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ABSTRACT

Growing complexity of applications pose new challenges to mem-

ory system design due to their data intensive nature, complex ac-

cess patterns, larger footprints, etc. The slow nature of full-system

simulators, challenges of simulators to run deep software stacks of

many emerging workloads, proprietary nature of software, etc. pose

challenges to fast and accurate microarchitectural explorations of

future memory hierarchies. One technique to mitigate this problem

is to create spatio-temporal models of access streams and use them

to explore memory system trade-offs. However, existing memory

stream models have weaknesses such as they only model temporal

locality behavior or model spatio-temporal locality using global

stride transitions, resulting in high storage/metadata overhead.

In this paper, we propose HALO, aHierarchical memory Access

LOcality modeling technique that identifies patterns by isolating

global memory references into localized streams and further zoom-

ing into each local stream capturing multi-granularity spatial local-

ity patterns. HALO also models the interleaving degree between

localized stream accesses leveraging coarse-grained reuse locality.

We evaluate HALO’s effectiveness in replicating original application

performance using over 20K different memory system configura-

tions and show that HALO achieves over 98.3%, 95.6%, 99.3% and

96% accuracy in replicating performance of prefetcher-enabled L1

& L2 caches, TLB and DRAM respectively. HALO outperforms the

state-of-the-art memory cloning schemes, WEST and STM, while

using ∼39X less meta-data storage than STM.
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1 INTRODUCTION

The performance gap between processor and memory system con-

tinues to a major concern for computer designers and researchers
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[25, 29, 46, 49]. Growing complexity of emerging applications poses

many new challenges for memory system design due to their data

intensive nature, complex access patterns and larger footprints.

Furthermore, the growth in number of cores puts a tremendous

pressure on the memory hierarchy, making memory system perfor-

mance one of the biggest bottlenecks of overall system performance

[42]. Recent advances in die-stacked DRAMs [8, 9, 17], hybrid mem-

ory systems and new memory management proposals have ex-

panded the memory system design space, enabling the use of larger

caches, deeper hierarchies, etc. As such, finding the optimal mem-

ory hierarchy design is very challenging and needs an in-depth

understanding of the memory behavior of end-user workloads.

Unfortunately, many real world applications (e.g., web services

on node.js, NoSQL databases) are often so large and complex (with

lots of software layers) that it is difficult to run and evaluate them

on most early performance simulators. Furthermore, getting ac-

cess to several end-user workloads (e.g., Google’s CNNs, trading

algorithms, etc.) is rarely possible due to the proprietary nature of

client software or traces [27, 32]. Thus, computer designers face

the challenge of getting representative information about complex,

long-running or proprietary applications that they can analyze to

make targeted design decisions.

A promising alternative to address the above challenges is to use

workload cloning [10, 11, 21, 22, 24, 27, 33, 45, 48, 54, 60], a process

of extracting a statistical summary of the behavior of end-user’s

workloads [13, 35] though profiling and then, synthesizing a proxy

workload that produces the same statistical behavior.WEST [11]

and STM [10] are two proposals that clone the cache and memory

behavior of applications. WEST models temporal locality using per

cache-set LRU stack distance distribution based on a baseline cache

hierarchy. However, WEST does not model spatial locality making

it inadequate to evaluate microarchitectural structures that exploit

spatial locality (e.g. prefetchers). STM overcomes this limitation and

models spatial locality by capturing global stride-based correlations

in the memory reference stream. However, global stride transitions

of many SPEC CPU2006 benchmarks cannot be captured even by

using a stride history depth as long as ∼80-100 [10]. Thus, STM has

to maintain significantly long histories to capture the dominant

stride transitions, which results in significantly higher meta-data

storage overhead. Limiting the stride history depth can reduce

storage overhead, but at the expense of significantly poor cloning

accuracy. Thus, there is a need to design more accurate and efficient

solutions to model memory access locality of applications.

In this paper, we proposeHALO, aHierarchical memoryAccess

LOcality modeling technique that can statistically capture the spa-

tial and temporal locality of applications, while incurring less meta-

data storage overhead. HALO leverages the observation that accu-

rate pattern detection within the global memory reference stream



is often challenging as global memory reference patterns are af-

fected by several factors, such as data-dependent control-flow, data-

structure layout and access interleaving, etc. Rather, memory access

patterns can be more accurately and succinctly captured by learn-

ing patterns at a localized granularity for most applications. HALO

discovers patterns by decomposing an application’s memory ac-

cesses into a set of independent streams that are constrained to

a smaller region of memory and capturing fine-grained patterns

within localized regions using repeating stride transitions. This

allows the representation of complex workloads through the com-

position of a set of smaller and simpler building blocks. Additionally,

different programs have different locality behavior. HALO exploits

this observation to achieve higher meta-data storage efficiency by

capturing multi-level stride transitions, which are tailored to an

application’s locality patterns. However, modeling locality within

localized streams alone is not sufficient to recreate the original appli-

cation’s memory behavior. What is required further is a mechanism

to combine accesses from these decomposed streams to synthesize

an ordered proxy sequence. HALO models this by tracking how

accesses to the localized streams are interleaved with respect to

each other by using coarse-grained temporal locality tracking.

The combination of statistical profiles captured by HALO can

accurately mimic memory locality when we study prefetchers, main

memory, vary the cache or TLB configuration and even the page

size. Apart from enabling to hide the original memory accesses,

HALO can scale down the original benchmarks by generating fewer

number of accesses in the proxies leading to reduced simulation

time and storage requirement. HALO may also scale up the original

benchmarks to model futuristic workloads with larger footprints

etc. The key contributions made in this paper are as follows:

• We propose HALO, a hierarchical memory locality modeling

technique that exploits fine-grained pattern detection within

localized streams & coarse-grained reuse tracking across streams

to facilitate evaluation of futuristic memory hierarchies.

• We demonstrate that by exploiting application-locality-specific

stride pattern detection within localized streams, HALO achieves

better accuracy in modeling original performance than global

pattern modeling, while incurring ∼39X reduction in meta-data

storage requirements compared to state-of-the-art techniques.

• We show that by modeling coarse-granularity temporal locality,

HALO mimics the memory footprint and TLB performance of

original applications with over 99% accuracy.

• WeevaluatedHALOusing ≥20,000 cache/memory configurations

and show that HALO achieves over 98.3%, 95.6%, 99.3% and 96%

accuracy inmodeling prefetcher-enabled L1 & L2 caches, TLB and

DRAM performance respectively, while outperforming WEST

and STM techniques.

The rest of this paper is organized as follows: we discuss prior

work in section 2. In section 3, we describe HALO’s methodology.

We discuss the experimental framework and results in sections 4

and 5 respectively before concluding the paper in section 6.

2 BACKGROUND AND RELATEDWORK

Distilling the inherent patterns in the memory access streams into

a small set of statistics is a very challenging problem. Most prior

workload cloning proposals [10, 11, 19, 20, 27, 36, 40, 41, 45, 50, 52,

53, 63] exploit some form of temporal and/or spatial locality to

model memory access behavior. Locality models are also useful for

synthesizing stressmarks [26, 28, 34], to model program resource

demands [16], to utilize multiple granularity architectures [31], to

estimate performance of emerging memory architectures [30, 55]

and to optimize simulations [23]. In this section, we will discuss the

state-of-the-art workload cloning proposals and their challenges.

2.1 Prior Work and their Challenges

WEST [11] captures temporal locality by tracking per cache-set LRU

stack distance distributions, set reuse locality metrics, etc. for every

level of a baseline cache hierarchy. It generates a proxy by statisti-

cally sampling the collected profiles to create a sequence of accesses

to chosen cache sets and ways. However, WEST faces several chal-

lenges. First, as WEST’s statistics are tightly coupled to the profiled

cache configuration, the size overhead ofWEST’s statistics becomes

significantly high for larger caches (e.g., meta-data overhead ex-

ceeds 2.5GBs per application for modeling a modern-day 16GB

DRAM cache). Second, dependence on the profiled cache configura-

tion causes significant performance cloning inaccuracy when test

configurations deviate from the baseline configuration (e.g., changes

in cache blocksize) [11]. Finally, as WEST does not model spatial

locality, it experiences higher cloning inaccuracies when evaluating

prefetchers or the memory system. (see Table 1 for the cloning error

of WEST proxies for ≥7000 different prefetcher-enabled last-level

cache and TLB configurations across 39 benchmarks; benchmark

and configuration details are provided in Sections 4 and 5).

Table 1: Error between WEST proxies and original applica-

tions in terms of cache and TLB miss rates.

LLC miss rates TLB miss rates

Average Error 19% (avg) 9.3% (avg)

Maximum Error 44% (max) 22% (max)

Spatio-Temporal Memory (STM) [10] leverages application’s spa-

tial and temporal locality behavior to create memory proxies. STM

captures temporal locality using per cache-set LRU stack distance

distribution of a 16KB, 2-way cache. STM further captures spatial

locality patterns within the references that miss in the profiled

cache by tracking global stride transitions in a stride history table.

Past research has shown that a history length of even 100 is also

insufficient to capture dominant stride transitions in the global

memory access sequence of many SPEC CPU2006 benchmarks (e.g.,

h264ref) [10]. Maintaining long history-based stride tables signifi-

cantly increases STM’s meta-data storage overhead. We evaluated

STM across 39 different benchmarks and we observed that in 12

out of the 39 benchmarks (31% cases), STM’s overhead exceeds

the original trace size by ∼2X. Additionally, across 24 other bench-

marks, STM’s meta-data size exceeds the original gzip-compressed

trace size. Limiting STM’s history length can reduce its overhead

but it increases aliasing in the global stride tables resulting in poor

cloning accuracy. In our experiments, limiting the history length

to 40 causes STM proxies to experience up to 24% and 32% error in

replicating the TLB miss rate and memory footprint.

Bell et al. [14], Joshi et al. [36] create workload clones by mod-

eling instruction-level behavior. But they use a single dominant

stride for every memory instruction to model locality and thus, can

not model complex patterns. SLAB [53] models the performance of
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Figure 1: Global versus local stride transition tracking.

shared last-level caches and main memory by using an approximate

stack-distance metric, however, SLAB’s statistics do not hold similar

correlations in modeling upper-level cache performance. MEMST

[12] clones DRAM performance by modeling statistics such as bank

conflicts, row buffer hit rate, etc. and is tied to the profiled DRAM

parameters. Metoo [62] generates workload clones by replicating

instruction-level timing behavior, but the memory addresses are

based on WEST’s methodology. Maeda et al. [40] model cache per-

formance by modeling temporal locality at 64B and 4KB granularity.

However, they use an approximate technique to model spatial lo-

cality by using the probability of address bit transitions between

consecutive references, which makes them unsuitable for studying

performance of prefetchers, main memory etc.

2.2 Overcoming the Challenges

Global stride probability statistics may not be effective in capturing

memory access behavior because accesses to different structures are

often interleaved and mask the patterns within individual streams.

This can be shown using an example (see Figure 1a). This simple

program adds two array data-structures (a[64] andb[64]), leading to

a memory reference and stride pattern sequence shown in Figure 1b

(assuming, 1 array entry = 1 byte = 1 cache-block). We can observe

that the global stride patterns are non-repetitive. Still, capturing

this global stride sequence is feasible even with a 1-length global

stride history table (see Figure 1e), but it would require saving every

individual stride transition, which is almost equivalent to saving the

entire memory trace. However, we can also observe that accesses

to the individual data-structures have significant regularity (+1

and -1 strides respectively, see Figure 1d), which is not otherwise

discernible by looking at the global memory sequence alone.

Although simple, this example shows how many simple access

patterns cannot be captured using global stride patterns effectively.

More number of data-structures with greater degree of interleaving

is likely to cause greater aliasing in the stride tables (with limited

global history), leading to poor cloning accuracy. In this paper,

we propose “HALO”, a statistical workload cloning methodology

that captures the cache and memory behavior of applications and

models them to create miniature proxy benchmarks. Our goal is to

accurately mimic the spatial locality, temporal locality and memory

footprint of an application, without incurring highmeta-data profile

storage overhead. HALO leverages the observation that different

data-structures have different locality properties and their access

patterns can be detected more easily by analyzing localized ac-

cess patterns. Thus, HALO discovers patterns by first decomposing

memory references into localized address regions and then identify-

ing access patterns within individual regions using repeating stride

transitions. In this example, HALO localizes addresses into two

regions (R0 & R1) and learns stride transitions within the localized

regions as shown in Figures 1c & 1d respectively (a memory region

= 64 cache-blocks). However, capturing intra-region locality pat-

terns alone is not sufficient to recreate the original memory access

behavior in the proxy benchmark. What is equally important is to

capture how accesses to these individual regions are interleaved

with respect to each other. HALO models the interleaving informa-

tion by exploiting coarse-grained temporal locality patterns and

uses it to synthesize an ordered proxy reference sequence from

individual localized stream accesses (see Figure 1f).

3 METHODOLOGY

Figure 2 shows an overview of HALO’s memory locality model-

ing framework. During the profiling phase 1©, HALO character-

izes the application’s inherent memory access patterns to create

a statistical workload-specific profile 2©. HALO discovers mem-

ory access patterns by decomposing the original references into

different regions (“region localization” A©) and capturing fine-

grained access patterns within individual regions using repeating

stride transitions (“intra-region stride locality” C©). In particular,

HALO captures multi-level stride transition probability dis-
tributions, which are tailored to the locality behavior of different

applications, to achieve higher cloning accuracy and meta-data

storage efficiency. HALO further captures how accesses to these

individual localized regions are interleaved with respect to each

other by tracking coarse-grained temporal locality patterns (“inter-
region reuse locality” B©). During the proxy synthesis phase 3©,

HALO adopts a systematic methodology to create a miniature mem-

ory access clone of the original application based on the captured

workload-specific profile, which can then be used to drive cache

hierarchy, TLB and memory system performance exploration. To do

so, HALO first generates proxy accesses within localized memory

regions by leveraging the collected intra-region stride statistics

(“intra-region access generation” D©) and then, interleaves ac-

cesses from the localized streams using the captured reuse locality

statistics (“inter-region interleaving reconstruction” E©) to cre-

ate an ordered proxy reference sequence. Next, we will discuss

HALO’s workload characterization methodology followed by its

proxy generation algorithm.

3.1 Region Localization

During the region localization step, HALO divides the address space

into fixed-size segments called regions and assigns the original

memory references to different regions, based on the higher-order

address bits. The key idea behind region localization is that for

most applications, similar data-structures (with similar access pat-

terns) are often laid out in continuous address segments. Accesses
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Figure 2: HALO’s workload cloning methodology.

to such regions or data-structures often have different patterns

as compared to other regions or data-structures that are accessed

together. Detecting patterns within a single global access stream

is usually not effective or has higher storage overhead because

effects such as data-dependent control flow, program complexity,

data-structure access pattern differences, data layout, etc. lead to in-

creased entropy in the global reference patterns. In contrast, using

localized pattern detection can lead to more accurate representation

of access patterns. Localized pattern correlation is also leveraged

by many prefetchers [38, 44, 47, 59, 61] for making prefetch pre-

dictions. HALO considers each memory region to be a contiguous

4KB segment in the memory space. Adjacent regions with similar

intra-region stride patterns can be merged to form larger regions

to account for varying program locality, as we will discuss in the

next section.

3.2 Intra-region Stride Locality Tracking

After localizing the original memory accesses into different regions,

HALO captures fine-grained access patterns within individual re-

gions using intra-region stride probability distributions. However,

what stride history length can efficiently capture dominant intra-

region stride locality behavior across different applications?

Figure 3 shows the cumulative fraction of intra-region stride

transitions (y-axis) that can be captured using increasing history-

length based stride transition tables (x-axis) without having any
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Figure 3: Fraction of original reference patterns captured us-

ing increasing history length stride tables.

aliasing effects for 8 applications. We can see that applications have

diverse locality behavior. For example, for bwaves benchmark with

highly strided access patterns, more than 98% of the intra-region

stride transitions can be summarized using a history length of 3.

Similarly, both cactusADM and zeusmp benchmarks operate on

a 3D array/grid and have fairly strided access patterns. However,

while cactusADM iterates over the grid points in one dimension,

zeusmp iterates over data points in all three dimensions. Thus, most

dominant intra-region access patterns of cactusADM can be sum-

marized using a history length of 2, but zeusmp requires slightly

longer stride history length (∼ 4 − 6). On the other hand, for bench-

marks such as graph analytics, which consists of many complex

indirect references, using a local history length of 10 also suffers

from aliasing effects in a few memory regions. In any case, it should

be noted that the localized patterns can be captured using much

shorter history lengths as compared to global memory patterns. For

example, in h264ref benchmark (see Figure 3), most intra-region

stride transitions can be captured using a local history length of

8, while even ∼100 history length is not enough to capture the

dominant global stride transitions [10].

To leverage the diverse program locality to improve cloning ac-

curacy and meta-data storage efficiency, HALO proposes to tailor

the stride history length based on the application’s locality needs.

HALO achieves this by using a set of cascaded stride tables (CSTs) to

capture the intra-region stride transitions. Each stride table tracks

a longer stride history length and associates specific intra-region

stride histories with the next possible strides to the same region.

Figure 4a shows an example to demonstrate the working of the

CSTs. We will first clarify several notations: CSTi refers to a stride

table tracking i-length stride history, LMAX refers to the maximum

cascading degree (LMAX = 2 in this example), (NS0, f0) refers to the

first stride value and probability for the specific stride history pat-

tern, etc. In the original stride sequence shown in Figure 4a, stride

{1} is followed by strides {2} or {6} with equal probability, which

causes aliasing in the CST1 table. Using only 1-history transitions

for proxy synthesis can lead to a different stride interleaving in

the proxy versus the original application because of such pattern

aliasing. The aliasing effects can however, be eliminated in this

example by capturing 2-history stride transitions in the CST2 table.
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Using the CST2 table can accurately model the stride following {1}

with 100% accuracy depending on its preceding stride ({0} or {5}).

Capturing other 2-history stride transitions in the CST2 table (e.g.,

{2, 5} → {1}) is not necessary as the same patterns can be captured

using 1-history transitions ({5} → {1}). Thus, using CSTs enables

locality-specific access pattern capture, where, shorter history ta-

bles can efficiently capture simple/regular patterns, while more

complex patterns are tracked using longer history-based stride

transitions. Conceptually, using multiple cascaded tables to track

histories of varying lengths is similar to the state-of-the-art TAGE

branch predictor [56] or variable length delta prefetcher [58].

Figure 4b shows the profiling structures used for capturing multi-

level stride transitions. During a profiling interval, HALO keeps

track of accesses to different regions using the region history ta-

ble (RHT). Each RHT entry tracks the number of region accesses,

past LMAX intra-region strides within the region, etc. To profile a

memory access, RHT is indexed using the address’s region index

and a new stride is computed based on the region’s last seen ad-

dress. The CST tables are updated based on the new stride and the

history of last LMAX strides to the region. Unfortunately, during

the profiling interval, it is not known as to which history length

can capture the current stride transition with least aliasing (as the

entire application reference stream has not been profiled yet). Thus,

during a profiling interval, HALO updates all the stride tables using

the accumulated stride history of the corresponding region, where

each cascaded table tracking history length Li is updated using

the accumulated last Li intra-region strides, ∀i ≤ LMAX . For exam-

ple, when address 18 (region R0) is profiled, both CST tables are

updated using the accumulated stride history and the new stride

({1} → {6} and {5, 1} → {6} respectively).

At the end of the profiling interval, HALO analyzes the com-

plexity of stride transitions captured in the CSTs (starting from

the longest-history one) and identifies the minimum history length

(L
′

MAX
) that can capture the respective access patterns with least

aliasing. In this example, at the end of the profiling interval, HALO

post-processes the CST2 table and invalidates the last three entries

({1, 2} → {5}, . . ., {1, 6} → {3}) as the same patterns are captured

in the CST1 table. Also, the {1} → {2, 6} entry in the CST1 table

is invalidated as 2-history pattern needs to be captured to remove

aliasing effects. Figure 4a shows the final state of the CST tables

after post-processing. The final post-processed state of the CST
probability distribution tables is saved for proxy generation.
During post-processing, adjacent regions with similar intra-region

stride patterns can be identified and merged to form larger regions.

Since individual CST tables contain a maximum of a few tens to

hundreds of entries for most applications, the time overhead to

manage the cascaded tables is not significant.

3.3 Inter-region Reuse Locality

Capturing intra-region locality metrics alone is not sufficient to

recreate the original memory access locality. HALO also captures

how accesses to the individual regions are interleaved with respect

to each other. To understand why, let us re-visit the program ex-

ample in Figure 1. This program makes repeated accesses to the

two arrays in an interleaved manner. However, during proxy gen-

eration, if the cloning framework generates accesses to the two

arrays in a sequential manner (all accesses to R0 finish before R1

is accessed), the proxy program’s locality will be very different

from the original program. HALO captures the degree of interleav-

ing between accesses to individual memory regions by monitoring

coarse-grained temporal locality patterns using the region reuse
distribution (Π) metric. The Π distribution captures the number

of unique region accesses between successive accesses to the same

region. Figure 5 shows an example of Π metric computation for the

program discussed in Figure 1. The last row shows the computed

Π metric (∞ represents a newly-accessed region). During proxy

generation phase, the Π profile is used to reconstruct an ordered

memory reference sequence from individual region access streams.

Modeling the Π metrics further help to accurately control the

memory footprint of the generated proxy (based on the∞ counts

in the Π-profile). We observed that synthesizing proxies using only

global stride transitions suffers from up to 195%, 91% and 55% error

in replicating the memory footprint of benchmarks using a stride

history length of 10, 30 and 60 respectively due to aliasing in the

stride tables. Higher error in replicating the application memory

footprint translates into higher TLB, cache and DRAM performance

errors. On the other hand, by tracking stride transitions at a local-

ized granularity, HALO reduces the error rates by reducing aliasing

effects. Modeling inter-region reuse locality enables HALO proxies

Access A[0] B[N] A[1] B[N-1] A[2] B[N-2] A[3] B[N-3] A[4]

Address 0 128 1 127 2 126 3 125 4

Region 

Address
0 1 0 1 0 1 0 1 0

∏ Metric ∞ ∞ 1 1 1 1 1 1 1

Figure 5: Inter-region reuse locality tracking.



Table 2: Profiled statistics

Statistic Description

CST = {CST1, . . . ,CSTLMAX
} Set of cascaded stride tables with

increasing history length

LMAX Maximum cascading degree

CSTi Stride pattern table keeping stride

transition counts from past i intra-

region strides to next stride

Nnext No. of next intra-reg strides

ΠRD |Count Region reuse distance histogram

RDMAX Maximum region reuse distance bin

ρrw Fraction of write accesses

Ratemem Rate of memory access generation

to achieve over 99% accuracy in replicating the desired memory

footprint and TLB miss rate of the original applications.

3.4 Proxy Generation

Table 2 summarizes the key statistics that HALO captures to model

application memory behavior. These statistical profiles are used

to generate HALO’s memory proxies. Algorithm 1 shows HALO’s

proxy generation algorithm. Table 2 statistics are provided as an

input to the algorithm. The output is the memory proxy charac-

terized by a tuple {(ADDRi , RWi )}, where ADDRi refers to the i
th

proxy address and RWi denotes the access type. Before proxy gen-

eration, miniaturization is applied by scaling down the collected

statistical input profiles by the desired scaling factor, Tmin . Care

should be exercised when choosing an appropriate scaling factor

because scaling beyond a certain limit will cause inaccuracies in

modeling the memory reference patterns in the proxy due to the

law of large numbers. We will evaluate sensitivity of cloning accu-

racy to the scaling factor in Section 5. In this algorithm, we assume

the existence of a data-structure (RegInfo) to track the LRU history

of distinct region references. The last nth accessed region can be

obtained by using the function Get_Region(n), while the RegInfo

data-structure can be updated as new regions get accessed using

the Update_Region() function.

To generate the ith memory address, the Π profile is sampled

to obtain a region reuse distance value (line 4). The corresponding

region is obtained by invoking the Get_Region() function. If chosen

reuse distance is greater than RDMAX (corresponding to∞ reuse

distance), a new region is chosen by sampling the address space.

Then, the RHT table is looked up to find the last accessed address

and stride history of the chosen region. The CSTs are looked up

one-by-one (lines 12-19), starting from the longest history table,

by using a partial hash of the accumulated stride history. A new

stride is chosen based on the longest history match in the CSTs.

This ensures that the next stride assignment is done using the most

accurate profiled information. Finally, the ith address is computed

(line 21) using the last accessed address (LAST_ADDR) of the region

and the chosen stride (Si ). Finally, the RHT entry and RegInfo data-

structure are updated (lines 22-24). This process is repeated until

the target number of references N is generated. In case the output

is desired to be binary executable, HALO generates a C code with

inline x86-64 assembly instructions for moving data from desired

memory locations to specific registers for reading or writing. We

ensure that all memory references access allowedmemory locations

within a large allocated memory region.

Algorithm 1 HALO’s Proxy Generation Algorithm

1: Input: Table 2 Statistical Profiles.

2: Output: Trace T [] = {(ADDR1, RW1), . . . , (ADDRN , RWN )};

3: for i = 1, . . . , N do

4: Sample πi from Π

5: if πi < RDMAX then

6: Reдi = RegInfo.Get_Region(πi );

7: else

8: Sample Reдi uniformly in the address space;

9: end if

10: (R , LAST _ADDR , LAST _STR) = RHT[Reдi ];

11: j = LMAX ;

12: while j > 0 do

13: f = CSTj .find(LAST _STR[LMAX − j : LMAX ])

14: if f == T rue then

15: Sample stride Si from CSTj ;

16: break;

17: end if

18: j–;

19: end while

20: Sample RWi from ρrw ;

21: ADDRi = LAST _ADDR + Si ;

22: LAST _STR .push_back(Si ); LAST _ADDR = ADDRi ;

23: RHT[Reдi ].UpdateState(LAST _ADDR , LAST _STR);

24: RegInfo.Update_Region(Reдi );

25: end for

26: return Trace[]

3.5 Execution Phase Consideration

We consider different execution phases of a program during proxy

generation. To account for phase behavior, HALO divides the origi-

nal access sequence into fixed size intervals and tracks an indepen-

dent intra-region stride and inter-region reuse profile per profiled

interval period. The RegInfo data-structure (for tracking region

reuse) is not cleared between phases. HALO uses the per-interval

stride and reuse profiles to generate a proxy sequence for the cor-

responding interval. In our experiments, we choose the interval

length to be 100,000 memory references. However, we later show

the sensitivity of cloning accuracy to changes in phase lengths.

3.6 Multi-programmed Workload Performance

When applications are co-scheduled on a CMP, memory access

streams from different applications compete for the shared cache

space. To model the cache-sharing behavior of co-scheduled work-

loads, HALO uses another statistic - the rate at which memory

references are generated per application (Ratemem ). This metric

accounts for the fraction of memory instructions over total instruc-

tions, instruction level parallelism and relative speed of the pro-

cessor cores. As HALO proxies do not produce instruction streams

other thanmemory references, HALO controls the distance between

successive memory references based on this rate metric.

4 EXPERIMENTAL FRAMEWORK

We evaluate HALO using 39 benchmarks from different application

classes (see Table 3): (a) 26 SPEC CPU2006 benchmarks [5] using

“ref” input set (all benchmarks except perl, sjeng and dealII due to

compilation issues), (b) 6 benchmarks from the newly introduced

SPEC CPU2017 [6, 51] suite (leela, exchange2, imagick, pop2, roms

and nab of SPECspeed category), (c) 3 TPC-H [7] queries using
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Figure 6: Instructions per cycle error of WEST, STM and HALO proxies versus the original applications.
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Figure 7: L2 miss rate errors of WEST, STM & HALO proxies across L2 cache and prefetcher configurations.

MySQL [4] database (10GB), (d) data-serving workload based on

Yahoo! Cloud Serving Benchmark (YCSB) [18] framework, (e) graph

analytics tunkrank application using Graphlab [2] framework from

Cloudsuite and connected components application using GraphChi

[1] framework, and (f) data-caching benchmark based on Mem-

cached [3] from Cloudsuite.

Table 3: Benchmarks
Category Benchmarks

General-purpose 26 SPEC CPU 2006 benchmarks

6 SPEC CPU 2017 benchmarks

Data Analytics TPCH Q3, Q6, Q14

Graph Analytics Connected Components (CC), TunkRank (Graph)

Data Caching Memcahed

Data Serving YCSB Workload C (WC)

Table 4: Profiled system configuration

Component Configuration

CPU X86_64 processor, atomic mode 4 GHz

Single-core and multi-programmed runs

L1 cache 32KB, 2-way Icache; 64KB, 2-way Dcache

64B block size, LRU

L2 cache 4MB, 8-way, LRU, Shared

Main memory 4GB DDR3, 12.8 GB/sec

OS Ubuntu 14.04

We profile the benchmarks using a Pin-based [39] detailed simu-

lator. The system configuration used for profiling is shown in Table

4. For CPU2006 benchmarks, we profile a Simpoint [43, 57] of 250

million instructions. For the other benchmarks, we fast forward by

10 billion instructions, and then profile the execution of next 250

million instructions. We choose 250 million instructions to make

the simulation runs for validation manageable. It should be noted

that the HALO uses a statistical profile as input for proxy genera-

tion, which is independent of the execution length. For evaluation

of different cache and prefetcher configurations, we use a validated

trace-driven cache simulator. Our simulator is validated by compar-

ing its miss rates with the standard cache modules provided with

gem5 [15] simulator. For evaluation and testing of DRAM memory

performance, we use the Ramulator [37] simulator. We compare

our results against the state-of-the-art WEST and STM proposals.

5 RESULTS AND ANALYSIS

In this section, we validate HALO’s effectiveness in replicating

cache, prefetcher, TLB and DRAM performance of applications

over 20,000 different configurations. We use two metrics for val-

idation: error between original and proxy performance metrics

and Pearson’s correlation coefficient. Pearson’s correlation coeffi-

cient indicates how well the proxy benchmarks track the trends
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Figure 8: L1 miss rate errors of WEST, STM and HALO proxies across L1 cache and prefetcher configurations.
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Figure 9: TLB miss rate errors of WEST, STM and HALO proxies across different TLB & page size configurations.

in the original applications, with 1 indicating perfect correlation,

and 0 indicating no correlation. During design-space exploration,

computer architects consider relative performance ranking (e.g.

evaluate which configuration has a lower miss rate).

Instructions per cycle (IPC) - First, we evaluate HALO by

measuring the performance of the original and proxy workloads

across different configurations as we vary the size, associativity and

line-size of the L1 and L2 caches. We also vary L2 stream prefetcher

configurations, evaluating a total of over ∼ 6, 600 configurations.

Figure 6 shows the error between IPC of the original and proxy

workloads. Overall, the average error in replicating original work-

load IPC for WEST, STM and HALO proxies is 14%, 5.4% and 3.9%

respectively. Higher cloning accuracy of HALO proxies over WEST

and STM proxies is a result of more accurate modeling of cache,

prefetcher and memory system performance. We will elaborate on

performance implications of the individual metrics in the following

paragraphs. Please note that IPC is used here as a metric to validate

the proposed memory model across a range of memory hierarchy

configurations, but is not indicative of processor-side performance

(as HALO does not model non-memory instructions).

L2 cache and prefetcher configurations - Here, wewill show

HALO’s effectiveness in replicating L2 cache performance by vary-

ing the L2 cache and prefetcher configurations. We evaluate 35

L2 cache configurations per benchmark (varying cache size be-

tween 1MB-16MB, associativity between 2-32 and line size between

32-128). For each cache configuration, we also vary L2 stream

prefetcher configurations by changing number of stream buffers

between 8-64 and prefetch degree between no-prefetching/1/2/4/8,

leading to a total of 260 configurations per benchmark. Figure 7

shows the L2 miss rate error between the original and proxy bench-

marks (averaged across different configurations). The average error

in replicating L2 cache miss rates for WEST, STM and HALO prox-

ies are 18.9%, 6% and 4.4% respectively. The correlation coefficients

are 77.9%, 97.5% and 98.5% for WEST, STM and HALO respectively.

As WEST does not model spatial locality, it suffers from high

errors especially when prefetchers are enabled for prefetch-friendly

benchmarks (e.g., bwaves, libquantum). Also, WEST captures stack

distance distributions at a cacheline granularity, and thus, suf-

fers from high cloning errors when cache line-size changes, cache

size increases. By modeling spatial locality patterns, STM outper-

forms WEST. However, for many benchmarks e.g., leela, h264ref,

exchange2, povray, STM experiences high aliasing in its global

stride tables, reducing cloning accuracy. Also, STM captures global

stride transitions at a cacheline granularity. Thus, STM proxies do

not capture spatial locality within cachelines and perform poorly

when cacheline size is varied in some cases (e.g., zeusmp).

HALO outperforms both WEST and STM. HALO performs well

even for benchmarks like leela, h264ref, povray, by using a local

history depth of 8; dominant access patterns of these benchmarks

cannot be captured even using 80-length global stride history tran-

sitions by STM. By leveraging multi-granularity stride transitions,

HALO not only performs well for benchmarks like libquantum,

which have regular strided patterns, but also for benchmarks like

gcc and sphinx3, which make a lot of irregular data-structure ac-

cesses or bzip2, which has a significant fraction of control-flow

dependent loads. HALO experiences high cloning errors with cal-

culix and gobmk benchmarks (14.5% and 11% respectively), but the

high L2 miss rate errors occurs systematically for configurations
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Figure 10: Comparing DRAM performance of HALO and original applications across different DRAM configurations.

with very few L1 cache misses; average L2 MPKI error is ≤0.01,

which causes insignificant impact on IPC (≤ 1% and 3% for calculix

and gobmk respectively) as shown in Figure 6. Benchmarks like

TPC-H Q3 (complex join operation across three database tables)

and mcf (operation on array of pointers) experience ∼10-11% error

with a stride history of 8 due to aliasing; increasing local history

depth to 14 reduces errors to ∼5.8% but increases profile sizes.

L1 cache andprefetcher configurations - WeevaluateHALO’s

effectiveness across 40 different L1 cache configurations per bench-

mark (varying the cache size from 4KB-128KB, associativity from

2-16 and cache line-size between 32B-128B). For each cache con-

figuration, we vary the L1 stream prefetcher configurations by

changing the stream detection window between 8-32, prefetch de-

gree between no-prefetching-8, resulting in 264 configurations per

benchmark. Figure 8 shows the L1 miss rate errors. The average

L1 cache miss rate error between original and proxy workloads is

4.5%, 2.4% and 1.8% for WEST, STM and HALO respectively.

STM captures temporal locality using per-set LRU stack distance

distributions for a 16 KB, 2-way L1 cache, however it does not track

any statistics related to access distribution or ordering across cache

sets. Thus, for benchmarks such as bwaves, libquantum, STM prox-

ies produce different conflict behavior across cache sets when the

L1 test and profiled configurations differ significantly, resulting in

higher cloning errors. Owing to LRU-stack based modeling of tem-

poral locality behavior, WEST experiences higher errors when test

configurations (especially, cacheline size) deviate from the baseline

configuration. Overall, HALO outperforms both WEST and STM by

exploiting higher predictability in localized memory access streams

even with shorter history lengths. HALO experiences higher L1

performance modeling error for hmmer and GemsFDTD bench-

marks (∼7%) as HALO does not model inter-region spatial locality

which leads to cloning inaccuracies especially with prefetching.

TLB and page size configurations - Next, we will evaluate

TLB performance of WEST, STM and HALO proxies (see Figure

9). We vary the number of TLB entries between 8-128 and page

size between 1KB-16KB (total 25 configurations per benchmark).

Overall, WEST, STM and HALO have 9.2%, 2.4% and 0.7% error in

replicating TLB miss rates of original applications. WEST generates

a random memory address for any references that miss in the L2

cache. This causes higher deviation in the memory footprint and

fraction of active pages betweenWEST proxies and original applica-

tions. STM is more accurate in replicating TLB behavior thanWEST,

however, aliasing in STM’s global stride tables also causes errors

in replicating memory footprint and TLB performance. In contrast,

by leveraging coarse-grained reuse locality to model inter-region

interleaving, HALO can accurately model TLB performance across

most benchmarks except GemsFDTD. HALO proxies are generated

using a base region size of 4KB. In GemsFDTD, increasing the page

size affects the inter-region access interleaving order, which results

in higher TLB errors. For most other benchmarks, changing the TLB

or page size configuration has minimal impact on HALO’s accuracy.

Overall, HALO outperforms both WEST and STM, achieving an

average accuracy of 99.3%.

DRAM Performance - Next, we will evaluate HALO proxies

to be used for memory subsystem design exploration in lieu of the

original workloads. We evaluate over 25 DRAM configurations per

benchmark by changing the DRAM bus width (4-16 bytes), bus

frequency (800MHz-1GHz) and DRAM address mapping schemes

(RoBaRaCoCh/ChRaBaRoCo) by swizzling the address decoding

bits etc, while simultaneously varying the L2 cache size and asso-

ciativity. We compare the original and proxy workloads across two

key memory system performance metrics: DRAM row buffer hit

rate and average read/write latency (see Figure 10). By accurately

capturing the spatial and temporal locality of applications, HALO

proxies perform closely with respect to the original application,

achieving an average error rate of 2.3% and 4% for DRAM row buffer

hit rate and average read/write latency respectively.

Phase-level cache performance modeling - Figure 11 com-

pares the phase-wise L2 cache miss rates of the original and HALO

workloads for the Graph-analytics and GemsFDTD benchmarks.

Every corresponding phase of the original and proxy workload is

aligned after accounting for miniaturization. We can observe that

the cache miss rate of Graph analytics workload varies between

∼70-100% across the different phases and the HALO proxy follows
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Figure 11: Example showing phase-level cache perf. model-

ing for (a) GemsFDTD and (b) Graph analytics
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Figure 13: Impact of changing the (a) region size, (b) profiling interval period, (c) trace length on profiling accuracy.

the original application’s trends very closely (average error = 1.6%).

Similarly, although GemsFDTD experiences slightly higher average

error, the proxy still captures the relative trends across different

execution phases quite accurately. HALO has similar phase-level

cloning accuracy across other benchmarks as well.

Multi-programmed workloads - Next, we will evaluate how

accurately can HALO proxies, generated for benchmarks running

in stand-alone mode, replicate shared cache behavior when co-

scheduled with other applications. We categorize applications ac-

cording to their L2 miss rates and randomly choose 18 benchmark

mixes to co-schedule in a 2-core and 4-core setup. We evaluate 40

shared L2 cache configurations per mix by varying its cache-size,

associativity, line-size and replacement policy. Overall, the average

error in shared L2 cache miss rate between HALO and original

multi-programmed workloads is 4% and 4.9% for 2-core and 4-core

configurations respectively (see Figure 12).

Meta-data overhead - By exploiting higher predictability in

localized memory access streams combined with an application-

locality-specificmulti-level stride capturemechanism, HALO achieves,

on average, a ∼39X reduction in meta-data storage size as compared

to STM, while also outperforming STM across the evaluated perfor-

mance metrics. HALO’s meta-data is also up to 29X smaller than

gzip-compressed trace sizes. WEST does not capture spatial locality,

as a result of which, it suffers from significantly high cloning errors.

Also, WEST’s statistics are directly proportional to the profiled

cache configuration, as a result the size overhead of WEST’s sta-

tistics becomes significantly high for larger caches (e.g., meta-data

overhead exceeds 2.5GBs per application for modeling a modern-

day 16GB DRAM cache).

Sensitivity study - We explore HALO’s sensitivity to several

parameters by measuring correlation between proxy and original

workloads across different L1 cache and prefetcher configurations.

First, we evaluate sensitivity to the region size by varying it from

0.5KB - 16KB and dynamic (see Figure 13a)). As region size increases,

correlation drops slightly because of higher entropy in larger region

patterns, which is difficult to capture using the same history depth

without increasing aliasing. Smaller region sizes lead to accurate

intra-region pattern capture, but reducing the region size below

0.5KB resulted in reduced performance correlation especially with

prefetching because of not modeling inter-region spatial locality.

Figure 13b shows HALO’s performance sensitivity to the profiling

interval size. As the interval size reduces, correlation improves

because of accurate capture of phase-level performance patterns.

However, having a very small profiling interval increases the profile

size correspondingly. In our experiments, a profiling interval of

100,000 memory references provided the best balance of accuracy

and meta-data overhead. Next, we evaluate the impact of trace

miniaturization factor on cloning accuracy (see Figure 13c). As

HALO relies on statistical convergence to generate the proxies, the

scaling factor depends on the original number of accesses because

of the law of large numbers. We can observe that the performance

correlation holds good with 10 million memory references.

6 CONCLUSION

In this paper, we propose a novel memory locality modeling frame-

work, HALO, that accurately models the spatial and temporal local-

ity of applications. HALO isolates global memory references into

individual localized regions and captures intra-region access pat-

terns using fine-grained spatial locality patterns. To achieve greater

meta-data storage efficiency, HALO captures multi-level stride pat-

terns tailored to application’s locality behavior. HALO synthesizes

memory access streams from individual, localized stream accesses

bymodeling the degree of interleaving between accesses to different

regions using coarse-grained temporal locality metrics. We evalu-

ated HALO using ≥20,000 different cache, prefetcher, TLB, page-

size and DRAM configurations and showed that HALO achieves

over 98.3%, 95.6%, 99.3% and 96% accuracy in replicating prefetcher-

enabled L1 & L2 caches, TLB and DRAM performance respectively.

HALO outperforms the state-of-the-art workload cloning proposal

in terms of cloning accuracy across all the evaluated metrics, while

using ∼39X less meta-data storage.
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