HALO: A Hierarchical Memory Access Locality Modeling
Technique For Memory System Explorations

Reena Panda
The University of Texas at Austin
reena.panda@utexas.edu

ABSTRACT

Growing complexity of applications pose new challenges to mem-
ory system design due to their data intensive nature, complex ac-
cess patterns, larger footprints, etc. The slow nature of full-system
simulators, challenges of simulators to run deep software stacks of
many emerging workloads, proprietary nature of software, etc. pose
challenges to fast and accurate microarchitectural explorations of
future memory hierarchies. One technique to mitigate this problem
is to create spatio-temporal models of access streams and use them
to explore memory system trade-offs. However, existing memory
stream models have weaknesses such as they only model temporal
locality behavior or model spatio-temporal locality using global
stride transitions, resulting in high storage/metadata overhead.

In this paper, we propose HALO, a Hierarchical memory Access
LOcality modeling technique that identifies patterns by isolating
global memory references into localized streams and further zoom-
ing into each local stream capturing multi-granularity spatial local-
ity patterns. HALO also models the interleaving degree between
localized stream accesses leveraging coarse-grained reuse locality.
We evaluate HALO’s effectiveness in replicating original application
performance using over 20K different memory system configura-
tions and show that HALO achieves over 98.3%, 95.6%, 99.3% and
96% accuracy in replicating performance of prefetcher-enabled L1
& L2 caches, TLB and DRAM respectively. HALO outperforms the
state-of-the-art memory cloning schemes, WEST and STM, while
using ~39X less meta-data storage than STM.

CCS CONCEPTS
« Computer systems organization — Architectures;

ACM Reference Format:

Reena Panda and Lizy K. John. 2018. HALO: A Hierarchical Memory Access
Locality Modeling Technique For Memory System Explorations. In ICS ’18:
2018 International Conference on Supercomputing, June 12—15, 2018, Beijing,
China. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3205289.
3205323

1 INTRODUCTION

The performance gap between processor and memory system con-
tinues to a major concern for computer designers and researchers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’18, June 12-15, 2018, Beijing, China

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5783-8/18/06... $15.00
https://doi.org/10.1145/3205289.3205323

Lizy K. John
The University of Texas at Austin
ljohn@ece.utexas.edu

[25, 29, 46, 49]. Growing complexity of emerging applications poses
many new challenges for memory system design due to their data
intensive nature, complex access patterns and larger footprints.
Furthermore, the growth in number of cores puts a tremendous
pressure on the memory hierarchy, making memory system perfor-
mance one of the biggest bottlenecks of overall system performance
[42]. Recent advances in die-stacked DRAM:s [8, 9, 17], hybrid mem-
ory systems and new memory management proposals have ex-
panded the memory system design space, enabling the use of larger
caches, deeper hierarchies, etc. As such, finding the optimal mem-
ory hierarchy design is very challenging and needs an in-depth
understanding of the memory behavior of end-user workloads.

Unfortunately, many real world applications (e.g., web services
on node.js, NoSQL databases) are often so large and complex (with
lots of software layers) that it is difficult to run and evaluate them
on most early performance simulators. Furthermore, getting ac-
cess to several end-user workloads (e.g., Google’s CNNs, trading
algorithms, etc.) is rarely possible due to the proprietary nature of
client software or traces [27, 32]. Thus, computer designers face
the challenge of getting representative information about complex,
long-running or proprietary applications that they can analyze to
make targeted design decisions.

A promising alternative to address the above challenges is to use
workload cloning [10, 11, 21, 22, 24, 27, 33, 45, 48, 54, 60], a process
of extracting a statistical summary of the behavior of end-user’s
workloads [13, 35] though profiling and then, synthesizing a proxy
workload that produces the same statistical behavior. WEST [11]
and STM [10] are two proposals that clone the cache and memory
behavior of applications. WEST models temporal locality using per
cache-set LRU stack distance distribution based on a baseline cache
hierarchy. However, WEST does not model spatial locality making
it inadequate to evaluate microarchitectural structures that exploit
spatial locality (e.g. prefetchers). STM overcomes this limitation and
models spatial locality by capturing global stride-based correlations
in the memory reference stream. However, global stride transitions
of many SPEC CPU2006 benchmarks cannot be captured even by
using a stride history depth as long as ~80-100 [10]. Thus, STM has
to maintain significantly long histories to capture the dominant
stride transitions, which results in significantly higher meta-data
storage overhead. Limiting the stride history depth can reduce
storage overhead, but at the expense of significantly poor cloning
accuracy. Thus, there is a need to design more accurate and efficient
solutions to model memory access locality of applications.

In this paper, we propose HALO, a Hierarchical memory Access
LOcality modeling technique that can statistically capture the spa-
tial and temporal locality of applications, while incurring less meta-
data storage overhead. HALO leverages the observation that accu-
rate pattern detection within the global memory reference stream

is often challenging as global memory reference patterns are af-
fected by several factors, such as data-dependent control-flow, data-
structure layout and access interleaving, etc. Rather, memory access
patterns can be more accurately and succinctly captured by learn-
ing patterns at a localized granularity for most applications. HALO
discovers patterns by decomposing an application’s memory ac-
cesses into a set of independent streams that are constrained to
a smaller region of memory and capturing fine-grained patterns
within localized regions using repeating stride transitions. This
allows the representation of complex workloads through the com-
position of a set of smaller and simpler building blocks. Additionally,
different programs have different locality behavior. HALO exploits
this observation to achieve higher meta-data storage efficiency by
capturing multi-level stride transitions, which are tailored to an
application’s locality patterns. However, modeling locality within
localized streams alone is not sufficient to recreate the original appli-
cation’s memory behavior. What is required further is a mechanism
to combine accesses from these decomposed streams to synthesize
an ordered proxy sequence. HALO models this by tracking how
accesses to the localized streams are interleaved with respect to
each other by using coarse-grained temporal locality tracking.

The combination of statistical profiles captured by HALO can
accurately mimic memory locality when we study prefetchers, main
memory, vary the cache or TLB configuration and even the page
size. Apart from enabling to hide the original memory accesses,
HALO can scale down the original benchmarks by generating fewer
number of accesses in the proxies leading to reduced simulation
time and storage requirement. HALO may also scale up the original
benchmarks to model futuristic workloads with larger footprints
etc. The key contributions made in this paper are as follows:

e We propose HALO, a hierarchical memory locality modeling
technique that exploits fine-grained pattern detection within
localized streams & coarse-grained reuse tracking across streams
to facilitate evaluation of futuristic memory hierarchies.

e We demonstrate that by exploiting application-locality-specific
stride pattern detection within localized streams, HALO achieves
better accuracy in modeling original performance than global
pattern modeling, while incurring ~39X reduction in meta-data
storage requirements compared to state-of-the-art techniques.

o We show that by modeling coarse-granularity temporal locality,
HALO mimics the memory footprint and TLB performance of
original applications with over 99% accuracy.

e We evaluated HALO using >20,000 cache/memory configurations
and show that HALO achieves over 98.3%, 95.6%, 99.3% and 96%
accuracy in modeling prefetcher-enabled L1 & L2 caches, TLB and
DRAM performance respectively, while outperforming WEST
and STM techniques.

The rest of this paper is organized as follows: we discuss prior
work in section 2. In section 3, we describe HALO’s methodology.
We discuss the experimental framework and results in sections 4
and 5 respectively before concluding the paper in section 6.

2 BACKGROUND AND RELATED WORK

Distilling the inherent patterns in the memory access streams into
a small set of statistics is a very challenging problem. Most prior
workload cloning proposals [10, 11, 19, 20, 27, 36, 40, 41, 45, 50, 52,

53, 63] exploit some form of temporal and/or spatial locality to
model memory access behavior. Locality models are also useful for
synthesizing stressmarks [26, 28, 34], to model program resource
demands [16], to utilize multiple granularity architectures [31], to
estimate performance of emerging memory architectures [30, 55]
and to optimize simulations [23]. In this section, we will discuss the
state-of-the-art workload cloning proposals and their challenges.

2.1 Prior Work and their Challenges

WEST [11] captures temporal locality by tracking per cache-set LRU
stack distance distributions, set reuse locality metrics, etc. for every
level of a baseline cache hierarchy. It generates a proxy by statisti-
cally sampling the collected profiles to create a sequence of accesses
to chosen cache sets and ways. However, WEST faces several chal-
lenges. First, as WEST’s statistics are tightly coupled to the profiled
cache configuration, the size overhead of WEST’s statistics becomes
significantly high for larger caches (e.g., meta-data overhead ex-
ceeds 2.5GBs per application for modeling a modern-day 16GB
DRAM cache). Second, dependence on the profiled cache configura-
tion causes significant performance cloning inaccuracy when test
configurations deviate from the baseline configuration (e.g., changes
in cache blocksize) [11]. Finally, as WEST does not model spatial
locality, it experiences higher cloning inaccuracies when evaluating
prefetchers or the memory system. (see Table 1 for the cloning error
of WEST proxies for >7000 different prefetcher-enabled last-level
cache and TLB configurations across 39 benchmarks; benchmark
and configuration details are provided in Sections 4 and 5).

Table 1: Error between WEST proxies and original applica-
tions in terms of cache and TLB miss rates.

LLC miss rates TLB miss rates
Average Error 19% (avg) 9.3% (avg)
Maximum Error 44% (max) 22% (max)

Spatio-Temporal Memory (STM) [10] leverages application’s spa-
tial and temporal locality behavior to create memory proxies. STM
captures temporal locality using per cache-set LRU stack distance
distribution of a 16KB, 2-way cache. STM further captures spatial
locality patterns within the references that miss in the profiled
cache by tracking global stride transitions in a stride history table.
Past research has shown that a history length of even 100 is also
insufficient to capture dominant stride transitions in the global
memory access sequence of many SPEC CPU2006 benchmarks (e.g.,
h264ref) [10]. Maintaining long history-based stride tables signifi-
cantly increases STM’s meta-data storage overhead. We evaluated
STM across 39 different benchmarks and we observed that in 12
out of the 39 benchmarks (31% cases), STM’s overhead exceeds
the original trace size by ~2X. Additionally, across 24 other bench-
marks, STM’s meta-data size exceeds the original gzip-compressed
trace size. Limiting STM’s history length can reduce its overhead
but it increases aliasing in the global stride tables resulting in poor
cloning accuracy. In our experiments, limiting the history length
to 40 causes STM proxies to experience up to 24% and 32% error in
replicating the TLB miss rate and memory footprint.

Bell et al. [14], Joshi et al. [36] create workload clones by mod-
eling instruction-level behavior. But they use a single dominant
stride for every memory instruction to model locality and thus, can
not model complex patterns. SLAB [53] models the performance of

(a) Original Application
for (inti=0;i<N;i++)
c = ali] + b[N-i-1];

Original Address Region Localized Stride
Sequence Localization Pattern Detection
«
b g 1 3
= = £
o 5 .1 2
o 3 3 8
o =
£ 8 z 1 5
v
()
Global Stride History . 5
1-history stride Next stride Local Stride History Region
128 -127 (100%) 1-history Next stride Interleaving
127 126 (100%) stride (probability) 100% @
126 -125 (100%) 41 41
-125 124 (100%)
- - -1 -1 100%
(e) (f)

Figure 1: Global versus local stride transition tracking.

shared last-level caches and main memory by using an approximate
stack-distance metric, however, SLAB’s statistics do not hold similar
correlations in modeling upper-level cache performance. MEMST
[12] clones DRAM performance by modeling statistics such as bank
conflicts, row buffer hit rate, etc. and is tied to the profiled DRAM
parameters. Metoo [62] generates workload clones by replicating
instruction-level timing behavior, but the memory addresses are
based on WEST’s methodology. Maeda et al. [40] model cache per-
formance by modeling temporal locality at 64B and 4KB granularity.
However, they use an approximate technique to model spatial lo-
cality by using the probability of address bit transitions between
consecutive references, which makes them unsuitable for studying
performance of prefetchers, main memory etc.

2.2 Overcoming the Challenges

Global stride probability statistics may not be effective in capturing
memory access behavior because accesses to different structures are
often interleaved and mask the patterns within individual streams.
This can be shown using an example (see Figure 1a). This simple
program adds two array data-structures (a[64] and b[64]), leading to
amemory reference and stride pattern sequence shown in Figure 1b
(assuming, 1 array entry = 1 byte = 1 cache-block). We can observe
that the global stride patterns are non-repetitive. Still, capturing
this global stride sequence is feasible even with a 1-length global
stride history table (see Figure 1e), but it would require saving every
individual stride transition, which is almost equivalent to saving the
entire memory trace. However, we can also observe that accesses
to the individual data-structures have significant regularity (+1
and -1 strides respectively, see Figure 1d), which is not otherwise
discernible by looking at the global memory sequence alone.
Although simple, this example shows how many simple access
patterns cannot be captured using global stride patterns effectively.
More number of data-structures with greater degree of interleaving
is likely to cause greater aliasing in the stride tables (with limited
global history), leading to poor cloning accuracy. In this paper,
we propose “HALQ”, a statistical workload cloning methodology
that captures the cache and memory behavior of applications and
models them to create miniature proxy benchmarks. Our goal is to

accurately mimic the spatial locality, temporal locality and memory
footprint of an application, without incurring high meta-data profile
storage overhead. HALO leverages the observation that different
data-structures have different locality properties and their access
patterns can be detected more easily by analyzing localized ac-
cess patterns. Thus, HALO discovers patterns by first decomposing
memory references into localized address regions and then identify-
ing access patterns within individual regions using repeating stride
transitions. In this example, HALO localizes addresses into two
regions (RO & R1I) and learns stride transitions within the localized
regions as shown in Figures 1c & 1d respectively (a memory region
= 64 cache-blocks). However, capturing intra-region locality pat-
terns alone is not sufficient to recreate the original memory access
behavior in the proxy benchmark. What is equally important is to
capture how accesses to these individual regions are interleaved
with respect to each other. HALO models the interleaving informa-
tion by exploiting coarse-grained temporal locality patterns and
uses it to synthesize an ordered proxy reference sequence from
individual localized stream accesses (see Figure 1f).

3 METHODOLOGY

Figure 2 shows an overview of HALO’s memory locality model-
ing framework. During the profiling phase O, HALO character-
izes the application’s inherent memory access patterns to create
a statistical workload-specific profile (2). HALO discovers mem-
ory access patterns by decomposing the original references into
different regions (“region localization” @) and capturing fine-
grained access patterns within individual regions using repeating
stride transitions (“intra-region stride locality” ©). In particular,
HALO captures multi-level stride transition probability dis-
tributions, which are tailored to the locality behavior of different
applications, to achieve higher cloning accuracy and meta-data
storage efficiency. HALO further captures how accesses to these
individual localized regions are interleaved with respect to each
other by tracking coarse-grained temporal locality patterns (“inter-
region reuse locality” ®). During the proxy synthesis phase (3,
HALO adopts a systematic methodology to create a miniature mem-
ory access clone of the original application based on the captured
workload-specific profile, which can then be used to drive cache
hierarchy, TLB and memory system performance exploration. To do
so, HALO first generates proxy accesses within localized memory
regions by leveraging the collected intra-region stride statistics
(“intra-region access generation” @) and then, interleaves ac-
cesses from the localized streams using the captured reuse locality
statistics (“inter-region interleaving reconstruction” @) to cre-
ate an ordered proxy reference sequence. Next, we will discuss
HALO’s workload characterization methodology followed by its
proxy generation algorithm.

3.1 Region Localization

During the region localization step, HALO divides the address space
into fixed-size segments called regions and assigns the original
memory references to different regions, based on the higher-order
address bits. The key idea behind region localization is that for
most applications, similar data-structures (with similar access pat-
terns) are often laid out in continuous address segments. Accesses

1 Profiling

B Inter-region 2 Workload
Reuse Locality Profile

A Region
Localization
@ _l—. Region
_ ‘ @ Reuse
RO Profile
-—' R1 Intra-region
S € Stride Locality Intra-

R2

region
e ' D Stride
R1 < R2 Profile

<

/

Full system

3 Proxy Synthesis ‘ simulators
or real

hardware

D E
Intra- Inter-region
region Interleaving __ |
Access Reconstruct
Generation ion

Trace-
driven
simulator

Figure 2: HALO’s workload cloning methodology.

to such regions or data-structures often have different patterns
as compared to other regions or data-structures that are accessed
together. Detecting patterns within a single global access stream
is usually not effective or has higher storage overhead because
effects such as data-dependent control flow, program complexity,
data-structure access pattern differences, data layout, etc. lead to in-
creased entropy in the global reference patterns. In contrast, using
localized pattern detection can lead to more accurate representation
of access patterns. Localized pattern correlation is also leveraged
by many prefetchers [38, 44, 47, 59, 61] for making prefetch pre-
dictions. HALO considers each memory region to be a contiguous
4KB segment in the memory space. Adjacent regions with similar
intra-region stride patterns can be merged to form larger regions
to account for varying program locality, as we will discuss in the
next section.

3.2 Intra-region Stride Locality Tracking

After localizing the original memory accesses into different regions,
HALO captures fine-grained access patterns within individual re-
gions using intra-region stride probability distributions. However,
what stride history length can efficiently capture dominant intra-
region stride locality behavior across different applications?
Figure 3 shows the cumulative fraction of intra-region stride
transitions (y-axis) that can be captured using increasing history-
length based stride transition tables (x-axis) without having any

=)
3

:s.ra,..—--l

@
3

o
3

a
S

N
S

Fraction of original references captured
using increasing history-length stride tables

o

Local stride history length
-=- bwaves === h264ref cactusADM gcc
-+-GemsFDTD ~4-zeusmp ---TPCHQ1 -+- GraphAnalytics
Figure 3: Fraction of original reference patterns captured us-
ing increasing history length stride tables.

aliasing effects for 8 applications. We can see that applications have
diverse locality behavior. For example, for bwaves benchmark with
highly strided access patterns, more than 98% of the intra-region
stride transitions can be summarized using a history length of 3.
Similarly, both cactusADM and zeusmp benchmarks operate on
a 3D array/grid and have fairly strided access patterns. However,
while cactusADM iterates over the grid points in one dimension,
zeusmp iterates over data points in all three dimensions. Thus, most
dominant intra-region access patterns of cactusADM can be sum-
marized using a history length of 2, but zeusmp requires slightly
longer stride history length (~ 4 — 6). On the other hand, for bench-
marks such as graph analytics, which consists of many complex
indirect references, using a local history length of 10 also suffers
from aliasing effects in a few memory regions. In any case, it should
be noted that the localized patterns can be captured using much
shorter history lengths as compared to global memory patterns. For
example, in h264ref benchmark (see Figure 3), most intra-region
stride transitions can be captured using a local history length of
8, while even ~100 history length is not enough to capture the
dominant global stride transitions [10].

To leverage the diverse program locality to improve cloning ac-
curacy and meta-data storage efficiency, HALO proposes to tailor
the stride history length based on the application’s locality needs.
HALO achieves this by using a set of cascaded stride tables (CSTs) to
capture the intra-region stride transitions. Each stride table tracks
a longer stride history length and associates specific intra-region
stride histories with the next possible strides to the same region.
Figure 4a shows an example to demonstrate the working of the
CSTs. We will first clarify several notations: CST; refers to a stride
table tracking i-length stride history, Lysax refers to the maximum
cascading degree (Lajax = 2 in this example), (N Sy, fo) refers to the
first stride value and probability for the specific stride history pat-
tern, etc. In the original stride sequence shown in Figure 4a, stride
{1} is followed by strides {2} or {6} with equal probability, which
causes aliasing in the CST; table. Using only 1-history transitions
for proxy synthesis can lead to a different stride interleaving in
the proxy versus the original application because of such pattern
aliasing. The aliasing effects can however, be eliminated in this
example by capturing 2-history stride transitions in the CST; table.

Intra-region stride sequence : 0, 1, 2,5,1,6,3

Cascaded Stride Tables (CSTs)

Intra-region stride sequence

Original access sequence 18 .

Alreadv profl\ed addresses New addresses

1-History 2-History
sl.to_:gl NS, | fy | NS, | f SL:;:I NS, [fo | NS, | f Region History Table Cascaded Stride Tables
ride ride
Past " 2-History
. ¥
0 1| 100% . 01 2 | 100% Reg | Last | New stride LHistory | e | I ns, | gy Local | NS, | fo
New add ID | access strhin;:s transitions Local Stride Stride
lew address b
1 2 | 50% | 6 | 50% 51 6 | 100% —]
L_ 18—l 0| 12 5,1] 0 1 |100% 01 2 | 100%
2 5 | 100% - Reg ID |)
Longer history can lead to 1 |_ A 1 2 [50% | 6 |50% 51 6 | 100%
5 1 | 100% accurate pattern capture ! ' 5 s | 100% "
p 3 T 100% ‘ ‘ ‘ ‘ ‘ % 1,2 5 | 100%
—_—— P —————— N 5 1 | 100% 25 1 | 100%
Nnext N,\ext =/ New intra-region 6 3 | 100% 1,6 3 | 100%

LMAX
(a) Intra-region stride profiling structures

stride =6

(b) How CSTs are used during profiling and proxy generation

Figure 4: Intra-region locality profiling using cascaded stride tables (CSTs).

Using the CST; table can accurately model the stride following {1}
with 100% accuracy depending on its preceding stride ({0} or {5}).
Capturing other 2-history stride transitions in the CST table (e.g.,
{2, 5} — {1}) is not necessary as the same patterns can be captured
using 1-history transitions ({5} — {1}). Thus, using CSTs enables
locality-specific access pattern capture, where, shorter history ta-
bles can efficiently capture simple/regular patterns, while more
complex patterns are tracked using longer history-based stride
transitions. Conceptually, using multiple cascaded tables to track
histories of varying lengths is similar to the state-of-the-art TAGE
branch predictor [56] or variable length delta prefetcher [58].

Figure 4b shows the profiling structures used for capturing multi-
level stride transitions. During a profiling interval, HALO keeps
track of accesses to different regions using the region history ta-
ble (RHT). Each RHT entry tracks the number of region accesses,
past Lyjax intra-region strides within the region, etc. To profile a
memory access, RHT is indexed using the address’s region index
and a new stride is computed based on the region’s last seen ad-
dress. The CST tables are updated based on the new stride and the
history of last Ly;ax strides to the region. Unfortunately, during
the profiling interval, it is not known as to which history length
can capture the current stride transition with least aliasing (as the
entire application reference stream has not been profiled yet). Thus,
during a profiling interval, HALO updates all the stride tables using
the accumulated stride history of the corresponding region, where
each cascaded table tracking history length L; is updated using
the accumulated last L; intra-region strides, Vi < Lpsax. For exam-
ple, when address 18 (region RO0) is profiled, both CST tables are
updated using the accumulated stride history and the new stride
({1} — {6} and {5, 1} — {6} respectively).

At the end of the profiling interval, HALO analyzes the com-
plexity of stride transitions captured in the CSTs (starting from
the longest-history one) and identifies the minimum history length
(L/M 4x) that can capture the respective access patterns with least
aliasing. In this example, at the end of the profiling interval, HALO
post-processes the CST; table and invalidates the last three entries
({1 2} — {5}, ..., {1, 6} — {3}) as the same patterns are captured
in the CSTj table. Also, the {1} — {2, 6} entry in the CST; table
is invalidated as 2-history pattern needs to be captured to remove
aliasing effects. Figure 4a shows the final state of the CST tables
after post-processing. The final post-processed state of the CST
probability distribution tables is saved for proxy generation.
During post-processing, adjacent regions with similar intra-region

stride patterns can be identified and merged to form larger regions.
Since individual CST tables contain a maximum of a few tens to
hundreds of entries for most applications, the time overhead to
manage the cascaded tables is not significant.

3.3 Inter-region Reuse Locality

Capturing intra-region locality metrics alone is not sufficient to
recreate the original memory access locality. HALO also captures
how accesses to the individual regions are interleaved with respect
to each other. To understand why, let us re-visit the program ex-
ample in Figure 1. This program makes repeated accesses to the
two arrays in an interleaved manner. However, during proxy gen-
eration, if the cloning framework generates accesses to the two
arrays in a sequential manner (all accesses to RO finish before R1
is accessed), the proxy program’s locality will be very different
from the original program. HALO captures the degree of interleav-
ing between accesses to individual memory regions by monitoring
coarse-grained temporal locality patterns using the region reuse
distribution (IT) metric. The II distribution captures the number
of unique region accesses between successive accesses to the same
region. Figure 5 shows an example of IT metric computation for the
program discussed in Figure 1. The last row shows the computed
IT metric (oo represents a newly-accessed region). During proxy
generation phase, the IT profile is used to reconstruct an ordered
memory reference sequence from individual region access streams.

Modeling the IT metrics further help to accurately control the
memory footprint of the generated proxy (based on the co counts
in the II-profile). We observed that synthesizing proxies using only
global stride transitions suffers from up to 195%, 91% and 55% error
in replicating the memory footprint of benchmarks using a stride
history length of 10, 30 and 60 respectively due to aliasing in the
stride tables. Higher error in replicating the application memory
footprint translates into higher TLB, cache and DRAM performance
errors. On the other hand, by tracking stride transitions at a local-
ized granularity, HALO reduces the error rates by reducing aliasing
effects. Modeling inter-region reuse locality enables HALO proxies

Access A[0] B[N] A[1] B[N-1] A[2] B[N-2] A[3] B[N-3] A[4]
Address 0 128 1 127 2 126 3 125 4
Region
Address 1 0 1 0 1 0 1 0
TT Metric oo L 1 1 1 1 1 1 1

Figure 5: Inter-region reuse locality tracking,.

Table 2: Profiled statistics

Statistic Description

CST = {CSTi,...,CSTy,, .} Set of cascaded stride tables with
increasing history length

Lyax Maximum cascading degree

CST; Stride pattern table keeping stride
transition counts from past i intra-
region strides to next stride

Nnext No. of next intra-reg strides
Ogrp|count Region reuse distance histogram
RDpax Maximum region reuse distance bin
Prw Fraction of write accesses

Ratemem Rate of memory access generation

to achieve over 99% accuracy in replicating the desired memory
footprint and TLB miss rate of the original applications.

3.4 Proxy Generation

Table 2 summarizes the key statistics that HALO captures to model
application memory behavior. These statistical profiles are used
to generate HALO’s memory proxies. Algorithm 1 shows HALO’s
proxy generation algorithm. Table 2 statistics are provided as an
input to the algorithm. The output is the memory proxy charac-
terized by a tuple {(ADDR;, RW;)}, where ADDR; refers to the ith
proxy address and RW; denotes the access type. Before proxy gen-
eration, miniaturization is applied by scaling down the collected
statistical input profiles by the desired scaling factor, T, . Care
should be exercised when choosing an appropriate scaling factor
because scaling beyond a certain limit will cause inaccuracies in
modeling the memory reference patterns in the proxy due to the
law of large numbers. We will evaluate sensitivity of cloning accu-
racy to the scaling factor in Section 5. In this algorithm, we assume
the existence of a data-structure (Reglnfo) to track the LRU history
of distinct region references. The last n'" accessed region can be
obtained by using the function Get_Region(n), while the RegInfo
data-structure can be updated as new regions get accessed using
the Update_Region() function.

To generate the i*" memory address, the II profile is sampled
to obtain a region reuse distance value (line 4). The corresponding
region is obtained by invoking the Get_Region() function. If chosen
reuse distance is greater than RDysax (corresponding to oo reuse
distance), a new region is chosen by sampling the address space.
Then, the RHT table is looked up to find the last accessed address
and stride history of the chosen region. The CSTs are looked up
one-by-one (lines 12-19), starting from the longest history table,
by using a partial hash of the accumulated stride history. A new
stride is chosen based on the longest history match in the CSTs.
This ensures that the next stride assignment is done using the most
accurate profiled information. Finally, the i th address is computed
(line 21) using the last accessed address (LAST_ADDR) of the region
and the chosen stride (S;). Finally, the RHT entry and Reglnfo data-
structure are updated (lines 22-24). This process is repeated until
the target number of references N is generated. In case the output
is desired to be binary executable, HALO generates a C code with
inline x86-64 assembly instructions for moving data from desired
memory locations to specific registers for reading or writing. We
ensure that all memory references access allowed memory locations
within a large allocated memory region.

Algorithm 1 HALO’s Proxy Generation Algorithm

1: Input: Table 2 Statistical Profiles.
2: Output: Trace T[] = {(ADDRy, RW), ..., (ADDRN, RWN)};
3: fori=1,..., Ndo
4: Sample 7; from IT
if 7; < RDpjax then
Reg; = RegInfo.Get_Region(s;);
else

Sample Reg; uniformly in the address space;
end if
10: (R, LAST_ADDR, LAST_STR) = RHT[Reg;];
1: j=Lmax;
12: while j > 0do

W ®

13: f= CSTj.ﬁnd(LAST_STR[LMAX —j:Lapax])
14: if f == True then

15: Sample stride S; from CSTj;

16: break;

17: end if

18: i

19: end while

20: Sample RW; from p,.y;

21: ADDR; = LAST_ADDR + S;;

22 LAST_STR.push_back(S;); LAST_ADDR = ADDR;;
23 RHT[Reg;].UpdateState(LAST_ADDR, LAST_STR);
24: Reglnfo.Update_Region(Reg;);

25: end for

26: return Trace[]

3.5 Execution Phase Consideration

We consider different execution phases of a program during proxy
generation. To account for phase behavior, HALO divides the origi-
nal access sequence into fixed size intervals and tracks an indepen-
dent intra-region stride and inter-region reuse profile per profiled
interval period. The Reglnfo data-structure (for tracking region
reuse) is not cleared between phases. HALO uses the per-interval
stride and reuse profiles to generate a proxy sequence for the cor-
responding interval. In our experiments, we choose the interval
length to be 100,000 memory references. However, we later show
the sensitivity of cloning accuracy to changes in phase lengths.

3.6 Multi-programmed Workload Performance

When applications are co-scheduled on a CMP, memory access
streams from different applications compete for the shared cache
space. To model the cache-sharing behavior of co-scheduled work-
loads, HALO uses another statistic - the rate at which memory
references are generated per application (Ratemem). This metric
accounts for the fraction of memory instructions over total instruc-
tions, instruction level parallelism and relative speed of the pro-
cessor cores. As HALO proxies do not produce instruction streams
other than memory references, HALO controls the distance between
successive memory references based on this rate metric.

4 EXPERIMENTAL FRAMEWORK

We evaluate HALO using 39 benchmarks from different application
classes (see Table 3): (a) 26 SPEC CPU2006 benchmarks [5] using
“ref” input set (all benchmarks except perl, sjeng and dealll due to
compilation issues), (b) 6 benchmarks from the newly introduced
SPEC CPU2017 [6, 51] suite (leela, exchange2, imagick, pop2, roms
and nab of SPECspeed category), (c) 3 TPC-H [7] queries using

A\l 8

IPC Error (%)

| wesT [|stv [l HALO

=

libq
calculix

PP i

roms

leela

imagick P&

Figure 6:

Iy
«

omnetpp £

Ibm W
gamess 2"

cactusADM (2,

gromacs

wrf
GemsFDTD

xalanchmk
Memcached |

cc

Graph

Average

Instructions per cycle error of WEST, STM and HALO proxies versus the original applications.

B =R NN W W b
o 1 o 1 © unn ©

L2 Cache miss rate error (%)

WEST 0OSTM mHALO

nab
gcc
tonto

bwaves
libq

calculix
mcf

omnetpp EZZ=#

milc

leela
exchange2
imagick
pop2
roms
leslie
astar
namd
hmmer
bzip2

MySQL [4] database (10GB), (d) data-serving workload based on
Yahoo! Cloud Serving Benchmark (YCSB) [18] framework, (e) graph
analytics tunkrank application using Graphlab [2] framework from
Cloudsuite and connected components application using GraphChi
[1] framework, and (f) data-caching benchmark based on Mem-
cached [3] from Cloudsuite.

Table 3: Benchmarks

Benchmarks

26 SPEC CPU 2006 benchmarks

6 SPEC CPU 2017 benchmarks

TPCH Q3, Q6, Q14

Connected Components (CC), TunkRank (Graph)
Memcahed

YCSB Workload C (WC)

Category
General-purpose

Data Analytics
Graph Analytics
Data Caching
Data Serving

Table 4: Profiled system configuration

Component Configuration

CPU X86_64 processor, atomic mode 4 GHz
Single-core and multi-programmed runs

L1 cache 32KB, 2-way Icache; 64KB, 2-way Dcache
64B block size, LRU

L2 cache 4MB, 8-way, LRU, Shared

Main memory 4GB DDR3, 12.8 GB/sec

oS Ubuntu 14.04

lbm
gamess
cactusADM ==
povray
soplex
GemsFDTD
Graph

gromacs &=
sphinx3
zeusmp
xalancbmk
TPCH Q3

o T
gw

S
3]
UU
> £
[}
=

Figure 7: L2 miss rate errors of WEST, STM & HALO proxies across L2 cache and prefetcher configurations.

<
-
[
I
[
-9
-

We profile the benchmarks using a Pin-based [39] detailed simu-
lator. The system configuration used for profiling is shown in Table
4. For CPU2006 benchmarks, we profile a Simpoint [43, 57] of 250
million instructions. For the other benchmarks, we fast forward by
10 billion instructions, and then profile the execution of next 250
million instructions. We choose 250 million instructions to make
the simulation runs for validation manageable. It should be noted
that the HALO uses a statistical profile as input for proxy genera-
tion, which is independent of the execution length. For evaluation
of different cache and prefetcher configurations, we use a validated
trace-driven cache simulator. Our simulator is validated by compar-
ing its miss rates with the standard cache modules provided with
gemb5 [15] simulator. For evaluation and testing of DRAM memory
performance, we use the Ramulator [37] simulator. We compare
our results against the state-of-the-art WEST and STM proposals.

5 RESULTS AND ANALYSIS

In this section, we validate HALO’s effectiveness in replicating
cache, prefetcher, TLB and DRAM performance of applications
over 20,000 different configurations. We use two metrics for val-
idation: error between original and proxy performance metrics
and Pearson’s correlation coefficient. Pearson’s correlation coeffi-
cient indicates how well the proxy benchmarks track the trends

12

< 16.9 « 12.6 &
P\:’m N § WEST OSTM M HALO
~ 10 |
[
5 g |
3
e
3 °
£ 4
E a =
5 N
e \
= o HEALARSENE AR SRS AR AL AR AR AR AR,
ENXNVI_Q U.EéUO.u_)L-uL QEME"!":>~&"€,M>‘QQ_¥M\DQ‘U'§U:W
gepgsesEsEwEggEEgeEgSEaEsEESEgREEg953 ey
TEEST 3 0§ |TCFE® £ 5% 2035%%3Ef933E8 ©¢
S £ 2 = @ ENSPRERZIS E <
] 5 5] 5] m g > E
B 8 (C) < s
Figure 8: L1 miss rate errors of WEST, STM and HALO proxies across L1 cache and prefetcher configurations.
20
. ¢ 28 ¢ o 24.
18 - 3 274 8 & S WEST OSTM mHALO
K16 -
514
=
o 12
(]
- .
E10
2 87
E 6
=
: |
o Mo Walw N in ol o 10 JN e NLNL NG NAHI N NUOW AL O NG in L
o N XN 9 a9 X2 8 Q09 5T EHENEL2LELSYESXE O X002 XxmOTUT < o
= = = Q = Q
s e EE e EMEgEEEgESoagosSESE2REETO83L°8¢
Egn:. SR 2eREESD e £E<§ 8985 3%3855z8 8 G g
g E 2 & E w3 5 o " ENSPERPOE <
£ 5 5] @ T g > E
) 8 (G) x s

Figure 9: TLB miss rate errors of WEST, STM and HALO proxies across different TLB & page size configurations.

in the original applications, with 1 indicating perfect correlation,
and 0 indicating no correlation. During design-space exploration,
computer architects consider relative performance ranking (e.g.
evaluate which configuration has a lower miss rate).

Instructions per cycle (IPC) - First, we evaluate HALO by
measuring the performance of the original and proxy workloads
across different configurations as we vary the size, associativity and
line-size of the L1 and L2 caches. We also vary L2 stream prefetcher
configurations, evaluating a total of over ~ 6, 600 configurations.
Figure 6 shows the error between IPC of the original and proxy
workloads. Overall, the average error in replicating original work-
load IPC for WEST, STM and HALO proxies is 14%, 5.4% and 3.9%
respectively. Higher cloning accuracy of HALO proxies over WEST
and STM proxies is a result of more accurate modeling of cache,
prefetcher and memory system performance. We will elaborate on
performance implications of the individual metrics in the following
paragraphs. Please note that IPC is used here as a metric to validate
the proposed memory model across a range of memory hierarchy
configurations, but is not indicative of processor-side performance
(as HALO does not model non-memory instructions).

L2 cache and prefetcher configurations - Here, we will show
HALO’s effectiveness in replicating L2 cache performance by vary-
ing the L2 cache and prefetcher configurations. We evaluate 35
L2 cache configurations per benchmark (varying cache size be-
tween 1MB-16MB, associativity between 2-32 and line size between
32-128). For each cache configuration, we also vary L2 stream
prefetcher configurations by changing number of stream buffers
between 8-64 and prefetch degree between no-prefetching/1/2/4/8,
leading to a total of 260 configurations per benchmark. Figure 7

shows the L2 miss rate error between the original and proxy bench-
marks (averaged across different configurations). The average error
in replicating L2 cache miss rates for WEST, STM and HALO prox-
ies are 18.9%, 6% and 4.4% respectively. The correlation coefficients
are 77.9%, 97.5% and 98.5% for WEST, STM and HALO respectively.

As WEST does not model spatial locality, it suffers from high
errors especially when prefetchers are enabled for prefetch-friendly
benchmarks (e.g., bwaves, libquantum). Also, WEST captures stack
distance distributions at a cacheline granularity, and thus, suf-
fers from high cloning errors when cache line-size changes, cache
size increases. By modeling spatial locality patterns, STM outper-
forms WEST. However, for many benchmarks e.g., leela, h264ref,
exchange2, povray, STM experiences high aliasing in its global
stride tables, reducing cloning accuracy. Also, STM captures global
stride transitions at a cacheline granularity. Thus, STM proxies do
not capture spatial locality within cachelines and perform poorly
when cacheline size is varied in some cases (e.g., zeusmp).

HALO outperforms both WEST and STM. HALO performs well
even for benchmarks like leela, h264ref, povray, by using a local
history depth of 8; dominant access patterns of these benchmarks
cannot be captured even using 80-length global stride history tran-
sitions by STM. By leveraging multi-granularity stride transitions,
HALO not only performs well for benchmarks like libquantum,
which have regular strided patterns, but also for benchmarks like
gec and sphinx3, which make a lot of irregular data-structure ac-
cesses or bzip2, which has a significant fraction of control-flow
dependent loads. HALO experiences high cloning errors with cal-
culix and gobmk benchmarks (14.5% and 11% respectively), but the
high L2 miss rate errors occurs systematically for configurations

| DORIG EHALO

= L5 1
T
S 10,
[. =
£ g
o < 0.5
3
3 0-3(‘)
g OORIG HHALO
o 2
i}
©
_11,
P R s s s s e e e e e e e e e e e LA S S B s e B B e e e e s e
Y SIS ERSSZf3eLTINERE S EEE IR ESSILE0E Y
z s ewo 5 23 EREgEEERES 2o EsEs5E8£E90532 ¢ s
“Tsg*T 3z 3 e=%cEQ c ST 23¢985E8%zeoozTRe OF
-5._ o o = £ uog;—n £ ENmn.n.UuU &
x o S o ﬁl—l—&>.E
o S o x g

Figure 10: Comparing DRAM performance of HALO and original applications across different DRAM configurations.

with very few L1 cache misses; average L2 MPKI error is <0.01,
which causes insignificant impact on IPC (< 1% and 3% for calculix
and gobmk respectively) as shown in Figure 6. Benchmarks like
TPC-H Q3 (complex join operation across three database tables)
and mcf (operation on array of pointers) experience ~10-11% error
with a stride history of 8 due to aliasing; increasing local history
depth to 14 reduces errors to ~5.8% but increases profile sizes.

L1 cache and prefetcher configurations - We evaluate HALO’s
effectiveness across 40 different L1 cache configurations per bench-
mark (varying the cache size from 4KB-128KB, associativity from
2-16 and cache line-size between 32B-128B). For each cache con-
figuration, we vary the L1 stream prefetcher configurations by
changing the stream detection window between 8-32, prefetch de-
gree between no-prefetching-8, resulting in 264 configurations per
benchmark. Figure 8 shows the L1 miss rate errors. The average
L1 cache miss rate error between original and proxy workloads is
4.5%, 2.4% and 1.8% for WEST, STM and HALO respectively.

STM captures temporal locality using per-set LRU stack distance
distributions for a 16 KB, 2-way L1 cache, however it does not track
any statistics related to access distribution or ordering across cache
sets. Thus, for benchmarks such as bwaves, libquantum, STM prox-
ies produce different conflict behavior across cache sets when the
L1 test and profiled configurations differ significantly, resulting in
higher cloning errors. Owing to LRU-stack based modeling of tem-
poral locality behavior, WEST experiences higher errors when test
configurations (especially, cacheline size) deviate from the baseline
configuration. Overall, HALO outperforms both WEST and STM by
exploiting higher predictability in localized memory access streams
even with shorter history lengths. HALO experiences higher L1
performance modeling error for hmmer and GemsFDTD bench-
marks (~7%) as HALO does not model inter-region spatial locality
which leads to cloning inaccuracies especially with prefetching.

TLB and page size configurations - Next, we will evaluate
TLB performance of WEST, STM and HALO proxies (see Figure
9). We vary the number of TLB entries between 8-128 and page
size between 1KB-16KB (total 25 configurations per benchmark).
Overall, WEST, STM and HALO have 9.2%, 2.4% and 0.7% error in
replicating TLB miss rates of original applications. WEST generates
a random memory address for any references that miss in the L2
cache. This causes higher deviation in the memory footprint and
fraction of active pages between WEST proxies and original applica-
tions. STM is more accurate in replicating TLB behavior than WEST,

however, aliasing in STM’s global stride tables also causes errors
in replicating memory footprint and TLB performance. In contrast,
by leveraging coarse-grained reuse locality to model inter-region
interleaving, HALO can accurately model TLB performance across
most benchmarks except GemsFDTD. HALO proxies are generated
using a base region size of 4KB. In GemsFDTD, increasing the page
size affects the inter-region access interleaving order, which results
in higher TLB errors. For most other benchmarks, changing the TLB
or page size configuration has minimal impact on HALO’s accuracy.
Overall, HALO outperforms both WEST and STM, achieving an
average accuracy of 99.3%.

DRAM Performance - Next, we will evaluate HALO proxies
to be used for memory subsystem design exploration in lieu of the
original workloads. We evaluate over 25 DRAM configurations per
benchmark by changing the DRAM bus width (4-16 bytes), bus
frequency (800MHz-1GHz) and DRAM address mapping schemes
(RoBaRaCoCh/ChRaBaRoCo) by swizzling the address decoding
bits etc, while simultaneously varying the L2 cache size and asso-
ciativity. We compare the original and proxy workloads across two
key memory system performance metrics: DRAM row buffer hit
rate and average read/write latency (see Figure 10). By accurately
capturing the spatial and temporal locality of applications, HALO
proxies perform closely with respect to the original application,
achieving an average error rate of 2.3% and 4% for DRAM row buffer
hit rate and average read/write latency respectively.

Phase-level cache performance modeling - Figure 11 com-
pares the phase-wise L2 cache miss rates of the original and HALO
workloads for the Graph-analytics and GemsFDTD benchmarks.
Every corresponding phase of the original and proxy workload is
aligned after accounting for miniaturization. We can observe that
the cache miss rate of Graph analytics workload varies between
~70-100% across the different phases and the HALO proxy follows

w‘ ORIG --HALO
', vY N

100

rate (%)

(a

L2 cache miss

rate (%)

(b

L2 cache miss

Intervals

Figure 11: Example showing phase-level cache perf. model-
ing for (a) GemsFDTD and (b) Graph analytics

<10

= 2-core
=
o
5
2
Q
a5
©
-
Ry

s II | I I | ||||

Qo - -

)

v hH Y DN DD ONANYVY MY OAN D o

FTIFFFTTFTIISIISIISESSSEH»

S S S S S ST TS SIS ssss§

<

(a)

LLC miss rate error (%)

10

§' §° §§.§A5-£’.$’7.3.$’A§.$.§$
FFFFFEFEFEFS
ééééééésé

Figure 12: Multi-programmed performance error of HALO proxies for (a) 2-core and (b) 4-core workload mixes

g 77 100 & 99
13 98 b} 1)
S 97 8 9% ’/._——0/4 8 98
B o < s 97
8 o S 92 S 9%
16K 8K 4K 2K 1K .5K Dyn SingleintervalsM 1M 0.1M 5M 10M 50M 80M

(a)

(b) (c)

Figure 13: Impact of changing the (a) region size, (b) profiling interval period, (c) trace length on profiling accuracy.

the original application’s trends very closely (average error = 1.6%).
Similarly, although GemsFDTD experiences slightly higher average
error, the proxy still captures the relative trends across different
execution phases quite accurately. HALO has similar phase-level
cloning accuracy across other benchmarks as well.

Multi-programmed workloads - Next, we will evaluate how
accurately can HALO proxies, generated for benchmarks running
in stand-alone mode, replicate shared cache behavior when co-
scheduled with other applications. We categorize applications ac-
cording to their L2 miss rates and randomly choose 18 benchmark
mixes to co-schedule in a 2-core and 4-core setup. We evaluate 40
shared L2 cache configurations per mix by varying its cache-size,
associativity, line-size and replacement policy. Overall, the average
error in shared L2 cache miss rate between HALO and original
multi-programmed workloads is 4% and 4.9% for 2-core and 4-core
configurations respectively (see Figure 12).

Meta-data overhead - By exploiting higher predictability in
localized memory access streams combined with an application-

locality-specific multi-level stride capture mechanism, HALO achieves,

on average, a ~39X reduction in meta-data storage size as compared
to STM, while also outperforming STM across the evaluated perfor-
mance metrics. HALO’s meta-data is also up to 29X smaller than
gzip-compressed trace sizes. WEST does not capture spatial locality,
as a result of which, it suffers from significantly high cloning errors.
Also, WEST’s statistics are directly proportional to the profiled
cache configuration, as a result the size overhead of WEST’s sta-
tistics becomes significantly high for larger caches (e.g., meta-data
overhead exceeds 2.5GBs per application for modeling a modern-
day 16GB DRAM cache).

Sensitivity study - We explore HALO’s sensitivity to several
parameters by measuring correlation between proxy and original
workloads across different L1 cache and prefetcher configurations.
First, we evaluate sensitivity to the region size by varying it from
0.5KB - 16KB and dynamic (see Figure 13a)). As region size increases,
correlation drops slightly because of higher entropy in larger region
patterns, which is difficult to capture using the same history depth
without increasing aliasing. Smaller region sizes lead to accurate
intra-region pattern capture, but reducing the region size below
0.5KB resulted in reduced performance correlation especially with
prefetching because of not modeling inter-region spatial locality.

Figure 13b shows HALO’s performance sensitivity to the profiling
interval size. As the interval size reduces, correlation improves
because of accurate capture of phase-level performance patterns.
However, having a very small profiling interval increases the profile
size correspondingly. In our experiments, a profiling interval of
100,000 memory references provided the best balance of accuracy
and meta-data overhead. Next, we evaluate the impact of trace
miniaturization factor on cloning accuracy (see Figure 13c). As
HALO relies on statistical convergence to generate the proxies, the
scaling factor depends on the original number of accesses because
of the law of large numbers. We can observe that the performance
correlation holds good with 10 million memory references.

6 CONCLUSION

In this paper, we propose a novel memory locality modeling frame-
work, HALO, that accurately models the spatial and temporal local-
ity of applications. HALO isolates global memory references into
individual localized regions and captures intra-region access pat-
terns using fine-grained spatial locality patterns. To achieve greater
meta-data storage efficiency, HALO captures multi-level stride pat-
terns tailored to application’s locality behavior. HALO synthesizes
memory access streams from individual, localized stream accesses
by modeling the degree of interleaving between accesses to different
regions using coarse-grained temporal locality metrics. We evalu-
ated HALO using >20,000 different cache, prefetcher, TLB, page-
size and DRAM configurations and showed that HALO achieves
over 98.3%, 95.6%, 99.3% and 96% accuracy in replicating prefetcher-
enabled L1 & L2 caches, TLB and DRAM performance respectively.
HALO outperforms the state-of-the-art workload cloning proposal
in terms of cloning accuracy across all the evaluated metrics, while
using ~39X less meta-data storage.

7 ACKNOWLEDGEMENT

This research was supported in part by National Science Founda-
tions under grants 1745813 and 1725743, and by the Texas Advanced
Computing Center (TACC). Reena Panda was supported in part by a
Graduate School Fellowship. Any opinions, findings, conclusions or
recommendations are those of the authors and not of the National
Science Foundation or other sponsors.

REFERENCES

]
1
3]
]

5]
6]
7]

O

N

8]
9]
0]

= e e e

[
[11]
[12]

[13

[14

(15

[16]
[17]

[18

[19]

[20

[21]

[25]

[26

[27]

[28]

[29

[30]

[31

[32]

[33]

[34

[35]

GraphChi. https://github.com/GraphChi/graphchi-cpp.

GraphLab. www.graphlab.org.

Memcached. www.memcached.org.

MySQL. http://www.mysql.com.

SPEC CPU 2006 Benchmarks. www.spec.org/cpu2006.

SPEC CPU 2017 Benchmarks. www.spec.org/cpu2017.

TPC-H Benchmark Suite. http://www.tpc.org/tpch.

Jedec standard jesd235. High Bandwidth Memory (HBM) DRAM, 2013.

Jedec standard jesd235a. High Bandwidth Memory (HBM) 2 DRAM, 2016.

A. Awad and Y. Solihin. Stm: Cloning the spatial and temporal memory access
behavior. HPCA, pages 237-247, 2014.

G. Balakrishnan and Y. Solihin. West: Cloning data cache behavior using sto-
chastic traces. HPCA, pages 387-398, 2012.

G. Balakrishnan and Y. Solihin. Memst: Cloning memory behavior using stochas-
tic traces. In MEMSYS, pages 146-157, 2015.

R. Bell, R. Bhatia, and L. K. John. Automatic testcase synthesis and performance
model validation for high-performance powerpc processors. In International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 154-165,
March, 2006.

R. H. Bell, Jr. and L. K. John. Improved automatic testcase synthesis for perfor-
mance model validation. In ICS, 2005.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1-7, Aug. 2011

J. Chen, D. Kaseridis, and L. K. John. Modeling program resource demand using
inherent program characteristics. In Proceedings of ACM SIGMETRICS, 2011.

C. Chou, A. Jaleel, and M. K. Qureshi. Bear: Techniques for mitigating bandwidth
bloat in gigascale dram caches. In ISCA, pages 198-210, 2015.

B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with ycsb. In SoCC, pages 143-154, 2010.

E. Deniz, A. Sen, B. Kahne, and J. Holt. Minime: Pattern-aware multicore bench-
mark synthesizer. IEEE Transactions on Computers, 64(8):2239-2252, 2015.

C. Ding and Y. Zhong. Predicting whole-program locality through reuse distance
analysis. SIGPLAN Not., 38(5):245-257, May 2003.

L. Eeckhout, R. J. Bell, B. Stougie, K. D. Bosschere, and L. K. John. Control flow
modeling in statistical simulation for accurate and efficient processor design
studies. In ISCA, Munich, Germany, pp. 350-361, 2004.

L. Eeckhout, K. de Bosschere, and H. Neefs. Performance analysis through
synthetic trace generation. In ISPASS, pages 1-6, 2000.

L. Eeckhout, Y. Luo, K. Bosschere, and L. K. John. BLRL: Accurate and efficient
warmup for sampled processor simulation. In The Computer Journal. Vol. 48. No.
4, May, 2005.

L. V. Ertvelde and L. Eeckhout. Benchmark synthesis for architecture and com-
piler exploration. In Workload Characterization (ISWC), 2010 IEEE International
Symposium on, pages 1-11, 2010.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the clouds: A study of
scale-out workloads on modern hardware. SIGPLAN Not., 47(4), Mar. 2012.

K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John. Sympo: A
systematic approach for escalating system-level power consumption using syn-
thetic benchmarks. In 19th IEEE International Conference on Parallel Architectures
and Compilation Techniques (PACT), Vienna, Austria, 2010.

K. Ganesan, J. Jo, and L. John. Synthesizing memory-level parallelism aware
miniature clones for spec cpu2006 and implantbench workloads. In ISPASS, 2010.
K. Ganesan and L. K. John. Maximum multicore power (mampo) - an automatic
multithreaded synthetic power virus generation framework for multicore systems.
In ACM SuperComputing Conference (SC 2011), 2011.

W. Gao, Y. Zhu, Z. Jia, C. Luo, L. Wang, Z. Li, J. Zhan, Y. Qi, Y. He, S. Gong, X. Li,
S. Zhang, and B. Qiu. Bigdatabench: a big data benchmark suite from web search
engines. CoRR, abs/1307.0320, 2013.

N. Gulur, M. Mehandale, R. Manikantan, and R. Govindarajan. ANATOMY:
An analytical model of memory system performance. In Proceedings of ACM
SIGMETRICS, 2014.

L. K. John. Vawiram: A variable width random access memory module. In 9th
International Conference on VLSI Design, pp. 219-224, January, 1996.

A. Joshi, L. Eeckhout, R. H. Bell, and L. John. Performance cloning: A technique
for disseminating proprietary applications as benchmarks. In IEEE IISWC, pages
105-115, Oct 2006.

A. Joshi, L. Eeckhout, and L. John. The return of synthetic benchmarks. In 2008
SPEC Benchmark Workshop, pages 1-11, 1 2008.

A. Joshi, L. Eeckhout, L. K. John, and C. Isen. Automated microprocessor stress-
mark generation. In IEEE International High Performance Computer Architecture
(HPCA) Symposium, 2008.

A. Joshi, L. John, J. Yi, R. H. J. Bell, L. Eeckhout, and D. Lilja. Evaluating the
efficacy of statistical simulation for design space exploration. In International

[36

(37]

(38]

o
=

o
20,

[60]

[o1]

[62]

[63]

Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 70-79,
March, 2006.

A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring benchmark
similarity using inherent program characteristics. IEEE Transactions on Computers,
55(6):769-782, 2006

Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram simulator.
In IEEE Computer Architecture Letters, 2015.

S. Kumar and C. Wilkerson. Exploiting spatial locality in data caches using
spatial footprints. In Proceedings of the 25th Annual International Symposium on
Computer Architecture, ISCA *98, pages 357-368, 1998.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, pages 190-200, 2005.

R. K. V. Maeda, Q. Cai, and J. Xu. Fast and accurate exploration of multi-level
caches using hierarchical reuse distance. In HPCA, 2017.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Syst. J., 9(2):78-117, June 1970.

O. Mutlu. Memory scaling: A systems architecture perspective. In MemCon, 2013.
A. Nair and L. K. John. Simulation points for SPEC CPU 2006. In 26th International
Conference on Computer Design, ICCD, pages 397-403, 2008.

K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer.
In HPCA, 2004.

M. Oskin, F. T. Chong, and M. Farrens. Hls: Combining statistical and symbolic
simulation to guide microprocessor designs. In ISCA, pages 71-82, 2000.
R.Panda, C. Erb, M. Lebeane, J. Ryoo, and L. K. John. Performance characterization
of modern databases on out-of-order cpus. In IEEE SBAC-PAD, 2015.

R.Panda, D. Jimenez, and P. V. Gratz. B-fetch: Branch prediction directed prefetch-
ing for in-order processors. IEEE Computer Architecture Letters, 11:41-44, 2012.
R. Panda and L. John. Proxy benchmarks for emerging big-data workloads. In The
26th International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2017.

R. Panda and L. K. John. Data analytics workloads: Characterization and sim-
ilarity analysis. In International Performance, Computers, and Communications
Conference (IPCCC), pages 1-9. IEEE Computer Society, 2014.

R. Panda and L. K. John. Proxy benchmarks for emerging big-data workloads. In
IEEE ISPASS, 2017.

R. Panda, S. Song, J. Dean, and L. K. John. Wait of a decade: Did SPEC CPU2017
benchmarks broaden the performance spectrum? In HPCA, 2018.

R. Panda, X. Zheng, A. Gerstlauer, and L. K. John. CAMP: Accurate modeling
of core and memory locality for proxy generation of big-data applications. In
DATE, 2018.

R. Panda, X. Zheng, and L. K. John. Accurate address streams for llc and beyond
(slab): A methodology to enable system exploration. In IEEE ISPASS, 2017.

R. Panda, X. Zheng,]. Wang, A. Gerstlauer, and L. John. Statistical pattern based
modeling of GPU memory access streams. In ACM Design Automation Conference
(DAC), 2017

J. H. Ryoo, M. R. Meswani, R. Panda, and L. K. John. (POSTER) SILC-FM: sub-
blocked interleaved cache-like flat memory. In International Conference on Parallel
Architecture and Compilation Techniques (PACT), 2016.

A. Seznec. A new case for the TAGE branch predictor. In IEEE MICRO, 2011.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characteriz-
ing large scale program behavior. SIGOPS Oper. Syst., 36(5):45-57, Oct. 2002.

M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti. Efficiently prefetching complex address patterns. In Proceedings of
the 48th International Symposium on Microarchitecture, MICRO-48, 2015.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial
memory streaming. In Proceedings of the 33rd Annual International Symposium
on Computer Architecture, ISCA 06, pages 252-263, Washington, DC, USA, 2006.
IEEE Computer Society.

L. Van Ertvelde and L. Eeckhout. Dispersing proprietary applications as bench-
marks through code mutation. ASPLOS, pages 201-210, 3 2008.

J. Wang, R. Panda, and L. K. John. Selsmap: A selective stride masking prefetching
scheme. In 2017 IEEE International Conference on Computer Design (ICCD), pages
369-372, 2017.

Y. Wang, G. Balakrishnan, and Y. Solihin. Metoo: Stochastic modeling of memory
traffic timing behavior. PACT, pages 457-467, 2015.

J. Weinberg and A. E. Snavely. Accurate memory signatures and synthetic address
traces for hpc applications. In ICS. ACM, 2008.

