Working with Crowds

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Microtask Programming: Building Software with a Crowd

Thomas D. LaTozal, W. Ben Townez, Christian M. Adrianol, André van der Hoek'

'University of California, Irvine
Irvine, CA
{tlatoza, adrianoc, andre} @ics.uci.edu

ABSTRACT

Microtask crowdsourcing organizes complex work into
workflows, decomposing large tasks into small, relatively
independent microtasks. Applied to software development,
this model might increase participation in open source
software development by lowering the barriers to contribu-
tion and dramatically decrease time to market by increasing
the parallelism in development work. To explore this idea,
we have developed an approach to decomposing program-
ming work into microtasks. Work is coordinated through
tracking changes to a graph of artifacts, generating appro-
priate microtasks and propagating change notifications to
artifacts with dependencies. We have implemented our ap-
proach in CrowdCode, a cloud IDE for crowd development.
To evaluate the feasibility of microtask programming, we
performed a small study and found that a small crowd of 12
workers was able to successfully write 480 lines of code
and 61 unit tests in 14.25 person-hours of time.

Author Keywords
crowdsourcing; development environment; programming
tools

ACM Classification Keywords
D.2.6 Programming environments: Interactive environ-
ments

INTRODUCTION

Microtask crowdsourcing systems enable crowds of work-
ers of varying skill to complete large tasks quickly by de-
composing work into short, self-contained microtasks, ena-
bling mass contribution through low barriers to contribution
and work to be completed quickly through extreme parallel-
ism. This paradigm has a great potential appeal for software
work: while open source development has brought open
contribution to software work, joining an open source pro-
ject is often a long and tedious process, discouraging con-
tribution and reducing the pool of participants. Even in
commercial development organizations, there is often a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

UIST 2014, October 5-8, 2014, Honolulu, HI, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3069-5/14/10...$15.00.
http://dx.doi.org/10.1145/2642918.2647349

43

*Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA
wbt@cs.cmu.edu

Wirite test cases 10opts
What are some cases in which this function might be used? Are there any unexpected corner
cases that might not work?

ook
CLIENT REQUEST

Given a board and a list of moves (that have already been checked
for validity), executes the moves. Moves can be either an array
containing @ single move or (iff multiple jumps are taken) an
array of valid jump moves for a single piece.

See http://simple.wikipedia.org/wiki/Checkers for background on
English draughts rules. Note that the rules used should be for the
American variant of checkers called "English draughts" (e.g., a
player who has the opportunity to jump may instead choose a
different move}.

@param Board board - the initial board prior to the move
@param Move[] moves - the move(s) to execute
@return Beard - new board

soxe/

functien CRdoMoves(board, moves)

Show example

Single jump forward X

Move piece forward %

Figure 1. An example of a microtask in CrowdCode.

need to build software quickly, as time to market is often
valuable. While microtasking may introduce overhead and
thereby reduce the efficiency of the development process,
there may be situations in which greatly broadening the
pool of potential participants can lead work to be completed
more quickly through larger scale and parallelization.

Programming is an example of complex work, involving
many interdependencies among components of the work
produced. Recent crowdsourcing work has begun to explore
approaches for microtasking complex work. For example,
CrowdForge [12] introduces a Map-Reduce style paradigm
in which the crowd first partitions a large problem into sev-
eral smaller sub-problems, then solves the sub-problems
(map), and finally merges the multiple results to a single
result (reduce). However, an important limitation of exist-
ing workflows for complex work is that the decomposition
structure is static and fixed by the requestor. For example,
while a requestor might specify a workflow in which work-
ers first partition work into sub-problems before workers
then perform a map step, the workflow itself is fixed and
cannot vary in response to the work done. For many crea-
tive tasks, this is an important limitation. For example, in
programming, it is impossible to specify, a priori, the set of
functions and tests necessary to implement a program. In

Working with Crowds

the process of implementing functions, developers may
discover new parts of the problem, requiring new functions
to be written. Then, in the process of writing functions, de-
velopers may discover they must change their interface,
requiring changes to be made to functions elsewhere.

Here, we present an approach for crowdsourcing problems
using dynamically generated microtasks and illustrate this
approach through the design of a system for microtask pro-
gramming. Our key insight is to coordinate work through a
graph of artifacts, generating microtasks in response to
events that occur on artifacts rather than through a static
workflow. Each microtask asks workers to perform a short
well-defined task on a single artifact — a function or a test
(e.g., Figure 1), allowing work to proceed on many artifacts
in parallel. As workers complete microtasks, events are
generated on the artifact, which may then trigger further
microtasks to be generated. When an artifact changes,
events are sent to artifacts that depend on it, allowing mi-
crotask structures to be dynamic and non-hierarchic. For
example, when a function changes its signature (e.g., add-
ing a parameter), artifacts that depend on it (callers and
tests) are notified, generating microtasks to handle these
changes. As artifacts may have many dependencies, arti-
facts may have multiple pending notifications of changes.
To coordinate this work, each artifact has a microtask
queue, allowing changes to be performed sequentially and
preventing conflicts.

We implemented our approach in a prototype online IDE
for microtask programming for Javascript: CrowdCode.
Our approach has a number of important limitations: it does
not support design tasks, does not crowdsource the design
of data types, is limited to crowdsourcing small functional
libraries, and requires the correctness of work to be evaluat-
ed solely through tests. Within this limited scope, we have
explored an approach for microtasking writing code, writ-
ing tests, and debugging. To achieve this, we present a nov-
el approach for the dynamic generation of microtasks
through an artifact network, a microtask decomposition of
programming, and self-contained microtasks for program-
ming. To evaluate the possibility of a small crowd working
on programming microtasks in parallel and to evaluate the
basic feasibility of the approach, we performed a small user
study in which 12 participants worked on a small program-
ming task. We found that the participants were able to suc-
cessfully program part of a library, completing 265 mi-
crotasks, writing 480 lines of code across 16 functions, and
an additional 61 unit tests. We found that decontextualizing
programming work had both strengths and weaknesses; but,
overall, 11 of the 12 participants felt that a microtasking
approach would make them more likely to contribute to an
open source project.

RELATED WORK

Our research builds on work across several communities:
open source software development, crowdsourcing complex
work, and crowdsourcing software development. In open

44

UIST’14, October 5-8, 2014, Honolulu, HI, USA

source, workers complete tasks to accrue status [4]. Yet this
process differs fundamentally from microtasking, as tasks
exist at a far larger granularity of hours or days. Workers
face many barriers to contributing, including discovering
ways to contribute, learning about tools, and tolerating
harsh feedback from senior members [10][14][21]. Our
approach is intended to reduce these barriers by decompos-
ing work into microtasks, which take only minutes.

Complex work comprises interdependent tasks that require
more cognitive effort than the typical tasks of labeling and
transcribing data. Approaches to tackle interdependent and
complex tasks rely on workflow mechanisms and crowd
algorithms. For example, Soylent [2] enables a writer to
partition work in smaller proof reading and editing tasks to
be performed by a crowd. TurKit [16], provides a frame-
work based on scripts to create and run tasks in Mechanical
Turk. CrowdForge [12] expands those solutions by enabling
the crowd to partition work. Our approach extends these
models, supporting dynamic, non-hierarchic workflows.

Other work has begun to apply microtasking to program-
ming at the level of individual development tasks such as
testing or question answering. In Stack Overflow', develop-
ers ask questions, other developers answer them, and yet
other developers evaluate the quality of the answers, con-
currently curating a knowledge repository of frequent ques-
tions [11,17]. Other work has explored the use of
crowdsourcing for recommending fixes to bugs [9,18] and
compilation errors [22] and to checking and fixing unit test
assertions [19]. In order to leverage larger pools of workers,
some systems enable non-specialists to contribute. For in-
stance, several systems have explored applying a gamifica-
tion paradigm to verifying software models for correctness
[15] or verifying for security vulnerabilities by playing with
pipes [5].

One of the few systems to explore microtasking a pro-
gramming process is Collabode [7,8]. In Collabode, an
“original programmer” describes in prose short microtasks
to be performed and workers then use a provided web IDE
to complete the requested tasks. An evaluation of the sys-
tem found that, while it was possible to microtask pro-
gramming, there were several significant issues with the
workflow used. As workers all worked with a global view
of the entire codebase, it was sometimes distracting to see
changes being made elsewhere. And there was a large over-
head for the requestor in managing the crowd workers, as
they needed to answer questions about the request and
evaluate the work in detail. Moreover, code often had subtle
bugs, which was difficult for the requestor to find through
code inspection. Finally, workers were anonymous and thus
sometimes did not take responsibility for their work. These
considerations directly influenced our design choices in

! stackoverflow.com

Working with Crowds UIST’14, October 5-8, 2014, Honolulu, HI, USA

project statistics current user
CrowdCode 10 fineaofcode O functionswritten 1 microtasks completed Alice)

score microtask
* Edit a function 1oets
10 points Can you implement the function below? instructions "ﬁ You eamed 10 points for

writing test cases!

If you're not sure how to do something, you can indicate a line or portion of a line as

pseudocode by beginning it with '//#'. If you'd like to call a function, describe what you'd like it
= to do with a pseudocall - a line or portion of a line beginning with '//I'. Update the description
= and header to reflect the function’s actual behavior - the crowd will refactor callers and tests to

match the new behavior. (Except if you are editing a function that was specified and directly -
10 Alice requested by the client - denoted by a function that starts with CR - in which case you can't aCtIVIty feed
change this function’s name or parameters, but you can change its description).

leaderboard

Note that all function calls are pass by value (i.e., if you pass an object to a function and the
function changes the object you will not see the change).

IMPORTANT: If you think the function may require more than a few minutes to write,
please use pseudocode and psuedocalls to break up the function into smaller pieces that
others can work on. If you've gotten two or more reminders to submit, YOU SHOULD
SUBMIT NOW!

data structures

Types Type names may be String, Boolean, Number, any type below (bold text), and amays of any type (e.g., String[], Number][l).

Board properties- ‘rows”: StringU

Boards are an array of 8 character strings, where each row is a string and each

group Chat char‘ucter.' represents aT ?1ement of the board. Elements mL.Jst be"either " .
(unoccupiable space), "o" (empty space that can be occupied), "r" (normal red), "R

(red King), "b" (normal black), and "B" (black King). Black players start at the

top and move downwards; red players start at the bottom and move upwards. Kings can

move upwards and downwards.

Example:
{ "rows": ["-b-b-b-b",
"b-b-b-b-",

Send feedback

function CRdoMoves(board, moves)

{
SRl RN IRl / /| copy existing board

for (var i = 0; i < moves.length; i++)

{
B/ /! move is a jump]

)
{ :
//! remove piece from the board
}
//! create new board with piece moved
//! check if move created a King
//# Do we need to do something with checking for victory?

n newBoard;

Submit Skip

Figure 2. The CrowdCode environment and the Write Function microtask.

45

Working with Crowds

CrowdCode, leading us to adopt a model with local, self-
contained microtasks and test-based correctness evaluation.

EXAMPLE

To illustrate microtask programming in CrowdCode, we
present an example. After logging in to CrowdCode and
viewing a welcome screen, Alice is immediately presented
with her first microtask. The microtask provides her with
the description of a function in prose and asks her to enu-
merate test cases.

Not feeling in the mood for testing, she clicks the skip link
at the bottom of the page. She’s then presented a new mi-
crotask — Write Function (Figure 2) — and asked to write
some code. Rather than completely implement the function,
she sketches some pieces of it that come to mind, noting
portions still to be done with pseudocode (yellow back-
ground). She thinks some of the functionality should really
be implemented in other functions, and writes several pseu-
docalls describing what she thinks those functions should
do. She submits the task.

She next receives a microtask to Debug, and is given some
code and unit tests and sees that the unit test is failing. She
edits the code, but the unit tests still are not passing. Look-
ing at a list of inputs and outputs for function calls at the
bottom, she sees that one of the functions is returning an
erroneous value. After editing the output value, she reruns
the tests, sees that they pass, and submits. She sees that her
score has now increased to 20 points!

Alice next is assigned another microtask to edit a function,
and sees that she has been reassigned the microtask for the
function she started working on earlier. But it has now
changed — some of the pseudocode she had written has now
been replaced with code, and several of the pseudocalls
have been replaced with actual calls. But she also sees that
some of the new algorithm does not appear to work correct-
ly, so she rewrites some of the code, adding new pseudo-
code and pseudocalls for some of the new portions.

DESIGN

The core of CrowdCode is a system for tracking work as a
graph of artifacts, dynamically generating microtasks in
response to state changes in artifacts and propagating events
across dependencies. To enable workers to program using
these microtasks, CrowdCode decomposes programming
work into a set of microtasks, enabling workers to write
code, reuse functions, test, and debug within self-contained
microtasks. Finally, CrowdCode provides social features to
motivate contributions including a simple point system. The
following sections greater detail CrowdCode’s design and
concepts.

Generating Microtasks

In CrowdCode, all work performed by the crowd occurs in
microtasks. A microtask is a short, independent, self-
contained request for a piece of work to be completed. Each
microtask focuses on a single artifact — a work product be-

46

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Figure 3. A graph of artifacts with functions (black back-
ground), tests (blue outline), and dependencies (arrows).

Idescribed

described
written
Ibugay

Figure 4. The function state machine.

ing produced by the crowd. After a crowd worker com-
pletes and submits a microtask, the microtask’s correspond-
ing artifact processes the work completed, updating its data
and state accordingly.

In CrowdCode, the overall work product is maintained as a
graph of artifacts (Figure 3). Each artifact — functions, tests,
and the project — includes a set of attributes describing its
state, describing the work which has been completed and
the work which may be required. When a microtask is sub-
mitted, an artifact may change state, transitioning attributes
as necessary. For example, when the Write Function De-
scription microtask is submitted, a function changes state
from not described to described. See Figure 4 for the func-
tion state machine.

Microtask submissions may also trigger an artifact to send
an event to other artifacts that depends on it. For example,
when a parameter is added to a function’s signature, the
function sends a signature change event to all functions that
call it and all of the unit tests for the function, enabling
these artifacts to generate microtasks in response. In Figure
3, adding a parameter to function a results in events being
sent to functions b and ¢ and tests ¢/ and ¢2. In this way,
changes to an artifact may propagate across the call graph,
allowing related artifacts to be updated. CrowdCode cur-

Working with Crowds

rently implements two types of dependencies: function calls
and tests that test a function.

CrowdCode also supports iterative workflows, where mi-
crotasks for the same work are repeatedly generated until
work has been completed. If, after a microtask is submitted,
the artifact’s data is updated but it remains in the same
state, it may generate a new microtask to continue the work.
For example, developers editing a function can write pseu-
docode, leaving the state of the artifact in the not written
state and iteratively generating microtasks until all of the
pseudocode has been replaced with code.

Organizing work through explicit global tasks is challeng-
ing and fragile. As workers do work at scale throughout the
system, in parallel throughout the system, this work must
then be reassembled into a consistent whole. In our early
work, we explored the use of global tasks, spanning multi-
ple artifacts. For example, a debugging task might spawn a
set of microtasks to be done on a set of functions, and
would not be completed until the bug was definitively lo-
cated in a function. However, as each function may be con-
currently changing, a single function might concurrently
participate in multiple debugging tasks all while other work
is being done. Determining if a bug has been found, when
the buggy function might have been concurrently changed
as part of another task, was challenging.

As a result, we instead adopted a simpler, but powerful
principle: each artifact may have a single microtask concur-
rently being performed and each microtask must act inde-
pendently. When there are multiple microtasks to be done
(e.g., a function fails a test and must also update a call to
match a changed signature), each microtask is added to a
queue. Each artifact ensures that it has only a single availa-
ble microtask in the global queue at a time. Other mi-
crotasks are maintained in a separate per-artifact queue and
released into the global queue as microtasks are completed.
This design prevents merge conflicts, as only at most one
microtask and worker have commit access to an artifact at
any point in time. This poses the secondary issue that aban-
doned tasks could hold up development on an artifact, and
timers that strictly or arbitrarily limit total microtask time
might cause issues for e.g. function implementation tasks
that a worker is spending more time on. Our implementa-
tion uses soft notices to submit after 8 minutes and includes
inactivity timers, to help address this issue.

Workflow

CrowdCode crowdsources the implementation of libraries
requested by a client developer. All work in CrowdCode
begins with a client request specifying the API of a library
to be implemented by the crowd. Clients describe an API
through a set of functions, each containing a prose descrip-
tion of the functions purpose and its signature, including its
name, return type, and list of parameters (including name,
type, and text description/interpretation). Together, these
functions describe the behavior of a library that can be in-

47

UIST’14, October 5-8, 2014, Honolulu, HI, USA

corporated by the client into a larger codebase. Clients also
specify a set of data types, allowing each function to have a
type describing the legal values that may be passed to and
returned from the client and to be used internally within the
library’s implementation.

A central decision in the design of a crowdsourcing system
is the granularity at which workers interact with the work
products produced. A smaller granularity enables greater
parallelism, as it increases the amount of crowd workers
that can be working at the same time, in turn decreasing the
time required to complete work. However, decomposing
work into smaller pieces can also increase the amount of
overhead, as more workers may need to understand some of
the same aspects of the current status of the work to con-
tribute.

CrowdCode attempts to balance these factors towards the
smaller end of the granularity scale, using the function as
the central unit of granularity. Functions are a natural and
central boundary in programs, enabling a set of related
statements to be organized into a coherent whole providing
a single piece of functionality. Functions are a central unit
of abstraction in programs, providing an interface through
which clients may invoke the described functionality with-
out seeing or reasoning about the code providing the func-
tion’s implementation.

As workers work with code in CrowdCode, workers inter-
act with a single function at a time. Through the function’s
description, workers can understand what callers expect of
the function, enabling them to reason about and work on the
function in isolation from the code of the other functions.
Similarly, workers may request some functionality to be
created (or reused) in the system. This request leads the
crowd to find or create a function, which can then be called
from the requesting function. In this way, functions and
their interfaces provide boundaries establishing individual
units of work that can each evolve separately.

Another central consideration in a crowdsourcing system is
providing mechanisms to produce quality work. In Crowd-
Code, this is done through unit tests. Drawing inspiration
from test-driven development [1], microtasks are separately
created to write tests for each function. When all of the tests
pass, the system is considered to be ready for acceptance
testing by the client. If a test fails, a microtask is created to
debug the function. By creating separate microtasks for
writing code and testing, CrowdCode creates redundancy,
ensuring that the code produced is correct enough that it
passes its tests. If workers produce code that fails to pass
the tests, more work will be created until the tests pass. Of
course, the tests themselves may also be incorrect. When
debugging, workers may report an issue with a test, gener-
ating a microtask to address the issue and correct the test.

As a result of requiring that bugs be able to be detected
through tests, CrowdCode requires that code written is
functional and neither mutates global state nor interacts

Working with Crowds

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Microtask type

Description

Possible subsequent
microtasks

Write Function
Reuse Search
Write Function
Description

Write Call

Write Test Cases

Write Test

Sketch or implement a function using code, pseudocode, and pseudocalls.

Given a pseudocall and the surrounding code, determine if an existing func-
tion provides the functionality or that no function does.

Given a pseudocall and the surrounding code, write a description and signa-
ture for a new function for this behavior.

Replace the specified pseudocall with a call to the specified function or edit
the function to implement the behavior in an alternative way.

Given a description of a function, list test cases.

Given a test case and the description of a function, implement the test case or

Write Function, Reuse Search,
Machine Unit Test

Write Call, Write Function
Description

Write Call

Write Function, Reuse Search,
Machine Unit Test

Write Test

Machine Unit Test, Write Test

report an issue in the test case.
Machine Unit Test

Debug
in function call

Executes all implemented tests, notifying functions if they fail a test

Edit code to fix bug, report an issue in a test, or create stubs describing issues

Cases
Debug

Machine Unit Test, Write
Function, Reuse Search

Table 1. The microtasks in CrowdCode.

with the external environment (e.g., writing output to a
screen). Functions must be able to be completely specified
simply by evaluating the output they produce for each set of
inputs. This enables functions to be evaluated for correct-
ness simply by seeing if, for all tests, they produce the cor-
rect output. While this does not allow CrowdCode to write
web apps with GUIs, CrowdCode can be used to write a
library implementing key behavior as part of a larger appli-
cation containing a GUI and other interactions with an envi-
ronment.

Table 1 lists the microtasks in CrowdCode, which are dis-
cussed in detail in the following sections.

Writing code

Writing code involves a number of distinct tasks — writing
descriptions for functions, envisioning and sketching a
high-level outline or algorithm, implementing the sketch
with code, locating existing functions to reuse or describing
new functions to be created, adding function calls, and re-
sponding to changes in the interface of functions being
called. In CrowdCode, each of these are separate microtasks
performed by the crowd.

The first functions are initially requested and described by
the client. The crowd begins contributing through a Write
Function microtask (Figure 2). Workers are provided a de-
scription of the function and its signature and asked to
begin implementing it. As workers begin writing the func-
tion, they may choose to simply sketch portions of the code
using pseudocode. Workers may indicate that a portion of a
line is pseudocode by the leading characters //#; pseudo-
code is indicated visually with a yellow background. Work-
ers may submit incomplete functions with pseudocode,
generating additional microtasks to iteratively continue the
work [16].

48

Workers editing a function may also wish to reuse existing
functionality or break up the work to be implemented into
multiple functions. In CrowdCode, workers do not need to
choose between these cases. Workers may write pseudo-
calls, indicated by a portion of a line beginning with //! and
visually highlighted with a white background (against the
black code editor background), to request that the crowd
either locate an existing function with the specified behav-
ior or to create a new function if no such function exists.
This allows the worker editing the function to be oblivious
to the other functions that may or may not currently exist —
they simply request a function, and the crowd determines
the most appropriate way to provide it.

CrowdCode also provides error checking. When a function
has pseudocalls or pseudocode remaining, error checking of
the function’s body is suppressed. This allows workers to
incorporate pseudocalls and pseudocode into lines of code
in ways that makes the code itself syntactically invalid (e.g.,
branches and loops with some pseudocode components). In
early pilot testing, we found that workers often wished to
produce such code, and forcing them to always create syn-
tactically valid code was a significant barrier. Whenever a
function has no pseudocalls or pseudocode present,
CrowdCode provides error checking, displaying an error
panel below the code whenever code errors are present.
CrowdCode provides basic syntax checking using JSHint’.

In CrowdCode, workers can only create functions through
the pseudocall mechanism. This prevents a single worker
from writing a whole program in a single microtask and
encourages workers to break the work to be done into addi-
tional microtasks, increasing the parallelism of the work

2 www.jshint.com

Working with Crowds

process. To enforce this rule, CrowdCode displays an error
message whenever the code editor contains more than one
function.

Data types serve an important role in communicating the
expected parameters of a function, signaling, for example,
that the parameter player is expected to be a String in our
example task described below. Defining good data types is
often a central task of high-level design, requiring a global
understanding of a code base. In a microtasking environ-
ment where no single worker has such a global view, this is
challenging to achieve. Moreover, if a crowd were to itera-
tively create data types, every time the data types changed,
all functions and tests with parameters using those data
types might need to change, creating the potential for large
amounts of work. Thus, in CrowdCode, all data types are
defined by the client as part of the initial client request.

Clients specify data types with a name, list of fields, list of
data types for each field, and a prose description (e.g.,
Board in Figure 2). CrowdCode supports nested data types
and arrays of data types. Each parameter to a function and
the return value must have a type, which is either a data
structure or a primitive type (i.e., Number, Boolean, or
String). Parameter types are specified in the comments of
the function description (e.g., lines 15 — 17 in Figure 2).
CrowdCode displays an error message when a provided
type name is invalid. Descriptions of all data types in the
system are listed above the code editor.

Reuse and creating functions

Whenever a worker submits code with a new pseudocall, a
Reuse Search microtask is created. This microtask provides
the text from the pseudocall and the code surrounding the
pseudocall and asks the worker to search through existing
function descriptions to determine if such a function already
exists. When search text is entered, it is matched against
existing descriptions, and a list of matches displayed.
Workers can either select one of the functions or indicate
that no existing function provides the requested functionali-
ty.

When a new function is required, a Write Function Descrip-
tion microtask is next generated (Figure 5). This again pro-
vides the pseudocall and the code surrounding the pseudo-
call and provides a structured editor for writing function
descriptions. For each parameter, a textbox is provided for
workers to provide the name, type, and description. Error
checking is performed, checking for syntax errors, ensuring
the function name is unique, and ensuring that the types
provided are valid types.

After an existing function has been located or a new func-
tion has been described in Write Function Description, an
Add Call microtask is generated (Figure 6). Workers are
provided a code editor, functionally equivalent to the Edit a
Function microtask, but more specific instructions to re-
place a specified pseudocall (also highlighted in the code)
with a call to the described function or determine another

49

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Write a function description é&nts

Can you write a description for a function that
Show context

TYPeS Type names may be Siring, Boolan, Number, any typa below {bald tex), and amaye of any type (e.g., Sting(l, Numbafl[).

Board properties- “rows": String(]

Boards are an array of & character strings, where each row is a string and each
character represents an element of the board. Elements must be either "-"
(unoccupiable space), "o (empty space that can be occupied), "r" (normal red), "R"
(red King), "b" (normal black), and "B" (black King). Black players start at the
top and move downwards; red players start at the bottom and move upwards. Kings can
move upwards and downwards.

Example:
f "rows": ["-b-b-b-b",
“b-b-b-b-",
"-b-b-b-b",

Moves the specified piece forward, returning the new board

returns | Board
function MoveForward (
move

, /f| Move - | the move to make x

board , /f| Bord - | the board to move x

Add parameter

The type for board - Bord is not a valid type name. Valid type names are String,
Number, Boolean, a data structure name, and arrays of any of these (.g., String[]).

Figure 5. The Write Function Description microtask.

Add a call

The crowd found the following function for the BSEUAGEAINBEIGN:

7pts

Jax
Moves the specified piece forward, returning the new board

@param Move move = the move to make
@param Board board - the board to move
@return Board

Ao/

function moveForward(move, board)

Can you replace the pseudocall with a call to this function, or find another way to do it?

TYPeS Type names may be Sting, Boolean, Number, any type balow (bold tax), and amays of any typ (e.g., Stingl], NumbarIl).

[Board properties- “rows": String(]

Boards are an array of & character strings, where each row is a string and each
character represents an element of the board. Elements must be either “"-"
(unoccupiable space), "o (empty space that can be occupied), "r" (normal red), "R"
(red King J, "b" (nermal black), and "B" (black King). Black players start at the
top and move downwards; red players start at the bottom and move upwards. Kings can
move upwards and downwards.

Example:

I "rows": ["-b-b-b-b",
"b-b-b-b-",
"-b-b-b-b",

“nnnnt

1 CRdoMoves(board, moves)
newBoard board;

i=0; i

moves.length; i++)

var mov moves[i];

1rn newBoardj

Figure 6. The Add Call microtask.

Working with Crowds

way to implement the specified behavior. Workers are free
to edit whatever aspects of the code they wish, enabling
them to make arbitrary changes in response to the new
function or even to decide that a different way of imple-
menting the requested behavior would be more effective.
As in the Write Function microtask, adding pseudocode or
pseudocalls generates the appropriate new microtasks.
Whenever a function call is added, a dependency is created
on the function by the function being called. As Crowd-
Code only permits direct calls to functions in the global
scope (e.g., calls to functions on objects are not permitted),
function calls can always be uniquely resolved to a single
function, eliminating the possibility of any false positives or
false negatives in creating dependencies.

When working in a function, workers may also decide to
edit a function’s description or signature. Workers may
rename a function; add, remove, or rename parameters; and
change the type of any parameter. Any of these changes
signals a change in the function’s interface. As a result,
callers or tests of the function may need to change to reflect
the function’s new interface. Thus, CrowdCode generates
microtasks signaling the description has changed for each
caller and test. Each microtask includes a text-based diff of
the old and new description and signature, describing the
change to the function and allowing the worker to perform
an appropriate edit, if necessary.

Testing

Tests are written in two-steps. As soon as a function has
been described by a client or by the crowd, a microtask is
generated to Write Test Cases (Figure 1). Workers are pro-
vided a description of the function and asked to enumerate
short prose descriptions of test cases. Allowing a single
worker to write all of the test cases helps ensure that test
cases are not duplicative and have good coverage. To keep
the microtask short, workers are asked to provide a prose
description of test cases rather than a full implementation.

In the second step, each submitted test case generates a
Write Test microtask. A worker is provided the function
description and test case and asked to concretely specify the
test case as a unit test. To make unit tests quicker and easier
to write, CrowdCode provides an editor for simple unit
tests, asking workers to specify appropriate values for each
parameter and the return value (Figure 7). Test values are
checked for syntax errors and that they are of the correct

type.

If a worker feels that the prose description of a test case is
incorrect for the function (e.g. testing an invalid input when
the parameter is specified to have been validated), they may
report an issue in the test case. This generates a new Write
test cases microtask that prompts a different worker to con-
sider the issue and edit, add, and remove the test cases to
address the issue. Any changes to a test a case generate a
new Write test microtask reporting the change to the test
case and asking the worker to edit the test.

50

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Provide a JSON object literal of the specified type for each parameter and the expected return
value (e.g., { "propertyName": "String value" }), To get started, you might want to copy an
example from the description of a type above.

Parameter Values
pair (Pair):
{"b": "s" }

‘{"b":"s"}' is missing the required property a
*"s™ should be a Number, but is not.

Figure 7. When implementing a unit test, workers are asked
to write JSON literals for each parameter, which are
checked for syntax and semantics errors.

Determining when tests should be run presents a potential
need for global coordination. Generally, tests should be run
whenever a function no longer contains pseudocode or
pseudocalls (is written) and all of the functions it directly or
indirectly calls are written. Global coordination such as this
is again fragile: if a microtask is scheduled to run a test for
a function and one of the functions it calls concurrently
transitions to not written (e.g. by the addition of pseudo-
code in an editing task responding to a callee signature
change), running the tests is no longer required. To prevent
this need for global coordination, CrowdCode uses a sim-
pler, local rule. Whenever (1) a function is edited which no
longer contains any pseudocalls or pseudocode and (2) all
of the functions’ tests are currently implemented, the func-
tion notifies the project that it is ready to be tested. The
project then generates a special Machine Unit Test mi-
crotask. This microtask requires no work by the worker; the
worker simply briefly sees a microtask appear and a pro-
gress notification. The machine unit tests executes all im-
plemented tests for all described functions, regardless of if
they are written. The body of functions that are not yet writ-
ten is replaced with an empty body that simply throws a Not
Implemented exception. When running tests, if a Not Im-
plemented exception is encountered, the test result is ig-
nored. Otherwise, if a function fails its tests, the function is
notified, transitions to the buggy state, and generates a De-
bug microtask.

Debugging

Whenever a function fails to pass a unit test, it transitions to
the buggy state (Figure 4), and a Debug microtask is gener-
ated. Workers are provided a code editor and a list of unit
tests, with passing unit tests listed in green and failing unit
tests listed in red. To fix the bug, workers can edit the code,
rerun the unit tests, and view the output. A worker may also
decide that the issue is not in the code but in the test itself
and instead submit a prose description of an issue for the
unit test, generating a microtask to edit the test to address
the issue.

In other cases, however, the bug may not be in the function
under test but in one of the functions it calls. Indeed, much
of the challenge of debugging often rests in the process of

Working with Crowds

fault localization and determining the location within the
program where the problem is located. Such a task is non-
modular in that it requires developers to navigate the whole
program, traversing function calls to determine the location
of a fault.

How can workers debug such bugs through local microtasks
which provide a view of a single function? Our solution is
to allow workers to edit the return value of function calls,
creating a stub overriding the function’s return value for a
specific set of inputs. For example, a worker might see that
the call to the function add with the parameters -1 and 2 is
returning -1 and edit the return value to be 1. Workers may
then rerun the tests to determine if changing the callee’s
behavior fixes the bug, with the system automatically sub-
stituting the stubs for calls to the actual function through
source rewriting. After the microtask is submitted, each
stub then generates a test for the callee, which will be run
and fail (assuming the callee has not been concurrently
changed). A new worker can then continue debugging in
the function being called.

Social features

To encourage workers to contribute, CrowdCode imple-
ments a simple point system. All microtasks are initially
assigned a point value based on their type, approximately
proportional to the anticipated difficulty of the task type.
Each worker has a score and is awarded the microtask’s
points when the microtask is submitted. Workers can see
the score of all workers in the system on a leaderboard
(Figure 2), which is updated in real-time.

When a worker logs in to the system, they are automatically
assigned a microtask by the system. Compared to manual
task assignment in which workers themselves select mi-
crotasks, automatic task assignment has two key ad-
vantages. First, workers do not spend time searching for
microtasks, increasing the time in which they can be work-
ing. Second, by using a queue to assign work to workers,
the system can ensure that no microtasks starve because
workers do not wish to attend to them, even initially. How-
ever, automatic task assignment reduces worker motivation,
as workers no longer have a choice of work [13]. In order to
provide the benefits of both automatic task assignment and
choice, CrowdCode lets workers skip microtasks. Skipping
a microtask adds the microtask back to the global queue,
enabling it to be assigned to the next worker seeking work.
To encourage workers to do microtasks that may be unde-
sirable, skipping a microtask increases the points that will
be awarded on successful completion of that microtask.

CrowdCode provides a number of features to help workers
maintain awareness of the current state of the project. As
workers complete microtasks, they are added to a personal
activity feed (right side of Figure 2), letting workers track
their work. Statistics on the current status of the project —
the total lines of code, functions fully written, and mi-

51

UIST’14, October 5-8, 2014, Honolulu, HI, USA

crotasks completed (top of Figure 2) — let workers see a
summary of overall progress in real-time.

In some cases, workers may require information that is not
provided by the current microtask. In these cases, workers
may choose to use a group chat with all currently logged in
workers, a feature we termed Ask the Crowd. While global
group chat is ultimately unscalable, we introduced the Ask
the Crowd feature as a fail-safe measure to enable the
crowd to still make progress in the face of unexpected in-
formation needs. It also enables workers to go off topic and
forge closer relationships with other workers [13].

CrowdCode ultimately depends on workers in the system to
work in ways that produce work for other workers to do,
especially through writing code containing pseudocode and
pseudocalls. In our early testing, we found that workers
sometimes attempted to implement large portions of func-
tionality in a single function rather than using pseudocalls
to break the work up into separate functions. To address
this issue, workers are explicitly encouraged to use pseudo-
calls and explicitly prompted after every 8 minutes of work
on a microtask to submit, even if their work is incomplete,
to create microtasks for other workers to do.

Implementation

CrowdCode is implemented as a web application on Google
App Engine’, providing an infrastructure for seamless tech-
nical scaling. All artifact and microtask state is stored serv-
er-side in AppEngine. When a worker logs into the system,
the browser requests a microtask, transferring the necessary
state to the browser. When a worker submits a microtask,
the modified state is returned to the server and the state
updated. All other information — points, the activity feed,
leaderboard, chat — is synchronized across browsers in real-
time using Firebase”.

CrowdCode provides a project model. For each new client
request, a project is created with its own artifacts, mi-
crotasks, and user statistics. Each project is associated with
a unique URL, enabling workers to select a project by visit-
ing its URL.

CrowdCode enables workers to write code in Javascript.
This has several advantages. Javascript is currently a popu-
lar language whose syntax is well-known, making it more
likely that workers can contribute without needing to learn
a new language, and making it more likely they will easily
be able to find answers to syntax questions on the Web.
Moreover, Javascript can be executed client-side, enabling
the unit tests to be run in the browser and quickly provide
feedback for the debugging microtasks. However, a test that
runs in the browser might also execute an infinite loop,
causing the browser to hang and the worker to be unable to

3 developers.google.com/appengine

* www.firebase.com

Working with Crowds

continue. To address this issue, all worker written code is
executed on a separate thread using the HTMLS5 web work-
er API. Long running tests timeout and fail. The code editor
is implemented using the CodeMirror editor’ and the Es-
prima ECMA Script parsing infrastructure®.

USER STUDY

To examine the possibility of a small crowd working on
programming microtasks in parallel and to evaluate the
basic feasibility of the approach, we performed a small user
study. We used email distribution lists and personal con-
tacts to recruit 12 participants from our university, all of
whom had and/or were working on graduate degrees in
computer science and/or related fields. All participants had
prior experience programming in Javascript (average 0.6
years) and at least 6 months of experience in industry as a
software developer (average 1.8 years). 11 participants
were male and 1 female (P7). Participants were paid $60 for
two hours of their time.

All participants participated in a single simultaneous ses-
sion and were each given their own room to ensure that
they were only able to communicate through CrowdCode.
Participants were first provided a hands-on tutorial with the
system and assigned to separate projects in which they each
completed several representative microtasks for 10 — 20
minutes. After completing the tutorial, participants then
entered a single project and worked on the primary task.
Participants were asked to crowdsource game logic for
checkers (i.e., English draughts). The experimenters seeded
the project with a client request describing two functions to
be written and several simple data types specific to check-
ers. Throughout the study, two experimenters circulated
through participants’ rooms and verbally answered ques-
tions about how to use CrowdCode (which we recognize as
of limited scalability) but did not answer any questions
about the work itself. Several participants were interna-
tional students unfamiliar with the rules of Checkers and
made use of the link to the rules we provided.

Midway through the Checkers task, participants were asked
to complete a short mid-task survey, asking questions about
their experiences and challenges. Fifteen minutes before the
conclusion of the study session, all participants were
stopped and asked to complete a more extensive post-task
survey, containing items about their experiences and per-
ceptions with working in CrowdCode.

Results

The twelve participants each worked for about 1.25 hours in
CrowdCode (totaling exactly 14.25 person-hours). In total,
participants completed 265 microtasks, wrote 480 lines of
code across 16 functions, and an additional 61 unit tests

5 codemirror.net

8 esprima.org

52

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Microtask Type Com- Skipped Mean com-
pleted pletion time
(minutes)
Debug 28 2 2.67
Machine Unit Test 16 0 0.17
Reuse Search 30 0 1.84
Add Call 8 1 3.81
Write Function 39 10 5.41
Write Test 99 25 2.84
Write Test Cases 36 7 1.85
Write Function Description 20 3 3.06

Table 2. Microtasks completed and skipped by participants.

(Table 2). Participants did not finish implementing checkers
in the course of the study session.

One central characteristic of microtasking is a reduced con-
text, enabling microtasks to be self-contained and inde-
pendent. Participants differed in their reaction to this loss of
context. Some found it to be freeing: “I had to keep less
context in my head when writing functions, because I could
not make assumptions [about] the rest of the program” (P6).
Others found it burdensome and wanted other information
about the current state of the system that the microtasks did
not provide. One participant (P9) also reported that the
mental context switching required by microtasks was a hin-
drance to usability.

A majority of participants agreed that the opportunity for
communication beyond what was provided would help
them to work more effectively. Participants cited a desire to
share technical experience, clarify tasks, ask questions
about material that others had written. This may partially
reflect the patterns of work to which participants were ac-
customed. One participant stated that additional communi-
cation “might lead to conflicts in the case of disagreements.
I thought guiding communication via the work and tasks
itself was fairly productive” (P1). Participants used the
global chat to socialize and clarify the rules of checkers.

Participants appreciated the ability to specialize in tasks
they wanted to do and the ability to contribute according to
their knowledge and abilities: “I think that CrowdCode
would make me more likely to contribute as I could solve
the tasks which I could do, and skip the others. I could take
on tasks with higher difficulty as and when I feel comforta-
ble. Hence, CrowdCode would be ideal in working in an
open source project... [What I liked best was] collaborative
coding - each person can effectively contribute according to
his knowledge. For example, a testing person might con-

Working with Crowds

tribute for test cases, and skip the code development parts if
he feels so” (P11). P1 also reported that “I was willing to be
imperfect with my work. It was more important for me to
constantly push out new work.” This suggests that the
iteration process may have created an important “failure for
free” condition ([20], Ch. 10) in which the cost of trying
something and doing it is less than the cost of figuring out if
it's OK to try. Participants found the social features of
CrowdCode, especially the points and leaderboard, to be
motivating and to “help building a productive vibe to cod-
ing” (P10).

11 of the 12 participants agreed that they would be more
likely to contribute to an open source project using Crowd-
Code than with a traditional development process. Each
cited the lower barrier to entry and ease of jumping in as
opposed to the “taxing” “learning and involvement curve”
(P7) of open source projects now, as well as the ability to
specialize by skipping some tasks. P1 pointed out that the
microtasks could be too constraining for seasoned develop-
ers but may be better for someone starting out and under-
standing a new system.

Work submitted with errors sometimes created issues in the
microtasks that derived from the completed work. For ex-
ample, workers sometimes entered incorrect parameter
types in the Write Function Description microtask, such as
indicating the type of a parameter or return value to be a
String when it should be a client-defined data type. As a
result, participants in the Write Test microtask were forced
to write tests with the wrong data types, as they were unable
to request a change in the function description.

The study also revealed several usability and platform ro-
bustness issues. Participants submitted syntactically invalid
code that was not correctly flagged by the system. As a
result, some participants were unable to successfully com-
plete the Debugging microtask, as the test running infra-
structure threw an exception and could not display the re-
sults of running the unit tests. Early in the session, some
workers were forced to wait to receive microtasks. All of
the microtasks were initially spawned in response to a client
request for two functions, generating initial microtasks to
write the functions and write test cases. Workers writing the
functions initially spent a long time working, causing a de-
lay in creating other microtasks for workers to perform.

DISCUSSION

We found that the workers in our study were successfully
able to write code and tests within a dynamic microtasking
workflow. Especially after the tutorial and early experience
with the system, participants seemed to “get it” and found
aspects of the system and microtask style that they enjoyed.
We were surprised at the motivational power of the points
system and leaderboard, especially because participants
were well-paid and did not expect the points to have value
after the conclusion of the study.

53

UIST’14, October 5-8, 2014, Honolulu, HI, USA

CrowdCode enables developers in a larger project to speci-
fy the behavior of a requested functionality as a library
through an API (e.g., the API for executing checkers moves
in our study), which can be implemented through Crowd-
Code and added to the project. However, this model impos-
es a significant burden on the requesting developer: they
must precisely specify the behavior of the library, listing
descriptions of functions and all necessary data structures.
This model might be relaxed by enabling iterative commu-
nication between the crowd and requestors, allowing the
API to evolve through the joint work of the requesting de-
veloper and crowd. Or, in some cases, it may be advanta-
geous to allow requesting developers to play a larger role in
the work itself, enabling them to see and direct a global
view of the crowd’s work.

Microtasking workflows clearly impose an overhead on a
development process, and the total amount written per per-
son-hour is likely lower with CrowdCode than with tradi-
tional approaches. However, if microtasking is able to suc-
cessfully reduce the barriers to contribution and thereby
harness value from the “long tail” of participation — the
many willing to donate small amounts of time and effort —
the benefits of tapping into a much larger available resource
may still outweigh the overhead costs of using that “free”
resource less efficiently.

Another important question is whether or not participants
engaged in microtasked work feel that they are making an
important and meaningful contribution. On the one hand,
microtasked work decontextualizes contributions, which
may make it more challenging for workers to understand
the impact and significance of their work. On the other
hand, by making work products more fine-grained and ex-
plicit, it may be possible to provide more information about
the impact of work done. For example, a worker writing a
function description might receive a notification in the
newsfeed whenever the function is reused, letting them see
how successfully they were able to craft a reusable API.

A fundamental challenge in crowdsourcing is that workers
may produce bad work, even through good faith efforts. In
CrowdCode, any of the information workers enter in mi-
crotasks may ultimately be wrong and need to be corrected.
Unlike more traditional microtasking workflows in which
redundant work or explicit reviews are used to ensure the
quality of the work [6], CrowdCode embeds corrections
into the workflow itself. CrowdCode provides two mecha-
nisms to enable such corrections: workers may directly edit
the artifact corresponding to the current microtask or may
report an issue with related artifacts that are visible but not
editable (e.g., a test case description in Write Test). Work-
ers were often faced with a microtask resulting from bad
work. The one area in which this was impossible — report-
ing an issue with a function signature when writing a test —
caused significant problems. This highlights the importance
of ensuring that all worker-produced data can be corrected.

Working with Crowds

Creative work done by large groups often has the structure
of separate artifacts with dependencies, leading to corre-
sponding challenges communicating about these dependen-
cies (i.e., socio-technical congruence [3]). The general prin-
ciples of our approach may apply to many of these do-
mains. For example, in an engineering task, sub-
components may be spun off like pseudocalls, and automat-
ed test cases could include static and thermal analyses. In
writing text, editing a paragraph in an article might be a
microtask, enabling workers to create bullet points fleshed
out by the crowd, requests for other related paragraphs to be
written, and automatic tracking of dependencies to create
microtasks to update work. Our approach may be most use-
ful in contexts where parallelism-based speedups or broad
participation through low barriers to entry are needed.

ACKNOWLEDGEMENTS

We thank Steven Morad, Patrick Nguyen, and Eric Chiquil-
lo for their contributions to CrowdCode, we thank the par-
ticipants in the study for their participation, and we thank
Christoph Hannebauer and the anonymous reviewers for
their helpful comments and suggestions on previous drafts.
This work was supported in part by the National Science
Foundation under grants NSF IIS-1111446, 11S-1302522,
and CCF-1414197.

REFERENCES
1. Beck, K. Test-Driven Development: By Example. Ad-
dison-Wesley, Boston, 2003.

2. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent:
A Word Processor with a Crowd Inside. Proc. of UIST
2010, 313-322.

3. Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and
Carley, K. M. Identification of Coordination Require-
ments: Implications for the Design of Collaboration
and Awareness Tools. Proc. of CSCW 2006, 353-362

4. Crowston, K., Wei, K., Howison, J., and Wiggins, A.
Free/Libre Open-source Software Development: What
We Know and What We Do Not Know. ACM Comput.
Surv. 44,2 (2012), 7:1-7:35.

5. Dietl, W., Dietzel, S., Ernst, M.D., et al. Verification
Games: Making Verification Fun. Proc. of FTfJP 2012,
42-49.

6. Doan, A., Ramakrishnan, R., and Halevy, A. Y.
Crowdsourcing Systems on the World-Wide Web.
Commun. of ACM 54, 4 (2011), 86-96.

7. Goldman, M., Little, G., and Miller, R.C. Real-time Col-
laborative Coding in a Web IDE. Proc. of UIST 2011,
155-164.

8. Goldman, Max. Software Development with Real-Time
Collaborative Editing. PhD Diss. Massachusetts Insti-
tute of Technology, 2012.

54

10.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

UIST’14, October 5-8, 2014, Honolulu, HI, USA

Hartmann, B., MacDougall, D., Brandt, J., and Klem-
mer, S.R. What Would Other Programmers Do: Sug-
gesting Solutions to Error Messages. Proc. of CHI
2010, 1019-1028.

Jergensen, C., Sarma, A., and Wagstrom, P. The Onion
Patch: Migration in Open Source Ecosystems. Proc. of
ESEC/FSE 2011, 70-80.

. Jiau, H.C. and Yang, F.-P. Facing Up to the Inequality

of Crowdsourced API Documentation. SIGSOFT
Softw. Eng. Notes 37, 1 (2012), 1-9.

Kittur, A., Smus, B., Khamkar, S., and Kraut, R.E.
CrowdForge: Crowdsourcing Complex Work. Proc. of
UIST 2011, 43-52.

Kraut, R.E. and Resnick, P. Building Successful Online
Communities: Evidence-Based Social Design. MIT
Press, 2012.

Krogh, G. v., Spaeth, S., and Lakhani, K. R. Communi-
ty, Joining, and Specialization in Open Source Soft-
ware Innovation: A Case Study. Research Policy 32,7
(2003), 1217-1241.

Li, W., Seshia, S.A., and Jha, S. CrowdMine: Towards
Crowdsourced Human-Assisted Verification. Proc. of
DAC 2012, 1254-1255.

Little, G., Chilton, L.B., Goldman, M., and Miller, R.C.
TurKit: Human Computation Algorithms on Mechani-
cal Turk. Proc of UIST 2010, 57-66.

Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G.,
and Hartmann, B. Design Lessons from the Fastest
Q&A Site in the West. Proc. of CHI 2011, 2857-2866.

Mujumdar, D., Kallenbach, M., Liu, B., and Hartmann,
B. Crowdsourcing Suggestions to Programming Prob-
lems for Dynamic Web Development Languages. CHI
'11 Extended Abstracts on Human Factors in Compu-
ting Systems, ACM (2011), 1525-1530.

Pastore, F., Mariani, L., and Fraser, G. CrowdOracles:
Can the Crowd Solve the Oracle Problem? Proc. of
ICST 2013, 342-351.

Shirky, C. Here Comes Everybody: the Power of Or-
ganizing Without Organizations. Penguin, 2008.

Steinmacher, 1., Silva, M. A. G., and Gerosa, M. A.
Barriers Faced by Newcomers to Open Source Pro-
jects: A Systematic Review. IFIP Adv. Inf. Commun.
Technol. 47 (2014), 153-163, Springer Berlin Heidel-
berg.

Watson, C., Li, F.W.B., and Godwin, J.L. BlueFix: Us-
ing Crowd-Sourced Feedback to Support Programming
Students in Error Diagnosis and Repair. In E. Popescu,
Q. Li, R. Klamma, H. Leung, and M. Specht, eds., Ad-
vances in Web-Based Learning - ICWL 2012. Springer
Berlin Heidelberg, 2012, 228-239.

