
forming static migration granularity for each application. These
two metrics clearly show (1) why the migration granularity makes
a significant impact on the performance of a migration scheme
and (2) how the proposed dynamic scheme greatly improves the
efficacy of migration by bringing useful data into the fast memory.

We further analyze the proposed dynamic scheme by measuring
the breakdown of migrations across three different possible granu-
larities in Figure 11. Each application has a stacked bar, which shows
the fraction of migrations with 4KB, 64KB, and 2MB granularity.
We observe that the dynamic scheme is able to pick the migration
granularity that generally matches the best-performing static mi-
gration granularity for an application. For example, graph500 is
known to prefer 64KB migration granularity, and the breakdown in
Figure 11 shows that the dynamic scheme employed 64KB granu-
larity in more than 95% of migrations. In Figure 8, we saw that the
dynamic scheme performed even better than the best performing
static granularity for cg. In Figure 11, we observe that the dynamic
scheme employs the granularity of 4KB for around 85% of migra-
tions while using 64KB for the rest. We found that cg is composed
of computation involving sparse matrix and data communications.
In the computation phase, there is little locality, and thus, 4KB is
preferable. For the communication phase though, 64KB helps as
it benefits from relatively more locality. Adapting the granularity
across phases benefits the overall performance and can sometimes
outperform static granularity schemes. We observe the similar be-
havior in case of application ua too.

6.1 Sensitivity studies

In this section, we study the sensitivity of our dynamic scheme.

Capacity sensitivity: Hitherto, all results are performed with the
fast memory capacity set to 400MB. We choose this size such that
every applications’ working set substantially exceeds the fast mem-
ory capacity (the working set size in Table 2). Otherwise, there is
not enough number of migrations to study. However, to understand
the robustness of our proposal, we evaluated both the static and
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Figure 12: Execution time of varying capacity normalized to
execution time with no migration (lower is better).

dynamic schemes with the fast memory capacity of 200MB (0.5%)
and 800MB (2x).

Figure 12 shows the normalized execution times with different
fast memory capacity. As earlier, the height of each bar is normal-
ized to the execution time with zero migrations. The left half of
the figure shows measurements with 200MB fast memory capac-
ity and the right half shows that with 800MB capacity. For each
application, there are two bars as in Figure 8. The left bar for each
application represents the best performing static granularity for
that application (it can be 4KB, 64KB or 2MB depending upon the
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Figure 13: Execution time of varying latency normalized to
execution time with no migration (lower is better).

Latency sensitivity Hitherto, our runtime projections assumed
the ratio of the fast to slow memory access latency to be 1:3. Here,
we vary this ratio to 1:2 and to 1:8. The left half of Figure 13 shows
the normalized execution time of each application with the access
latency ratio of the fast to slow memory being 1:8 and the right
half shows the same when the ratio is 1:2. Regardless of the specific
latency ratio, we observe that the dynamic scheme performs close to
or better than the best performing static granularity. Intuitively, this
result is expected as our dynamic scheme depends on application’s
memory access patterns.

Summary: We quantitatively demonstrate that (1) the dynamic
scheme was able to adapt the migration granularity at runtime

ICS ’18, June 12-15, 2018, Beijing, China

which resulted in achieving the performance that is close to or
even better than the best-performing static migration granularity
across thirteen workloads, and @ the same conclusion holds across
varying fast memory capacity and latencies.

7 DISCUSSION

Here, we discuss a few subtle but related topics.

7.1 Large pages vs Migration granularity

We define the migration granularity as a contiguous chunk of vir-
tual memory. Unlike OS pages, the migration granularity does not
necessarily map to a contiguous chunk of physical memory. For
example, a 2MB migration granularity represents a contiguous 2MB
chunk in the virtual address of an application, but could be mapped
to 512 non-contiguous 4KB physical page frames.

We use the migration granularity instead of large pages for two
important reasons. @ Large pages are few and far in between. For
example, x86-64 supports only 4KB, 2MB, and 1GB page sizes. If
large pages were used instead, then it would have unnecessarily
limited the choices of granularities. @ The purpose of large pages
is to reduce TLB miss overheads, and this is orthogonal to migration.
A single 2MB TLB entry can map to 512 times more memory than
a 4KB TLB entry. If we used large pages, then our scheme would
have benefited more from fewer TLB misses, and also, it would
have muddled our measurements. However, the conclusion about
the importance of the granularity of migration holds even if large
pages are used as a larger granularity.

7.2 Applicability to other migration policies

In this work, we chose a page migration scheme that is inspired
by Linux’s clock algorithm that utilizes the access bits in PTEs.
However, our contribution of demonstrating the importance of mi-
gration granularity is not limited to any specific migration scheme.
For example, our proposed dynamic granularity aware scheme can
be easily extended to the next touch algorithm [11], which migrates
a single 4KB page when the page is accessed more than twice in
the slow memory. Here, instead of migrating 4KB upon a second
access, a larger migration granularity can be chosen when high
spatial locality is detected. Likewise, we can extend our proposal to
the work by Meswani et al. [35], but the work requires additional
per-page access counters, which are not available in current hard-
ware. Oskin et al. [39] proposed to incur page faults on every access
to the slow memory. A modified page fault handler then brings the
data to the fast memory. Our granularity-aware migration scheme
can be implemented in this page fault handler.

7.3 Heterogeneous memory system vs NUMA

The heterogeneous memory systems may look similar to conven-
tional NUMA systems in that different parts of the physical memory
have different access latencies. In a typical NUMA system, the data
placed in local node’s memory can be accessed faster by local threads
running in the same node. Accessing the same data from remote
threads running in another node takes longer. In a heterogeneous
memory system, however, there are no local or remote threads. A
given memory is equally distant from all threads. Therefore, a page
migration in a heterogeneous memory system affects all threads
equally, which is different from the NUMA system. Consequently,
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many NUMA-specific optimizations (e.g., avoiding false sharing)
do not apply to heterogeneous memory systems and vice-versa.

8 RELATED WORK

Data Management in Heterogeneous Memory Systems: A sig-
nificant amount of previous work explored managing the fast mem-
ory entirely in hardware [6, 13, 18, 21, 25, 31, 37, 41, 44, 46, 52, 54].
Alloy Cache [41] migrates data at 64B cacheline granularity for
fine-grain control. However, they do not exploit the spatial local-
ity beyond 64B, and thus, a few proposals [16, 18, 43] keep access
histories to migrate previously accessed lines together with a de-
manded cacheline, if they fall in a 2KB physical memory region.
They rely on application’s repetitive access patterns to achieve
higher performance. Different from above proposals, we do not
require any hardware modifications. Our scheme, however, bears
similarities to the access pattern detection in the above-mentioned
schemes. However, different from them, our proposal migrates a
contiguous chunk of virtual memory and is not limited to migrating
only cachelines that were accessed temporarily close to each other.
Consequently, we improve performance even in workloads with
low temporal locality, such as streaming,.

Previous software managed proposal focused on detecting what
to migrate to the fast memory. Meswani et al. [35] introduced per-
page access counters to migrate pages whose counts are higher
than a threshold at regular time intervals. The next-touch algorithm
proposed by Goglin et al. [11] and the one proposed by Oskin et al.
(our baseline) [39] use the demand request to trigger a migration.
Kannan et al. [22] showed that under a virtualized environment, it is
important for the guest-OS to be aware of memory heterogeneity to
identify the “right” memory to migrate. Our proposal is orthogonal
to these proposals; all these schemes can benefit from varying the
migration granularity explored in this work.

NUMA Policies: Determining what data to migrate has been ac-
tively explored [7, 9, 10, 24, 26] in the context of NUMA. Lepers et
al. [26] monitored the available bandwidth at each node and use
it to trigger the migration of all pages of a process to a node with
higher available bandwidth. Gaud et al. [10] use access counters to
collocate and/or replicate pages to the local node. Recent work [9]
showed that using larger pages can hurt performance in NUMA sys-
tems due to increased contention for bandwidth and false sharing.
Our proposal is orthogonal to prior proposals in two aspects. First,
the system of interests in our paper is the heterogeneous memory
system and not NUMA (Refer to Section 7.3). Thus, many observa-
tions are not applicable; e.g., false sharing across local and remote
threads do not occur in our context. Second, we demonstrated the
importance of varying the migration granularity rather than on
page placement.

User Guided Migration: Other prior work [5, 28, 36] explored
the application/user feedback to guide the page migrations. Lin et
al. [28] proposed asynchronous migration triggered by user request.
Similarly, Meswani et al. [36] explicitly managed the fast memory
under application’s direction while Cantalupo et al. [5] proposed
an explicit user level heap manager. Different from these proposals,
ours does not require application modifications. Importantly, unlike
any of prior work, we have explored the migration granularity.
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TLB Shootdown Optimizations: Recent work [2] reduced the
overheads of a single TLB shootdown, but this still does not solve
the problem of invoking multiple shootdowns upon a large page
migration. Some linux patches [29, 30] enable batching multiple
TLB shootdowns, yet their batching is limited to physical address
space. Our TLB shootdown mechanism exploits the spatial locality
of virtually contiguous pages, which are very closely related to
application behaviors.

9 CONCLUSION

We demonstrated that the OS-directed migration scheme in het-
erogeneous memory systems must take another dimension into
account, migration granularity. We proposed a dynamic granularity
aware migration schemes that can detect spatial locality and dy-
namically change the migration granularity. The scheme achieves
an overall system performance improvement up to 36% over the
baseline scheme that uses a single migration granularity.
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