Coarse-to-Fine Foraminifera Image Segmentation
through 3D and Deep Features

Qian Ge*, Boxuan Zhong*, Bhargav Kanakiya*, Ritayan Mitra’, Thomas Marchitto’ and Edgar Lobaton*
*Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, North Carolina 27695-7911
Email: qge2@ncsu.edu, bzhong2 @ncsu.edu, bkanaki@ncsu.edu, edgar.lobaton@ncsu.edu
Tnstitute of Arctic and Alpine Research
University of Colorado Boulder, Boulder, Colorado 80309-0552
Email: Ritayan.mitra@colorado.edu, thomas.marchitto@colorado.edu

Abstract—Foraminifera are single-celled marine organisms,
which are usually less than 1 mm in diameter. One of the
most common tasks associated with foraminifera is the species
identification of thousands of foraminifera contained in rock
or ocean sediment samples, which can be a tedious manual
procedure. Thus an automatic visual identification system is
desirable. Some of the primary criteria for foraminifera species
identification come from the characteristics of the shell itself. As
such, segmentation of chambers and apertures in foraminifera
images would provide powerful features for species identifica-
tion. Nevertheless, none of the existing image-based, automatic
classification approaches make use of segmentation, partly due
to the lack of accurate segmentation methods for foraminifera
images. In this paper, we propose a learning-based edge detection
pipeline, using a coarse-to-fine strategy, to extract the vague edges
from foraminifera images for segmentation using a relatively
small training set. The experiments demonstrate our approach is
able to segment chambers and apertures of foraminifera correctly
and has the potential to provide useful features for species
identification and other applications such as morphological study
of foraminifera shells and foraminifera dataset labeling.

I. INTRODUCTION

Foraminifera are single-celled marine organisms that can
be identified on the basis of their shells, which are usually
less than 1 mm in diameter [1]. Foraminifera have existed
since the Cambrian period, and an estimated 10,000 species
are still in existence [2], with the vast majority of them living
on the seafloor. They are common in many modern and ancient
environments, and as such have become invaluable tools for
both academic and industrial purposes, such as petroleum
exploration [3], biostratigraphy [4], paleoecology [5] and pale-
obiogeography [6]. One of the most common tasks associated
with foraminifera is the identification of species from samples,
like rock or ocean sediment samples. As different species live
in different environments and at different geologic times, fossil
foraminifera species found in samples are usually used for
determining environmental or climate conditions in the past
and the relative ages of marine rock layers [4]. For petroleum
exploration, identities of the foraminifera species from rock
samples of oil wells can specify the likelihood and the quality
of oil to be found [7].

A sample from the ocean can contain thousands of
foraminifera and the identification of species from samples
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Fig. 1. Sample segmentation results using proposed approach. Top row:
Foraminifera images of four different species from our dataset (one of 16
images per sample). Note that some of the boundaries between chambers
are hard to see due to the similarity of patterns between adjacent chambers
and low image quality. Bottom row: Segmentation result. Apertures are
labeled as red and different chambers are labeled as other different colors.
The morphology that is captured by the segmentation approach uniquely
characterizes these four species; hence, it could be used for classification.

has to be done by students or paid personnel in most of
the laboratories. The identification process is tedious and
time consuming, which may require weeks or even months
of work for a typical study. Therefore, an automatic visual
foraminifera species identification system is desirable. Such a
system first captures images of foraminifera samples through
a microscope. Then visual features are extracted from the
images for classification, and finally each foraminifera sample
is picked based on the classification result. Since foraminifera
shell characteristics such as aperture location and chamber
shape and arrangement, are some of the primary criteria for
species identification [8], An example of this is shown in Fig.
1. None of the proposed image-based, automatic classifica-
tion approaches [9], [7] make use of segmentation. This is
partly due to the lack of accurate segmentation methods for
foraminifera images. Foraminifera segmentation can also assist
in morphological studies of foramnifera shells [10], [11], by
automatically computing the size and location of chambers and
apertures, thus eliminating the need for manual selection and
measurement. Furthermore, the same segmentation methods
can be extended to the identification of other microfossils such
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Fig. 2. Pipeline of proposed foraminifera segmentation. (a) The input data of each sample are 16 images under different light source directions. Edge features
extracted from 2D images as well as a 3D reconstructed surface computed from the 16 images are properly fused. (b) A random forest is trained to estimate a
coarse edge probability map. Brighter color indicates higher probability of edge. (c) A convolutional neural network (CNN) is trained to extract features from
the coarse edge probability map. (d) Another random forest is trained to refine the coarse edge map and the final segmentation is obtained by post-processing

on the refined edge map.

as diatoms.

In this paper, we propose a learning-based pipeline for
foraminifera image segmentation on a foraminifera dataset
collected by us. This dataset contains images from six widely
used planktonic foraminifera species. Each sample consists of
16 images taken under different light source directions through
a microscope with 30x magnification. We adopt a coarse-to-
fine strategy to extract the vague edges in the images for
foraminifera segmentation using a relatively small training
set. A coarse edge probability map is first predicted by
properly fused features extracted from original input images
and further refined by the features extracted from this coarse
predication. Finally the segmentation is obtained by the post-
processing on the refined edge map. The entire pipeline used
in our experiment is illustrated in Fig. 2 and some sample
segmentation results are shown in Fig. 1. The experiments
demonstrate our approach is able to segment chambers and
apertures of foraminifera correctly and has the potential to
provide useful features for species identification.

The remainder of this paper is organized as follows: Section
Il gives an overview of the related work; Section III intro-
duces the images used for segmentation from our foraminifera
dataset; A detailed description of our segmentation pipeline is
introduced in section IV; Experiments of our approach as well
as the analysis of the results are discussed in section V; Finally,
section VI summarizes the paper and discusses the potential
applications of foraminifera segmentation.

II. RELATED WORK

Our approach falls into the category of edge-based segmen-
tation. In this section, we briefly overview the state-of-the-art
learning-based edge detection algorithms.

Edge detection is one of the crucial low-level operations
in image processing and computer vision. Data driven and
learning-based methods are desirable in semantic region seg-
mentation, since they are able to treat different types of edges

separately. Dollar et al. in [12] train a Probabilistic Boosting
Tree using a large number of generic edge features at multiple
scales, which is able to detect specific object boundaries.
Sketch Tokens in [13] groups edge patches into sub-classes
based on the edge shape and treat the edge detection as a multi-
class classification task. In [14], structured edge detection is
proposed to predict labels of multiple pixels simultaneously.

Recently, there has also been work on edge detection based
on deep learning as deep learning methods have brought great
success to various of computer vision tasks [15], [16]. In [17],
features are learned by a convolutional mcRBM to predict
boundaries through a deep neural network. In [18], inspired
by the Sketch Tokens, edge patches are grouped into sub-
classes, and a CNN is trained by sharing positive loss among
the edge sub-classes. Bertasius ef al. in [19] and [20] use
object-level cues from pre-trained image classification CNNs
to improve the contour detection. Xie and Tu in [21] propose
the holistically-nested edge detection by taking advantage of
the fully convolutional neural networks and deeply-supervised
nets to guide the learning through side responses. Building
upon this, Liu and Lew in [22] improve the performance by
using relaxed edge labels on lower layers to make the more
discriminative higher layers process more false positives.

State-of-the-art edge/boundary detection algorithms, espe-
cially deep learning based approaches, have achieved high
performance on nature images and other existing datasets. We
did not adopt one of the previous works for our dataset because
of the following three reasons: (1) Most of the previous
works are based on single images and only utilize 2D images
features. In our dataset, we have 16 images under different
light source directions; however, a single image cannot capture
all of the desired edges. Furthermore, fusing those images to
only emphasize the edges is nontrivial. Therefore, we make
use of the work by Favaro er al. [23] to fuse input images
by reconstructing a 3D surface for each sample and extracting
a 3D shape feature as our additional edge features; (2) Our
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Fig. 3. Sample images and labeling from our dataset. (a) 4 of 16 images of
three samples under different lighting conditions. (b) Corresponding manual
labeling of samples. Apertures are labeled as red. The unobserved part of the
edge between the two lower chambers of the first sample is also labeled, but
some possible edges in the largest labeled chamber of the third sample are
not included because they are well very visible in any of the 16 images.

images are very different from the nature images. Thus, the
edge detection task can hardly benefit from the fine-tuning of
the pre-trained image classification networks as the previous
deep learning based methods [19], [20], [21], [22]; (3) Unlike
the existing well labeled datasets, the labeled data of our
dataset is highly limited. Also, due to the vague edges and
low image resolution, a relatively complex CNN is required
to obtain an acceptable edge predication. Training this CNN
from scratch directly on the original images has a high risk
of overfitting. Thus, we employ the coarse-to-fine learning
strategy to make use of a simpler CNN with less parameters
possible.

III. FORAMINIFERA IMAGE DATASET

We are creating a foraminifera dataset used for the study of
visual species identification. We put each sample at the center
of the field of view of an AmScope SE305R-PZ microscope
with 30x magnification and use an LED ring to produce
16 different light source directions for highlighting different
geometric features in the sample. The 16 perfectly aligned
images of each sample are captured using a SMP USB camera
(AmScope MD500) attached directly to the microscope, which
provides an approximate resolution of 450 x 450 pixels per
sample. Fig. 3 (a) shows 4 of 16 images of three samples in
our dataset. Till now, a dataset of 1437 foraminifera samples,
in which 457 samples are manually segmented, has been
collected and can be found on the project website which
will become available upon paper acceptance. This dataset
includes: Globigerina bulloides (G. bulloides, 178 samples,
85 labeled), Globigerinoides ruber (G. ruber, 182 samples,
75 labeled), Globigerinoides sacculifer (G. sacculifer, 150
samples, 75 labels), Neogloboquadrina dutertrei (N. dutertrei,
151 samples, 75 labeled), Neogloboquadrina incompta (N.
incompta, 174 samples, 77 labeled), Neogloboquadrina pachy-
derma (N. pachyderma, 152 samples, 70 labeled) and species

other than those above (450 samples). The images of first six
species (987 samples) are used for our study.

For manual segmentation, the subject has access to all 16
images of each sample and is asked to separate each chamber
and aperture along edges, including the unobserved edge parts
in images as long as the subject expects the existence of the
edge for segmentation purpose with high confidence. However,
the edges that are entirely unobserved are not labeled. Also,
the regions of apertures are labeled if they are present. Fig. 3
(b) shows the labeling of three samples.

Given the 16 images of a sample, our goal is to segment
this sample into several chambers and apertures. Due to the
high similarity of the adjacent regions as well as the non-
closed edges on the samples as shown in Fig. 3, region-
based segmentation is not applicable to our study. Therefore,
we adopt an edge-based segmentation methodology. That is,
first find edges between chambers and apertures and then
perform post-processing on the estimated edges to obtain the
final segmentation. Other challenges for edge detection on our
dataset are the soft edges observed due to low resolution and
loss of focus, the highly limited training set, and the desire of
an appropriate fusion approach to efficiently make use of all 16
images. Thus, we apply a coarse-to-fine strategy to obtain the
edge detection through a small training set. As samples vary in
the actual size, we re-scale the images to make the bounding
box of a sample have a resolution of 150 x 150 pixels before
processing the sample further. This produces images at a
similar scale and reduce the computational complexity. The
black background makes the extraction of the bounding box
of each sample straightforward.

IV. METHODOLOGY

Let  C R? be the image domain and Iy, be an image
patch centering at x in image I. Given a set of 16 grayscale

images of a foraminifera sample {I*: Q — R,i =1,...,16},
our goal is to predict the probability of a location x € € being
an edge based on a set of image patches {I}VT ,i=1,...,16}.

As mentioned before, we apply a coarse-to-fine edge de-
tection strategy containing two stages. First, a coarse edge
probability map is learned by a set of properly fused hand-
crafted edge features. This stage aims to get a high recall edge
probability map, and a relative low precision is acceptable.
Then a refined edge map is learned by stacking the prediction
of the first stage. This stage aims to remove the noise as well as
enhance the weak edges and fill some edge gaps in the coarse
probability map to obtain both high recall and precision. Any
general classifier can be used at both stages. In our experiment,
we use a random forest at first stage, since it can provide
efficient and accurate performance in edge detection tasks [13].
For the second stage, both a random forest and a CNN have
been tested, where the CNN is used for feature extraction from
the coarse prediction.

A. Hand-Crafted Feature Extraction

At this stage, inspired by [12] and [13], we compute several
types of edge features from all 16 images per sample to capture



(b)

4
S
(d) (e) (f)

Fig. 4. Selected hand-crafted features of the second sample in Fig. 3. (a)
Standard deviation image. (b) Depth map of reconstructed 3D surface. (c)
Curvature map. This map captures all the edges of chambers but can hardly
capture the aperture edges. (d) and (e) Two ridge maps computed from 2 of
16 images. Part of the aperture boundary is not captured in (d) but captured
in (e). (f) Maximum of 16 ridge maps.

(a)

the edge cues in various aspects. We employ both generic
edge features and a 3D shape feature computed from a re-
constructed 3D surface of the sample.

The generic edge features used in our experiment include
gradient, difference of Gaussian (DoG), and ridge detector.
The gradient magnitudes are computed per image using Gaus-
sian kernels with ¢ = 0.8 and 2. In addition, we split the
gradients into four directions, § = 0, 7/4, 7/2 and 37 /4,
to compute 4 more gradient maps per image at each scale.
Two DoG maps are computed from the difference of three
Gaussian blurs with 0 = 2.5, 4 and 6.4 per image. Ridge
points are defined as the maximum or minimum points in
the main principal curvature of an image function [24]. The
ridge detector is adopted due to the presence of some thick
edges on samples that resemble ridges or valleys of the image
function, which produce double low magnitude lines when
applying edge detectors. Because most of the edges have color
intensities lower than the chambers, we only use the ridge
detector to highlight the valley in the images. The detector
has the form

1
L= 5(Far+ Fpy =/ (Foa = By ) +4F2,), (D

where F,.,F,, and F,, are the second derivatives of the
image [ in the gradient direction x, y and xy, respectively.
We compute one ridge map per image using a Gaussian filter
with o = 3.2. Fig. 4 (d) and (e) show examples of the ridge
maps.

As the entire set of edges can hardly be captured in a
single image, simply concatenating features of all the input
images may introduce noise and is computationally inefficient
as well. However, all the edge information in the images
can be collected by maximizing the edge cues over the 16
images. Since the images are perfectly aligned, the fused
feature maps can be obtained by taking the maximum feature
value at each pixel location over the 16 images. We do not
utilize quantiles for feature fusion to get rid of some noise
occasionally shown in the images because it may remove some
weak desirable edges as well, which leads to a lower recall.
After the aggregating, the number of feature maps reduces
from 208 to 13.

As we can see in Fig. 3, some edges have small variations
under different light sources, the standard deviation at each
pixel location over 16 images can provide relatively rich edge
information (An example of this is shown in Fig. 4 (a)).

Therefore we compute a DoG of the standard deviation image
using 0 = 3.2 and 5.1 as an additional feature map.

To make use of the 16 images which highlight the differ-
ent geometric features of the sample, we apply an efficient
uncalibrated photometric stereo technique [23] to reconstruct
a 3D surface of each sample for better fusion of the input
images, followed by a Bilateral filter [25] with ¢ = 0.1 to
remove the small variations on the chambers. A sample depth
map of a reconstructed 3D surface is shown in Fig. 4 (b). The
noise introduced by color changes and textures on the samples
is removed, since they do not have large changes in depth.
Also, edges between chambers are captured well in the depth
map. We compute the maximum normal curvature [26] of this
reconstructed surface as another feature map. This feature map
measures the maximum bending at each point of the surface
and is computed by

k=H+VH?-K, )

where H is the mean curvature and K is the Gaussian
curvature of the surface. Please refer to [26] for more details.
Fig. 4 (c) shows an example curvature map.

In summary, we have 15 maps per sample, consisting of
10 gradient maps, 3 DoG maps, 1 ridge map, and 1 curvature
map. Each pixel location is represented by a 3375 dimensional
feature vector, obtained by centering a 15 x 15 patch on that
pixel and concatenating the features obtained from each of the
15 feature maps.

B. Coarse Edge Probability Map Prediction

We use a random forest to predict the coarse edge prob-
ability map. A random forest is an ensemble of randomly
trained decision trees and the output is the average prediction
of individual trees [27]. Since boundaries of foraminifera and
apertures are comparatively sharper than the edges between
chambers, these two types of edges are divided into two classes
to increase the training efficiency as well as to distinguish
between apertures and chambers for segmentation. Afterwards,
the coarse edge probability map is predicted by a 3-class
classification random forest.

Fig. 7 (c) and (d) show some coarse edge probability maps
estimated at this stage. Though the recall of the observed
desired edges is high, due to the outcomes of max pooling
during feature extraction, the estimated edges are thick, and
edges observed in the texture (but not corresponding to real
chamber boundaries) are also detected in the probability map.
Besides the reason that some edges on the samples are narrow
regions rather than thin lines, Fig. 4 illustrates another reason
arises the thick predicted edges. The shade of the edge
varies slightly under different light source directions, which
introduces small offsets to the edge features over 16 images.
Thus, the edge in the fused feature map is a thick region rather
than a thin line. Other undesired patterns of the coarse edge
maps are the low probabilities of some edges and non-closed
boundaries due to the weak edges or the unobserved edges in
the images. To obtain higher precision edge maps, a second
stage for refinement is necessary.
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Fig. 5. Hand-crafted features and deep features computed from a coarse
edge probability map. (a) Top: One of original sample images. Bottom:
Corresponding coarse edge probability map. The unclear edges in the original
images get low probability (marked with a red box). There is also some noise
due to the texture on the chambers. (b) Top row: Four hand-crafted edge
features of the coarse edge map, including two gradient magnitude maps
and two DoG maps. Bottom row: Four sample deep feature maps. In the
hand-crafted feature maps, especially for the first two, the weak edges of the
coarse map have almost the same patterns as the noise on the upper and right
chambers; however, in deep feature maps, the weak edges are shown much
clearly with patterns far different from the noise, which makes the classifier
distinguish weak edges from noise more easily. Best viewed in color.

C. Refinement of Coarse Edge Probability Map

At this stage, we further refine the coarse edge probability
map to obtain a high precision by thinning the edges, removing
noise, enhancing the probability of desired edges and closing
as many boundaries as possible. From Fig. 7 (d), we can
tell the location of chamber and aperture edges purely based
on the noisy coarse edge map. But those edges cannot be
extracted automatically with a high accuracy through a simple
process, like thresholding. Therefore, we apply a learning-
based approach at this stage and only the predicted coarse
edge map is used as input. Similar to the previous stage,
features are first extracted from the coarse map and each pixel
is represented by a small patch centered around it. Then the
edge map is refined through another classifier. Two types of
features have been tried in our experiment: hand-crafted edge
features and deep features learned by a CNN trained for edge
map refinement. Both approaches are discussed in detail in
this section. We start from the hand-crafted feature extraction.

1) Hand-Crafted Features: Since the edge location in the
probability map is much clearer than in the original 16
images, a smaller number of features need to be extracted
from the probability map. This reduced feature set includes
gradient and DoG with the same parameters as computed
from the original images at the first stage. In summery, 12
feature maps are computed and a patch size 15 x 15 gives
a 2700 dimensional feature vector for each pixel location.
Because the classification of aperture boundaries at the first
stage is accurate enough for aperture region segmentation and
all types of edges have similar patterns in the input coarse
probability map, pixels are labeled as two classes: edge and
non-edge. Next, the refined edge map is obtained by training
a classification random forest again. Fig. 7 (e) shows some
results of the refined edge map. The edge probability map is
much clearer than before and the weak edges are enhanced as

well. Also, some non-closed boundaries are closed, because
the training data contains some examples of filling edge gaps,
which makes the classifier have the ability to hallucinate edges
by fusing features in the patch as discussed in [12]. Better
boundary completion performance can be achieved through
careful selection of training data and use of larger patches.

2) Deep Features: The features we extract for refinement
in section IV-C are purely edge detectors. However, there may
exist better features to remove noise as well as enhance the
low confidence edges in the coarse map. To investigate this,
we employ a CNN to learn a set of features automatically
from the coarse probability map.

A CNN consists of one or more convolutional layers fol-
lowed by one or more fully connected layers. It often contains
a pooling layer between two convolutional layers to reduce
complexity [28]. In our experiment, we use four convolutional
layers and two fully connected layers as used in [18], which
is sufficient for low-level feature extraction as suggested in
[18]. The only difference is that we do not use local response
normalization layers (LRN). The input of this CNN is a 32x 32
patch of coarse probability map and it is trained to label the
center point of each patch as edge or non-edge. Dropout [29]
with probability 0.5 is used in the first fully connected layer
(FC1) during training to reduce the risk of overfitting.

Similar to [18], we use the output of FCl (a 128-
dimensional feature vector) as our deep features of each pixel
and thus we can show the feature maps in the same way as
in [18]. The comparison of hand-crafted features and deep
features can be found in Fig. 5. Both weak and strong edges
in the coarse edge map are more distinguishable from noise
in deep feature maps, which makes the noise suppression
and edge enhancement much easier through a classifier. We
concatenate the features of all the pixels in a 11 x 11 patch
to obtain a 15488-dimensional feature vector to represent the
centering pixel. Again, a random forest is trained using the
deep features for the edge probability map refinement. Fig.
7 (f) shows some sample results. The refined edge maps are
comparable to those refined by hand-crafted features, but are
more accurate for some small details and also get more closed
boundaries because of the more powerful features.

Fig. 6 explains how the edge detection improves by using
the coarse-to-fine strategy. At the first stage, only a set of
small patches is used to predict each pixel location. Though
the prediction is noisy, the edge information is clearer than
the original input. Every time we go to the next stage, we
can efficiently gather the information from larger patches in
original images by taking small patches in the prediction of
this stage and obtaining an even clearer predication. If deep
features are employed, each pixel in the final predication is
based on a set of 57 x 57 patches in the original images.
This is similar to the image processing through a CNN,
which indicates the possibility of using an end-to-end learning
process through a CNN. However, instead of learning features
from original images directly, we use hand-crafted features
at the first stage followed by a relatively simple CNN. This
procedure largely reduces the risk of overfitting due to the
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Fig. 6. Data flow of our coarse-to-fine edge detection using deep features.
Paths with different colors illustrate computation patch of a pixel location at
different stages. (a) Input 16 sample images. (b) Each pixel in the coarse edge
map is predicted by a set of 15 x 15 patches in original images. (c) Each pixel
in the deep feature maps is computed by a 32 X 32 patches in the coarse edge
map and thus depending on a set of 46 x 46 patches in the original images. (d)
Each pixel location in the refined edge map is predicted by a set of 11 x 11
patches in deep feature maps and then depending on a 43 X 43 patch in the
coarse edge map. Thus each pixel in the final refined edge map is predicted
based on the information gathering from a set of 57 X 57 patches from the
original images.

highly limited training data.

D. Post-Processing

To further close the boundaries, a closing operation using a
disk with radius of 2 is applied to the refined edge probability
map after thresholding. Afterwards, the final segmentation is
obtained by growing the regions separated by those edges
based on distance. If aperture edges are detected in the coarse
probability map, then a region in the image that is overlapping
with the aperture edge is labeled as an aperture given that
its average color intensity (over all 16 images) is considered
dark enough. We check this by comparing the color against
a two group k-means clustering performed using the training
data. The clustering using the training data is repeated 5 times
in order to gain robustness, and a test region is labeled as
aperture only if falls in the appropriate cluster more than
50% of the time (i.e., 3 times in this case). Fig. 7 (g) shows
some final segmentation results. The edge thinning by region
growing removes some non-closed boundaries but it also gets
rid of the small branches that could be produced through
skeletonization.

V. EXPERIMENT

In this section, we evaluate our foraminifera edge detection
and segmentation qualitatively and quantitatively.

A. Implementation Details

We randomly choose 100 samples from the 457 labeled
samples as our training samples: 25 are used to train the first
stage, and 75 for the second stage. That leaves 357 labeled
and 530 unlabeled samples for testing. The training edges are
thickened by 6 pixel at the first stage and by 4 pixels at the
second stage.

For the first stage, 62.5k non-edge patches (2.5k per sam-
ple), 37k chamber edge patches (all chamber edges in 25
samples) and 50k other edge patches (2k per sample) are
randomly sampled as the training set. At the second stage,
the random forest using hand-crafted features is trained by
randomly sampling 96k positive patches (all edges in 75

samples) and 150k negative patches (2k per sample) from the
75 samples. To train the deep features, the patches from the 75
samples are divided into a set of 17k validation data points (7k
positive and 10k negative) from 5 samples and a set of 229k
training data points (89k positive and 140k negative) from
70 samples. Then a random forest using the deep features is
trained by randomly sampling 37.5K positive patches (500 per
samples) and 60k (800 per sample) negative patches from the
75 samples.

The random forests parameters used in our experiment are
all the same. Each random forest is trained until all the leaf
nodes only contain one class using a collection of 150 trees,
except for the one trained using deep features which consists
of 50 trees to reduce the time consumption. The CNN for
learning deep feature is trained using 200 epochs with batch
size 5000. The learning rate for the first 100 epochs is 0.01
and set to 0.001 for the remaining 100 epochs.

The random forests are implemented in MATLAB and
the CNN is implemented in Python using the Tensorflow
framework [30]. The experimental environment is CPU i7 with
64GB RAM and NVIDIA TITAN GPU. For a sample image
with resolution 166 x 166, computing one coarse edge map
needs 24 seconds. Refinement through hand-crafted features
requires 18 seconds and through deep features requires about
100 seconds (1 minutes for feature extraction and 40 seconds
for edge patch classification). Note that these steps can be
largely optimized through implementation of a fully convolu-
tional network and parallel computing.

B. Qualitative and Quantitative Evaluation

Results of each stage of our approach are shown in Fig.
7. Coarse edge probability maps (RF) obtained at the first
stage are able to collect most of the edge clues from the input
image set, but some edges are thick or detected with low con-
fidence, which causes some non-closed boundaries. However,
the aperture boundaries and chamber edges are separated well
at this stage (RF label). At the second stage, hand-crafted
features (RF+RF(HF)) and deep features (RF+RF(DF)) give
similar performance; however, deep features provide higher
confidence for weak edges, more accurate details and more
closed boundaries. Also, as shown in the last row of Fig.
7, if the edges in the input images are too weak to get
captured at the first stage, they will not be detected by the
refinement either. Another observation is that the machine
segmentation can be better than manually labeling in some
cases. Edges unclear to humans are located by efficiently
collecting information from a neighborhood of each pixel.

To quantitatively demonstrate the improvement of the sec-
ond stage and evaluate the performance, we use three edge
detection evaluation metrics: the best F-measure for a fixed
threshold (ODS), the average F-measure of the best threshold
for each image (OIS) and the average precision over all
threshold (AP), as well as three segmentation metrics: the best
weighted covering score (W), un-weighted covering score (Un-
W) [31] and recall of regions (Recall) for fixed thresholds.
The edge recall is defined as the percentage of the labeling
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Fig. 7. Sample results of different species. Sample images (a), manual
labeling (b), edge labeling after first stage (c), edge probabilities from various
approaches (d)-(f), and final segmentation using deep features (g) are shown.
For the first stage (c), edges between chambers are labeled in green and other
edges are yellow. Aperture is labeled as red in segmentation (g). Window W1
shows an example in which correct machine labeling and human labeling can
have some offsets. Window W2 shows how deep features can close non-closed
boundaries in the refined map. Window W3 illustrates an example in which
machine labeling can be better than human labeling. Window W4 shows how
the refined map (stage 2) can enhance weak edges as well as remove noise
from the coarse map. The last row shows a failed example due to edges that

are too vague to be captured in the coarse map.

Fig. 8. Additional results. (a) Using patch size 57 x 57 for random forest.
(b) Using deep features computed by a CNN from a 16-channel image.

edges covered by the thresholding estimated edge map. The
edge precision is defined as the percentage of the estimated
edge pixels covering the labeling edges. The labeling edges are
thickened to 8 pixels wide for precision computation since the
actual edges between chambers can be narrow regions, which
generate thick estimated edges and small offsets between
human labeling and the correctly estimated edges. For seg-
mentation evaluation, weighted covering score is the average
covering score weighted by the area of each region in human
labeling. We also use un-weighted covering score because
for species identification purpose, every chamber and aperture
have equal importance. To evaluate how well the chambers and
apertures are detected, we define the recall of regions for each
sample as the percentage of the labeling regions detected in
the estimated segmentation, where each region in the human
labeling is regarded as detected if there exists an overlapping
estimated region with covering ratio greater than 0.5.

Table I presents the scores at each stage. The precision

TABLE I
EDGE DETECTION RESULTS USING DIFFERENT FEATURES AND
CLASSIFIERS
Edge Region
ODS OIS AP \\ Un-W Recall
RF 841 .853 .698 779 .645 .695
RF+RF(HC) .867 .875 775 825 715 179
RF+RF(DF) 872 879 71 821 721 .786
RF(2D) .842 .852 .691 157 616 .659
RF(100) .841 .853 .650 803  .678 753
RF+RF(HC43) | .868 .877 759 821 713 764

is relatively low compared with other metrics even with the
thickened labeling because of the thick estimated edges and
the inaccurate of human labeling as shown in Fig. 7. But we
do observe the improvement of precision after the refinement.
Besides this, we can see a large performance gain from the first
stage (RF) to the second stage (RF+RF(HC) and RF+RF(DF)),
especially for region scores. The closing of boundaries only
brings small changes in the sense of edge, but can highly
increase the segmentation accuracy. The increase of average
precision also suggest the thin edges in refined edge maps.
Deep features (RF+RF(DF)) refinement is slightly better than
hand-crafted features (RF+RF(HC)). The higher un-weighted
covering and region recall scores indicate that deep features
are more capable in detecting small regions, most of which are
apertures. Thus, deep features are preferred for the applications
in which aperture detection is crucial. Otherwise, hand-crafted
features, which are good enough to correctly segment most of
the chambers, can be used for computational efficiency.

We also report scores of the first stage without 3D fea-
tures (RF(2D)), the decrease in the region scores of (RF)
demonstrates 3D features can enhance some weak edges to
close more boundaries. To be comparable with deep features
(RF+RF(DF)), which gather information from 43 x 43 patches
in the coarse map, we report the scores of refinement with
hand-crafted features using 43 x 43 patch (RF+RF(HC43)).
The similar scores with 15 x 15 patch size indicate that the
better performance in small details cannot be achieved by sim-
ply increasing the patch size. To show that the improvement
of the second stage is not purely because of the increasing
of the training set, the scores of the first stage with all 100
training samples (RF(100)) are reported. It hardly improves the
edge detection performance, but improves the segmentation by
providing higher detection confidence for some weak edges.
Still, it cannot beat the performance of using a second stage
for refinement.

We have also tried other two settings with only one stage
using 100 training sample images: using patch size 57 x 57 for
a random forest to compare with deep features, and extracting
deep features directly from a 16-channel image formed from
the original images using a CNN with the same architecture
as used in our experiment. Results of these two settings are
shown in Fig. 8. The outputs do not have the same quality
as the two stage refinement process, which is able to gather
information more efficiently and requires a less complex CNN.



VI. CONCLUSION

In this paper, we propose a coarse-to-fine edge detection
approach on our foraminifera dataset. We use a two-stage
strategy to achieve accurate edge detection and segmentation
performance using a relatively small training data through
additional 3D features and features learned from a CNN.
The experiments demonstrate that the machine segmentation
is able to correctly label chambers and apertures on samples.
There are several applications for the segmentation results.
Sample images of specific species can be selected by searching
among the segmentation results. For example, one can get
images of G. bulloides by picking the samples with one
aperture and four chambers in the segmentation results. Also,
by representing regions as nodes in a graph and connecting
the nodes of adjacent regions, we can construct a graph to
represent the structure of each sample. General structures of
different species can be learned from a training set and species
can be identified through graph matching. Additionally, the
actual size of chambers and apertures can be computed to
help with the morphological study of the shells.
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