This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Microtask Programming

Thomas D. LaToza, Arturo Di Lecce, Fabio Ricci, W. Ben Towne, Member, IEEE, and André van
der Hoek, Member, IEEE

Abstract—Traditional forms of crowdsourcing such as open source software development hamess crowd contributions to
democratize the creation of software. However, potential contributors must first overcome joining barriers forcing casually
committed contributors to spend days or weeks onboarding and thereby reducing participation. To more effectively harness
potential contributions from the crowd, we propose a method for programming in which work occurs entirely through microtasks,
offering contributors short, self-contained tasks such as implementing part of a function or updating a call site invoking a
function to match a change made to the function. In microtask programming, microtasks involve changes to a single artifact, are
automatically generated as necessary by the system, and nurture quality through iteration. A study examining the feasibility of
microtask programming to create small programs found that developers were able to complete 1008 microtasks, onboard and

submit their first microtask in less than 15 minutes, complete all types of microtasks in less than 5 minutes on average, and
create 490 lines of code and 149 unit tests. The results demonstrate the potential feasibility as well as revealing a number of
important challenges to address to successfully scale microtask programming to larger and more complex programs.

Index Terms—D_.2.6: Programming Environments; D.2.9: Management

*

1 INTRODUCTION

rowdsourcing software engineering offers a number of

opportunities for reducing time to market, generating
alternative solutions, employing specialists, learning
through work, and democratizing participation in soft-
ware engineering [1][2][3]. One of the oldest and most
prevalent forms of software crowdsourcing today is open
source software development (OSS). In OSS, contributions
are solicited from the crowd, opening the contribution of
features and bug fixes to hobbyists, professionals, and even
companies [4]. OSS is a form of commons-based peer pro-
duction envisioned to achieve three key structural attrib-
utes: (1) it is possible to decompose output into separate
contribution units (e.g., addressing issues in an issue
tracker), (2) contributions are sufficiently fine-grained to
capture contributions from those whose motivation will
only sustain small efforts, and (3) a low-cost mechanism
defends against incompetent and malicious contributions
and integrates them into a whole (e.g., pull requests) [5].
However, open source projects today do not fully realize
the potential of this model, as they impose significant join-
ing barriers on potential contributors. These include: (1)
identifying appropriate contacts and receiving timely feed-
back, (2) identifying appropriate tasks and corresponding
artifacts, (3) understanding project structure, complex
code, and setting up a workspace, (4) outdated, unclear

Thomas D. LaToza is with the Department of Computer Science, George Ma-
son University, 4400 University Drive, MS 4 A5, Fairfax, VA22030. E-mail:
tlatoza@gmu.edu.

e Arturo di Lecce is with Cuebiq Srl, Italy. E-mail: arturodilecce@gmail.com.

e Fabio Ricci is with Bosch Rexroth. E-mail: f.ricci89@gmail.com.

e W. Ben Towne is with the Institute for Software Research, School of Com-
puter Science, Carnegie Mellon University, 5000 Forbes Avenue, Pitts-
burgh, PA 15213. Email: wbt@cs.cmu.edu.

® André van der Hoek is with the Department of Informatics, Donald Bren

School of Information and Computer Science, University of California, Ir-

vine, 5029 Donald Bren Hall, Irvine, CA 92697-3440. Email: an-

dre@ics.uci.edu.

+http:/ / www.utest.com

X00-50000/0x/$xx.00 © 200x IEEE

documentation and information overload, and (5) learning
project practices, domain knowledge, and technical exper-
tise [6]. Taken together, these barriers impose a lengthy
joining script [7], dissuading the busy or casually commit-
ted from contributing and limiting the pool of millions of
potential contributors to only the most committed.

One solution to this problem commonly used in other
domains is the microtask. A microtask is a short, self-con-
tained unit of work with a clear objective. Organizing work
in microtasks decontextualizes the tasks done by workers,
enabling a contribution to be made in isolation of other on-
going work and with no requirements for prior
knowledge. Decontextualizing work into microtasks has
been applied to problems in a number of domains. For ex-
ample, in Soylent work copy editing a document is decon-
textualized and decomposed into “find”, “fix”, and “ver-
ify” microtasks in which separate workers to identify op-
portunities for revisions, generate potential revisions, and
vote on revisions [8]. Players of the game FoldIt solve puz-
zle tasks, the results of which are then used to compute so-
lutions to challenging protein folding tasks [9].

Microtask crowdsourcing has found application to soft-
ware development for tasks where decontextualization is
possible. Developers today routinely complete microtasks
on StackOverflow, where the asker of the question is re-
sponsible for decontextualization by identifying a short,
clear objective in the form of a question, often structured
as a short snippet of code to be generated or revised [10].
Sites such as uTest' match freelance testers to projects, help-
ing projects rapidly recruit from the over 300,000 registered
testers.

But can programming be microtasked? Is it possible for
a developer that today might make a ten-minute contribu-
tion answering a question on StackOverflow to instead
spend the same ten minutes writing code for an open
source project? Achieving this goal requires new methods

Published by the IEEE Computer Society

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

to reduce the context demands and joining barriers tradi-
tionally imposed by open source projects to broaden par-
ticipation [2]. However, broadening participation is a dis-
tinct goal from, and may even be in opposition to, increas-
ing team productivity. Compared to a single developer, a
team of five incurs coordination overhead unnecessary for
a single developer. Similarly, increasing the number of con-
tributors to an open source project from 20 to 2000 may
well mean that the number of person hours per contribu-
tion increases, as the contributors have spent less time on
the project, have less expertise, and work more slowly. Ra-
ther than increase team productivity, the goal is to harness
contributions from the 1980 transient contributors whose
potential to contribute would otherwise go unused, as
Shirky argues [11].

To address the challenge of microtasking programming,
we propose a set of design principles for new program-
ming environments and describe the design of a system
following these principles. To enable fine-grained contri-
butions, work is organized into local changes to a single
artifact such as a function or test. The system itself is then
responsible for creating, managing, and assigning mi-
crotasks, tracking the state of artifacts to determine what
needs to be done and propagating interface changes be-
tween artifacts when necessary. To ensure the quality of the
final program created, artifacts are iteratively assessed and
revised through sketching, repeated edits, reporting issues,
a review process, and testing. To contribute, workers
simply login, complete a short tutorial, and begin work on
an assigned microtask.

Our work is part of a longer-term exploration of the use
of microtasks in software engineering. In this paper, we
consider programming in the small, where a well-defined
request for a component posed by a client is implemented
through coding, testing, and debugging. Our approach
builds on early explorations and prototypes examining
mechanisms for deriving microtasks for programming and
small pilot experiments [12][13]. Other work has examined
the relationship of microtask crowdsourcing to other
crowdsourcing models [1] and considered mechanisms for
coordinating developers working on programming mi-
crotasks [14]. In this work, we do not consider microtask-
ing the creation of software requirements, architecture, de-
sign, or user interfaces. In other work, we have begun to
explore how software design tasks might be crowdsourced
[15][16].

In this paper, we contribute a new set of design princi-
ples for microtask programming reflecting the lessons
learned from our earlier approaches [12][13]. In particular,
we contribute new techniques for ensuring quality, provid-
ing feedback to contributors, debugging modularly, ena-
bling contributors to more easily reuse code, and on-board-
ing new contributors more quickly. We also contribute a
new empirical study exploring the potential and chal-
lenges of microtask programming, examining specifically
the feasibility, speed of onboarding, speed of contributions,
and effects of quality control mechanisms.

We first illustrate microtask programming through an
example. We then present our approach and describe the
design of a new microtask programming environment. To

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

evaluate the possible feasibility of microtask program-
ming, we describe results from a user study where two
small crowds used microtask programming to build small
programs. We conclude by discussing the prospects and
challenges for the application of microtasking to program-
ming.

2 MoTIVATING EXAMPLE

Doug just started an open source project to build a better
drawing application. After putting together an initial vi-
sion of the features it should have, he decides the next step
is to start building a prototype implementation. He decides
to microtask the creation of this prototype using the
CrowdCode microtask programming environment. He
first specifies the core logic of the drawing program as a
component, consisting of four functions and the abstract
data types (ADTs) describing the data that these functions
will consume and produce. Doug enters this information
in the CrowdCode admin interface, gives the project a
name, posts a link to the project on his website, and an-
nounces his new drawing application on an online pro-
gramming forum.

Alice finds the project, clicks through, and logs into
CrowdCode. She first sees a short tutorial, describing the
major elements of the CrowdCode interface including the
task description, microtask pane, chat, activity feed, and
leaderboard. She is then assigned a microtask to Edit a
Function. She reads a second tutorial describing the mi-
crotask, identifying its goal, the possible actions she may
take, emphasizing that she should only write a few lines of
code or pseudocode, and that she need not complete the
function’s implementation. She then begins work on the
Edit a Function microtask, reading the function moveEl-
ement contained within. Discovering it already contains
pseudocode, she replaces some of it with a partial imple-
mentation. She decides that implementing functionality to
checking preconditions is behavior best implemented else-
where, so she writes a function declaration stub for a new
function validElementType at the bottom that checks
preconditions and adds a call in moveElement (Fig. 1, bot-
tom). Working to finish up, she notices that the ten-minute
count down timer has nearly expired. Writing down one
final thought, she adds her own pseudocode describing a
part of the function that still needs to be completed and
clicks submit.

As Alice works, others simultaneously work on seven
separate microtasks, building code and tests for the re-
mainder of the drawing program’s API. Bob is assigned a
microtask to test moveElement. The microtask provides
the description and signature of the function, text describ-
ing a test case to move a rectangle, and a request to imple-
ment the test case as a unit test. Using the test builder in-
terface, Bob first browses a panel listing the available data
types to understand the fields of the Element data type. He
then realizes he does not know what coordinate system is
being used. Not immediately seeing an answer, Bob asks a
question in the chat, to which Alice replies. Bob finishes the
test and clicks submit.

Charles is riding the bus home and really wants to just



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE 3
[[:]] CrowdCode projectalllopetherDrnay?  State 7 funchoes 42 tests 91 loc Worker2 JRJ -
EDIT A FUNCTION 10pts a
WriteTestCases 10/10pts. Can you write some code in the function below?
TIP: H there's a lot to da. b docall /or work for others
Farviam Sfapts
WriteFunctisnDescrip st AVENTIONS 1O WRITING [LSCTIONS
. Use PSEUDOCODE to sketch an implementation by using the syntax [ T= g e e
Review o pts
Examgle:
ReuseSearch LT function feald {
e 120, 309
[ ? ] WiriteTest 1212 pts
(1) = he svcrage ot the ealies
Review Sispes return ava;
Write T Sopts
Use FUNCTION STUBS to nction call to 2 new or existing function. Call the function as nermal, and define a FUNCTION STUB at the bottemn with a2 short
WriteTast 10/10 ps description, beader, and ar
WriteTes 100 pes Exaspla:
Write Fopts
WriteTest A ke
- alue [i.e., i you pass an object to & function, and the function changes the object, you will not see the changes)
169 pts
[8 ] 1dbpts { 2) validElesent(o
® AVAILABLE DATA TYPES
107 pis 3 Suteg
Topts ¥ Number
¥ Boolean
Alpts  Dlement mment = {
Elements are shapes in 2 drawing and may be rfgile. i,
of type "Rectangle”, "Freehand®, or "Line" i origEles.typs, g Css g
For a Reciangle Element, the verfices H a eforigElenVerticies)
deseribes the four cormers and are lisied in - -
6 v fset - mouseCurrPos. < - mouseDownPos. s ;
[ ] m":"“m" flext wereices can be any fsat - mouseCurrPos mousaDownPos.
For a Line or Freehand Element, the vertices
describes the path of the Element.
All Elements are identifisd by a unique id,
beginning at 0.
DATASTRUCTURE
ks . (3)
AL Rectangle =
o 1,
(6)] s R -

Fig. 1. The CrowdCode microtask programming environment includes: (1) the current microtask, (2) a code editor, (3) the number of remaining
statements that can be added, (4) the time remaining, (5) controls to submit or skip the microtask, (6) the ADT browser, (7) the activity feed
listing the worker’s submitted microtasks, (8) a leaderboard, and (9) current project-wide statistics.

program. He logs in to CrowdCode and is assigned a Write
Test microtask. Unexcited, he clicks skip and is assigned a
new Edit a Function microtask, continuing where Alice left
off on moveElement. More enthused, he quickly imple-
ments the algorithm Alice sketched and edits a few other
lines to make the code a little cleaner. He then clicks sub-
mit.

Dave reviews Charles” work. He notices a subtle issue
in the algorithm. In his review, he describes the issue and
rates the work as 3 stars. Ellen is assigned an Edit a Function
microtask to address the issue, which she fixes. Assigned
to review Ellen’s contribution, Alice is pleasantly surprised
to see how work onmoveElement has progressed since her
earlier contribution and gives Ellen’s work 5 stars.

As CrowdCode tracks the state of moveElement, it de-
termines that it has no remaining pseudocode to be com-
pleted and several completed tests. After executing each
test using the distributed test runner, it receives a report of
a test failure and creates a Debug Task Failure microtask.
Charles is assigned the microtask to debug moveElement,
selects the failing test, and hovers over expressions to see
their value in the execution. Hovering his mouse over a call
from moveElement to validElementType, he finds that
validElementType returns false, contradicting the be-
havior it promises in its description. Using the stub editor,
he edits the return value of validElementType, replacing
it with true. Rerunning the tests, he sees that they now pass

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

and clicks submit. This automatically generates a new test
for validElementType which is automatically executed
and fails.

Frank logs in to CrowdCode and is assigned a Debug
Test Failure for validElementType. Looking at the failing
test, he sees that it is returning false for a shape that should
be valid. Editing the code, he sees that the function is miss-
ing a parameter required to check the validity of the shape.
After editing the signature to add the parameter, he adds
some functionality, reruns the test, sees that it passes, and
submits. Microtasks are then automatically generated to
update each call site and test of validElementType.

3 REeLATED WORK

Microtask programming draws on ideas from several ar-
eas: open source software development, applying mi-
crotask crowdsourcing to complex work, and crowdsourc-
ing software development tasks.

One form of crowdsourcing is open source software de-
velopment, where source code is freely shared and anyone
may contribute [4]. Traditional methods for contributing to
open source projects differ from microtask crowdsourcing
in several important respects, particularly in that tasks are
at the granularity of implementing a feature or fixing a de-
fect with a duration of hours or days rather than minutes.
Workers must also complete a lengthy joining script and



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

may even be subject to harsh feedback from senior mem-
bers when they experience challenges in completing this
script [17][7][6]. Software crowdsourcing models such as
competitions are designed to identify high quality solu-
tions by making it easy for many to contribute. But plat-
forms for competitions still impose significant barriers to
contribution. For example, one study of the developer
competition platform TopCoder found that potential con-
tributors face barriers from a lack of documentation, pre-
dicting the time commitment they were being asked to in-
vest, understanding code structure and architecture, infor-
mation overload, and from poor platform usability [18].

A number of crowdsourcing systems have explored ap-
proaches for applying microtask crowdsourcing to com-
plex tasks. These systems rely on the concept of a workflow
which decomposes a larger task into a sequence of mi-
crotasks. For example, Soylent [8] partitions proof reading
and editing tasks into individual steps to identify a prob-
lem, make a fix, and verify a fix, each of which takes the
form of a microtask which can be separately performed by
a member of the crowd. TurKit [19] provides a framework
for authoring scripts to create and run tasks in Mechanical
Turk, enabling more flexible workflows. CrowdForge [20]
expands those solutions by enabling the crowd to partition
work. However, these systems are limited in that they as-
sume that all of the microtasks can be enumerated and gen-
erated at the very beginning through a workflow where
each input data element is transformed through a fixed se-
quence of steps. This approach cannot be used in mi-
crotasking programming, as programming tasks cannot be
decomposed in the same way and fully enumerated up
front. For example, it is impossible to predict, from a spec-
ification of requirements alone, that it will be necessary to
generate a microtask to fix a function to pass a test when
even the existence of this function and test depends on the
completion of prior microtasks. In this way, applying a mi-
crotask approach to programming work requires new tech-
niques to dynamically generate microtasks in response to
the current state of the work product.

Much work has explored approaches to crowdsourcing
software development tasks [21]. Most of these have fo-
cused on software development tasks other than program-
ming such as question answering, verification, testing, or
UI design. Companies increasing employ crowd workers
for testing [22]. Developers today often rely on the vast
wisdom of the crowd offered on Stack Overflow by the
many contributors that curate a knowledge repository of
answers to programming problems [10]. Several systems
have explored the use of crowdsourcing for recommend-
ing fixes to bugs [23][24] and compilation errors [25] and
to checking and fixing unit test assertions [26]. To leverage
larger pools of workers, several systems have adopted a
gamification paradigm enabling non-specialists to contrib-
ute to verifying software models for correctness [27][28] or
verifying the absence of security vulnerabilities [29]. Ap-
proaches for crowd-based requirements engineering aim
to increase the involvement of end users in shaping the
software they use [30][31][32]. Other work has explored us-
ing Mechanical Turk workers to test GUI functionality and
usability [33].

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Within approaches for crowdsourcing software devel-
opment, a few systems have explored the application of
microtask crowdsourcing to programming. Work has be-
gun to explore an extension to the StackOverflow question
and answer model in which, instead of employing a crowd
to answer questions, the crowd itself directly edits the code
in the codebase in response to questions [34]. In Appari-
tion, crowd workers take small Ul requests made by a cli-
ent and implement them as a mockup [35]. In CrowdDe-
sign, workers work to build small code snippets that gen-
erate visual output [36]. These systems demonstrate the
potential for applying microtasking approaches to pro-
gramming. But all are limited in scope, designed to re-
spond to enable developers to manually contract out small
tasks to others rather than for groups of developers to
come together to produce programs, as occurs today in
open source software development.

Collabode enables an “original programmer” to de-
scribe custom microtasks in prose, which are then com-
pleted by workers [37][38]. An evaluation of the system
found that, while it was possible to use microtasks for pro-
gramming, there were several significant issues with the
workflow used. As workers relied on a global view of the
entire codebase, it was sometimes distracting to see
changes being made elsewhere. Managing the crowd im-
posed a large overhead for the requester, as they needed to
answer questions about the request and evaluate each con-
tribution in detail. Moreover, code often had subtle bugs,
which was difficult for the requestor to find through code
inspection. As workers were anonymous, they sometimes
did not take responsibility for their work. These consider-
ations directly motivated our design principles for mi-
crotask programming, as we describe in the following sec-
tion.

Overall, the many existing approaches to crowdsourc-
ing offer a number of important building blocks. Our work
specifically targets the problem of reducing contribution
barriers in open source software development, where
groups of developers together work to build programs. Of-
fering developers the ability to make small programming
contributions in this setting poses several challenges which
existing work has not yet tackled. How can developers
work on automatically generated programming mi-
crotasks without needing the context of the entire system?
How can microtasks be generated when it is impossible to
generate all of the microtasks upfront? How can the quality
of work be ensured, without having a client made manu-
ally responsible for inspecting each of the contributions
made by the crowd? We next present a set of design prin-
ciples for addressing these challenges.

4 DESIGN PRINCIPLES

In this section, we offer a set of design principles character-
izing the microtask programming methodology. We offer
motivation for our principles through examining existing
systems as well as from our own experience designing and
evaluating a series of early prototypes of our system.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE

4.1 Decontextualize Contributions

Traditional software development tasks require develop-
ers to first learn context such as the location of features in
code, steps to build and run code, and who to ask for in-
formation [39][40][6][41]. Learning context creates a
lengthy onboarding script, delaying the time at which de-
velopers can first make a valuable code contribution [7].
While it may not be possible to entirely eliminate the need
for context, reducing context reduces the cost of onboard-
ing and enables developers to contribute more quickly.

4.1.1 Local edits to a single artifact

Offering developers a single task to perform on an individ-
ual small artifact (e.g., a function or test) has several ad-
vantages. Rather than forage through a codebase for the
appropriate artifact in which to make a change [42], devel-
opers are already offered the artifact. Reducing this context
may substantially reduce the knowledge required to work
productively in a codebase.

Allowing developers the ability to interact with only a
single artifact at a time creates several challenges. Rather
than rely on developers to visit call sites or function defini-
tions to understand what a related function does, such in-
formation should instead be embedded in the interfaces of
other functions. Rather than rely on developers to infer the
runtime type of parameters by reading related code, pa-
rameters should be explicitly given static types. Careful
consideration is required of the additional context devel-
opers may require to make changes.

4.1.2 Provide a preconfigured environment

Installing appropriate tools, downloading code from a
server, identifying and downloading appropriate depend-
encies, and configuring a workspace to build a project all
constitute significant barriers to contribution [6]. Offering
a preconfigured environment may substantially reduce
these barriers, thereby reducing onboarding time. Precon-
figured environments might be offered through a preset
virtual machine containing a configured development en-
vironment, installed libraries, and scripts or through a web
application.

4.2 Automatically Generate Microtasks

Microtasks describe the next steps for progress to be made.
Accurately and completely capturing all steps that are nec-
essary is important so that work is not lost and progress is
not stalled. At any given point in time, there may be many
concurrent microtasks in progress. One approach would be
to have a manager explicitly create each microtask and
evaluate each resulting contribution. However, for short
programming microtasks by transient contributors, this
approach takes more time for the manager of the microtask
than if they had simply done the work themselves, negat-
ing the benefits of microtasking [37][38]. Moreover, it also
assumes a manager or managers that are always available
whenever work is ongoing at any time. Traditional mi-
crotask crowdsourcing systems in domains outside pro-
gramming have addressed the issue by instead using com-
pletely automated microtask generation, where a client de-

scribes an initial request, the system is responsible for au-
tomatically and immediately generating the full set of mi-
crotasks to complete, and mechanisms such as redundancy
and voting ensure quality [43]. In this way, there is no
longer a cost for each microtask to be manually authored,
managed, and evaluated by a requestor, and the work is
instead organized by the system with contributions from
the crowd.

However, automatic microtask generation brings new
challenges. In traditional crowdsourcing approaches, mi-
crotasks are generated through a fixed sequence of steps,
such as a MapReduce [44] workflow describing the steps
where each input is transformed into an output [8][20]. In
contrast, software tasks are dynamic and the functions and
tests that might be needed, as well as the issues and bugs
that might emerge, cannot be enumerated upfront. A dif-
ferent approach is required that generates microtasks dy-
namically as the program emerges.

4.2.1 Track artifact state

To track the current state of a program and its progress to-
wards satisfying its requirements, the state of each artifact
within the program can be separately tracked. Consider
the state of a function as it is being created. At any point in
time, a function might need a signature to be written, an
implementation to be completed, or its code to be de-
bugged. By tracking attributes describing what is or is not
complete, a state machine can be used to describe the states
through which the artifact may transition and order the
work to be done (e.g., imposing a constraint that a function
must have a signature before beginning its implementa-
tion). Whenever a microtask is submitted, the artifact may
change its attributes (e.g., record that a signature has been
added) and transition to a new state reflecting these attrib-
utes changes. Each transition may then generate an appro-
priate microtask. The evolution of an artifact need not even
be monotonic. An artifact might transition back to a previ-
ous state after, for example, a developer adds pseudocode
while fixing a defect.

4.2.2 Signal interface changes across dependencies
As workers edit artifacts, edits to an interface of an artifact
may necessitate changes to artifacts elsewhere in the sys-
tem. For example, adding functionality may require addi-
tional information to be passed in through a new parame-
ter, which then requires all function call sites and tests in-
voking the function to be updated to provide this infor-
mation. As a microtask spans only a single artifact, this re-
quires a mechanism for signaling to other artifacts that an
interface change has occurred.

In responding to interface change notifications, artifacts
must generate appropriate microtasks. A key decision is to
which interface changes dependent artifacts should re-
spond. For example, a function might have a behavior
change in its implementation, a change to the description
of its behavior, or a change to its signature. However, it is
difficult to determine in general if an implementation
change or change to a function’s description does or does
not signal a change to the function’s interface that might
impact callers of the function. In our experience with early

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

prototypes, we found that workers often change descrip-
tions simply to clarify the text and fix formatting and typo-
graphic errors. Signaling changes to callers of these func-
tion in such cases created many unnecessary microtasks,
which substantially decreased productivity. A better alter-
native is to signal changes only for changes that clearly will
require a change such as signature changes and rely on
tests to catch other behavioral interface changes in the less
frequent cases when they occur.

As developers work, they make use of task context de-
scribing the interfaces of other related artifacts. Developers
may find that this task context is inconsistent with their ar-
tifact. For example, we found that workers writing tests
sometimes realized that a behavior of a function could not
be tested as described in the test case description [13]. As a
result, it was impossible to complete the microtask they
were asked to do. It is thus important to allow workers to
report issues with task context, halting work on the mi-
crotask and creating a microtask for the other artifact to re-
solve the issue.

4.3 Achieving Quality through lteration

AKkey consideration in all crowdsourcing approaches is de-
signing mechanisms to protect against poor contributions
and ensure high quality work [45]. Yet using crowdsourc-
ing to solicit contributions from many contributors can also
increase software quality, as the diverse ideas contributed
by the crowd offer the building blocks to reach higher qual-
ity designs [15]. Rather than using a single manager or ar-
chitect to oversee the project, the crowd itself is responsible
for setting the direction of the project as work progresses
through each of the individual contributions made. Tt is
thus important to consider in detail the effects of decom-
position, workflow organization, and coordination mecha-

nisms on the quality of the output produced [46].

4.3.1 Encourage revision through sketching

Long contributions prevent the crowd from offering feed-
back on work as it is being done, enabling contributions to
go far off track without input from the crowd. Low quality
contributions may arise for many reasons. Workers may go
off track because they are confused, because they are not
knowledgeable enough to contribute a high-quality solu-
tion, because they put forth little effort, or because they
wish to be actively malicious. Whatever the reason, even
an individual low-quality contribution can significantly re-
duce the overall quality by introducing decisions that
make subsequent implementation work more challenging
or through introducing defects.

One mechanism to guard against low quality contribu-
tions is to reduce the amount of damage possible by any
individual contribution. By making contributions smaller,
many workers have the opportunity to contribute to the
same artifact, and any problematic contribution can be re-
vised. In this way, a worker who makes a mistake may
have it quickly revised. However, we found in our prelim-
inary studies that, despite explicit instructions otherwise,
developers sometimes expected to continue work on a sin-
gle artifact until its completion, reflecting the expectations
developers bring to programming tasks. For example, in

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

M
addends ) ;

manage the other operations

Psendocode (sections of a line beginning with /=) allows you to sketeh algorithms or
partial solutions, enabling the crowd 1o determine how best the algorithm or solution
should be accomplished

Fig. 2. A step in the microtask tutorial offered when workers begin
their first Edit a Function microtask.
one informal study with an early prototype, a worker
worked for 66 minutes within a single Edit a Function mi-
crotask. From this, we learned that is important to create
mechanisms that limit contribution size such as bounding
the maximum time or size of a contribution.
Programming tasks often require more than a few lines
of code. In these cases, a developer may first begin working
on a function and handoff work to others to continue. In
such cases, it is important for the developer to have ways
to communicate the intent of their approach through
mechanisms for skefching an implementation design.
Sketches may take the form of pseudocode, where a devel-
oper writes a high-level plan for an algorithm without wor-
rying about thinking through all the details. In cases where
steps in an algorithm may contain whole units of function-
ality, a developer may write function stubs, describing
functionality that the function is expected to offer. In this
way, developers are able to make contributions at a higher
level of abstraction which subsequent developers may

then fill in.

4.3.2 Support reviews and tests
A second mechanism for guarding against low-quality
contributions is to explicitly check the quality of a contri-
bution. Creating an opportunity to review contributions
provides a quality gate through which contributions must
pass and offers possibly valuable feedback to the contribu-
tor. Reviews can quickly identify work from new contribu-
tors that is headed in an unproductive direction and edu-
cate confused workers about the correct way to work.
Reviews offer a form of redundancy, where two contrib-
utors together must sign off on work for it go forward. Of
course, as with any redundancy, the reviews may them-
selves be mistaken. If reviewers cause contributions to be
discarded, this can be particularly problematic in causing
valuable contributions to be discarded. One solution is to
only allow reviews to be used to revise work. In this way,



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE

further redundancy is introduced, as subsequent contribu-
tors must again react to the previous contributions. For ex-
ample, a contributor revising a contribution in response to
the review may decide that the requested revision is itself
mistaken and ignore it. In this way, subsequent workers
can then see the previous contributions and take whatever
actions they see fit.

As in traditional software development, tests offer an
important quality gate. Moreover, by dividing writing tests
and implementing features into separate microtasks, tests
provide an opportunity for another developer to provide a
new perspective on the function, embodied in their test,
which may reveal issues the implementer might not have
considered. However, it may be in some cases that the test
itself is incorrect rather than the function. It is thus im-
portant to offer facilities for revising both functions and
tests as necessary.

5 SYSTEM

Based on our design principles, we have developed the
CrowdCode environment for microtask programming. In
the following sections, we describe the user workflow, sys-
tem architecture, and its implementation.

5.1 Workflow
All work begins with a client request which describes an
APT to be implemented through a set of function descrip-
tions and signatures, a set of ADT descriptions, and a set
of acceptance tests. All worker contributions are made
through microtasks. As workers first visit CrowdCode,
they are shown a Welcome screen explaining the basic
ideas of CrowdCode and offering a short interactive tuto-
rial explaining the primary interface elements. When a
worker first begins a microtask they have not previously
done, they are provided an additional tutorial, explaining
in detail how to perform the microtask using a series of ex-
amples (e.g., Fig. 2). The worker is then provided a mi-
crotask automatically assigned by the system, which they
may choose to either complete and submit or skip.

Table 1 lists the microtasks in the CrowdCode environ-
ment. Fig. 3 depicts a simple example of the microtasks
generated to implement a function. Following the creation

of a new project from a client request, Edit a Function (Fig.
3.1) and Write Test Cases (Fig 3.2) microtasks are generated
for each API function. Whenever functions are submitted
which contain pseudocode, a new Edit a Function microtask
is generated to continue work on the function.

Writing tests is decomposed into two steps. In the Write
Test Cases microtask, a worker first specifies a test plan for
the function by enumerating a list of test case descriptions
identifying behaviors that should be tested. In the second
step, each test case generates a separate Write Test mi-
crotask for the test case to be implemented as a unit test,
enabling workers to separately complete each test in paral-
lel (Fig 3.4).

When functions are submitted which contain one or
more new function stubs, Reuse Search microtasks are gen-
erated in which workers have the opportunity to find ex-
isting functions offering similar functionality to the re-
quested stub or indicate that no such existing functions ex-
ist (Fig. 3.5). In this case, a new function is created and a
Write Function Description microtask is generated to author
a signature and textual description of the new function
from the provided function request and implementation of
the requesting function (Fig. 3.6). Work then recursively
continues and microtasks are generated to Edit a Function
and Write Test Cases. In parallel, an event is sent to the call-
ing function and a Write Call microtask is generated and
queued (Fig. 3.7).

When a function contains no remaining pseudocode, it
is written and ready to be tested. As each test becomes im-
plemented, it is executed against the function. If a function
fails one or more tests, a unique Debug Test Failure mi-
crotask is generated for each failing test, providing all pass-
ing tests and exactly one failing test (Fig 3.8). Workers can
then edit the function so that it passes the previously pass-
ing tests and the additional failing test, insert new pseudo-
code and stubs, or report an issue with one or more of the
function’s tests.

Of course, the defect may not be in the function with
the failing test. This poses a challenge: how can fault local-
ization be decontextualized to enable developers to work
modularly with a single function, when it seemingly first
requires knowing the function containing the defect? To

TABLE 1
CrowbDCobDE MICROTASKS

Microtask Editor Context views Possible contributions
Write Function De- Function description ~ Stub Viewer with requested function, imple- (1) Function description, (2) Report func-
scription editor mentation of requesting function, ADTs tion as not implementable
Edit a Function Code editor ADTs, diff of change to function signature (if (1) Code, pseudocode, and stubs, (2) Re-
any) port function as not implementable
Debug Test Failure Code editor ADTs, Test Runner (1) Code, pseudocode, and stubs, (2) Re-
port issue in test
Reuse Search Function search Stub View of requested function, implemen- (1) Identify existing function providing re-
tation of requesting function quested behavior, (2) No function found
Write Call Code editor Description and signature of identified func- (1) Code, pseudocode, and stubs
tion, ADTs
Write Test Cases Test case editor Description and signature of function, ADTs (1) List of test cases, (2) Report issue with
function
Write Test Test editor Test case, description and signature of func- (1) Test, (2) Report issue with function, (3)
tion (and diff, if any), ADTs Report issue with test case
Review Review Contribution and original task context (1) Review and rating

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE
Transactions on Software Engineering

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID
doSpreadsheetCommand
described
written e —
buggy ———————
dolnsertColumnBefore
described
written ———
" 0 -
Write Test  Review
Write Test  Review
Test Cases Review
Write Test  Review WriteTest  Review
Write Test  Review  Write Test  Review Write Test Cases Review  WriteTest Review
o Write Test  Review
Reuse Search  Write Function Description  Review  Add Call Review
[Edit a Function
Edit a Function Review  Edita Function Review Debug Test Failure
Reuse Search  Write Function Description  Review
Edita Function ~ Review  EditaFunction  Review Reuse Search  Write Function Description  Review .
Reuse Search Write Call  Review Test Failure
‘Write Function Description  Review .
time
QIWWEEEI 10015 o1 .
Can you wri i i A worker was asked [0 edit the code ommand
TWP: if theres a lot todo, i andfor thers Can you review this work?

 COMVERTIONS FOR WRITIN

CTIONS

ETTR % skeich of implementationg

Use FUNCTION STUBS to request a function call to a new or existing fanction. Call the function as normal, and define a FUNCTION STUB at the
battom with a short descrip , and an empty bady.

Note: all funetion calle are pass by value (L., If you pass an object to a fanction, and the funetion changes the abjeet, you will not see the changes)

 URSCRIPT TUTORIL

 IAILABLE DAATA TYFES

» string
¥ Number
» Boolean
¥ Spreadshest —
* Row TSI ATIHG
» Cell 1 Star. ncohesent of unfocussed « 'WORK ACCEPTED
P 2 Stars: Unconvincing or weak
35tars: There are some weakness
. 4 Stars: Good quality, without weakness § .
¥ Range § Stars: Excellent without weakness o
» View W AVAILABLE GATA TYPES
¥ Saring
spreadsnest; ¥ Mumber
3 Boclean
> Spresdshest

o 10 pts

Can you de:
Are there any
TIP: You don't need to specify concrete, executable tests, anly high-level descriptions of scenaries to be tested.

e some test cases in which this function might be ussd?

FUNCTION DESCRIPTION with the fusction @

deSpreadsheetCommand| spreadsheet, view, command)

¥ String

3 Numbar parametess are lavalld »
% Bocbean

command |

» Spreadsheet sertRowBefore =

3 Row command is DeloteCalumn L
3 Call

¥ style

% Position

¥ Range

¥ View

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE

e ! i providing 3 JSON abject literal for each
p thedata he left with nples you can copy and paste.

= AL ABLE CSTA TYPES

» String
¥ Humber

¥ Boolean

¥ Spreadihest
¥ R

¥Cell g
¥ style :
# Pesition

3 Rangs

¥ View

7 ADDACALL

The " deseriy i alied by i pice. can you check if the callls) are
coamect, and revise them If nocassary?
Tipe I you know 3 better way X revie the fu 35 you sae fit

an doInsertColumsBeforespreadheet, view!

R AT TS
3 Sitring

¥ Mumber

¥ Doalean

¥ Soreadshent
¥ Row

»Call

3 Style

3 Positian

3 Rangs

? View

dolraartColusnBefare]spreacahent, view];

Awarker edlting the

¥, or

spreadsheet;

T

choase a function that provides the
requested behavior { you can filker the list
of functions by entering text in the ingut
bax). If there isn't the right fanction, click
check "no function found".

function sef
Tunction sel
function sel
function oo

6 WRITE AFUNCTION DESCRIPTION Bpts

view, iy

functisn doView(ommand(spreadsheet, view,

 call ta a function providing the behaviar of dolnsertColumnBafore. Can you find 2

command

ted. Can you write a detailed

Awarker editing the functh
description for the function doSub?

quested that a functicn dol

doSpreadsheetCommand| spreadsheet, view, comsand){

command §{
e ' insertColusnBefore” :
eet = GalnsertColumBefiore (spreadsheet,view);

Teturn spreadshest;
]
scATATYFES
» String
» Number
» Boolean
¥ Spreadsheet
» how
»Cell
¥ Style.
3 Pesition
¥ Range
¥ View

deseription

return data
type
function name

parameters

Do of e Rt fuw o o dhuSpemadsbetCommand b 1ail el
L T ————

o bl | 2 e ety
clich o tha hagrkphtes et - i b coerarg e et
popap

®

Add Parameter

Fig. 3. An example of microtasks generated to implement a function doSpreadsheetCommand. The top diagram depicts the microtasks generated
(boxes) over time (x axis) and the current state of each artifact (green lines). From an initial client request describing this function, two microtasks
are first generated to (1) Edit a Function and to (2) Write Test Cases. In microtask (1), a request for a function dolnsertColumnBefore is made.
After submission, a corresponding Review microtask is generated and which accepts the submission. The request for dolnsertColumnBefore
then generates a microtask to conduct a (5) Reuse Search to determine if a new function should be created. No existing function is found. As
Reuse Search microtasks are not reviewed, a (6) Write Function Description microtask is generated to describe the requested function. This
creates a new dolnsertColumnBefore function, initially in the described, lwritten, and !buggy state, generating microtasks to Edit a Function and
Write Test Cases to begin its implementation. After it is described (and while it is being implemented and tested), an (7) Add Call microtask is
generated to update the call site from the original request to match the description written in (6). In parallel to this work, each of the test cases
specified in (2) generate corresponding Write Test microtasks, such as (4). After doSpreadsheetCommand transitions into the described and
written state and its tests are implemented, the tests are executed, resulting in a test failure, which then generates a (8) Debug Test Failure

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

10

address this challenge, CrowdCode uses a modular debug-
ging process using stubs. At any point when debugging a
function, workers may hover over a function call to view
the actual parameters and return value. If a worker sees a
return value for a function that does not appear to match
the description of a function, the worker may then edit the
output of the function, automatically creating a stub. Re-
running the tests then enables the worker to check if the
proposed change to the function behavior would fix the
defect and cause the test to pass. If the microtask is submit-
ted with a stub, the requested change in behavior is then
propagated to the invoked function, creating a correspond-
ing test which is then run and will fail (unless the function
has concurrently changed). In this way, the fault localiza-
tion process recursively continues across function invoca-
tions, creating a new Debug Test Failure microtask for each
relevant function.

After each microtask is submitted, a corresponding Re-
view microtask is first generated before the microtask is
marked as completed (except for the Debug Test Failure and
Reuse Search microtasks which are not reviewed). Review
microtasks show workers the contribution and the original
task context and ask workers to provide a quality rating on
a five-point scale. Microtasks that receive a score of 1-3 are
marked as Reissue and must include a review explaining
the reason; otherwise, the microtask is marked as Accepted
and the review text is optional. Workers are then informed
of the review with a notification in their activity feed. Once
accepted, the microtask is completed and the microtask
content is used to update the corresponding artifact. If
marked as a Reissue, a new microtask is generated which
copies the original microtask and includes both the origi-
nal contribution and review. This microtask is then as-
signed to a new worker to address the reported issue.

In viewing a microtask’s task context, workers may find
an issue with the task context which prevents them from
completing the microtask (e.g., a test case that it is impos-
sible to test). In such cases, workers may report an issue
with a specific artifact referenced in the task context by de-
scribing the issue and submitting it instead of the mi-
crotask. A new microtask for the artifact is then generated
to address the issue.

To ensure that contributions do not go off track and re-
ceive frequent feedback, microtasks are limited in time and
contribution size. Microtasks are limited in duration to 10
minutes, indicated to workers through a bar showing the
remaining time (Fig. 1-4). After 6 minutes, a warning mes-
sage is displayed. If the microtask is not submitted after 10
minutes, it is automatically skipped and the work dis-
carded. Additionally, contributions in the Edit a Function
and Debug Test Failure microtask are limited to a net in-
crease of ten statements, in addition to any pseudocode
(Fig. 1-3).

CrowdCode provides workers with an overall sense of
the progress of the project, listing the total lines of code
across all functions and the number of functions and tests
(Fig. 1-9). Workers can interact with other currently logged
in workers through a global chat. Finally, CrowdCode pro-
vides a basic gamification system encouraging contribu-
tions. Workers submitting microtasks are awarded points

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

proportionally to the review score. To encourage workers
to take up microtasks that others do not wish to do, skip-
ping a microtask increases its value by 20%. Scores for each
worker are indicated in a leaderboard (Fig. 1-8).

A project is complete when there are no remaining un-
completed microtasks. To use the code implemented by the
crowd, the client may visit the administrative page for the
project at any point and download a current or past version
of the code created.

5.2 Services

Microtask programming is fundamentally distributed, re-
quiring coordination and synchronization between contri-
butions being made separately by each contributor.
CrowdCode coordinates work through a central service
that is responsible for processing new contributions, up-
dating the state of artifacts, and generating new mi-
crotasks.

Microtask generator. After contributions have been sub-
mitted by clients and approved by a reviewer, contribu-
tions are used to update the current version of the artifact.
Based on these updates, the attributes of the artifact may
change. Three attributes determine the overall state of each
function: whether it has a function description (described),
whether it has a complete implementation that contains no
pseudocode (written), and whether it currently has any
failing tests (buggy). After a function has been updated,
these attributes are examined to determine which mi-
crotask should be generated next. If a function is not de-
scribed, a Write Function Description microtask is generated.
If a function is not written, an Edit a Function microtask is
generated. If a function is buggy, a Debug Test Failure mi-
crotask is generated. Fig 3. depicts an example of artifact
transitions and the resulting microtasks generated.

Work on a function is complete and no microtasks are gen-
erated when it enters the described, written, and not buggy
state. However, the function may again enter the buggy
state when a function which calls it adds a new stub and
propagates a test to the function. In such a state, workers
may freely edit the function and add pseudocode and it
might again transition to a not written state.

Each function has a set of dependent functions which con-
tain a call site to the function. A message is sent to each of
a function’s dependencies whenever it changes its inter-
face by changing its name or parameters. This message
then generates an Edit a Function microtask for each caller.
Certain microtasks also enable reporting an issue with a
function (Table 1), which generates an Edit a Function mi-
crotask for the function.

Distributed test executor. To reduce server resource usage
and facilitate scalability to large crowds, all tests are exe-
cuted on clients rather than the server. Each client main-
tains a test execution service which executes a test and re-
turns a test result. After every edit to a function, a run of
all tests is scheduled for execution by the server. This work
is distributed to clients, and the clients report back with the
outcome of each test execution. Test failures generate De-
bug Test Failure microtasks. Additionally, within the Debug
Test Failure, workers can directly run all of the tests for a
function.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE

1

BACKEND

-
I
I I ===
I I 1
I I |

SHARD 1 ~ SHARD 1 SHARD 1

versions storage
microtask data
test runner queue
workers data
newsfeed

global chat & qia

workflow manager
microtask queue
version control system
point and achievements

T.

| veems
r 3

REST/HTTP

$4

WEB CLIENT

IDE

collaboration tools
distributed test runner
distributed workers logout

administration services

AJAXFHTTP

L

CLIENT CLIENT
WORKER 1 WORKER 1

CLIENT
WORKER 1

Fig. 4. CrowdCode is architected as a client-server application with a trusted backend, untrusted web clients, and a real-time JSON

datastore.

Version control system. To enable tests to be executed on
clients, clients must have the corresponding implementa-
tion of functions under test. As functions may arbitrarily
invoke other functions, clients must have code for all func-
tions in the system. CrowdCode thus maintains a simple
version control system, synchronizing current code and
tests from the server to all clients. The server ensures that
there is never more than one active microtask for each arti-
fact, so merge conflicts do not occur. Whenever a contribu-
tion is accepted and an artifact is updated, a new version
of the artifact is created. This new version is then synchro-
nized with all currently active clients.

Activity. Various backend operations keep track of states
used to populate client views. This includes the activity
feed for each worker, leaderboard, and project statistics.
The Activity service manages this state and broadcasts up-
dates to clients.

5.3 Architecture

CrowdCode is architected as a client-server system consist-
ing of web clients, a backend, and a real-time NoSQL data
store (Fig. 4). The backend and NoSQL datastore both ex-
pose a RESTful interface. Clients retrieve and submit mi-
crotasks from the backend, which processes microtasks
and updates data in the real-time NoSQL datastore. The
backend and datastore are sharded for scalability, where
the backend is organized into separate components con-
sisting of an individual entity including artifacts, workers,
and the project and is backed by a separate region of the
datastore. When the server receives multiple concurrent re-
quests, each component is able to handle requests to its
own state and update its state in parallel with other com-
ponents without creating race conditions or resource con-
tention.

In web application architecture, clients are traditionally
considered untrusted, as any user of the web application
may edit the code that runs on the client. In contrast, serv-
ers are considered trusted, as only the application develop-
ers who own the server can change the code that runs
there. For example, a malicious crowd worker might edit
the client implementation to delete all of the project’s code

or give themselves a more favorable activity history. To
prevent such attacks, all clients must submit all changes to
application state through the server, which verifies the re-
quested change before updating application state and
posting updates to the NoSQL datastore. After updates
have been posted to the datastore, the datastore directly
broadcasts updates application state to the clients, includ-
ing updates to the Version Control System and Activity
Services.

6 EVALUATION

As microtask programming represents a significant depar-
ture from a traditional development approach, it brings
many basic questions about its feasibility. In contrast to tra-
ditional software development approaches, microtask pro-
gramming is intended to enable developers to contribute
quickly, both in onboarding to a new project and making
short contributions. The novelty of the methodology raises
many questions about the quality of the resulting pro-
grams produced. For these reasons, we sought to evaluate
(1) the feasibility of the approach, (2) the speed of onboard-
ing, (3) the speed of making contributions, and (4) the ef-
fects of the quality control mechanisms. To investigate
these questions, we conducted a user study. Participants
worked entirely online, interacting only through the plat-
form. 14 developers were divided into two crowds which
each separately used CrowdCode to collectively work on a
programming task.

6.1 Method
We recruited fourteen participants to work remotely from
the US, Argentina, Brazil and Portugal. Participants were
recruited through personal contacts. All participants had a
computer science related degree and between 2 months
and 12 years of industrial experience, with an average of 4
years. All participants had previous experience program-
ming in JavaScript. Participants were compensated $100
for their time.

All interactions with the experimenters occurred via

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

12

email and IM, and all interactions between participants oc-
curred through CrowdCode. We organized participants
into two groups (6 in Session A and 8 in Session B) to offer
two opportunities to observe crowd work and reduce the
impact of variation between groups on results. Both groups
were recruited from the same participant population and
included participants across a range of expertise levels.

Several forms of data were collected during the study
sessions. The server was instrumented to log all changes to
artifacts, microtasks generated, submitted, skipped, and
reissued, and use of the chat feature. To log more fine-
grained data of participants’ interactions, screen record-
ings were captured from all participants. Additionally; par-
ticipants completed two surveys on their experiences. Mid-
way through the sessions, participants completed a survey
on their experiences and challenges with microtask pro-
gramming. At the end of the session, participants were
asked to complete a second survey on their experience. In
total, each session lasted 5 hours.

At the beginning of each session, participants were
given a brief written introduction to the purpose of the
study through an email, asked to install a screen recorder,
were provided instructions to log in to CrowdCode, and
asked to begin by logging in. After logging in, participants
were then given a series of tutorials within the CrowdCode
environment explaining the overall environment as well as
introducing each microtask type whenever they worked
on a microtask of a new type. Each participant worked in-
dependently at their own computer.

Participants in each session worked together to imple-
ment a component for the core behavior of a simple inter-
active drawing application. Functionality focused on cre-
ating, manipulating, and rendering drawing elements.
Specifically, functionality focused on translating user in-
puts specified as mouse actions into updates to an under-
lying model of the drawing and generating rendering
primitives from a model of the drawing. The task was spec-
ified through a client request specifying a signature and a
short description in the form of comments for each of four

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

functions (createElement, createAction, render-
Drawing and moveElement). These were supplemented
with ADTs describing the parameters to these functions
(Element, Position, Segment and Action) and several
representative examples of each of these ADTs. Other than
the function signatures, no code was provided in the client
request. From this client request, CrowdCode then auto-
matically generated two microtasks for each of the four
functions: 4 Edit a Function microtasks and 4 Write Test
Cases microtasks. As participants began work, they were
automatically assigned one of these microtasks by the en-
vironment.

6.2 Results

6.2.1 Feasibility

During the two sessions, participants submitted 1,008 mi-
crotasks and implemented a total of 22 functions, including
8 API functions (4 functions in 2 sessions) and 14 functions
participants created from scratch. Participants’ final output
encompassed 490 lines of code and 149 unit tests with 2920
lines of code. On average, participants created 7.8 tests per
function. Nearly half (47%) of the tests created were for the
36% of functions which were API functions, perhaps due
to their greater complexity or because they were first.
Across the total of 70 hours of participant time in the two
sessions, 44 hours were spent on microtasks that were sub-
mitted (referred to as “contribution time”). Participants
spent the most time on Review microtasks (37%), Write a
Test microtasks (22%), and Edit a Function microtasks (17%).
Table 2 lists the time spent per microtask type. The remain-
ing non-contribution time was spent on reading study ma-
terials, completing the two surveys, working on microtasks
that were skipped rather than submitted, and waiting for
microtasks to be assigned.

All 1,008 microtasks workers submitted were automati-
cally generated by the system. For example, Fig. 5 depicts
the microtasks generated for the function createAction
in Session A. Edit a Function and Write Test Cases microtasks
were iteratively generated, completed, and reviewed until

B Edit a Function Write Test Cases B Review
B Debug Test Failure ® Reuse Search W Write Call
DESCRIBED T T
IMPLEMENTED i T
[ |
r
[ ]
1
—
|
[ |
MICROTASKS |
]
|
]
]
|
|
]
|
n
|
—
o0 o030 400 = 430 =200 = =230  a®0 330 400 = 430 500
TIME - HH:MM

Fig. 5. Microtasks generated for the function createAction during Session A. Each bar corresponds to the time at which an individual mi-
crotask was first generated and the time at which it was submitted (microtasks were assigned to workers at a time after being generated).

The top two rows depict the times at which the function changed state.

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE

the work was complete, generating additional microtasks
to respond to requests for additional functions. The sub-
mission of the last microtask (a Review microtask) before
the dashed line resulted in the function transitioning into
the implemented state, triggering the execution of tests
and generating separate Debug Test Failure microtasks for
each failing test. Other functions behaved similarly. Func-
tions sometimes transitioned multiple times between the
implemented and not implemented state. Participants
rarely changed function interfaces once defined, with only
two changes in Session A and zero in Session B.

Participants implemented 22 functions and 149 unit
tests through the submission of 1,008 microtasks,
demonstrating the feasibility of programming through
microtasks.

6.2.2 Speed of onboarding

After logging in to CrowdCode, participants first read
a brief tutorial introducing microtask programming and
the basic user interface elements of the platform and were
then assigned their first microtask. At this point, partici-
pants often spent time familiarizing themselves with the
environment. In some cases, participants began working
with their first assigned microtask. In other cases, partici-
pants skipped several microtasks because they wanted to
look at several types of microtasks before starting to work.
Overall, participants on average submitted their first com-
pleted microtask after 14 minutes and 32 seconds.

The first microtasks participants completed were often
the most challenging, as they learned aspects of microtask
programming such as pseudocode, requesting functions,
and reviews. One reported that “It was pretty easy once you
already started completing a few microtasks. At first it may seem
a bit strange because you have little time, but you get used to
manage it.” Review microtasks helped identify issues with
early microtask submissions. On average, the review score
for the first submitted microtask was 2.8 out of 5. 78% re-
ceived a score of 3 or less, leading them to be reissued to a
second participant.

Rather than incur learning costs all at once upfront,
learning costs for specific microtasks were deferred until
participants first encountered that microtask. At this point,

13

M

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30

session time (hh:mm)

review score

=R W o

Fig. 6. Average review score across the two sessions, averaged
using a ten-minute sliding window.

participants again needed to learn a new microtask, incur-
ring time and reducing quality. Participants first read a sec-
ond microtask-specific tutorial before beginning work on
the microtask. Completing a microtask of a new type raised
completion times from a median of 1 minute and 31 sec-
onds to 5 minutes and 29 seconds as well as decreasing me-
dian quality scores from 5 to 3. One participant reported
that “I could not understand each task until it went around a
couple of times” and "At the beginning, everything was very
confused. Gradually I began to understand”. Another sug-
gested that an interactive demo microtask enabling them
to complete a sample microtask might help speed learning.
As participants through the sessions gained experience
with CrowdCode, average review scores tended to in-
crease before reaching a plateau. Fig. 6 depicts the moving
average review score with a ten-minute time window.

On average, participants were able to complete their first
microtask less than 15 minutes after they began onboard-
ing.

6.2.3 Speed of contributions
Overall, workers were able to complete all microtask types
in both sessions in a median time under 5 minutes (Table
2). Completion times were greater for larger microtasks
such as Edit a Function, Write Test Cases, and Debug Test Fail-
ure, with median completion times reaching as high as 4:57
or 4:00 for Write Function and Debug Test Failure. Shorter
microtasks had median completion times below 2 minutes,
including Reuse Search, Write Test, and Review. In all cases,
median completion times were less than half the ten-mi-
nute cutoff.

Participants skipped 13% of all the microtasks they be-
gan. Skips occurred for a variety of reasons. In some cases,

TABLE 2
MicroTasks COMPLETED, SKIPPED, AND REISSUED

Microtask type Completed Skipped Reissued  Median time Total time
(mm:ss) (hh:mm:ss)

Session A B A B A B A B A B
Review 260 227 22 22 - - 127  1:14 9:29:32 6:43:43
Write Test 158 102 22 7 40 41 129 121 6:35:41 3:15:12
Edit a Function 44 56 25 21 16 22 4:57 231 3:59:28 3:40:03
Write Test Cases 40 30 9 4 11 13 3:50  2:28 2:57:02 2:05:53
Debug Test Failure 14 18 5 6 1 4 2:32 400 0:57:22 1:21:21
Write Function Description 8 16 3 0 0 10 312 244 0:30:21 1:03:58
Write Call 7 9 2 2 0 3 1:37  2:28 0:15:02 0:36:49
Reuse Search 9 10 3 0 0 3 0:42 1:35 0:06:37 0:22:33
Total 540 468 91 62 68 926 24:51:05  19:09:32
Overall total 1008 153 164 44:00:37

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

14

participants skipped microtasks because they seemed un-
able to complete them. In other cases, participants skipped
several microtasks in succession simply to explore the
available microtask types before choosing which to begin
with. 17% of the total microtask skips occurred as partici-
pants ran out of time on a microtask and the system auto-
matically skipped the microtask. Some participants felt
rushed at points, particularly participants that erroneously
viewed the microtask to ask for more than it did. “The ten
minutes for tasks sometime made me feel in a hurry, especially
when I had to start to write a new function from scratch and I
had to read and understand the specifications.”

To measure contributions on microtasks where partici-
pants contributed code, we counted the number of lines
touched, including lines added, edited, and removed. Par-
ticipants added an average of approximately 3 lines of code
and removed and edited approximately 1 line of code each,
touching an average of 5 lines.

Participants were able to complete microtasks of all types
in a median time under 5 minutes.

6.2.4 Effects of quality control mechanisms

In both Session A and Session B, participants did not have
time to completely implement the components within the
5-hour sessions. At the end of each session, there was still
additional work to be done to fully implement the func-
tionality specified in the client request. To assess the over-
all progress and quality of the contributions made by par-
ticipants, we constructed a test suite (not provided to par-
ticipants) and then edited the final code in each session un-
til all tests in the test suite passed. In Session A, 3% of the
contributed code (7 lines) had to be edited and an addi-
tional 3% (6 lines) of code had to be added. This included

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

fixing small typographical errors (e.g., adding an array in-
dex, fixing misspelled variable names) and implementing
several lines participants had sketched with pseudocode.
In Session B, 12% (33 lines) of the code had to be edited and
an additional 25% (69 lines) added. Additions included im-
plementing two functions that participants created but had
not yet implemented.

Throughout the sessions, participants iteratively imple-
mented and revised function implementations. Individual
functions often reflected contributions from several partic-
ipants. Fig. 7 depicts the implementation contributions
made in Session A. On average, approximately 3 workers
contributed to the code of each function, increasing work-
ers' perception of the quality of the resulting code. One par-
ticipant reported “Every bit of code was checked by at least
three people, usually more. I felt that it came out pretty solid.”
Implementation contributions often reflect a single step
which later contributions then built on. Fig. 8 depicts three
contributions made to the function createaction during
Session A. One worker first implemented one case of the
function, leaving pseudocode for additional cases. In sub-
sequent iterations, one worker reworked the case logic and
another worker implemented logic for additional cases.

To identify and correct defects, participants used the test
and review systems. Workers implemented an average of
6.8 tests per function. As tests failed, Debug Test Failure mi-
crotasks were generated. Failing tests were often caused by
typographic errors, incorrect use of JavaScript syntax, in-
correct function invocations, and erroneously imple-
mented functionality. 37% of participants’ contribution
time was spent on Review microtasks. The review system
helped to identify defects such as typographic errors in the
code, missing test cases, erroneous tests, and incorrect use
of data types or functions. One participant observed that

worker1 worker2 worker WFD - WriteFunctionDescription  WF - WriteFunction RS - ReuseSearch
W workerd workers m worker WC - WriteCall DTF - Debug TestFailure * - APl functions
unctions aak type
e
“createElemant | oo l I
We 4
SFO —_— —_— —_— ——— . - —_ - — e = - e e— e
WF _ e — —_— - — -
*moveElement | pe —1 | / 1l = <1 |
DOTE \ 1 13
WD I\ T T
“renderDrawing | ne it 4 ! !l | | —'
o |
TE
i I | i
createAction ‘,:: e | | 1 BEme NN | |- A |
= | ) T W - L]
WD \ N \
isOnOutiing | ha |\ 1 EBEE Ems HH ] | | 4 mt my | |
e \ \ - | | W
o 1 i T T
validPosition | g || | IEEEE BRI ‘ Imm | |
A IINEEENESSSESSENENENE L NI INNEE RN 11w s 1
WD
WF a L ! l
valldElement | oo f * |
we
s B =T
aethextvalidld | ha _I [ - Ime
we .
DTE I
WD ¥ i 1—1
islnRectangle a \ I . Il Bl _1
DTE A
WD \ | |
validElementType :: N
o
WFD !
positionisOnSegment | e \, |
we
copyVertices | mg
we
DTE
] w30 100 =] Zo0 230 300 im 400 ) O

Fig. 7. A timeline of microtasks contributing descriptions or code to functions in Session A (test contributions and reviews are not shown).
Functions were iteratively implemented by successive micotasks completed by different participants. As work progressed, participants

requested the creation of new functions.

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.




AUTHOR ET AL.: TITLE

Transactions on Software Engineering

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

15

worker) worker! workerZ  —tot loc
W workerd workerd W worker§ -~ pseudo loc
40
| |
kL]
=
g — 1
B w0 .-"'; - BN | c )
% / function createActior DownPos, c d
£ / elements) {
" / iffcommand =="Move"){
1 . —_ —_ \ i :Darr el = null;
(el in elements) {
o:00 too téi::_ hh:mm 00 400 if (isOnCOutline(mouseDownPos, el)) {
return {
B "type"Move",
function createAction{mouseDownPos, command, elements) { "elementld"elid,
/1% mark this function as complete by removing this line "mouseDownPos":mouseDownPos
iffcommand = "Move"){ k
var el = null; }
for (el in elements) { }
if (isOnOutline(mouseDownPos, el)) { telse{
return { var nextld = getMextValidld(elements);
A "type""Move", if fcommand == "Line") {
function createActior DownPos, c d, elements) | "elementld"elid, //# handle Line and return it
/1% mark this function as complete removing this line "mouseDownPos™mouseDownPos return {
//# mark this function as complete by removing this line k "type": "Line",
iffcommand == "Move")}{ } "elementld": nextld,
var el = null; } "mouseDownPos™: mouseDownPos
for (el in elements) { }else iff | =="Line" || c d == "Freehand" k
if (onOutline(mouseDownPos, el)) { || command == "Rectangle™){ } else if (command == "Freehand") {
return { //# handle Line //# handle Freehand and return it
“type""Mave’, /7% handle Freehand return {
“elementld™elid, /7% handle Rectangle "type": "Freehand”,
“mouseDownPos"mouseDownPos Jelsef “elementld”: nextld,
k return null; "mouseDownPos™ mouseDownPos
1 }else{ k
¥ var nextld = getNextld(elements); } else if (command == "Rectangle”) {
Jelse ific i =="Line"|| c d = "Freehand" if [command = "Line") { /1% handle Rectangle and return it
|| command =="Rectangle”){ //# handle Line and return it return {
//# handle Line } else if (command = "Freehand™) { "type”: "Rectangle’,
/7% handle Freehand J/# handle Freehand and return it "elementld": nextld,
//# handle Rectangle } else if (command == "Rectangle”) { "mouseDownPos™ mouseDownPos
Jelse] /% handle Rectangle and retumn it ¥
return null; } 1
} }
return null; return null; return null;
} }

Fig. 8. Examples of contributions made by participants to the function createaction in Session A.

“You can learn from your mistakes that others point out or better
ways to accomplish the same goal of a certain function”.

Participants used the issue reporting system to report
issues they identified with the current state of artifacts,
identifying 63 issues. Many were related to text that was
excessively vague or contradictory. The most common
source of issues was in the Write Test microtask, where par-
ticipants reported 43 issues. Most dealt with the test case
being poorly described or difficult to understand. For ex-
ample, one participant in Session B reported that a test case
to “Test if the function returns true when the element is correctly
well-formed” was not clear in defining well-formed. Partic-
ipants also reported 13 issues from the Debug Test Failure
microtask. After discovering that the code was correct but
the test was wrong, participants used the issue reporting
system to report an issue in the test. 11 times in Session A
and 1 in Session B workers incorrectly interpreted the func-
tion specifications. For example, in Session A the test case
“creates a rectangle element with the previous element being a
rectangle...” was reported because “the previous element is
only used for Freehand, and is not defined in the other cases”.
Not all incorrect or divergent interpretations of function
specifications were caught and flagged through the issue
reporting system. Others were caught only when the tests
were executed, creating a Debug Test Failure microtask to
resolve the divergence.

Participants extended prior contributions, identified and
reported issues with related artifacts, and fixed defects
caught by tests.

7. LIMITATIONS AND THREATS TO VALIDITY

There are three major threats to the validity of our results:
the selection of participants, the choice of the program-
ming task, and the context in which participants worked.

First, our selection of participants may threaten the gen-
eralizability of the results if our participants are not repre-
sentative of the envisioned users of microtask program-
ming. As crowdsourcing, microtask programming draws
strength from the diversity of its contributors. Thus, we re-
cruited broadly, drawing participants from three conti-
nents and anywhere from 2 months to 12 years of indus-
trial experience. Our results might differ for developers
that are exclusively junior or exclusively senior or for par-
ticipants with little development experience.

The second threat to validity is the choice of program-
ming task. Microtask programming is intended to enable
crowdsourcing the implementation of component logic.
Thus, we chose a task designed to be reflective of typical
application logic, and our results evaluated the feasibility
for this task. Of course, building complete applications re-
quires myriad additional software development tasks, in-
cluding software design and architecture, GUI design and

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

16

implementation, and many others. Extending microtask
programming to support such activities is an important fo-
cus of future work.

The third threat to validity is the context in which the
task was performed. Microtask programming is intended
for crowds of transient developers, who have no prior
common affiliation or team membership and who coordi-
nate and exchange information exclusively through the en-
vironment. We thus sought to recreate this context, ensur-
ing that participants were not collocated and worked only
through the environment. Another critical aspect of the
context was to ensure that multiple workers were working
concurrently within the same project, as in the intended
context. To achieve this, we structured the study so that all
workers began at the same time and worked in a contigu-
ous block of time. This represents a simplified context,
which might occur for crowds where workers have time to
spend a few hours contributing. More work is needed to
understand how workers behave when workers are con-
stantly joining and leaving, particularly regarding the
learning effects that workers experience over time through
engagement with a microtask programming platform or
with a specific project.

8. DISCUSSION

Microtask programming envisions a software develop-
ment process in which transient developers make short,
self-contained contributions. This model might open con-
tributions to open source projects to a long-tail of contrib-
utors who do not have the time for traditional open source
onboarding. Enabling this model requires new mecha-
nisms for decontextualizing large tasks into microtasks,
generating microtasks, and ensuring quality.

In this paper, we proposed a microtask programming
approach in which contributions are decontextualized
based on function boundaries, microtasks are automati-
cally generated by the system, and quality is ensured
through continual iteration from many contributors. Our
results offer evidence for the basic feasibility of such an ap-
proach. Developers were able to make over 1000 contribu-
tions to a range of tiny programming tasks, including edit-
ing code, describing functions, writing test cases, imple-
menting unit tests, and debugging. Developers were able
to make these contributions quickly, making code contri-
butions to functions in under five minutes and creating
tests in less than 90 seconds. Building on the contributions
of others, developers were able to complete ideas sketched
in pseudocode and fix issues introduced by others. Devel-
opers nearly finished implementing the components
within the limited task times. Together, these results
demonstrate that it is feasible to use short, decontextual-
ized contributions made by the crowd to implement small
components.

Yet the preliminary evidence of feasibility raises more
complex questions about the value and appropriate use of
microtask programming. Enabling small contributions
comes at the cost of increased overhead, as each new con-
tributor must first learn how to work in microtasks before

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

starting and then make sense of the context and artifact be-
fore beginning each microtask. After a contribution is
made, a handoff occurs and the next contributor must then
get up to speed on the current state of the artifact. This
overhead is clearly visible in the overall productivity num-
bers of the participants in our study. Across 44 hours of
work time, developers wrote only 490 lines of code and
2920 lines of test code.

By forgoing the benefits and drawbacks of context for a
short onboarding experience, microtask programming
brings many potential new opportunities. Shirky argues
that lowering the barriers to joining and contributing ena-
bles crowdsourcing to tap the cognitive surplus of other-
wise wasted resources, utilizing contributions from those
who would otherwise be uninterested or unable to contrib-
ute [11]. Given the large size of the overall developer pop-
ulation, even small increases in contributions to open
source projects could have a dramatic effect.

Small contributions also open the possibility to increas-
ing parallelism in software development. As many hands
make light work, decomposing traditional software devel-
opment tasks of implementing a feature or fixing a bug into
tens or hundreds of microtasks might enable some of this
work to be completed in less clock time than traditional ap-
proaches by parallelizing work across many developers.

Realizing the potential of microtask programming sug-
gests a wide range of research questions. Our initial inves-
tigation explored decontextualizing programming at the
function level, a design that greatly increases the potential
for parallelism but at the cost of significant overhead. One
might then consider a spectrum of task sizes from imple-
menting a feature of fixing a defect down to contributions
at the level of small edits to individual functions. Indeed,
there is likely a large variation in contribution size even in
traditional development. What is the tradeoff between par-
allelizing work and single ownership? A host of other de-
sign decisions might also vary, in how contributors coordi-
nate, in contributors” awareness and knowledge of the sys-
tem? Moreover, contributions might not be all homoge-
nous in size and context, but might vary with differing
roles and responsibilities. This raises many fundamental
questions for workflow design and coordination, both for
software development in a crowdsourcing context and
more generally for team software development.

8.1 Workflow design

A fundamental challenge in crowdsourcing work is the
design of a workflow, describing the set of tasks that exist
and the dependencies between these tasks. Designing ef-
fective workflows is an important challenge in
crowdsourcing. This requires careful consideration of the
context offered each worker and the difficulty of complet-
ing microtasks given this context, the dependencies be-
tween tasks and how information flows through these de-
pendencies, and the size of the contributions workers
make.

Developers in our study were largely successful work-
ing on programming tasks with only a single artifact as
their context rather than the whole codebase. Less context



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

AUTHOR ET AL.: TITLE

reduces the amount of information developers must con-
sume before beginning the task and reduces the amount of
information that must be shared about in progress
changes. Yet less context also increases the probability of
conflict. For example, in our workflow developers on the
Write Test Cases and Edit a Function microtasks both sepa-
rately interpreted the description of the function. When
these interpretations diverged, conflicts resulted. These di-
vergent interpretations could be ultimately caught through
the issue reporting system or by executing the tests against
the functions. But a workflow that reduces the frequency
with which divergent interpretations occur may be more
efficient.

Another challenge occurs in understanding the conse-
quences of decisions made on future tasks. For example,
developers working on the Write Test Cases microtask were
often very thorough, enumerating a long list of test cases
for different scenarios. Developers then separately trans-
lated each test case into a unit test. This resulted in devel-
opers creating over five times as much test code as func-
tional code and as well as creating tests which were redun-
dant. While the developers enumerating test cases had the
context to see the other test cases, they did not have access
to the function or test implementations (which were not yet
produced) to understand the redundancy in the tests being
created. Moreover, developers who created the list of test
cases were evaluated based on the thoroughness of their
test plan rather than bearing the cost of implementing the
tests.

Another key dimension of workflow design is thus not
only the size and context of tasks but also the choice of de-
composition, determining which subtasks are done to-
gether and which are done apart. A wide range of decom-
positions might be envisioned. For example, rather than
having a workflow in which microtasks involve writing all
test cases for a function and editing function code to imple-
ment multiple test cases, workers might instead write a
single new test and implement the behavior only for this
test. Investigating the space of possible workflows designs
for microtask programming is an important area for future
work.

8.2 Coordination

In traditional microtask crowdsourcing workflows,
workers are assumed to be transient and free to come and
go without commitment to future contributions. To enable
this, each microtask exists as a unit of work assignable to
any contributor, and each worker’s ownership and in-
volvement in the contribution could end after submitting
the microtask. In contrast, in traditional development and
open source development contributors may claim owner-
ship over a task, discuss feedback they receive, update
their contribution, and build up ownership to make similar
contributions over time. Developers may then assume to
have knowledge and awareness of a set of the system that
they own and coordinate with others to maintain that
awareness.

Developers in our study demonstrated that contribu-
tions can be made without ownership and with minimal

17

awareness of the rest of the system. But transient contribu-
tions impose a cost, where contributors are less able to
learn and specialize over time, where contributors are less
able to share their knowledge when helpful, and there is a
greater possibility of workers making diverging interpre-
tations of design decisions.

One approach to this challenge is to remove the assump-
tion that contributors may leave at any time and enable
contributors to commit to involvement over a fixed period.
For example, in Flash Teams, free agents join a project and
then commit to involvement for a fixed period ranging
from a specific phase to the entire life of the project [47].
This then enables the use of more traditional team and
management structures. But committers are not able to re-
main truly transient and noncommittal in their involve-
ment, limiting the potential for harnessing Shirky’s long-
tail of casual contributors [11].

Another approach is to create new coordination mecha-
nisms for transient contributions. We have explored a var-
iant of microtask programming in which contributors are
able to explicitly coordinate about design decisions by cre-
ating, addressing, and discussing questions about design
decisions [14]. Contributors still exert no ownership over
artifacts and are still assumed to be transient without fu-
ture commitments, even to answer questions that others
have raised. But if contributors do choose to continue con-
tributing, they are able to share their knowledge through
the discussion system. In this way, contributors are not re-
quired to commit a priori to future contributions. But if
they do stay involved, the system is able to leverage their
expertise.

Many other coordination approaches might be possible.
Rather than assuming all contributors are transient or non-
transient, there might be hybrid crowds in which some
contributors are transient and others act as team members.
The programming competition platform TopCoder uses
such a model, where senior contributors may choose to
take a role as a co-pilot and manage the process of creating
and administering each task [48]. Platforms such as Mo-
bileWorks have shown success using diversified roles in a
microtask setting [49]. Applied this model to program-
ming, contributors might be promoted or elected to lead-
ership roles and given responsibility for overseeing coor-
dination amongst team members by giving feedback on
contributions, detecting and managing conflicting design
decisions, and facilitating knowledge sharing. Investigat-
ing and exploring such new coordination approaches is an
important topic for future research.

8.3 Motivation

Motivating and incenting workers to join and contrib-
ute is an additional key challenge. In order for the expected
benefits of broader involvement in open source projects to
materialize, developers that choose not to contribute today
must be motivated to join and contribute. It is thus crucial
to consider the potential factors that might influence join-
ing and contributing to microtask programming projects.

A key source of insight comes from studies of open
source software development communities as they exist to-
day. Across several studies, a consistent finding has been

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE

Transactions on Software Engineering

18

that itis a long and time-consuming process to join an open
source project [17][7][6]. Our results offer evidence that mi-
crotasks can reduce these joining costs, as our participants
were able to make their first contribution on average in
only 15 minutes. By reducing joining costs, potential con-
tributors to current open source projects without the moti-
vation or time to endure a lengthy joining script might
choose to contribute to a project employing microtasking.

But would the same motives that bring a potential con-
tributor into an open source project still be present in a mi-
crotasked project? Reputation and career development
through skill development are important motives in open
source projects [4]. One might imagine that reducing con-
text might enable developers to contribute more quickly
but less meaningfully, as all contributors are reduced to
completing tasks that are easy in requiring little context but
offer less reputation and less skill development.

However, decontextualization does not mean all tasks
will require little skill or offer little reputation. Some tasks
will have an outsize influence, impacting the direction and
shape of future work. For example, in the current work-
flow, the first task on a new function offers the worker the
opportunity to sketch the implementation of a function,
helping influence the later work to be done to translate this
sketch into a full implementation. In cases where the func-
tion is particularly large, additional functions might be cre-
ated to implement aspects of this approach. In this way, a
single microtask might influence tens or hundreds of sub-
sequent implementation, testing, and debugging tasks.
Similarly, review tasks offer feedback on contributions and
play an important role in directing and gating low quality
contributions, potentially preventing poor contributions
from snowbealling into large amounts of wasted effort.

In decomposing large tasks into small tasks, microtask-
ing makes possible greater specialization, as an individual
might choose to focus on a specific type of task. In this way,
microtasking offers new opportunities for skill develop-
ment, as developers might choose to complete microtasks
requiring specific expertise. For more experienced devel-
opers, this might mean focusing on tasks that set direction
or help to mentor more junior developers. In giving more
visibility into smaller contributions and reducing the bar-
riers keeping less experienced developers out, microtask-
ing offers new opportunities for mentoring,.

Decomposing tasks also offers greater transparency into
work. Rather than recording work done by contributors at
the granularity of a commit, microtask development ena-
bles capturing more fine-grained information at the level
of individual tests and short snippets of code. Each contri-
bution is reviewed, generating a review score assessing
quality; system events such as test failures are logged by
the system. All of this offers new opportunities for surfac-
ing additional reputation information about contributors.
This information might be used in a host of ways, such as
dashboard displays which publicize reputation infor-
mation on the quantity and quality of contributions.

9. CONCLUSION
This paper has explored the possibility of programming

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

through microtasks. Our results offer evidence for the basic
feasibility of completing small programming tasks and
combining these contributions to build small programs.
We found that microtasking enables developers to onboard
onto a project quickly. On average, workers were able to
onboard and submit their microtask in less than 15
minutes. Rather than spend hours or days addressing a
single issue, microtasks enable developers to contribute
quickly, as we found that developers were able to complete
microtasks in a median time under five minutes. These
findings begin to lay a foundation for the use of microtasks
in programming and opens the door to realizing the poten-
tial benefits of increased participation in open source pro-
jects through diminished onboarding costs as well as the
possibility of reduced time to market through increased
parallelism.

At the same time, many further challenges remain in us-
ing microtask programming to create larger and more com-
plex programs, in better understanding the effects and im-
plications of decomposition on the quality and speed of
programming work, and in designing new and more effec-
tive workflows that best achieve short onboarding times as
well as high parallelism. Even if some software develop-
ment tasks remain so inherently complex that they cannot
be microtasked, even partial microtasking may increase
participation in open source communities by offering con-
tributors a new and faster way to make begin to make im-
portant, if limited, contributions more quickly and easily
and a gentler onboarding pathway into taking on larger
and more complex tasks within projects as contributors
gain contextual knowledge about a project.

ACKNOWLEDGMENT

We thank Steven Morad, Patrick Nguyen, and Eric Chiquil-
lo for their contributions to early versions of CrowdCode,
we thank the participants in the study for their participa-
tion, and we thank Jonathan Bell for editorial assistance.
This work was supported in part by the National Science
Foundation under grants NSF IIS-1111446, I1S-1302522,
and CCF-1414197.

REFERENCES

[1] T.D. LaToza and A van der Hoek, “Crowdsourcing in Software
Engimeering: Models, Motivations, and Challenges.” IEEE Softw.,
vol 33, no. 1. pp. 7480, Jan. 2016.

[2] T.D. LaToza and A van der Hoek, “A Vision of Crowd
Development,” i International Conference on Software
Engineering (ICSE), NIER Track, 2015, pp. 563-366.

[31 K.-J Stol, T.D. LaToza, and C. Burd, “Crowdsourcing for
Software Engmeenng,” IEEE Softw., vol. 34, no. 2, pp. 30-36,
2017.

[4] K. Crowston, K. Wei1, J. Howison, and A Wiggins, “Free/Libre

Open-source Software Development: What We Know and What
We Do Not Know,” ACM Comput. Surv., vol. 44, no_ 2, pp. 1-33,

Mar. 2008.

[5] Y. Benkler and H. Nissenbaum, “Commons-based Peer
Production and Virtue*,” J. Polit. Philos., vol. 14, no. 4, pp. 394
419, 2006.

[6] I Stemnmacher, M. A. G. Silva, M. A. Gerosa, and D_F.

Redmiles, “A systematic literature review on the barners faced by
newcomers to open source software projects,” Inf. Softw.
Technol., vol. 39, pp. 6785, 2015.

[71 G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community,



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE
Transactions on Software Engineering

AUTHOR ET AL.: TITLE

jommg, and specialization in open source softiware innovation: a
case study,” Res. Policy, vol. 32 no. 7, pp. 1217-1241, 2003.

[8] M. S. Bemstein et al.. “Soylent: A Word Processor with a Crowd
Inside.” in Symposium on User Interface Software and
Technology (UIST), 2010, pp. 313-322.

[91 F.Khatib ef al., “Algonithm discovery by protemn folding game
players,” Proc. Natl. Acad. Sci., vol 108, no. 47, pp. 18949
18953, 2011.

[10] L. Mamykma, B. Manoim_ M. Mittal, G. Hnpcsak, and B.
Hartmann, “Design Lessons from the Fastest Q& A Site in the
West,” m Conference on Human Factors in Computing Systems
(CHI), 2011, pp. 2857-2866.

[11] C. Shirky, Here Comes Everybody: The Power of Organizing
without Organizations. Penguin Books, 2009.

[12] T.D. LaToza, W. Ben Towne, A. van der Hoek, and J. D.
Herbsleb, “Crowd development.” in International Workshop on
Cooperative and Human Aspects of Software Engineering
(CHASE), 2013_ pp. 85-88.

[13] T.D. LaToza, W. Ben Towne, C. M. Adniano, and A. van der
Hoek, “Microtask Programming: Building Software with a
Crowd,” i Symposium on User Interface Software and
Technology (UIST), 2014, pp. 43-54.

[14] T.D. LaToza, A. D1 Lecce, F. Ricci, W. B. Towne. and A. van
der Hoek, “Ask the crowd: Scaffolding coordination and
knowledge sharing in microtask programming,” i Symposium on
Visual Languages and Human-Centric Computing (VL/HCC),
2015, pp. 23-27.

[15] T.D. LaToza, M. Chen, L. Jiang, M. Zhao. and A. van der Hoek,
“Borrowing from the Crowd: A Study of Recombination in
Software Design Competitions,” in Infernational Conference on
Saftware Engineering (ICSE), 2015, pp. 551-562.

[16] E R.Q. Weidema, C. Lopez, S. Nayebaziz, F. Spanghero, and A
van der Hoek, “Toward Microtask Crowdsourcing Software
Design Work,” in 3rd International Workshop on CrowdSourcing
in Software Engineering (CSI-SE), 2016, pp. 41-44.

[17] C. Jergensen, A. Sarma, and P. Wagstrom, “The Onion Patch:
Migration n Open Source Ecosystems,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, 2011, pp.
70-80.

[18] A L. Zanatta, I. Steinmacher, L. S. Machado, C. R. B. de Souza,
and R. Prikladnicki, “Barniers Faced by Newcomers to Software-
Crowdsourcing Projects,” IEEE Softw., vol 34, no. 2, pp. 3743,
Mar. 2017.

[19] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit:
Human Computation Algorithms on Mechanical Turk,”
Symposium on User Interface Software and Technology (UIST),
2010, pp. 57-66.

[20] A Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “CrowdForge:
Crowdsourcing Complex Work,” m Symposium on User Interface
Saftware and Technology (UIST), 2011, pp. 43-52.

[21] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engmeering,” J. Syst. Softw.. vol. 126,
pp- 5784, Apr. 2017,

[22] N. Leicht, I. Blohm, and J. M. Leimeister, “Leveraging the Power
of the Crowd for Software Testing,” IEEE Softw.. vol. 34, no_ 2,
pp. 62—69. Mar. 2017.

[23] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer,
“What Would Other Programmers Do: Suggesting Solutions to
Error Messages.” in Conference on Human Factors in Computing
Systems (CHI), 2010, pp. 1019-1028.

[24] D. Mujumdar, M. Kallenbach, B. L, and B. Hartmann,
“Crowdsourcing Suggestions to Programming Problems for
Dynamic Web Development Languages,”™ in CHI '] ] Extended
Abstracts on Human Factors in Computing Systems, 2011, pp.
1525-1530.

[25] C. Watson. F. W. B. Li, and J. L. Godwin, “BlueFix: Using
Crowd-sourced Feedback to Support Programming Students in
Error Diagnosis and Repair,” mn International Conference on
Saftware Engineering (ICSE), 2012, pp. 228-239.

[26] F. Pastore, L. Manani. and G. Fraser, “CrowdOracles: Can the
Crowd Solve the Oracle Problem?,” m Infernational Conference
on Software Engineering (ICSE), 2013, pp. 342351

[27] W.Li1 S. A Seshia, and S. Jha, “CrowdMine: Towards
Crowdsourced Human-assisted Vernification,” m Proceedings of

[28]

[29]

[30]

31]

32]

33]

34]

[35]

[36]

37

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47

19

the 49th Annual Design Automation Conference, 2012, pp. 1254—
1255.

K. Moffitt, J. Ostwald, R. Watro, and E. Church, “Making Hard
Fun in Crowdsourced Model Checking: Balancing Crowd
Engagement and Efficiency to Maximize Output in Proof by
Games,” in Proceedings of the Second International Workshop on
CrowdSourcing in Software Engineering, 2015, pp. 30-31.

W. Dietl et al., “Venfication Games: Making Venfication Fun,”
in Workshop on Formal Technigues for Java-like Programs,
2012, pp. 42-49.

E. C. Groen ef al., “The Crowd in Requirements Engineering:
The Landscape and Challenges,” JEEE Softw., vol. 34, no. 2, pp.
44-52_ Mar. 2017.

P.K. Chilana, A.J. Ko, J. O. Wobbrock, and T. Grossman, “A
Multi-site Field Study of Crowdsourced Contextual Help: Usage
and Perspectives of End Users and Software Teams.” in
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2013, pp. 217-226.

W. Maalej. H -J. Happel, and A. Rashid, “When Users Become
Collaborators: Towards Continuous and Context-aware User
Input,” in Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), 2009, pp. 981-990.

E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing
GUI Tests,” in 2013 IEEE Sixth International Conference on
Saftware Testing, Verification and Validation, 2013, pp. 332-341.
Y. Chen, S. Oney, and W. S. Laseck:, “Towards Providing On-
Demand Expert Support for Software Developers,” in Conference
on Human Factors in Computing Systems (CHI), 2016, pp. 3192—
3203.

W.S. Lasecks, ]. Kim, N. Rafter, O. Sen, J. P. Bigham_and M. S.
Bemsteimn, “Apparntion: Crowdsourced User Interfaces That Come
to Life As You Sketch Them,” in Conference on Human Factors
in Computing Systems (CHI), 2015, pp. 1925-1934.

M. Nebeling, 5. Leone, and M. C. Norne, “Crowdsourced Web
Engineering and Design,” in Web Engineering: 1 2th International
Conference, ICWE 2012, Berlin, Germany, July 23-27, 2012.
Proceedings, M. Brambilla, T. Tokuda, and R Tolksdorf, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 31-45.
M. Goldman. G. Little, and R. C. Miller, “Real-time
Collaborative Coding in a Web IDE.” in Symposium on User
Interface Software and Technology (UIST), 2011, pp. 155-164.
M. Goldman, “Software Development with Real-time
Collaborative Editing,” Massachusetts Institute of Technology,
Cambndge, MA, USA, 2012.

M. Kersten and G. C. Murphy, “Usmg Task Context to Improve
Programmer Productivity,” in Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Seftware
Engineering, 2006, pp. 1-11.

G. C. Murphy, M. Kersten, M. P. Robillard, and D. (",'ubran.ié,
“The Emergent Structure of Development Tasks,” in Proceedings
of the 19th European Conference on Object-Oriented
Programming, 2003, pp. 3348

C. Parnin and C. Gorg, “Building Usage Contexts During
Program Comprehension,” in Proceedings of the 14th IEEE
International Conference on Program Comprehension, 2006, pp.
13-22.

I Lawrance, B Bellamy, M. Bumeitt, and K. Rector, “Using
Information Scent to Model the Dynamic Foraging Behavior of
Programmers in Maintenance Tasks,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
2008, pp. 1323-1332.

A Doan, B Ramaknishnan, and A. Y. Halevy, “Crowdsourcing
Systems on the World-Wide Web,” Commun. ACM, vol. 54, no.
4, pp. 86-96, Apr. 2011.

J Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, 2004, p_ 10.

R_E. Kraut ef al., Building Successful Online Communities:
Evidence-Based Social Design. The MIT Press, 2012.

A Kittur et al., “The Future of Crowd Work,” in Proceedings of
the 2013 Conference on Computer Supported Cooperative Work,
2013, pp. 1301-1318.

D. Retelny et al., “Expert Crowdsourcing with Flash Teams,” in
Symposium on User Interface Software and Technology (UIST),

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2823327, IEEE
Transactions on Software Engineering

20 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

2014, pp. 75-85.

[48] K -I. Stol and B. Fitzgerald, “Two’s Company, Three’s a Crowd:
A Case Study of Crowdsourcing Software Development,”
International Conference on Software Engineering (ICSE), 2014,
pp. 187-198.

[49] A Kulkarni, P. Gutheim, P. Narula, D. Rolnitzky, T. S. Parikh,
and B. Hartmann, “MobileWorks: Designing for Quality in a
Managed Crowdsourcing Architecture,” Internet Comput., vol.
16.no. 5, pp. 28—-35,2012.

Thomas D. LaToza received degrees in psychology and computer
science at the University of lllinois, Urbana-Champaign in 2004 and a
Ph.D. in software engineering at Carnegie Mellon University in 2012.
He is an assistant professor in the Department of Computer Science
at George Mason University. He works at the intersection of software
engineering and human-computer interaction, investigating how hu-
mans interact with code and designing new ways to build software. He
currently serves as guest editor of the IEEE Software Theme Issue on
Crowdsourcing for Software Engineering, serves as co-chair of the
Fourth International Workshop on Crowdsourcing in Software Engi-
neering, and served as co-chair of the Seventh Workshop on the Eval-
uation and Usability of Programming Languages and Tools. His work
is funded in part through a $1.4M grant from the National Science
Foundation on Crowd Programming.

Arturo Di Lecce received a B.S. degree in automation engineering
and a M.S. degree in computer engineering from Politecnico di Milano,
ltaly. After several years as a freelance web developer and one year
as visiting research scholar at University of California Irvine, he cur-
rently works as full-stack software engineer at Cuebiqg Srl, Italy.

Fabio Ricci received B.S and M.S degree in computer engineering,
in 2011 and 2016, from Politecnico di Milano, Italy. He worked for sev-
eral months at Global Energy Network Institute in Sand Diego and one
year as a visiting research scholar at the University of California Irvine.
He currently works at Bosch Rexroth as a full stack developer for web
HMI.

W. Ben Towne earned a B.S. in Electrical and Computer Engineering
and a B.A. in Community Development from Lafayette College in 2009
and an MS in Computation, Organizations, & Society from Carnegie
Mellon University’s School of Computer Science in 2012, finishing a
PhD in Societal Computing from Carnegie Mellon as this article un-
dergoes review. He has worked for MIT Lincoln Labs, IBM Watson
Research Center, and Ashoka. He has published several peer-re-
viewed papers in various journals and conferences. He is especially
interested in platforms supporting large-scale collaboration, especially
for complex problems. He is a member of Sigma Xi, Tau Beta Pi, the
Engineers’ Society of Western PA, and the American Society for Qual-
ity. He is a member of IEEE, |IEEE Eta Kappa Nu, and the IEEE So-
ciety on Social Implications of Technology (SSIT).

André van der Hoek received joint B.S. and M.S. degrees in busi-
ness-oriented computer science from the Erasmus University Rotter-
dam, The Netherlands, and a Ph.D. degree in computer science from
the University of Colorado at Boulder. He serves as chair of the De-
partment of Informatics at the University of California, Irvine. He heads
the Software Design and Collaboration Laboratory, which focuses on
understanding and advancing the roles of design, collaboration, and
education in software development. He has served on numerous in-
ternational program committees, is a member of the editorial board of
ACM Transactions on Software Engineering and Methodology, and
was program chair of the 2010 ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering and program co-
chair of the 2014 International Conference on Software Engineering.
He was recognized in 2013 as an ACM Distinguished Scientist, and in
2009 he was a recipient of the Premier Award for Excellence in Engi-
neering Education Courseware. He is a member of the IEEE.

0098-5589 (c) 2018 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



