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Abstract—Traditional forms of crowdsourcing such as open source software development harness crowd contributions to 

democratize the creation of software. However, potential contributors must first overcome joining barriers forcing casually 

committed contributors to spend days or weeks onboarding and thereby reducing participation. To more effectively harness 

potential contributions from the crowd, we propose a method for programming in which work occurs entirely through microtasks, 

offering contributors short, self-contained tasks such as implementing part of a function or updating a call site invoking a 

function to match a change made to the function. In microtask programming, microtasks involve changes to a single artifact, are 

automatically generated as necessary by the system, and nurture quality through iteration. A study examining the feasibility of 

microtask programming to create small programs found that developers were able to complete 1008 microtasks, onboard and 

submit their first microtask in less than 15 minutes, complete all types of microtasks in less than 5 minutes on average, and 

create 490 lines of code and 149 unit tests. The results demonstrate the potential feasibility as well as revealing a number of 

important challenges to address to successfully scale microtask programming to larger and more complex programs. 

Index Terms—D.2.6: Programming Environments; D.2.9: Management  
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1  INTRODUCTION

rowdsourcing software engineering offers a number of 
opportunities for reducing time to market, generating 

alternative solutions,  employing  specialists,  learning 
through  work,  and  democratizing  participation  in  soft-
ware  engineering  [1][2][3].  One  of  the  oldest  and  most 
prevalent forms of software crowdsourcing today is open 
source software development (OSS). In OSS, contributions 
are solicited from the crowd, opening the contribution of 
features and bug fixes to hobbyists, professionals, and even 
companies [4]. OSS is a form of commons-based peer pro-
duction envisioned to  achieve three key structural attrib-
utes: (1) it is possible to decompose output into separate 
contribution  units  (e.g.,  addressing  issues  in  an  issue 
tracker),  (2)  contributions  are sufficiently  fine-grained  to 
capture  contributions  from  those  whose  motivation  will 
only  sustain  small  efforts, and  (3)  a low-cost  mechanism 
defends against incompetent and malicious contributions 
and integrates them  into  a  whole (e.g., pull requests) [5]. 
However, open source projects today do not fully realize 
the potential of this model, as they impose significant join-
ing barriers  on  potential  contributors.  These  include:  (1) 
identifying appropriate contacts and receiving timely feed-
back, (2) identifying appropriate tasks and corresponding 
artifacts,  (3)  understanding  project  structure,  complex 
code,  and  setting  up  a  workspace,  (4)  outdated,  unclear 

 

1 http://www.utest.com 

documentation and information overload, and (5) learning 
project practices, domain knowledge, and technical exper-
tise  [6].  Taken  together,  these  barriers  impose  a  lengthy 
joining script [7], dissuading the busy or casually commit-
ted from contributing and limiting the pool of millions of 
potential contributors to only the most committed.  
One  solution  to  this problem commonly used in other 

domains is the microtask. A microtask is a short, self-con-
tained unit of work with a clear objective. Organizing work 
in microtasks decontextualizes the tasks done by workers, 
enabling a contribution to be made in isolation of other on-
going  work  and  with  no  requirements for  prior 
knowledge.  Decontextualizing  work  into  microtasks  has 
been applied to problems in a number of domains. For ex-
ample, in Soylent work copy editing a document is decon-
textualized and decomposed into “find”, “fix”, and “ver-
ify” microtasks in which separate workers to identify op-
portunities for revisions, generate potential revisions, and 
vote on revisions [8]. Players of the game FoldIt solve puz-
zle tasks, the results of which are then used to compute so-
lutions to challenging protein folding tasks [9].  
Microtask crowdsourcing has found application to soft-

ware development for tasks where decontextualization is 
possible. Developers today routinely complete microtasks 
on  StackOverflow, where  the asker of  the  question is  re-
sponsible  for decontextualization by  identifying  a short, 
clear objective in the form of a question, often structured 
as a short snippet of code to be generated or revised [10]. 
Sites such as uTest1 match freelance testers to projects, help-
ing projects rapidly recruit from the over 300,000 registered 
testers. 
But can programming be microtasked? Is it possible for 

a developer that today might make a ten-minute contribu-
tion  answering  a  question  on  StackOverflow  to  instead 
spend  the  same  ten  minutes  writing  code  for  an  open 
source project? Achieving this goal requires new methods 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

———————————————— 

• Thomas D. LaToza is with the Department of Computer Science, George Ma-
son University, 4400 University Drive, MS 4A5, Fairfax, VA 22030. E-mail: 
tlatoza@gmu.edu. 
• Arturo di Lecce is with Cuebiq Srl, Italy. E-mail: arturodilecce@gmail.com. 
• Fabio Ricci is with Bosch Rexroth. E-mail: f.ricci89@gmail.com. 
• W. Ben Tow ne is w ith the Institute for Software Research, School of Com-
puter Science, Carnegie Mellon University, 5000 Forbes Avenue, Pitts-
burgh, PA 15213. Email: wbt@cs.cmu.edu. 

• André van der Hoek is with the Department of Informatics, Donald Bren 
School of Information and Computer Science, University of California, Ir-
vine, 5029 Donald Bren Hall, Irvine, CA 92697-3440. Email: an-
dre@ics.uci.edu. 

 

C 



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE
Transactions on Software Engineering

2 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

to reduce the context demands and joining barriers tradi-
tionally imposed by open source projects to broaden par-
ticipation [2]. However, broadening participation is a dis-
tinct goal from, and may even be in opposition to, increas-
ing team productivity. Compared to a single developer, a 
team of five incurs coordination overhead unnecessary for 
a single developer. Similarly, increasing the number of con-
tributors  to  an  open  source  project  from  20  to  2000  may 
well mean that the number of person hours per contribu-
tion increases, as the contributors have spent less time on 
the project, have less expertise, and work more slowly. Ra-
ther than increase team productivity, the goal is to harness 
contributions from the 1980 transient contributors whose 
potential  to  contribute  would  otherwise  go  unused,  as 
Shirky argues [11].  
To add ress the challenge of microtasking programming, 

we  propose a  set  of design  principles for  new  program-
ming environments  and  describe  the  design  of  a  system 
following  these  principles. To  enable  fine-grained contri-
butions, work  is  organized into  local  changes  to  a  single 
artifact such as a function or test. The system itself is then 
responsible for  creating,  managing,  and  assigning mi-
crotasks, tracking the state of artifacts to determine what 
needs  to  be  done  and  propagating  interface  changes  be-
tween artifacts when necessary. To ensure the quality of the 
final program created, artifacts are iteratively assessed and 
revised through sketching, repeated edits, reporting issues, 
a  review  process,  and  testing.  To  contribute,  workers 
simply login, complete a short tutorial, and begin work on 
an assigned microtask.  
Our work is part of a longer-term exploration of the use 

of  microtasks  in  software  engineering.  In  this  paper,  we 
consider programming in the small, where a well-defined 
request for a component posed by a client is implemented 
through  coding,  testing,  and  debugging.  Our  approach 
builds  on  early  explorations  and  prototypes  examining 
mechanisms for deriving microtasks for programming and 
small pilot experiments [12][13]. Other work has examined 
the  relationship  of  microtask  crowdsourcing  to  other 
crowdsourcing models [1] and considered mechanisms for 
coordinating  developers  working  on  programming  mi-
crotasks [14]. In this work, we do not consider microtask-
ing the creation of software requirements, architecture, de-
sign, or user interfaces. In other work, we have begun to 
explore how software design tasks might be crowdsourced 
[15][16]. 
In this paper, we contribute a new set of design princi-

ples  for  microtask  programming reflecting  the  lessons 
learned from our earlier approaches [12][13]. In particular, 
we contribute new techniques for ensuring quality, provid-
ing  feedback  to contributors, debugging  modularly,  ena-
bling contributors to more easily reuse code, and on-board-
ing new contributors more  quickly. We  al s o  c o ntr i bute  a 
new empirical  study exploring  the  potential  and  chal-
lenges of microtask programming, examining specifically 
the feasibility, speed of onboarding, speed of contributions, 
and effects of quality control mechanisms.  
We  first illustrate  microtask  programming  through  an 

example. We then present our approach and describe the 
design of a new microtask programming environment. To 

evaluate  the  possible  feasibility  of  microtask  program-
ming,  we describe  results  from  a  user  study  where  two 
small crowds used microtask programming to build small 
programs.  We  conclude  by  discussing  the  prospects  and 
challenges for the application of microtasking to program-
ming.   

2  MOTIVATING EXAMPLE 

Doug just started an open source project to build a better 
drawing  application.  After  putting  together  an  initial vi-
sion of the features it should have, he decides the next step 
is to start building a prototype implementation. He decides 
to  microtask  the  creation  of this  prototype  using  the 
CrowdCode  microtask  programming  environment.  He 
first specifies  the core logic of the drawing program as a 
component, consisting  of  four  functions and  the abstract 
data types (ADTs) describing the data that these functions 
will  consume and produce. Doug enters this information 
in  the  CrowdCode  admin interface,  gives  the  project  a 
name,  posts a link  to  the  project on his website,  and  an-
nounces  his  new  drawing  application  on  an  online pro-
gramming forum.  
Alice  finds  the  project,  clicks  through,  and  logs  into 

CrowdCode. She first sees a short tutorial, describing the 
major elements of the CrowdCode interface including the 
task  description,  microtask  pane, chat,  activity  feed,  and 
leaderboard.  She  is  then  assigned  a  microtask to Edit  a 
Function.  She  reads  a  second  tutorial describing  the  mi-
crotask, identifying its goal, the possible actions she may 
take, emphasizing that she should only write a few lines of 
code or pseudocode, and that she need not complete  the 
function’s  implementation.  She  then  begins work  on  the 
Edit  a  Function microtask,  reading  the  function moveEl-
ement  contained  within. Discovering  it already  contains 
pseudocode, she replaces some of it with a partial imple-
mentation. She decides that implementing functionality to 
checking preconditions is behavior best implemented else-
where, so she writes a function declaration stub for a new 
function validElementType  at  the  bottom  that  checks 
preconditions and adds a call in moveElement (Fig. 1, bot-
tom). Working to finish up, she notices that the ten-minute 
count down timer has nearly  expired.  Writing down  one 
final thought, she adds her own pseudocode describing a 
part  of  the function  that  still  needs  to  be completed  and 
clicks submit.  
As Alice works, others simultaneously work on seven 

separate  microtasks, building  code  and  tests  for  the  re-
mainder of the drawing program’s API. Bob is assigned a 
microtask  to  test moveElement.  The  microtask  provides 
the description and signature of the function, text describ-
ing a test case to move a rectangle, and a request to imple-
ment the test case as a unit test. Using the test builder in-
terface, Bob first browses a panel listing the available data 
types to understand the fields of the Element data type. He 
then realizes he does not know what coordinate system is 
being used. Not immediately seeing an answer, Bob asks a 
question in the chat, to which Alice replies. Bob finishes the 
test and clicks submit. 
Charles is riding the bus home and really wants to just 
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program. He logs in to CrowdCode and is assigned a Write 
Te s t microtask. Unexcited, he clicks skip and is assigned a 
new Edit a Function microtask, continuing where Alice left 
off  on moveElement.  More  enthused,  he  quickly  imple-
ments the algorithm Alice sketched and edits a few other 
lines to make the code a little cleaner. He then clicks sub-
mit. 
Dave reviews Charles’ work. He notices a subtle issue 

in the algorithm. In his review, he describes the issue and 
rates the work as 3 stars. Ellen is assigned an Edit a Function 
microtask to  address the issue, which she fixes. Assigned 
to review Ellen’s contribution, Alice is pleasantly surprised 
to see how work on moveElement has progressed since her 
earlier contribution and gives Ellen’s work 5 stars. 
As CrowdCode tracks the state of moveElement, it de-

termines that it has no remaining pseudocode to  be com-
pleted  and  several completed  tests.  After executing  each 
test using the distributed test runner, it receives a report of 
a  test  failure  and  creates  a Debug  Task  Failure  microtask. 
Charles is assigned the microtask to debug moveElement, 
selects the failing test, and hovers over expressions to see 
their value in the execution. Hovering his mouse over a call 
from moveElement to validElementType, he finds that 
validElementType  returns  false,  contradicting the  be-
havior it promises in its description. Using the stub editor, 
he edits the return value of validElementType, replacing 
it with true. Rerunning the tests, he sees that they now pass 

and clicks submit. This automatically generates a new test 
for validElementType which is automatically executed 
and fails. 
Frank  logs  in  to  CrowdCode  and  is  assigned  a Debug 

Test Failure for validElementType. Looking at the failing 
test, he sees that it is returning false for a shape that should 
be valid. Editing the code, he sees that the function is miss-
ing a parameter required to check the validity of the shape. 
After editing the signature to add the parameter, he adds 
some functionality, reruns the test, sees that it passes, and 
submits.  Microtasks  are  then  automatically  generated  to 
update each call site and test of validElementType. 

3  RELATED WORK 

Microtask programming draws on ideas from several ar-
eas:  open  source  software  development,  applying  mi-
crotask crowdsourcing to complex work, and crowdsourc-
ing software development tasks.  
One form of crowdsourcing is open source software de-

velopment, where source code is freely shared and anyone 
may contribute [4]. Traditional methods for contributing to 
open source projects differ from microtask crowdsourcing 
in several important respects, particularly in that tasks are 
at the granularity of implementing a feature or fixing a de-
fect with a duration of hours or days rather than minutes. 
Workers must also complete a lengthy joining script and 

  

Fig. 1. The CrowdCode microtask programming environment includes: (1) the current microtask, (2) a code editor, (3) the number of remaining 
statements that can be added, (4) the time remaining, (5) controls to submit or skip the microtask, (6) the ADT browser, (7) the activity feed 
listing the worker’s submitted microtasks, (8) a leaderboard, and (9) current project-wide statistics. 
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may even be subject to harsh feedback from senior mem-
bers when  they  experience  challenges  in  completing  this 
script  [17][7][6]. Software crowdsourcing  models  such  as 
competitions  are  designed  to  identify  high  quality  solu-
tions by making it easy for many to contribute. But plat-
forms for competitions still impose significant barriers to 
contribution.  For  example,  one  study  of  the developer 
competition platform TopCoder found that potential con-
tributors face barriers from a lack of documentation, pre-
dicting the time commitment they were being asked to in-
vest, understanding code structure and architecture, infor-
mation overload, and from poor platform usability [18].  
A number of crowdsourcing systems have explored ap-

proaches  for  applying  microtask  crowdsourcing  to  com-
plex tasks. These systems rely on the concept of a workflow 
which  decomposes  a  larger  task  into  a  sequence  of  mi-
crotasks. For example, Soylent [8] partitions proof reading 
and editing tasks into individual steps to identify a prob-
lem, make a fix, and verify a fix, each of which takes the 
form of a microtask which can be separately performed by 
a member of the crowd. TurKit [19] provides a framework 
for authoring scripts to create and run tasks in Mechanical 
Turk, enabling more flexible workflows. CrowdForge [20] 
expands those solutions by enabling the crowd to partition 
work. However, these systems are limited in that they as-
sume that all of the microtasks can be enumerated and gen-
erated  at  the  very  beginning through  a  workflow  where 
each input data element is transformed through a fixed se-
quence  of  steps.  This  approach  cannot  be  used  in  mi-
crotasking programming, as programming tasks cannot be 
decomposed  in  the  same  way  and  fully  enumerated  up 
front. For example, it is impossible to predict, from a spec-
ification of requirements alone, that it will be necessary to 
generate a microtask to fix a function to pass a test when 
even the existence of this function and test depends on the 
completion of prior microtasks. In this way, applying a mi-
crotask approach to programming work requires new tech-
niques to dynamically generate microtasks in response to 
the current state of the work product. 
Much work has explored approaches to crowdsourcing 

software  development  tasks  [21].  Most  of  these  have  fo-
cused on software development tasks other than program-
ming such as question answering, verification, testing, or 
UI design. Companies increasing employ crowd workers 
for  testing  [22].  Developers  today  often rely  on  the  vast 
wisdom  of  the  crowd  offered  on  Stack  Overflow  by  the 
many contributors that curate a knowledge repository of 
answers  to  programming problems  [10].  Several systems 
have explored  the  use  of  crowdsourcing  for  recommend-
ing fixes to bugs [23][24] and compilation errors [25] and 
to checking and fixing unit test assertions [26]. To leverage 
larger  pools  of  workers,  several systems have  adopted  a 
gamification paradigm enabling non-specialists to contrib-
ute to verifying software models for correctness [27][28] or 
verifying the absence of security vulnerabilities [29]. Ap-
proaches  for  crowd-based  requirements  engineering  aim 
to  increase  the  involvement  of  end  users  in  shaping  the 
software they use [30][31][32]. Other work has explored us-
ing Mechanical Turk workers to test GUI functionality and 
usability [33]. 

Within  approaches  for  crowdsourcing software devel-
opment,  a  few  systems  have  explored  the  application  of 
microtask crowdsourcing to programming. Work has be-
gun to explore an extension to the StackOverflow question 
and answer model in which, instead of employing a crowd 
to answer questions, the crowd itself directly edits the code 
in the codebase in response to questions [34]. In Appari-
tion, crowd workers take small UI requests made by a cli-
ent and implement them as a mockup [35]. In CrowdDe-
sign, workers work to build small code snippets that gen-
erate  visual  output  [36].  These  systems  demonstrate  the 
potential  for  applying  microtasking  approaches  to  pro-
gramming.  But  all  are  limited  in  scope,  designed  to  re-
spond to enable developers to manually contract out small 
tasks  to  others  rather  than  for  groups  of  developers  to 
come  together  to  produce  programs,  as  occurs  today  in 
open source software development.  
Collabode  enables  an  “original  programmer” to de-

scribe  custom  microtasks  in  prose,  which  are  then  com-
pleted  by  workers [37][38].  An  evaluation  of  the  system 
found that, while it was possible to use microtasks for pro-
gramming,  there  were  several  significant issues  with  the 
workflow used. As workers relied on a global view of the 
entire  codebase,  it  was  sometimes  distracting  to  see 
changes being made elsewhere. Managing the crowd im-
posed a large overhead for the requester, as they needed to 
answer questions about the request and evaluate each con-
tribution in detail. Moreover, code often had subtle bugs, 
which was difficult for the requestor to find through code 
inspection. As workers were anonymous, they sometimes 
did not take responsibility for their work. These consider-
ations  directly  motivated our design  principles for  mi-
crotask programming, as we describe in the following sec-
tion. 
Overall, the many existing approaches to crowdsourc-

ing offer a number of important building blocks. Our work 
specifically  targets  the  problem  of  reducing  contribution 
barriers  in  open  source  software  development,  where 
groups of developers together work to build programs. Of-
fering developers the ability to make small programming 
contributions in this setting poses several challenges which 
existing  work has  not  yet  tackled.  How  can  developers 
work  on  automatically  generated  programming  mi-
crotasks without needing the context of the entire system? 
How can microtasks be generated when it is impossible to 
generate all of the microtasks upfront? How can the quality 
of work be ensured, without having a client made manu-
ally  responsible  for  inspecting  each  of  the  contributions 
made by the crowd? We next present a set of design prin-
ciples for addressing these challenges.        

4  DESIGN PRINCIPLES 

In this section, we offer a set of design principles character-
izing the microtask programming methodology. We  o ffer 
motivation for our principles  through examining existing 
systems as well as from our own experience designing and 
evaluating a series of early prototypes of our system.  
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4.1  Decontextualize Contributions 

Trad itional  software  development  tasks  require  develop-
ers to first learn context such as the location of features in 
code, steps to  build and run code, and who to ask for in-
formation  [39][40][6][41].  Learning  context  creates  a 
lengthy onboarding script, delaying the time at which de-
velopers  can  first  make  a valuable  code  contribution  [7]. 
While it may not be possible to entirely eliminate the need 
for context, reducing context reduces the cost of onboard-
ing and enables developers to contribute more quickly.  

4.1.1 Local edits to a single artifact 

Offering developers a single task to perform on an individ-
ual small artifact (e.g., a function or test) has several ad-
vantages.  Rather  than  forage  through  a  codebase  for  the 
appropriate artifact in which to make a change [42], devel-
opers are already offered the artifact. Reducing this context 
may substantially reduce the knowledge required to work 
productively in a codebase. 
Allowing developers the ability to interact with only a 

single artifact at a time creates several challenges. Rather 
than rely on developers to visit call sites or function defini-
tions to understand what a related function does, such in-
formation should instead be embedded in the interfaces of 
other functions. Rather than rely on developers to infer the 
runtime  type  of  parameters by reading  related  code,  pa-
rameters should  be  explicitly  given  static  types.  Careful 
consideration is required of the additional context devel-
opers may require to make changes.  

4.1.2 Provide a preconfigured environment 

Installing  appropriate  tools,  downloading  code  from  a 
server, identifying and downloading appropriate depend-
encies, and configuring a workspace to build a project all 
constitute significant barriers to contribution [6]. Offering 
a  preconfigured  environment may  substantially reduce 
these barriers, thereby reducing onboarding time. Precon-
figured environments might  be  offered  through  a  preset 
virtual machine containing a configured development en-
vironment, installed libraries, and scripts or through a web 
application. 

4.2 Automatically Generate Microtasks 

Microtasks describe the next steps for progress to be made. 
Accurately and completely capturing all steps that are nec-
essary is important so that work is not lost and progress is 
not stalled. At any given point in time, there may be many 
concurrent microtasks in progress. One approach would be 
to  have  a  manager  explicitly  create  each  microtask  and 
evaluate  each  resulting  contribution.  However,  for  short 
programming  microtasks  by  transient  contributors,  this 
approach takes more time for the manager of the microtask 
than if they had simply done the work themselves, negat-
ing the benefits of microtasking [37][38]. Moreover, it also 
assumes a manager or managers that are always available 
whenever  work  is  ongoing  at  any  time.  Traditional mi-
crotask  crowdsourcing  systems  in  domains outside  pro-
gramming have addressed the issue by instead using com-
pletely automated microtask generation, where a client de-

scribes an initial request, the system is responsible for au-
tomatically and immediately generating the full set of mi-
crotasks to complete, and mechanisms such as redundancy 
and  voting  ensure  quality  [43].  In  this  way,  there  is  no 
longer a cost for each microtask to be manually authored, 
managed, and evaluated by a requestor, and the work is 
instead organized by the system with contributions from 
the crowd. 
However, automatic microtask generation brings  new 

challenges.  In  traditional  crowdsourcing  approaches,  mi-
crotasks are generated through a fixed sequence of steps, 
such as a MapReduce [44] workflow describing the steps 
where each input is transformed into an output [8][20]. In 
contrast, software tasks are dynamic and the functions and 
tests that might be needed, as well as the issues and bugs 
that might emerge, cannot be enumerated upfront. A dif-
ferent approach is required that generates microtasks dy-
namically as the program emerges.     

4.2.1 Track artifact state 

To track the current state of a program and its progress to-
wards satisfying its requirements, the state of each artifact 
within  the  program  can  be  separately  tracked. Consider 
the state of a function as it is being created. At any point in 
time, a function might  need  a signature to be written, an 
implementation to  be  completed,  or its  code  to  be de-
bugged. By tracking attributes describing what is or is not 
complete, a state machine can be used to describe the states 
through  which  the  artifact  may  transition  and  order the 
work to be done (e.g., imposing a constraint that a function 
must  have  a  signature  before  beginning  its  implementa-
tion). Whenever a microtask is submitted, the artifact may 
change its attributes (e.g., record that a signature has been 
added) and transition to a new state reflecting these attrib-
utes changes. Each transition may then generate an appro-
priate microtask. The evolution of an artifact need not even 
be monotonic. An artifact might transition back to a previ-
ous state after, for example, a developer adds pseudocode 
while fixing a defect. 

4.2.2 Signal interface changes across dependencies 

As workers edit artifacts, edits to an interface of an artifact 
may necessitate changes to artifacts elsewhere in the sys-
tem. For example, adding functionality may require addi-
tional information to be passed in through a new parame-
ter, which then requires all function call sites and tests in-
voking  the  function  to  be  updated to  provide  this  infor-
mation. As a microtask spans only a single artifact, this re-
quires a mechanism for signaling to other artifacts that an 
interface change has occurred. 
In responding to interface change notifications, artifacts 

must generate appropriate microtasks. A key decision is to 
which interface changes  dependent  artifacts  should  re-
spond.  For  example,  a  function  might  have  a behavior 
change in its implementation, a change to the description 
of its behavior, or a change to its signature. However, it is 
difficult  to  determine in  general  if  an  implementation 
change or change to a function’s description does or does 
not signal a change to the function’s interface that might 
impact callers of the function. In our experience with early 
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prototypes, we found that workers often change descrip-
tions simply to clarify the text and fix formatting and typo-
graphic errors. Signaling changes to callers of these func-
tion  in such cases created many unnecessary microtasks, 
which substantially decreased productivity. A better alter-
native is to signal changes only for changes that clearly will 
require  a  change  such  as  signature  changes  and  rely  on 
tests to catch other behavioral interface changes in the less 
frequent cases when they occur. 
As developers work, they make use of task context de-

scribing the interfaces of other related artifacts. Developers 
may find that this task context is inconsistent with their ar-
tifact.  For  example,  we  found  that workers  writing  tests 
sometimes realized that a behavior of a function could not 
be tested as described in the test case description [13]. As a 
result,  it  was  impossible  to  complete  the  microtask  they 
were asked to do. It is thus important to allow workers to 
report  issues  with  task  context,  halting  work  on  the  mi-
crotask and creating a microtask for the other artifact to re-
solve the issue. 

4.3 Achieving Quality through Iteration 

A key consideration in all crowdsourcing approaches is de-
signing mechanisms to protect against poor contributions 
and ensure high quality work [45]. Yet  usi ng  crowd sourc-
ing to solicit contributions from many contributors can also 
increase software quality, as the diverse ideas contributed 
by the crowd offer the building blocks to reach higher qual-
ity designs [15]. Rather than using a single manager or ar-
chitect to oversee the project, the crowd itself is responsible 
for setting the direction of the project as work progresses 
through  each  of  the  individual  contributions  made. It  is 
thus important to consider in detail the effects of decom-
position, workflow organization, and coordination mecha-
nisms on the quality of the output produced [46].  

4.3.1 Encourage revision through sketching 

Long contributions prevent the crowd from offering feed-
back on work as it is being done, enabling contributions to 
go far off track without input from the crowd. Low quality 
contributions may arise for many reasons. Workers may go 
off track because they are confused, because they are not 
knowledgeable enough to contribute a high-quality solu-
tion,  because  they  put  forth  little  effort,  or  because  they 
wish to be actively malicious. Whatever the reason, even 
an individual low-quality contribution can significantly re-
duce  the  overall  quality  by  introducing  decisions  that 
make subsequent implementation work more challenging 
or through introducing defects. 
One mechanism to guard against low quality contribu-

tions is to reduce the amount of damage possible by any 
individual contribution. By making contributions smaller, 
many  workers  have  the  opportunity to contribute  to  the 
same artifact, and any problematic contribution can be re-
vised.  In  this  way,  a  worker  who  makes  a  mistake  may 
have it quickly revised. However, we found in our prelim-
inary studies that, despite explicit instructions otherwise, 
developers sometimes expected to continue work on a sin-
gle artifact until its completion, reflecting the expectations 
developers  bring  to  programming  tasks.  For example,  in 

one  informal  study  with  an  early  prototype,  a  worker 
worked for 66 minutes within a single Edit a Function mi-
crotask. From this, we learned that is important to create 
mechanisms that limit contribution size such as bounding 
the maximum time or size of a contribution. 
Programming tasks often require more than a few lines 

of code. In these cases, a developer may first begin working 
on a function and handoff work to others to continue. In 
such cases, it is important for the developer to have ways 
to  communicate  the  intent  of  their  approach  through 
mechanisms  for sketching  an  implementation  design. 
Sketches may take the form of pseudocode, where a devel-
oper writes a high-level plan for an algorithm without wor-
rying about thinking through all the details. In cases where 
steps in an algorithm may contain whole units of function-
ality,  a  developer  may  write  function stubs,  describing 
functionality that the function is expected to offer. In this 
way, developers are able to make contributions at a higher 
level  of  abstraction  which  subsequent  developers  may 
then fill in.  

4.3.2 Support reviews and tests 

A  second  mechanism  for  guarding  against  low-quality 
contributions is to explicitly check the quality of a contri-
bution. Creating  an opportunity  to  review  contributions 
provides a quality gate through which contributions must 
pass and offers possibly valuable feedback to the contribu-
tor. Reviews can quickly identify work from new contribu-
tors that is headed in an unproductive direction and edu-
cate confused workers about the correct way to work.  
Reviews offer a form of redundancy, where two contrib-

utors together must sign off on work for it go forward. Of 
course, as  with  any  redundancy,  the  reviews  may  them-
selves be mistaken. If reviewers cause contributions to be 
discarded, this can be particularly problematic in causing 
valuable contributions to be discarded. One solution is to 
only allow reviews to be used to revise work. In this way, 

 
Fig. 2. A step in the microtask tutorial offered when workers begin 
their first Edit a Function microtask. 
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further redundancy is introduced, as subsequent contribu-
tors must again react to the previous contributions.  For ex-
ample, a contributor revising a contribution in response to 
the review may decide that the requested revision is itself 
mistaken  and  ignore  it. In  this  way,  subsequent  workers 
can then see the previous contributions and take whatever 
actions they see fit. 
As  in  traditional  software  development,  tests  offer  an 

important quality gate. Moreover, by dividing writing tests 
and implementing features into separate microtasks, tests 
provide an opportunity for another developer to provide a 
new  perspective  on  the  function,  embodied  in  their  test, 
which may reveal issues the implementer might not have 
considered. However, it may be in some cases that the test 
itself  is  incorrect  rather  than  the  function. It  is  thus im-
portant  to offer  facilities  for  revising  both  functions  and 
tests as necessary. 

5  SYSTEM 

Based  on  our  design  principles,  we  have  developed  the 
CrowdCode environment for microtask programming. In 
the following sections, we describe the user workflow, sys-
tem architecture, and its implementation.  

5.1 Workflow 

All work begins with a client request which describes an 
API to be implemented through a set of function descrip-
tions and signatures, a set of ADT descriptions, and a set 
of  acceptance  tests.  All  worker  contributions  are  made 
through  microtasks. As  workers  first  visit  CrowdCode, 
they  are  shown  a  Welcome  screen  explaining  the  basic 
ideas of CrowdCode and offering a short interactive tuto-
rial  explaining  the  primary  interface  elements.  When  a 
worker first begins a microtask they have not previously 
done, they are provided an additional tutorial, explaining 
in detail how to perform the microtask using a series of ex-
amples  (e.g.,  Fig.  2).  The  worker  is  then  provided  a  mi-
crotask automatically assigned by the system, which they 
may choose to either complete and submit or skip. 
Table 1 lists the microtasks in the CrowdCode environ-

ment.  Fig.  3  depicts  a  simple  example  of  the  microtasks 
generated to implement a function. Following the creation 

of a new project from a client request, Edit a Function (Fig. 
3.1) and Write Test Cases (Fig 3.2) microtasks are generated 
for each API function. Whenever functions are submitted 
which contain pseudocode, a new Edit a Function microtask 
is generated to continue work on the function.  
Writing tests is decomposed into two steps. In the Write 
Te s t  Ca se s microtask, a worker first specifies a test plan for 
the function by enumerating a list of test case descriptions 
identifying behaviors that should be tested. In the second 
step,  each  test  case  generates  a  separate Write  Test mi-
crotask for the test case to be implemented as a unit test, 
enabling workers to separately complete each test in paral-
lel (Fig 3.4).  
When functions  are  submitted  which  contain  one  or 

more new function stubs, Reuse Search microtasks are gen-
erated in which workers have the opportunity to find ex-
isting  functions  offering  similar  functionality  to  the  re-
quested stub or indicate that no such existing functions ex-
ist (Fig. 3.5). In this case, a new function is created and a 
Write Function Description microtask is generated to author 
a  signature  and  textual  description  of  the  new  function 
from the provided function request and implementation of 
the  requesting  function  (Fig.  3.6).  Work  then  recursively 
continues and microtasks are generated to Edit a Function 
and Write Test Cases. In parallel, an event is sent to the call-
ing function and a Write  Call microtask is generated and 
queued (Fig. 3.7).  
When a function contains no remaining pseudocode, it 

is written and ready to be tested. As each test becomes im-
plemented, it is executed against the function. If a function 
fails  one  or  more  tests,  a unique Debug  Test  Failure mi-
crotask is generated for each failing test, providing all pass-
ing tests and exactly one failing test (Fig 3.8). Workers can 
then edit the function so that it passes the previously pass-
ing tests and the additional failing test, insert new pseudo-
code and stubs, or report an issue with one or more of the 
function’s tests.  
 Of course, the defect may not be in the function with 

the failing test. This poses a challenge: how can fault local-
ization be decontextualized to enable developers to work 
modularly with a single function, when it seemingly first 
requires knowing the function containing the defect? To  

TABLE 1 
CROWDCODE MICROTASKS 

 
Microtask Editor Context views Possible contributions 
Write Function De-
scription 

Function description 
editor 

Stub Viewer with requested function, imple-
mentation of requesting function, ADTs 

(1) Function description, (2) Report func-
tion as not implementable 

Edit a Function  Code editor ADTs, diff of change to function signature (if 
any) 

(1) Code, pseudocode, and stubs, (2) Re-
port function as not implementable 

Debug Test Failure Code editor ADTs, Test Runner (1) Code, pseudocode, and stubs, (2) Re-
port issue in test 

Reuse Search Function search Stub View of requested function, implemen-
tation of requesting function 

(1) Identify existing function providing re-
quested behavior, (2) No function found  

Write Call  Code editor Description and signature of identified func-
tion, ADTs 

(1) Code, pseudocode, and stubs 

Write Test Cases Test case editor Description and signature of function, ADTs (1) List of test cases, (2) Report issue with 
function 

Write Test Test editor Test case, description and signature of func-
tion (and diff, if any), ADTs 

(1) Test, (2) Report issue with function, (3) 
Report issue with test case 

Review Review Contribution and original task context (1) Review and rating 
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Fig. 3. An example of microtasks generated to implement a function doSpreadsheetCommand. The top diagram depicts the microtasks generated 
(boxes) over time (x axis) and the current state of each artifact (green lines). From an initial client request describing this function, two microtasks 
are first generated to (1) Edit a Function and to (2) Write Test Cases. In microtask (1), a request for a function doInsertColumnBefore is made. 
After submission, a corresponding Review microtask is generated and which accepts the submission. The request for doInsertColumnBefore 
then generates a microtask to conduct a (5) Reuse Search to determine if a new function should be created. No existing function is found. As 
Reuse Search microtasks are not reviewed, a (6) Write  Function  Description microtask is generated to describe the requested function. This 
creates a new doInsertColumnBefore function, initially in the described, !written, and !buggy state, generating microtasks to Edit a Function and 
Write  Test Cases to begin its implementation. After it is described (and while it is being implemented and tested), an (7) Add Call microtask is 
generated to update the call site from the original request to match the description written in (6). In parallel to this work, each of the test cases 
specified in (2)  generate corresponding Write  Test microtasks, such as (4). After doSpreadsheetCommand transitions into the described and 
written state  and  its tests are  implemented, the  tests  are executed, resulting in a test failure, which then generates a (8) Debug  Test  Failure 
microtask.   
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address this challenge, CrowdCode uses a modular debug-
ging process using stubs. At any point when debugging a 
function, workers may hover over a function call to view 
the actual parameters and return value. If a worker sees a 
return value for a function that does not appear to match 
the description of a function, the worker may then edit the 
output of the function, automatically creating a stub. Re-
running the tests then enables the worker  to  check  if  the 
proposed  change  to  the  function  behavior  would  fix  the 
defect and cause the test to pass. If the microtask is submit-
ted with a stub, the requested change in behavior is then 
propagated to the invoked function, creating a correspond-
ing test which is then run and will fail (unless the function 
has concurrently changed). In this way, the fault localiza-
tion process recursively continues across function invoca-
tions, creating a new Debug Test Failure microtask for each 
relevant function. 
After each microtask is submitted, a corresponding Re-

view  microtask  is  first  generated  before  the  microtask  is 
marked as completed (except for the Debug Test Failure and 
Reuse  Search  microtasks  which  are  not  reviewed). Review 
microtasks show workers the contribution and the original 
task context and ask workers to provide a quality rating on 
a five-point scale. Microtasks that receive a score of 1-3 are 
marked as Reissue and must include a review explaining 
the reason; otherwise, the microtask is marked as Accepted 
and the review text is optional. Workers are then informed 
of the review with a notification in their activity feed. Once 
accepted,  the  microtask  is  completed  and  the  microtask 
content  is  used  to  update  the  corresponding  artifact. If 
marked as a Reissue, a new microtask is generated which 
copies the original microtask and includes both the origi-
nal  contribution  and  review.  This  microtask  is  then  as-
signed to a new worker to address the reported issue.  
In viewing a microtask’s task context, workers may find 

an issue with the task context which prevents them from 
completing the microtask (e.g., a test case that it is impos-
sible to test). In such cases, workers may report an issue 
with a specific artifact referenced in the task context by de-
scribing  the  issue  and  submitting  it  instead  of  the  mi-
crotask. A new microtask for the artifact is then generated 
to address the issue. 
To  ensure  that contributions do not go off track and re-

ceive frequent feedback, microtasks are limited in time and 
contribution size. Microtasks are limited in duration to 10 
minutes, indicated to workers through a bar showing the 
remaining time (Fig. 1-4). After 6 minutes, a warning mes-
sage is displayed. If the microtask is not submitted after 10 
minutes, it  is  automatically  skipped  and  the  work  dis-
carded.  Additionally, contributions  in  the Edit a  Function 
and Debug  Test  Failure  microtask  are  limited  to  a  net  in-
crease  of  ten  statements,  in  addition  to  any  pseudocode 
(Fig. 1-3). 
CrowdCode provides workers with an overall sense of 

the  progress  of  the  project,  listing  the  total  lines  of code 
across all functions and the number of functions and tests 
(Fig. 1-9). Workers can interact with other currently logged 
in workers through a global chat. Finally, CrowdCode pro-
vides  a  basic  gamification  system  encouraging  contribu-
tions. Workers submitting microtasks are awarded points 

proportionally to the review score. To encourage workers 
to take up microtasks that others do not wish to do, skip-
ping a microtask increases its value by 20%. Scores for each 
worker are indicated in a leaderboard (Fig. 1-8). 
A  project  is complete when there are no remaining un-

completed microtasks. To  u s e  t h e c od e  i m pl e m e n t ed  b y  t h e 
crowd, the client may visit the administrative page for the 
project at any point and download a current or past version 
of the code created.  

5.2 Services 

Microtask programming is fundamentally distributed, re-
quiring coordination and synchronization between contri-
butions  being  made  separately  by  each  contributor. 
CrowdCode  coordinates  work  through  a  central service 
that  is  responsible  for processing  new  contributions,  up-
dating  the  state  of  artifacts,  and  generating  new  mi-
crotasks. 
Microtask  generator. After  contributions  have  been  sub-
mitted  by  clients  and  approved  by  a  reviewer,  contribu-
tions are used to update the current version of the artifact. 
Based on these updates, the attributes of the artifact may 
change. Three attributes determine the overall state of each 
function: whether it has a function description (described), 
whether it has a complete implementation that contains no 
pseudocode  (written),  and  whether  it  currently  has  any 
failing  tests  (buggy). After  a function has  been  updated, 
these  attributes  are  examined  to  determine  which  mi-
crotask should be generated next. If a function is not de-
scribed, a Write Function Description microtask is generated. 
If a function is not written, an Edit a Function microtask is 
generated. If a function is buggy, a Debug Test Failure mi-
crotask is generated. Fig 3. depicts an example of artifact 
transitions and the resulting microtasks generated. 
Work on a function is complete and no microtasks are gen-
erated when it enters the described, written, and not buggy 
state.  However,  the  function  may  again  enter  the  buggy 
state when a function which calls it adds a new stub and 
propagates a test to the function. In such a state, workers 
may  freely  edit  the  function  and  add  pseudocode and it 
might again transition to a not written state. 
Each function has a set of dependent functions which con-
tain a call site to the function. A message is sent to each of 
a  function’s  dependencies whenever it changes  its  inter-
face  by  changing  its  name  or  parameters. This  message 
then generates an Edit a Function microtask for each caller. 
Certain  microtasks  also  enable  reporting  an issue  with  a 
function (Table 1), which generates an Edit a Function mi-
crotask for the function. 
Distributed test executor. To reduce server resource usage 
and facilitate scalability to large crowds, all tests are exe-
cuted on clients rather than the server. Each client main-
tains a test execution service which executes a test and re-
turns a test result. After every edit to a function, a run of 
all tests is scheduled for execution by the server. This work 
is distributed to clients, and the clients report back with the 
outcome of each test execution. Test failures generate De-
bug Test Failure microtasks. Additionally, within the Debug 
Te s t  Failure, workers can directly run all of the tests for a 
function. 
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Version control system. To enable tests to be executed on 
clients, clients must have the corresponding implementa-
tion of functions under test. As functions may arbitrarily 
invoke other functions, clients must have code for all func-
tions in the system. CrowdCode thus maintains a simple 
version  control  system,  synchronizing current code  and 
tests from the server to all clients. The server ensures that 
there is never more than one active microtask for each arti-
fact, so merge conflicts do not occur. Whenever a contribu-
tion is accepted and an artifact is updated, a new version 
of the artifact is created. This new version is then synchro-
nized with all currently active clients.  
Activity. Various backend operations keep track of states 
used  to  populate  client  views.  This  includes  the  activity 
feed  for  each  worker,  leaderboard,  and  project  statistics. 
The Activity service manages this state and broadcasts up-
dates to clients. 

5.3 Architecture 

CrowdCode is architected as a client-server system consist-
ing of web clients, a backend, and a real-time NoSQL data 
store (Fig. 4). The backend and NoSQL datastore both ex-
pose a RESTful interface. Clients retrieve and submit mi-
crotasks  from  the  backend,  which  processes  microtasks 
and  updates  data  in  the  real-time  NoSQL datastore. The 
backend  and datastore  are sharded  for  scalability,  where 
the  backend is  organized  into  separate  components  con-
sisting of an individual entity including artifacts, workers, 
and the project and is backed by a separate region of the 
datastore. When the server receives multiple concurrent re-
quests,  each  component  is  able  to  handle  requests  to  its 
own state and update its state in parallel with other com-
ponents without creating race conditions or resource con-
tention.  
In web application architecture, clients are traditionally 

considered untrusted, as any user of the web application 
may edit the code that runs on the client. In contrast, serv-
ers are considered trusted, as only the application develop-
ers who  own  the  server  can  change  the  code  that  runs 
there. For example, a malicious crowd worker might edit 
the client implementation to delete all of the project’s code 

or  give  themselves  a  more  favorable  activity  history.  To 
prevent such attacks, all clients must submit all changes to 
application state through the server, which verifies the re-
quested  change  before  updating  application  state  and 
posting  updates  to  the  NoSQL  datastore.  After  updates 
have  been  posted  to  the  datastore,  the  datastore  directly 
broadcasts updates application state to the clients, includ-
ing  updates  to  the Versi o n  Co ntro l  System and  Activity 
Services.   

6  EVALUATION 

As microtask programming represents a significant depar-
ture  from a  traditional  development  approach, it  brings 
many basic questions about its feasibility. In contrast to tra-
ditional software development approaches, microtask pro-
gramming is intended to enable developers to contribute 
quickly, both in onboarding to a new project and making 
short contributions. The novelty of the methodology raises 
many  questions  about  the  quality  of  the  resulting  pro-
grams produced. For these reasons, we sought to evaluate 
(1) the feasibility of the approach, (2) the speed of onboard-
ing, (3) the speed of making contributions, and (4) the ef-
fects  of  the  quality  control  mechanisms.  To  investigate 
these  questions,  we conducted a  user  study.  Participants 
worked entirely online, interacting only through the plat-
form. 14 developers were divided into two crowds which 
each separately used CrowdCode to collectively work on a 
programming task. 

6.1 Method 

We recruited fourteen participants to work remotely from 
the US, Argentina, Brazil and Portugal. Participants were 
recruited through personal contacts. All participants had a 
computer  science  related  degree  and  between  2  months 
and 12 years of industrial experience, with an average of 4 
years. All participants had previous experience program-
ming  in  JavaScript.  Participants  were  compensated  $100 
for their time.  
All  interactions  with  the  experimenters  occurred  via 

Fig.  4.  CrowdCode  is  architected  as  a  client-server  application  with  a  trusted  backend,  untrusted  web  clients,  and  a  real-time  JSON 
datastore. 
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email and IM, and all interactions between participants oc-
curred  through  CrowdCode.  We  organized  participants 
into two groups (6 in Session A and 8 in Session B) to offer 
two opportunities to observe crowd work and reduce the 
impact of variation between groups on results. Both groups 
were  recruited  from  the same  participant  population  and 
included participants across a range of expertise levels. 
Several forms of data were collected during the study 

sessions. The server was instrumented to log all changes to 
artifacts,  microtasks  generated,  submitted,  skipped,  and 
reissued,  and  use  of  the  chat  feature.  To  log  more  fine-
grained  data  of  participants’  interactions,  screen  record-
ings were captured from all participants. Additionally, par-
ticipants completed two surveys on their experiences. Mid-
way through the sessions, participants completed a survey 
on  their  experiences  and challenges with  microtask  pro-
gramming. At  the  end  of  the session,  participants were 
asked to complete a second survey on their experience. In 
total, each session lasted 5 hours.  
At  the  beginning  of each session,  participants  were 

given  a  brief  written  introduction to  the purpose  of  the 
study through an email, asked to install a screen recorder, 
were  provided instructions  to  log in  to  CrowdCode, and 
asked to begin by logging in. After logging in, participants 
were then given a series of tutorials within the CrowdCode 
environment explaining the overall environment as well as 
introducing  each  microtask  type  whenever  they  worked 
on a microtask of a new type. Each participant worked in-
dependently at their own computer.  
Participants in each session worked together  to  imple-

ment a component for the core behavior of a simple inter-
active drawing application. Functionality focused on cre-
ating,  manipulating,  and  rendering  drawing  elements. 
Specifically,  functionality  focused  on  translating  user  in-
puts specified as mouse actions into updates to an under-
lying  model  of  the  drawing  and  generating  rendering 
primitives from a model of the drawing. The task was spec-
ified through a client request specifying a signature and a 
short description in the form of comments for each of four 

functions (createElement, createAction, render-
Drawing  and moveElement).  These  were  supplemented 
with ADTs describing  the  parameters  to  these  functions 
(Element, Position, Segment and Action) and several 
representative examples of each of these ADTs. Other than 
the function signatures, no code was provided in the client 
request.  From  this client  request,  CrowdCode  then auto-
matically  generated  two  microtasks  for  each  of the four 
functions:  4 Edit  a  Function  microtasks  and  4 Write  Test 
Cases microtasks.  As  participants  began  work, they  were 
automatically assigned one of these microtasks by the en-
vironment. 

6.2 Results 

6.2.1 Feasibility 

During the two sessions, participants submitted 1,008 mi-
crotasks and implemented a total of 22 functions, including 
8 API functions (4 functions in 2 sessions) and 14 functions 
participants created from scratch. Participants’ final output 
encompassed 490 lines of code and 149 unit tests with 2920 
lines of code. On average, participants created 7.8 tests per 
function. Nearly half (47%) of the tests created were for the 
36% of functions which were API functions, perhaps due 
to  their  greater  complexity or  because they  were  first. 
Across the total of 70 hours of participant time in the two 
sessions, 44 hours were spent on microtasks that were sub-
mitted  (referred  to  as  “contribution  time”).  Participants 
spent  the most  time  on Review  microtasks  (37%), Write  a 
Test microtasks (22%), and Edit a Function microtasks (17%). 
Table 2 lists the time spent per microtask type. The remain-
ing non-contribution time was spent on reading study ma-
terials, completing the two surveys, working on microtasks 
that were skipped rather than submitted, and waiting for 
microtasks to be assigned. 
All 1,008 microtasks workers submitted were automati-

cally generated by the system. For example, Fig. 5 depicts 
the microtasks generated for the function createAction 
in Session A. Edit a Function and Write Te s t Cases microtasks 
were iteratively generated, completed, and reviewed until 

Fig. 5. Microtasks generated for the function createAction during Session A. Each bar corresponds to the time at which an individual mi-
crotask was first generated and the time at which it was submitted (microtasks were assigned to workers at a time after being generated). 
The top two rows depict the times at which the function changed state.  
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the work was complete, generating additional microtasks 
to respond to requests for additional functions. The sub-
mission of the last microtask (a Review microtask)  before 
the dashed line resulted in the function transitioning into 
the  implemented  state,  triggering  the  execution  of  tests 
and generating separate Debug Test Failure microtasks for 
each failing test. Other functions behaved similarly. Func-
tions  sometimes  transitioned multiple times between the 
implemented  and  not  implemented  state.  Participants 
rarely changed function interfaces once defined, with only 
two changes in Session A and zero in Session B. 

6.2.2 Speed of onboarding 

After logging in to CrowdCode, participants first read 
a  brief  tutorial introducing  microtask  programming  and 
the basic user interface elements of the platform and were 
then  assigned  their  first  microtask. At  this  point,  partici-
pants often  spent  time  familiarizing themselves with  the 
environment.  In  some  cases,  participants  began  working 
with their first assigned microtask. In other cases, partici-
pants skipped several microtasks because they wanted to 
look at several types of microtasks before starting to work. 
Overall, participants on average submitted their first com-
pleted microtask after 14 minutes and 32 seconds.  
The first microtasks participants completed were often 

the most challenging, as they learned aspects of microtask 
programming  such  as  pseudocode,  requesting  functions, 
and reviews. One reported that “It was pretty easy once you 
already started completing a few microtasks. At first it may seem 
a bit strange because you have little time, but you get used to 
manage it.” Review microtasks helped identify issues with 
early microtask submissions. On average, the review score 
for the first submitted microtask was 2.8 out of 5. 78% re-
ceived a score of 3 or less, leading them to be reissued to a 
second participant.   
Rather  than  incur  learning  costs  all  at  once  upfront, 

learning costs for specific microtasks were deferred until 
participants first encountered that microtask. At this point, 

participants again needed to learn a new microtask, incur-
ring time and reducing quality. Participants first read a sec-
ond microtask-specific tutorial before beginning work on 
the microtask. Completing a microtask of a new type raised 
completion times from a median of 1 minute and 31 sec-
onds to 5 minutes and 29 seconds as well as decreasing me-
dian quality scores from 5 to 3. One  participant reported 
that “I could not understand each task until it went around a 
couple of  times”  and  "At  the beginning, everything  was very 
confused.  Gradually  I  began  to  understand”. Another sug-
gested that an interactive demo microtask enabling them 
to complete a sample microtask might help speed learning.  
As participants through the sessions gained experience 

with  CrowdCode,  average  review  scores  tended  to  in-
crease before reaching a plateau. Fig. 6 depicts the moving 
average review score with a ten-minute time window.  

6.2.3 Speed of contributions 

Overall, workers were able to complete all microtask types 
in both sessions in a median time under 5 minutes (Table 
2). Completion  times  were greater  for  larger  microtasks 
such as Edit a Function, Write Test Cases, and Debug Test Fail-
ure, with median completion times reaching as high as 4:57 
or  4:00  for Write Function  and Debug  Test  Failure.  Shorter 
microtasks had median completion times below 2 minutes, 
including Reuse Search, Write Test, and Review. In all cases, 
median completion  times  were less than half the  ten-mi-
nute cutoff.  
Participants skipped 13% of all the microtasks they be-

gan. Skips occurred for a variety of reasons. In some cases, 

Fig. 6. Average review score across the two sessions, averaged 
using a ten-minute sliding window.  

TABLE 2 
MICROTASKS COMPLETED, SKIPPED, AND REISSUED 

 

Microtask type Completed Skipped Reissued Median time  
(mm:ss) 

Total time 
(hh:mm:ss) 

Session A B A B A B A B A B 

Review 260 227 22 22 - - 1:27 1:14 9:29:32 6:43:43 
Write Test 158 102 22 7 40 41 1:29 1:21 6:35:41 3:15:12 
Edit a Function 44 56 25 21 16 22 4:57 2:31 3:59:28 3:40:03 
Write Test Cases 40 30 9 4 11 13 3:50 2:28 2:57:02 2:05:53 
Debug Test Failure 14 18 5 6 1 4 2:32 4:00 0:57:22 1:21:21 
Write Function Description 8 16 3 0 0 10 3:12 2:44 0:30:21 1:03:58 
Write Call 7 9 2 2 0 3 1:37 2:28 0:15:02 0:36:49 

Reuse Search 9 10 3 0 0 3 0:42 1:35 0:06:37 0:22:33 

Total 540 468 91 62 68 96   24:51:05 19:09:32 

Overall total 1008 153 164   44:00:37 

 
 
 
 
 

Participants  implemented  22  functions  and  149  unit 
tests  through  the  submission  of  1,008  microtasks, 
demonstrating the feasibility of programming through 
microtasks. 

On average, participants were able to complete their first 
microtask less than 15 minutes after they began onboard-
ing. 
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participants skipped microtasks because they seemed un-
able to complete them. In other cases, participants skipped 
several  microtasks  in  succession  simply  to  explore the 
available microtask types before choosing which to begin 
with. 17% of the total microtask skips occurred as partici-
pants ran out of time on a microtask and the system auto-
matically  skipped  the  microtask.  Some  participants  felt 
rushed at points, particularly participants that erroneously 
viewed the microtask to ask for more than it did. “The ten 
minutes for tasks sometime made me feel in a hurry, especially 
when I had to start to write a new function from scratch and I 
had to read and understand the specifications.”    
To measure contributions on microtasks where partici-

pants  contributed code,  we  counted  the  number  of  lines 
touched, including lines added, edited, and removed. Par-
ticipants added an average of approximately 3 lines of code 
and removed and edited approximately 1 line of code each, 
touching an average of 5 lines.  

6.2.4 Effects of quality control mechanisms  

In both Session A and Session B, participants did not have 
time to completely implement the components within the 
5-hour sessions. At the end of each session, there was still 
additional  work  to  be done  to  fully implement  the  func-
tionality specified in the client request. To assess the over-
all progress and quality of the contributions made by par-
ticipants, we constructed a test suite (not provided to par-
ticipants) and then edited the final code in each session un-
til all tests in the test suite passed. In Session A, 3% of the 
contributed code  (7 lines)  had  to be  edited  and an  addi-
tional 3% (6 lines) of code had to be added. This included 

fixing small typographical errors (e.g., adding an array in-
dex, fixing misspelled variable names) and implementing 
several lines participants had sketched with pseudocode. 
In Session B, 12% (33 lines) of the code had to be edited and 
an additional 25% (69 lines) added. Additions included im-
plementing two functions that participants created but had 
not yet implemented.  
Throughout the sessions, participants iteratively imple-

mented and revised function implementations. Individual 
functions often reflected contributions from several partic-
ipants. Fig.  7  depicts  the  implementation  contributions 
made in Session A. On average, approximately 3 workers 
contributed to the code of each function, increasing work-
ers' perception of the quality of the resulting code. One par-
ticipant  reported  “Every  bit  of  code  was  checked  by  at  least 
three people, usually more. I felt that it came out pretty solid.” 
Implementation  contributions  often  reflect  a  single  step 
which later contributions then built on. Fig. 8 depicts three 
contributions made to the function createAction during 
Session A. One worker first implemented one case of the 
function, leaving pseudocode for additional cases. In sub-
sequent iterations, one worker reworked the case logic and 
another worker implemented logic for additional cases.  
To identify and correct defects, participants used the test 

and review systems. Workers implemented an average of 
6.8 tests per function. As tests failed, Debug Test Failure mi-
crotasks were generated. Failing tests were often caused by 
typographic errors, incorrect use of JavaScript syntax, in-
correct  function  invocations,  and  erroneously  imple-
mented  functionality.  37%  of  participants’  contribution 
time was spent on Review microtasks. The review system 
helped to identify defects such as typographic errors in the 
code, missing test cases, erroneous tests, and incorrect use 
of data types or functions. One participant observed that 

Fig. 7. A timeline of microtasks contributing descriptions or code to functions in Session A (test contributions and reviews are not shown). 
Functions were iteratively implemented by successive micotasks completed by different participants. As work progressed, participants 
requested the creation of new functions. 

Participants were able to complete microtasks of all types 
in a median time under 5 minutes. 
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“You can learn from your mistakes that others point out or better 
ways to accomplish the same goal of a certain function”.  
Participants used the  issue  reporting  system to  report 

issues  they  identified  with  the  current  state  of  artifacts, 
identifying 63 issues. Many were related to text that was 
excessively  vague  or  contradictory.  The  most  common 
source of issues was in the Write Test microtask, where par-
ticipants reported 43 issues. Most dealt with the test case 
being poorly described or difficult to understand. For  ex-
ample, one participant in Session B reported that a test case 
to “Te s t  i f  t h e  f u n c t i o n  re t u r n s  t r u e  w h e n  t h e  e l e m e n t  i s  c o r r e c t l y  
well-formed” was not clear in defining well-formed. Partic-
ipants also reported 13 issues from the Debug Test Failure 
microtask. After discovering that the code was correct but 
the test was wrong, participants used the issue reporting 
system to report an issue in the test. 11 times in Session A 
and 1 in Session B workers incorrectly interpreted the func-
tion specifications. For example, in Session A the test case 
“creates a rectangle element with the previous element being a 
rectangle...”  was  reported  because  “the  previous  element  is 
only used for Freehand, and is not defined in the other cases”. 
Not  all  incorrect  or  divergent  interpretations  of  function 
specifications were caught and flagged through the issue 
reporting system. Others were caught only when the tests 
were executed,  creating a Debug Test  Failure microtask  to 
resolve the divergence.  

7. LIMITATIONS AND THREATS TO VALIDITY 

There are three major threats to the validity of our results: 
the  selection  of  participants,  the  choice  of  the  program-
ming task, and the context in which participants worked.  
First, our selection of participants may threaten the gen-

eralizability of the results if our participants are not repre-
sentative  of  the  envisioned  users  of  microtask  program-
ming. As crowdsourcing, microtask programming draws 
strength from the diversity of its contributors. Thus, we re-
cruited  broadly,  drawing  participants from  three  conti-
nents and anywhere from 2 months to 12 years of indus-
trial  experience.  Our  results  might  differ  for  developers 
that are exclusively junior or exclusively senior or for par-
ticipants with little development experience. 
The second threat to validity is the choice of program-

ming task. Microtask programming is intended to enable 
crowdsourcing  the  implementation  of  component  logic. 
Thus, we chose a task designed to be reflective of typical 
application logic, and our results evaluated the feasibility 
for this task. Of course, building complete applications re-
quires myriad additional software development tasks, in-
cluding software design and architecture, GUI design and 

Fig. 8. Examples of contributions made by participants to the function createAction

A

B

C

function createAction(mouseDownPos, command, elements) {
  //# mark this function as complete by removing this line
  if(command  == "Move"){
    var el = null;
    for (el in elements) {
      if (isOnOutline(mouseDownPos, el)) {
        return {
          "type":"Move",
          "elementId":el.id,
          "mouseDownPos":mouseDownPos
        };
      }
    }
  } else if(command == "Line" || command == "Freehand" 
  || command == "Rectangle"){
    //# handle Line
    //# handle Freehand
    //# handle Rectangle
  }else{
    return null;
  } else {
    var nextId = getNextId(elements);
    if (command == "Line") {
    //# handle Line and return it
    } else if (command == "Freehand") {
    //# handle Freehand and return it
    } else if (command == "Rectangle") {
    //# handle Rectangle and return it
    }
  }
  return null;
}

function createAction(mouseDownPos, command, elements) {
  //# mark this function as complete removing this line
  //# mark this function as complete by removing this line
  if(command  == "Move"){
    var el = null;
    for (el in elements) {
      if (onOutline(mouseDownPos, el)) {
        return {
          "type":"Move",
          "elementId":el.id,
          "mouseDownPos":mouseDownPos
        };
      }
    }
  }else if(command == "Line" || command == "Freehand"
   || command == "Rectangle"){
    //# handle Line
    //# handle Freehand
    //# handle Rectangle
  }else{
    return null;
  }
  return null;
}

function createAction(mouseDownPos, command,
   elements) {
  if(command  == "Move"){
    var el = null;
    for (el in elements) {
      if (isOnOutline(mouseDownPos, el)) {
        return {
          "type":"Move",
          "elementId":el.id,
          "mouseDownPos":mouseDownPos
        };
      }
    }
  } else {
    var nextId = getNextValidId(elements);
    if (command == "Line") {
    //# handle Line and return it
      return {
        "type": "Line",
        "elementId": nextId,
        "mouseDownPos": mouseDownPos
      };
    } else if (command == "Freehand") {
    //# handle Freehand and return it
      return {
        "type": "Freehand",
        "elementId": nextId,
        "mouseDownPos": mouseDownPos
      };
    } else if (command == "Rectangle") {
    //# handle Rectangle and return it
      return {
        "type": "Rectangle",
        "elementId": nextId,
        "mouseDownPos": mouseDownPos
      };
    }
  }
  return null;
}

 in Session A. 

Participants extended prior contributions, identified and 
reported issues with related artifacts, and fixed defects 
caught by tests.  
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implementation,  and  many  others.  Extending  microtask 
programming to support such activities is an important fo-
cus of future work. 
The third threat to validity is the context in which the 

task was performed. Microtask programming is intended 
for  crowds  of  transient  developers,  who  have  no  prior 
common affiliation or team membership and who coordi-
nate and exchange information exclusively through the en-
vironment. We thus sought to recreate this context, ensur-
ing that participants were not collocated and worked only 
through  the  environment. Another  critical  aspect  of  the 
context was to ensure that multiple workers were working 
concurrently  within  the  same  project,  as  in  the  intended 
context. To achieve this, we structured the study so that all 
workers began at the same time and worked in a contigu-
ous  block  of  time. This  represents  a  simplified context, 
which might occur for crowds where workers have time to 
spend a few hours contributing. More work is needed to 
understand how workers behave when workers are con-
stantly  joining  and  leaving,  particularly  regarding  the 
learning effects that workers experience over time through 
engagement  with  a  microtask  programming  platform  or 
with a specific project. 

8. DISCUSSION 

Microtask programming envisions a software develop-
ment  process  in  which transient  developers  make  short, 
self-contained contributions. This model might open con-
tributions to open source projects to a long-tail of contrib-
utors who do not have the time for traditional open source 
onboarding.  Enabling  this  model requires new mecha-
nisms  for decontextualizing  large  tasks  into  microtasks, 
generating microtasks, and ensuring quality.  
In  this paper,  we proposed  a  microtask  programming 

approach  in  which  contributions  are  decontextualized 
based  on  function  boundaries,  microtasks  are  automati-
cally  generated  by  the  system,  and  quality  is  ensured 
through continual iteration from many contributors. Our 
results offer evidence for the basic feasibility of such an ap-
proach. Developers were able to make over 1000 contribu-
tions to a range of tiny programming tasks, including edit-
ing  code,  describing  functions,  writing  test  cases,  imple-
menting unit tests, and debugging. Developers were able 
to make these contributions quickly, making code contri-
butions  to  functions  in  under  five  minutes  and  creating 
tests in less than 90 seconds. Building on the contributions 
of others, developers were able to complete ideas sketched 
in pseudocode and fix issues introduced by others. Devel-
opers  nearly  finished  implementing  the components 
within  the  limited  task  times.  Together,  these  results 
demonstrate that it is feasible to use short, decontextual-
ized contributions made by the crowd to implement small 
components. 
Yet the preliminary evidence of feasibility raises more 

complex questions about the value and appropriate use of 
microtask  programming.  Enabling  small  contributions 
comes at the cost of increased overhead, as each new con-
tributor must first learn how to work in microtasks before 

starting and then make sense of the context and artifact be-
fore  beginning  each  microtask.  After  a  contribution  is 
made, a handoff occurs and the next contributor must then 
get  up  to  speed  on  the  current  state  of  the  artifact. This 
overhead is clearly visible in the overall productivity num-
bers  of  the  participants  in  our  study.  Across  44  hours  of 
work  time,  developers  wrote  only  490  lines  of  code  and 
2920 lines of test code.  
By forgoing the benefits and drawbacks of context for a 

short  onboarding  experience,  microtask  programming 
brings  many  potential  new  opportunities.  Shirky  argues 
that lowering the barriers to joining and contributing ena-
bles crowdsourcing to tap the cognitive surplus  of other-
wise wasted resources, utilizing contributions from those 
who would otherwise be uninterested or unable to contrib-
ute [11]. Given the large size of the overall developer pop-
ulation,  even  small  increases  in  contributions  to  open 
source projects could have a dramatic effect.  
Small contributions also open the possibility to increas-

ing parallelism in software development. As many hands 
make light work, decomposing traditional software devel-
opment tasks of implementing a feature or fixing a bug into 
tens or hundreds of microtasks might enable some of this 
work to be completed in less clock time than traditional ap-
proaches by parallelizing work across many developers.  
Realizing the potential of microtask programming sug-

gests a wide range of research questions. Our initial inves-
tigation  explored  decontextualizing  programming  at  the 
function level, a design that greatly increases the potential 
for parallelism but at the cost of significant overhead. One 
might then consider a spectrum of task sizes from imple-
menting a feature of fixing a defect down to contributions 
at the level of small edits to individual functions. Indeed, 
there is likely a large variation in contribution size even in 
traditional development. What is the tradeoff between par-
allelizing work and single ownership? A host of other de-
sign decisions might also vary, in how contributors coordi-
nate, in contributors’ awareness and knowledge of the sys-
tem?   Moreover,  contributions  might  not  be  all  homoge-
nous  in  size  and  context,  but  might  vary  with  differing 
roles  and  responsibilities.  This  raises  many  fundamental 
questions for workflow design and coordination, both for 
software  development  in  a  crowdsourcing  context  and 
more generally for team software development. 

8.1 Workflow design 

A fundamental challenge in crowdsourcing work is the 
design of a workflow, describing the set of tasks that exist 
and the dependencies between these tasks. Designing ef-
fective  workflows  is  an  important  challenge  in 
crowdsourcing. This requires careful consideration of the 
context offered each worker and the difficulty of complet-
ing  microtasks  given  this  context,  the  dependencies  be-
tween tasks and how information flows through these de-
pendencies,  and  the  size  of  the  contributions  workers 
make. 
Developers in our study were largely successful work-

ing  on  programming  tasks  with  only  a  single  artifact  as 
their context rather than the whole codebase. Less context 
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reduces the amount of information developers must con-
sume before beginning the task and reduces the amount of 
information  that  must  be  shared  about  in  progress 
changes. Yet less context also increases the probability of 
conflict. For example, in our workflow developers on the 
Write Test Cases and Edit a Function microtasks both sepa-
rately  interpreted  the  description  of  the  function.  When 
these interpretations diverged, conflicts resulted. These di-
vergent interpretations could be ultimately caught through 
the issue reporting system or by executing the tests against 
the functions. But a workflow that reduces the frequency 
with which divergent interpretations occur may be more 
efficient.  
Another challenge occurs in understanding the conse-

quences of decisions made on future tasks. For example, 
developers working on the Write Test Cases microtask were 
often very thorough, enumerating a long list of test cases 
for  different scenarios. Developers  then  separately  trans-
lated each test case into a unit test. This resulted in devel-
opers creating over five times as much test code as func-
tional code and as well as creating tests which were redun-
dant. While the developers enumerating test cases had the 
context to see the other test cases, they did not have access 
to the function or test implementations (which were not yet 
produced) to understand the redundancy in the tests being 
created. Moreover, developers who created the list of test 
cases were evaluated based on the thoroughness of their 
test plan rather than bearing the cost of implementing the 
tests. 
Another key dimension of workflow design is thus not 

only the size and context of tasks but also the choice of de-
composition,  determining  which  subtasks  are  done  to-
gether and which are done apart. A wide range of decom-
positions might be  envisioned.  For  example,  rather  than 
having a workflow in which microtasks involve writing all 
test cases for a function and editing function code to imple-
ment  multiple  test  cases,  workers  might  instead  write  a 
single new test and implement the behavior only for this 
test. Investigating the space of possible workflows designs 
for microtask programming is an important area for future 
work. 

8.2 Coordination 

In  traditional  microtask crowdsourcing  workflows, 
workers are assumed to be transient and free to come and 
go without commitment to future contributions. To enable 
this, each microtask exists as a unit of work assignable to 
any  contributor,  and  each worker’s  ownership  and  in-
volvement in the contribution could end after submitting 
the microtask. In contrast, in traditional development and 
open source development contributors may claim owner-
ship  over  a  task,  discuss  feedback  they  receive,  update 
their contribution, and build up ownership to make similar 
contributions over time. Developers may then assume to 
have knowledge and awareness of a set of the system that 
they  own  and  coordinate  with  others  to  maintain  that 
awareness. 
Developers  in  our  study  demonstrated  that  contribu-

tions can be made without ownership and with minimal 

awareness of the rest of the system. But transient contribu-
tions  impose  a  cost,  where contributors  are  less  able  to 
learn and specialize over time, where contributors are less 
able to share their knowledge when helpful, and there is a 
greater possibility of workers making diverging interpre-
tations of design decisions. 
One approach to this challenge is to remove the assump-

tion  that  contributors  may  leave  at  any  time  and  enable 
contributors to commit to involvement over a fixed period. 
For example, in Flash Teams, free agents join a project and 
then  commit  to  involvement  for  a  fixed  period  ranging 
from a specific phase to the entire life of the project [47]. 
This  then  enables  the  use  of  more  traditional  team  and 
management structures. But committers are not able to re-
main  truly  transient  and  noncommittal  in  their  involve-
ment, limiting the potential for harnessing Shirky’s long-
tail of casual contributors [11]. 
Another approach is to create new coordination mecha-

nisms for transient contributions. We have explored a var-
iant of microtask programming in which contributors are 
able to explicitly coordinate about design decisions by cre-
ating, addressing, and discussing questions about design 
decisions [14]. Contributors still exert no ownership over 
artifacts and are still assumed to be transient without fu-
ture  commitments,  even  to  answer  questions  that  others 
have raised. But if contributors do choose to continue con-
tributing, they are able to share their knowledge through 
the discussion system. In this way, contributors are not re-
quired  to  commit  a  priori  to  future  contributions.  But  if 
they do stay involved, the system is able to leverage their 
expertise. 
Many other coordination approaches might be possible. 

Rather than assuming all contributors are transient or non-
transient,  there  might  be  hybrid  crowds  in  which  some 
contributors are transient and others act as team members. 
The  programming  competition  platform  TopCoder  uses 
such  a  model,  where  senior  contributors  may  choose  to 
take a role as a co-pilot and manage the process of creating 
and  administering  each  task  [48]. Platforms  such  as Mo-
bileWorks have shown success using diversified roles in a 
microtask  setting  [49]. Applied this  model  to  program-
ming, contributors might  be  promoted or elected  to  lead-
ership roles and given responsibility for overseeing coor-
dination  amongst  team  members  by  giving  feedback  on 
contributions, detecting and managing conflicting design 
decisions, and facilitating knowledge sharing. Investigat-
ing and exploring such new coordination approaches is an 
important topic for future research. 

8.3 Motivation 

Motivating and incenting workers to join and contrib-
ute is an additional key challenge. In order for the expected 
benefits of broader involvement in open source projects to 
materialize, developers that choose not to contribute today 
must be motivated to join and contribute. It is thus crucial 
to consider the potential factors that might influence join-
ing and contributing to microtask programming projects. 
A  key  source  of  insight comes from  studies  of  open 

source software development communities as they exist to-
day. Across several studies, a consistent finding has been 
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that it is a long and time-consuming process to join an open 
source project [17][7][6]. Our results offer evidence that mi-
crotasks can reduce these joining costs, as our participants 
were  able  to  make  their  first  contribution  on  average  in 
only 15 minutes. By reducing joining costs, potential con-
tributors to current open source projects without the moti-
vation  or  time  to  endure a lengthy  joining  script might 
choose to contribute to a project employing microtasking. 
But would the same motives that bring a potential con-

tributor into an open source project still be present in a mi-
crotasked  project?  Reputation  and career  development 
through skill development are important motives in open 
source projects [4]. One might imagine that reducing con-
text  might  enable developers  to contribute  more quickly 
but  less  meaningfully,  as  all  contributors  are  reduced  to 
completing tasks that are easy in requiring little context but 
offer less reputation and less skill development. 
However, decontextualization does not mean all tasks 

will require little skill or offer little reputation. Some tasks 
will have an outsize influence, impacting the direction and 
shape  of  future  work. For  example,  in the current work-
flow, the first task on a new function offers the worker the 
opportunity  to  sketch  the  implementation  of  a  function, 
helping influence the later work to be done to translate this 
sketch into a full implementation. In cases where the func-
tion is particularly large, additional functions might be cre-
ated to implement aspects of this approach. In this way, a 
single microtask might influence tens or hundreds of sub-
sequent  implementation,  testing,  and  debugging  tasks. 
Similarly, review tasks offer feedback on contributions and 
play an important role in directing and gating low quality 
contributions,  potentially  preventing  poor  contributions 
from snowballing into large amounts of wasted effort.   
In decomposing large tasks into small tasks, microtask-

ing makes possible greater specialization, as an individual 
might choose to focus on a specific type of task. In this way, 
microtasking  offers new  opportunities  for  skill  develop-
ment, as developers might choose to complete microtasks 
requiring  specific  expertise. For more experienced devel-
opers, this might mean focusing on tasks that set direction 
or help to mentor more junior developers. In giving more 
visibility into smaller contributions and reducing the bar-
riers keeping less experienced developers out, microtask-
ing offers new opportunities for mentoring.  
Decomposing tasks also offers greater transparency into 

work. Rather than recording work done by contributors at 
the granularity of a commit, microtask development ena-
bles capturing more fine-grained information at the level 
of individual tests and short snippets of code. Each contri-
bution  is  reviewed, generating  a review  score  assessing 
quality; system events such as test failures are logged by 
the system. All of this offers new opportunities for surfac-
ing additional reputation information about contributors. 
This information might be used in a host of ways, such as 
dashboard  displays  which publicize  reputation  infor-
mation on the quantity and quality of contributions.  

9. CONCLUSION 

This paper has explored the possibility of programming 

through microtasks. Our results offer evidence for the basic 
feasibility  of  completing  small  programming  tasks  and 
combining  these  contributions  to  build  small  programs. 
We found that microtasking enables developers to onboard 
onto a project quickly. On average, workers were able to 
onboard  and  submit  their  microtask  in  less  than  15 
minutes.  Rather  than  spend  hours  or  days  addressing  a 
single  issue,  microtasks  enable  developers  to  contribute 
quickly, as we found that developers were able to complete 
microtasks  in  a  median  time  under  five  minutes. These 
findings begin to lay a foundation for the use of microtasks 
in programming and opens the door to realizing the poten-
tial benefits of increased participation in open source pro-
jects through diminished onboarding costs as well as the 
possibility  of  reduced  time  to  market  through  increased 
parallelism.   
At the same time, many further challenges remain in us-

ing microtask programming to create larger and more com-
plex programs, in better understanding the effects and im-
plications  of  decomposition  on  the  quality  and  speed  of 
programming work, and in designing new and more effec-
tive workflows that best achieve short onboarding times as 
well as high parallelism. Even if some software develop-
ment tasks remain so inherently complex that they cannot 
be  microtasked,  even  partial  microtasking  may  increase 
participation in open source communities by offering con-
tributors a new and faster way to make begin to make im-
portant, if limited, contributions more quickly and easily 
and  a  gentler  onboarding  pathway  into  taking  on  larger 
and  more  complex  tasks within  projects  as  contributors 
gain contextual knowledge about a project. 
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