
 

Microtask Programming: Building Software with a Crowd 
Thomas D. LaToza1, W. Ben Towne2, Christian M. Adriano1, André van der Hoek1  
1University of California, Irvine 

Irvine, CA   
{tlatoza, adrianoc, andre}@ics.uci.edu   

2Carnegie Mellon University 
5000 Forbes Ave, Pittsburgh, PA 

wbt@cs.cmu.edu   
 

ABSTRACT 
Microtask crowdsourcing organizes complex work into 
workflows, decomposing large tasks into small, relatively 
independent microtasks. Applied to software development, 
this model might increase participation in open source 
software development by lowering the barriers to contribu-
tion and dramatically decrease time to market by increasing 
the parallelism in development work. To explore this idea, 
we have developed an approach to decomposing program-
ming work into microtasks. Work is coordinated through 
tracking changes to a graph of artifacts, generating appro-
priate microtasks and propagating change notifications to 
artifacts with dependencies. We have implemented our ap-
proach in CrowdCode, a cloud IDE for crowd development. 
To evaluate the feasibility of microtask programming, we 
performed a small study and found that a small crowd of 12 
workers was able to successfully write 480 lines of code 
and 61 unit tests in 14.25 person-hours of time. 

Author Keywords 
crowdsourcing; development environment; programming 
tools 

ACM Classification Keywords 
D.2.6 Programming environments: Interactive environ-
ments 

INTRODUCTION 
Microtask crowdsourcing systems enable crowds of work-
ers of varying skill to complete large tasks quickly by de-
composing work into short, self-contained microtasks, ena-
bling mass contribution through low barriers to contribution 
and work to be completed quickly through extreme parallel-
ism. This paradigm has a great potential appeal for software 
work: while open source development has brought open 
contribution to software work, joining an open source pro-
ject is often a long and tedious process, discouraging con-
tribution and reducing the pool of participants. Even in 
commercial development organizations, there is often a 

need to build software quickly, as time to market is often 
valuable. While microtasking may introduce overhead and 
thereby reduce the efficiency of the development process, 
there may be situations in which greatly broadening the 
pool of potential participants can lead work to be completed 
more quickly through larger scale and parallelization. 

Programming is an example of complex work, involving 
many interdependencies among components of the work 
produced. Recent crowdsourcing work has begun to explore 
approaches for microtasking complex work. For example, 
CrowdForge [12] introduces a Map-Reduce style paradigm 
in which the crowd first partitions a large problem into sev-
eral smaller sub-problems, then solves the sub-problems 
(map), and finally merges the multiple results to a single 
result (reduce). However, an important limitation of exist-
ing workflows for complex work is that the decomposition 
structure is static and fixed by the requestor. For example, 
while a requestor might specify a workflow in which work-
ers first partition work into sub-problems before workers 
then perform a map step, the workflow itself is fixed and 
cannot vary in response to the work done. For many crea-
tive tasks, this is an important limitation. For example, in 
programming, it is impossible to specify, a priori, the set of 
functions and tests necessary to implement a program. In 

 
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org. 
UIST 2014, October 5–8, 2014, Honolulu, HI, USA.. 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-3069-5/14/10…$15.00. 
http://dx.doi.org/10.1145/2642918.2647349 

Figure 1. An example of a microtask in CrowdCode. 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

43



 

the process of implementing functions, developers may 
discover new parts of the problem, requiring new functions 
to be written. Then, in the process of writing functions, de-
velopers may discover they must change their interface, 
requiring changes to be made to functions elsewhere. 

Here, we present an approach for crowdsourcing problems 
using dynamically generated microtasks and illustrate this 
approach through the design of a system for microtask pro-
gramming. Our key insight is to coordinate work through a 
graph of artifacts, generating microtasks in response to 
events that occur on artifacts rather than through a static 
workflow. Each microtask asks workers to perform a short 
well-defined task on a single artifact – a function or a test 
(e.g., Figure 1), allowing work to proceed on many artifacts 
in parallel. As workers complete microtasks, events are 
generated on the artifact, which may then trigger further 
microtasks to be generated. When an artifact changes, 
events are sent to artifacts that depend on it, allowing mi-
crotask structures to be dynamic and non-hierarchic. For 
example, when a function changes its signature (e.g., add-
ing a parameter), artifacts that depend on it (callers and 
tests) are notified, generating microtasks to handle these 
changes. As artifacts may have many dependencies, arti-
facts may have multiple pending notifications of changes. 
To coordinate this work, each artifact has a microtask 
queue, allowing changes to be performed sequentially and 
preventing conflicts.  

We implemented our approach in a prototype online IDE 
for microtask programming for Javascript: CrowdCode. 
Our approach has a number of important limitations: it does 
not support design tasks, does not crowdsource the design 
of data types, is limited to crowdsourcing small functional 
libraries, and requires the correctness of work to be evaluat-
ed solely through tests. Within this limited scope, we have 
explored an approach for microtasking writing code, writ-
ing tests, and debugging. To achieve this, we present a nov-
el approach for the dynamic generation of microtasks 
through an artifact network, a microtask decomposition of 
programming, and self-contained microtasks for program-
ming. To evaluate the possibility of a small crowd working 
on programming microtasks in parallel and to evaluate the 
basic feasibility of the approach, we performed a small user 
study in which 12 participants worked on a small program-
ming task. We found that the participants were able to suc-
cessfully program part of a library, completing 265 mi-
crotasks, writing 480 lines of code across 16 functions, and 
an additional 61 unit tests. We found that decontextualizing 
programming work had both strengths and weaknesses; but, 
overall, 11 of the 12 participants felt that a microtasking 
approach would make them more likely to contribute to an 
open source project. 

RELATED WORK 
Our research builds on work across several communities: 
open source software development, crowdsourcing complex 
work, and crowdsourcing software development. In open 

source, workers complete tasks to accrue status [4]. Yet this 
process differs fundamentally from microtasking, as tasks 
exist at a far larger granularity of hours or days. Workers 
face many barriers to contributing, including discovering 
ways to contribute, learning about tools, and tolerating 
harsh feedback from senior members [10][14][21].  Our 
approach is intended to reduce these barriers by decompos-
ing work into microtasks, which take only minutes. 

Complex work comprises interdependent tasks that require 
more cognitive effort than the typical tasks of labeling and 
transcribing data. Approaches to tackle interdependent and 
complex tasks rely on workflow mechanisms and crowd 
algorithms. For example, Soylent [2] enables a writer to 
partition work in smaller proof reading and editing tasks to 
be performed by a crowd. TurKit [16], provides a frame-
work based on scripts to create and run tasks in Mechanical 
Turk. CrowdForge [12] expands those solutions by enabling 
the crowd to partition work. Our approach extends these 
models, supporting dynamic, non-hierarchic workflows. 

Other work has begun to apply microtasking to program-
ming at the level of individual development tasks such as 
testing or question answering. In Stack Overflow1, develop-
ers ask questions, other developers answer them, and yet 
other developers evaluate the quality of the answers, con-
currently curating a knowledge repository of frequent ques-
tions [11,17]. Other work has explored the use of 
crowdsourcing for recommending fixes to bugs [9,18] and 
compilation errors [22] and to checking and fixing unit test 
assertions [19]. In order to leverage larger pools of workers, 
some systems enable non-specialists to contribute. For in-
stance, several systems have explored applying a gamifica-
tion paradigm to verifying software models for correctness 
[15] or verifying for security vulnerabilities by playing with 
pipes [5].  

One of the few systems to explore microtasking a pro-
gramming process is Collabode [7,8]. In Collabode, an 
“original programmer” describes in prose short microtasks 
to be performed and workers then use a provided web IDE 
to complete the requested tasks. An evaluation of the sys-
tem found that, while it was possible to microtask pro-
gramming, there were several significant issues with the 
workflow used. As workers all worked with a global view 
of the entire codebase, it was sometimes distracting to see 
changes being made elsewhere. And there was a large over-
head for the requestor in managing the crowd workers, as 
they needed to answer questions about the request and 
evaluate the work in detail. Moreover, code often had subtle 
bugs, which was difficult for the requestor to find through 
code inspection. Finally, workers were anonymous and thus 
sometimes did not take responsibility for their work. These 
considerations directly influenced our design choices in  

                                                           
1 stackoverflow.com 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

44



 

activity feed

group chat

score

leaderboard

microtask

instructions

data structures

pseudocall

pseudocode

code editor
function description

project statistics current user

Figure 2. The CrowdCode environment and the Write Function microtask.  

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

45



 

CrowdCode, leading us to adopt a model with local, self-
contained microtasks and test-based correctness evaluation.  

EXAMPLE 
To illustrate microtask programming in CrowdCode, we 
present an example. After logging in to CrowdCode and 
viewing a welcome screen, Alice is immediately presented 
with her first microtask. The microtask provides her with 
the description of a function in prose and asks her to enu-
merate test cases. 

Not feeling in the mood for testing, she clicks the skip link 
at the bottom of the page. She’s then presented a new mi-
crotask – Write Function (Figure 2) – and asked to write 
some code. Rather than completely implement the function, 
she sketches some pieces of it that come to mind, noting 
portions still to be done with pseudocode (yellow back-
ground). She thinks some of the functionality should really 
be implemented in other functions, and writes several pseu-
docalls describing what she thinks those functions should 
do. She submits the task. 

She next receives a microtask to Debug, and is given some 
code and unit tests and sees that the unit test is failing. She 
edits the code, but the unit tests still are not passing. Look-
ing at a list of inputs and outputs for function calls at the 
bottom, she sees that one of the functions is returning an 
erroneous value. After editing the output value, she reruns 
the tests, sees that they pass, and submits. She sees that her 
score has now increased to 20 points! 

Alice next is assigned another microtask to edit a function, 
and sees that she has been reassigned the microtask for the 
function she started working on earlier. But it has now 
changed – some of the pseudocode she had written has now 
been replaced with code, and several of the pseudocalls 
have been replaced with actual calls. But she also sees that 
some of the new algorithm does not appear to work correct-
ly, so she rewrites some of the code, adding new pseudo-
code and pseudocalls for some of the new portions. 

DESIGN 
The core of CrowdCode is a system for tracking work as a 
graph of artifacts, dynamically generating microtasks in 
response to state changes in artifacts and propagating events 
across dependencies. To enable workers to program using 
these microtasks, CrowdCode decomposes programming 
work into a set of microtasks, enabling workers to write 
code, reuse functions, test, and debug within self-contained 
microtasks. Finally, CrowdCode provides social features to 
motivate contributions including a simple point system. The 
following sections greater detail CrowdCode’s design and 
concepts. 

Generating Microtasks 
In CrowdCode, all work performed by the crowd occurs in 
microtasks. A microtask is a short, independent, self-
contained request for a piece of work to be completed. Each 
microtask focuses on a single artifact – a work product be-

ing produced by the crowd. After a crowd worker com-
pletes and submits a microtask, the microtask’s correspond-
ing artifact processes the work completed, updating its data 
and state accordingly. 

In CrowdCode, the overall work product is maintained as a 
graph of artifacts (Figure 3). Each artifact – functions, tests, 
and the project – includes a set of attributes describing its 
state, describing the work which has been completed and 
the work which may be required. When a microtask is sub-
mitted, an artifact may change state, transitioning attributes 
as necessary. For example, when the Write Function De-
scription microtask is submitted, a function changes state 
from not described to described. See Figure 4 for the func-
tion state machine. 

Microtask submissions may also trigger an artifact to send 
an event to other artifacts that depends on it. For example, 
when a parameter is added to a function’s signature, the 
function sends a signature change event to all functions that 
call it and all of the unit tests for the function, enabling 
these artifacts to generate microtasks in response. In Figure 
3, adding a parameter to function a results in events being 
sent to functions b and c and tests t1 and t2. In this way, 
changes to an artifact may propagate across the call graph, 
allowing related artifacts to be updated. CrowdCode cur-

 

Figure 4. The function state machine. 

Figure 3. A graph of artifacts with functions (black back-
ground), tests (blue outline), and dependencies (arrows). 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

46



 

rently implements two types of dependencies: function calls 
and tests that test a function.  

CrowdCode also supports iterative workflows, where mi-
crotasks for the same work are repeatedly generated until 
work has been completed. If, after a microtask is submitted, 
the artifact’s data is updated but it remains in the same 
state, it may generate a new microtask to continue the work. 
For example, developers editing a function can write pseu-
docode, leaving the state of the artifact in the not written 
state and iteratively generating microtasks until all of the 
pseudocode has been replaced with code. 

Organizing work through explicit global tasks is challeng-
ing and fragile. As workers do work at scale throughout the 
system, in parallel throughout the system, this work must 
then be reassembled into a consistent whole. In our early 
work, we explored the use of global tasks, spanning multi-
ple artifacts. For example, a debugging task might spawn a 
set of microtasks to be done on a set of functions, and 
would not be completed until the bug was definitively lo-
cated in a function. However, as each function may be con-
currently changing, a single function might concurrently 
participate in multiple debugging tasks all while other work 
is being done. Determining if a bug has been found, when 
the buggy function might have been concurrently changed 
as part of another task, was challenging.  

As a result, we instead adopted a simpler, but powerful 
principle: each artifact may have a single microtask concur-
rently being performed and each microtask must act inde-
pendently. When there are multiple microtasks to be done 
(e.g., a function fails a test and must also update a call to 
match a changed signature), each microtask is added to a 
queue. Each artifact ensures that it has only a single availa-
ble microtask in the global queue at a time. Other mi-
crotasks are maintained in a separate per-artifact queue and 
released into the global queue as microtasks are completed. 
This design prevents merge conflicts, as only at most one 
microtask and worker have commit access to an artifact at 
any point in time. This poses the secondary issue that aban-
doned tasks could hold up development on an artifact, and 
timers that strictly or arbitrarily limit total microtask time 
might cause issues for e.g. function implementation tasks 
that a worker is spending more time on.  Our implementa-
tion uses soft notices to submit after 8 minutes and includes 
inactivity timers, to help address this issue. 

Workflow 
CrowdCode crowdsources the implementation of libraries 
requested by a client developer. All work in CrowdCode 
begins with a client request specifying the API of a library 
to be implemented by the crowd. Clients describe an API 
through a set of functions, each containing a prose descrip-
tion of the functions purpose and its signature, including its 
name, return type, and list of parameters (including name, 
type, and text description/interpretation). Together, these 
functions describe the behavior of a library that can be in-

corporated by the client into a larger codebase. Clients also 
specify a set of data types, allowing each function to have a 
type describing the legal values that may be passed to and 
returned from the client and to be used internally within the 
library’s implementation.  

A central decision in the design of a crowdsourcing system 
is the granularity at which workers interact with the work 
products produced. A smaller granularity enables greater 
parallelism, as it increases the amount of crowd workers 
that can be working at the same time, in turn decreasing the 
time required to complete work. However, decomposing 
work into smaller pieces can also increase the amount of 
overhead, as more workers may need to understand some of 
the same aspects of the current status of the work to con-
tribute.  

CrowdCode attempts to balance these factors towards the 
smaller end of the granularity scale, using the function as 
the central unit of granularity. Functions are a natural and 
central boundary in programs, enabling a set of related 
statements to be organized into a coherent whole providing 
a single piece of functionality. Functions are a central unit 
of abstraction in programs, providing an interface through 
which clients may invoke the described functionality with-
out seeing or reasoning about the code providing the func-
tion’s implementation.  

As workers work with code in CrowdCode, workers inter-
act with a single function at a time. Through the function’s 
description, workers can understand what callers expect of 
the function, enabling them to reason about and work on the 
function in isolation from the code of the other functions. 
Similarly, workers may request some functionality to be 
created (or reused) in the system. This request leads the 
crowd to find or create a function, which can then be called 
from the requesting function. In this way, functions and 
their interfaces provide boundaries establishing individual 
units of work that can each evolve separately. 

Another central consideration in a crowdsourcing system is 
providing mechanisms to produce quality work. In Crowd-
Code, this is done through unit tests. Drawing inspiration 
from test-driven development [1], microtasks are separately 
created to write tests for each function. When all of the tests 
pass, the system is considered to be ready for acceptance 
testing by the client. If a test fails, a microtask is created to 
debug the function. By creating separate microtasks for 
writing code and testing, CrowdCode creates redundancy, 
ensuring that the code produced is correct enough that it 
passes its tests. If workers produce code that fails to pass 
the tests, more work will be created until the tests pass. Of 
course, the tests themselves may also be incorrect. When 
debugging, workers may report an issue with a test, gener-
ating a microtask to address the issue and correct the test.   

As a result of requiring that bugs be able to be detected 
through tests, CrowdCode requires that code written is 
functional and neither mutates global state nor interacts 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

47



 

with the external environment (e.g., writing output to a 
screen). Functions must be able to be completely specified 
simply by evaluating the output they produce for each set of 
inputs. This enables functions to be evaluated for correct-
ness simply by seeing if, for all tests, they produce the cor-
rect output. While this does not allow CrowdCode to write 
web apps with GUIs, CrowdCode can be used to write a 
library implementing key behavior as part of a larger appli-
cation containing a GUI and other interactions with an envi-
ronment. 

Table 1 lists the microtasks in CrowdCode, which are dis-
cussed in detail in the following sections. 

Writing code 
Writing code involves a number of distinct tasks – writing 
descriptions for functions, envisioning and sketching a 
high-level outline or algorithm, implementing the sketch 
with code, locating existing functions to reuse or describing 
new functions to be created, adding function calls, and re-
sponding to changes in the interface of functions being 
called. In CrowdCode, each of these are separate microtasks 
performed by the crowd. 

The first functions are initially requested and described by 
the client. The crowd begins contributing through a Write 
Function microtask (Figure 2). Workers are provided a de-
scription of the function and its signature and asked to 
begin implementing it. As workers begin writing the func-
tion, they may choose to simply sketch portions of the code 
using pseudocode. Workers may indicate that a portion of a 
line is pseudocode by the leading characters //#; pseudo-
code is indicated visually with a yellow background. Work-
ers may submit incomplete functions with pseudocode, 
generating additional microtasks to iteratively continue the 
work [16].  

Workers editing a function may also wish to reuse existing 
functionality or break up the work to be implemented into 
multiple functions. In CrowdCode, workers do not need to 
choose between these cases. Workers may write pseudo-
calls, indicated by a portion of a line beginning with //! and 
visually highlighted with a white background (against the 
black code editor background), to request that the crowd 
either locate an existing function with the specified behav-
ior or to create a new function if no such function exists. 
This allows the worker editing the function to be oblivious 
to the other functions that may or may not currently exist – 
they simply request a function, and the crowd determines 
the most appropriate way to provide it. 

CrowdCode also provides error checking. When a function 
has pseudocalls or pseudocode remaining, error checking of 
the function’s body is suppressed. This allows workers to 
incorporate pseudocalls and pseudocode into lines of code 
in ways that makes the code itself syntactically invalid (e.g., 
branches and loops with some pseudocode components). In 
early pilot testing, we found that workers often wished to 
produce such code, and forcing them to always create syn-
tactically valid code was a significant barrier. Whenever a 
function has no pseudocalls or pseudocode present, 
CrowdCode provides error checking, displaying an error 
panel below the code whenever code errors are present. 
CrowdCode provides basic syntax checking using JSHint2.  

In CrowdCode, workers can only create functions through 
the pseudocall mechanism. This prevents a single worker 
from writing a whole program in a single microtask and 
encourages workers to break the work to be done into addi-
tional microtasks, increasing the parallelism of the work 
                                                           
2 www.jshint.com 

Microtask type Description Possible subsequent  
microtasks 

Write Function Sketch or implement a function using code, pseudocode, and pseudocalls. Write Function, Reuse Search, 
Machine Unit Test 

Reuse Search Given a pseudocall and the surrounding code, determine if an existing func-
tion provides the functionality or that no function does. 

Write Call, Write Function 
Description 

Write Function 
Description 

Given a pseudocall and the surrounding code, write a description and signa-
ture for a new function for this behavior. 

Write Call 

Write Call Replace the specified pseudocall with a call to the specified function or edit 
the function to implement the behavior in an alternative way. 

Write Function, Reuse Search, 
Machine Unit Test 

Write Test Cases Given a description of a function, list test cases. Write Test 

Write Test Given a test case and the description of a function, implement the test case or 
report an issue in the test case. 

Machine Unit Test, Write Test 
Cases 

Machine Unit Test Executes all implemented tests, notifying functions if they fail a test Debug 

Debug  Edit code to fix bug, report an issue in a test, or create stubs describing issues 
in function call 

Machine Unit Test, Write 
Function, Reuse Search  

Table 1. The microtasks in CrowdCode.

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

48



 

process. To enforce this rule, CrowdCode displays an error 
message whenever the code editor contains more than one 
function.    

Data types serve an important role in communicating the 
expected parameters of a function, signaling, for example, 
that the parameter player is expected to be a String in our 
example task described below. Defining good data types is 
often a central task of high-level design, requiring a global 
understanding of a code base. In a microtasking environ-
ment where no single worker has such a global view, this is 
challenging to achieve. Moreover, if a crowd were to itera-
tively create data types, every time the data types changed, 
all functions and tests with parameters using those data 
types might need to change, creating the potential for large 
amounts of work. Thus, in CrowdCode, all data types are 
defined by the client as part of the initial client request.  

Clients specify data types with a name, list of fields, list of 
data types for each field, and a prose description (e.g., 
Board in Figure 2). CrowdCode supports nested data types 
and arrays of data types. Each parameter to a function and 
the return value must have a type, which is either a data 
structure or a primitive type (i.e., Number, Boolean, or 
String). Parameter types are specified in the comments of 
the function description (e.g., lines 15 – 17 in Figure 2). 
CrowdCode displays an error message when a provided 
type name is invalid. Descriptions of all data types in the 
system are listed above the code editor. 

Reuse and creating functions 
Whenever a worker submits code with a new pseudocall, a 
Reuse Search microtask is created. This microtask provides 
the text from the pseudocall and the code surrounding the 
pseudocall and asks the worker to search through existing 
function descriptions to determine if such a function already 
exists. When search text is entered, it is matched against 
existing descriptions, and a list of matches displayed. 
Workers can either select one of the functions or indicate 
that no existing function provides the requested functionali-
ty. 

When a new function is required, a Write Function Descrip-
tion microtask is next generated (Figure 5). This again pro-
vides the pseudocall and the code surrounding the pseudo-
call and provides a structured editor for writing function 
descriptions. For each parameter, a textbox is provided for 
workers to provide the name, type, and description. Error 
checking is performed, checking for syntax errors, ensuring 
the function name is unique, and ensuring that the types 
provided are valid types. 

After an existing function has been located or a new func-
tion has been described in Write Function Description, an 
Add Call microtask is generated (Figure 6). Workers are 
provided a code editor, functionally equivalent to the Edit a 
Function microtask, but more specific instructions to re-
place a specified pseudocall (also highlighted in the code) 
with a call to the described function or determine another 

 

Figure 5. The Write Function Description microtask. 

 

Figure 6. The Add Call microtask. 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

49



 

way to implement the specified behavior.  Workers are free 
to edit whatever aspects of the code they wish, enabling 
them to make arbitrary changes in response to the new 
function or even to decide that a different way of imple-
menting the requested behavior would be more effective. 
As in the Write Function microtask, adding pseudocode or 
pseudocalls generates the appropriate new microtasks. 
Whenever a function call is added, a dependency is created 
on the function by the function being called. As Crowd-
Code only permits direct calls to functions in the global 
scope (e.g., calls to functions on objects are not permitted), 
function calls can always be uniquely resolved to a single 
function, eliminating the possibility of any false positives or 
false negatives in creating dependencies. 

When working in a function, workers may also decide to 
edit a function’s description or signature. Workers may 
rename a function; add, remove, or rename parameters; and 
change the type of any parameter. Any of these changes 
signals a change in the function’s interface. As a result, 
callers or tests of the function may need to change to reflect 
the function’s new interface. Thus, CrowdCode generates 
microtasks signaling the description has changed for each 
caller and test.  Each microtask includes a text-based diff of 
the old and new description and signature, describing the 
change to the function and allowing the worker to perform 
an appropriate edit, if necessary. 

Testing 
Tests are written in two-steps. As soon as a function has 
been described by a client or by the crowd, a microtask is 
generated to Write Test Cases (Figure 1). Workers are pro-
vided a description of the function and asked to enumerate 
short prose descriptions of test cases. Allowing a single 
worker to write all of the test cases helps ensure that test 
cases are not duplicative and have good coverage. To keep 
the microtask short, workers are asked to provide a prose 
description of test cases rather than a full implementation. 

In the second step, each submitted test case generates a 
Write Test microtask. A worker is provided the function 
description and test case and asked to concretely specify the 
test case as a unit test. To make unit tests quicker and easier 
to write, CrowdCode provides an editor for simple unit 
tests, asking workers to specify appropriate values for each 
parameter and the return value (Figure 7). Test values are 
checked for syntax errors and that they are of the correct 
type. 

If a worker feels that the prose description of a test case is 
incorrect for the function (e.g. testing an invalid input when 
the parameter is specified to have been validated), they may 
report an issue in the test case. This generates a new Write 
test cases microtask that prompts a different worker to con-
sider the issue and edit, add, and remove the test cases to 
address the issue. Any changes to a test a case generate a 
new Write test microtask reporting the change to the test 
case and asking the worker to edit the test. 

Determining when tests should be run presents a potential 
need for global coordination. Generally, tests should be run 
whenever a function no longer contains pseudocode or 
pseudocalls (is written) and all of the functions it directly or 
indirectly calls are written. Global coordination such as this 
is again fragile: if a microtask is scheduled to run a test for 
a function and one of the functions it calls concurrently 
transitions to not written (e.g. by the addition of pseudo-
code in an editing task responding to a callee signature 
change), running the tests is no longer required. To prevent 
this need for global coordination, CrowdCode uses a sim-
pler, local rule. Whenever (1) a function is edited which no 
longer contains any pseudocalls or pseudocode and (2) all 
of the functions’ tests are currently implemented, the func-
tion notifies the project that it is ready to be tested. The 
project then generates a special Machine Unit Test mi-
crotask. This microtask requires no work by the worker; the 
worker simply briefly sees a microtask appear and a pro-
gress notification. The machine unit tests executes all im-
plemented tests for all described functions, regardless of if 
they are written. The body of functions that are not yet writ-
ten is replaced with an empty body that simply throws a Not 
Implemented exception. When running tests, if a Not Im-
plemented exception is encountered, the test result is ig-
nored. Otherwise, if a function fails its tests, the function is 
notified, transitions to the buggy state, and generates a De-
bug microtask. 

Debugging 
Whenever a function fails to pass a unit test, it transitions to 
the buggy state (Figure 4), and a Debug microtask is gener-
ated. Workers are provided a code editor and a list of unit 
tests, with passing unit tests listed in green and failing unit 
tests listed in red. To fix the bug, workers can edit the code, 
rerun the unit tests, and view the output. A worker may also 
decide that the issue is not in the code but in the test itself 
and instead submit a prose description of an issue for the 
unit test, generating a microtask to edit the test to address 
the issue.  

In other cases, however, the bug may not be in the function 
under test but in one of the functions it calls. Indeed, much 
of the challenge of debugging often rests in the process of 

Figure 7. When implementing a unit test, workers are asked 
to write JSON literals for each parameter, which are 
checked for syntax and semantics errors.  

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

50



 

fault localization and determining the location within the 
program where the problem is located. Such a task is non-
modular in that it requires developers to navigate the whole 
program, traversing function calls to determine the location 
of a fault.  

How can workers debug such bugs through local microtasks 
which provide a view of a single function? Our solution is 
to allow workers to edit the return value of function calls, 
creating a stub overriding the function’s return value for a 
specific set of inputs. For example, a worker might see that 
the call to the function add with the parameters -1 and 2 is 
returning -1 and edit the return value to be 1. Workers may 
then rerun the tests to determine if changing the callee’s 
behavior fixes the bug, with the system automatically sub-
stituting the stubs for calls to the actual function through 
source rewriting. After the microtask is submitted, each 
stub then generates a test for the callee, which will be run 
and fail (assuming the callee has not been concurrently 
changed). A new worker can then continue debugging in 
the function being called. 

Social features 
To encourage workers to contribute, CrowdCode imple-
ments a simple point system. All microtasks are initially 
assigned a point value based on their type, approximately 
proportional to the anticipated difficulty of the task type.  
Each worker has a score and is awarded the microtask’s 
points when the microtask is submitted. Workers can see 
the score of all workers in the system on a leaderboard 
(Figure 2), which is updated in real-time.  

When a worker logs in to the system, they are automatically 
assigned a microtask by the system. Compared to manual 
task assignment in which workers themselves select mi-
crotasks, automatic task assignment has two key ad-
vantages. First, workers do not spend time searching for 
microtasks, increasing the time in which they can be work-
ing. Second, by using a queue to assign work to workers, 
the system can ensure that no microtasks starve because 
workers do not wish to attend to them, even initially. How-
ever, automatic task assignment reduces worker motivation, 
as workers no longer have a choice of work [13]. In order to 
provide the benefits of both automatic task assignment and 
choice, CrowdCode lets workers skip microtasks. Skipping 
a microtask adds the microtask back to the global queue, 
enabling it to be assigned to the next worker seeking work. 
To encourage workers to do microtasks that may be unde-
sirable, skipping a microtask increases the points that will 
be awarded on successful completion of that microtask. 

CrowdCode provides a number of features to help workers 
maintain awareness of the current state of the project. As 
workers complete microtasks, they are added to a personal 
activity feed (right side of Figure 2), letting workers track 
their work. Statistics on the current status of the project – 
the total lines of code, functions fully written, and mi-

crotasks completed (top of Figure 2) – let workers see a 
summary of overall progress in real-time. 

In some cases, workers may require information that is not 
provided by the current microtask. In these cases, workers 
may choose to use a group chat with all currently logged in 
workers, a feature we termed Ask the Crowd.  While global 
group chat is ultimately unscalable, we introduced the Ask 
the Crowd feature as a fail-safe measure to enable the 
crowd to still make progress in the face of unexpected in-
formation needs. It also enables workers to go off topic and 
forge closer relationships with other workers [13]. 

CrowdCode ultimately depends on workers in the system to 
work in ways that produce work for other workers to do, 
especially through writing code containing pseudocode and 
pseudocalls. In our early testing, we found that workers 
sometimes attempted to implement large portions of func-
tionality in a single function rather than using pseudocalls 
to break the work up into separate functions. To address 
this issue, workers are explicitly encouraged to use pseudo-
calls and explicitly prompted after every 8 minutes of work 
on a microtask to submit, even if their work is incomplete, 
to create microtasks for other workers to do. 

Implementation 
CrowdCode is implemented as a web application on Google 
App Engine3, providing an infrastructure for seamless tech-
nical scaling. All artifact and microtask state is stored serv-
er-side in AppEngine. When a worker logs into the system, 
the browser requests a microtask, transferring the necessary 
state to the browser. When a worker submits a microtask, 
the modified state is returned to the server and the state 
updated. All other information – points, the activity feed, 
leaderboard, chat – is synchronized across browsers in real-
time using Firebase4. 

CrowdCode provides a project model. For each new client 
request, a project is created with its own artifacts, mi-
crotasks, and user statistics. Each project is associated with 
a unique URL, enabling workers to select a project by visit-
ing its URL. 

CrowdCode enables workers to write code in Javascript. 
This has several advantages. Javascript is currently a popu-
lar language whose syntax is well-known, making it more 
likely that workers can contribute without needing to learn 
a new language, and making it more likely they will easily 
be able to find answers to syntax questions on the Web. 
Moreover, Javascript can be executed client-side, enabling 
the unit tests to be run in the browser and quickly provide 
feedback for the debugging microtasks. However, a test that 
runs in the browser might also execute an infinite loop, 
causing the browser to hang and the worker to be unable to 

                                                           
3 developers.google.com/appengine 
4 www.firebase.com 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

51



 

continue. To address this issue, all worker written code is 
executed on a separate thread using the HTML5 web work-
er API. Long running tests timeout and fail. The code editor 
is implemented using the CodeMirror editor5 and the Es-
prima ECMAScript parsing infrastructure6. 

USER STUDY 
To examine the possibility of a small crowd working on 
programming microtasks in parallel and to evaluate the 
basic feasibility of the approach, we performed a small user 
study. We used email distribution lists and personal con-
tacts to recruit 12 participants from our university, all of 
whom had and/or were working on graduate degrees in 
computer science and/or related fields. All participants had 
prior experience programming in Javascript (average 0.6 
years) and at least 6 months of experience in industry as a 
software developer (average 1.8 years). 11 participants 
were male and 1 female (P7). Participants were paid $60 for 
two hours of their time. 

All participants participated in a single simultaneous ses-
sion and were each given their own room to ensure that 
they were only able to communicate through CrowdCode. 
Participants were first provided a hands-on tutorial with the 
system and assigned to separate projects in which they each 
completed several representative microtasks for 10 – 20 
minutes. After completing the tutorial, participants then 
entered a single project and worked on the primary task. 
Participants were asked to crowdsource game logic for 
checkers (i.e., English draughts). The experimenters seeded 
the project with a client request describing two functions to 
be written and several simple data types specific to check-
ers. Throughout the study, two experimenters circulated 
through participants’ rooms and verbally answered ques-
tions about how to use CrowdCode (which we recognize as 
of limited scalability) but did not answer any questions 
about the work itself.  Several participants were interna-
tional students unfamiliar with the rules of Checkers and 
made use of the link to the rules we provided.  

Midway through the Checkers task, participants were asked 
to complete a short mid-task survey, asking questions about 
their experiences and challenges. Fifteen minutes before the 
conclusion of the study session, all participants were 
stopped and asked to complete a more extensive post-task 
survey, containing items about their experiences and per-
ceptions with working in CrowdCode.   

Results 
The twelve participants each worked for about 1.25 hours in 
CrowdCode (totaling exactly 14.25 person-hours). In total, 
participants completed 265 microtasks, wrote 480 lines of 
code across 16 functions, and an additional 61 unit tests 

                                                           
5 codemirror.net 
6 esprima.org 

(Table 2). Participants did not finish implementing checkers 
in the course of the study session. 

One central characteristic of microtasking is a reduced con-
text, enabling microtasks to be self-contained and inde-
pendent. Participants differed in their reaction to this loss of 
context. Some found it to be freeing: “I had to keep less 
context in my head when writing functions, because I could 
not make assumptions [about] the rest of the program” (P6). 
Others found it burdensome and wanted other information 
about the current state of the system that the microtasks did 
not provide. One participant (P9) also reported that the 
mental context switching required by microtasks was a hin-
drance to usability. 

A majority of participants agreed that the opportunity for 
communication beyond what was provided would help 
them to work more effectively. Participants cited a desire to 
share technical experience, clarify tasks, ask questions 
about material that others had written. This may partially 
reflect the patterns of work to which participants were ac-
customed. One participant stated that additional communi-
cation “might lead to conflicts in the case of disagreements. 
I thought guiding communication via the work and tasks 
itself was fairly productive” (P1). Participants used the 
global chat to socialize and clarify the rules of checkers.   

Participants appreciated the ability to specialize in tasks 
they wanted to do and the ability to contribute according to 
their knowledge and abilities: “I think that CrowdCode 
would make me more likely to contribute as I could solve 
the tasks which I could do, and skip the others. I could take 
on tasks with higher difficulty as and when I feel comforta-
ble. Hence, CrowdCode would be ideal in working in an 
open source project… [What I liked best was] collaborative 
coding - each person can effectively contribute according to 
his knowledge. For example, a testing person might con-

Microtask Type Com-
pleted 

Skipped Mean com-
pletion time 
(minutes) 

Debug  28  2 2.67 

Machine Unit Test 16  0 0.17 

Reuse Search 30  0 1.84 

Add Call  8  1 3.81 

Write Function 39 10 5.41 

Write Test 99 25 2.84 

Write Test Cases 36  7 1.85 

Write Function Description 20  3 3.06 

Table 2. Microtasks completed and skipped by participants. 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

52



 

tribute for test cases, and skip the code development parts if 
he feels so” (P11). P1 also reported that “I was willing to be 
imperfect with my work. It was more important for me to 
constantly push out new work.”  This suggests that the  
iteration process may have created an important “failure for 
free” condition ([20], Ch. 10) in which the cost of trying 
something and doing it is less than the cost of figuring out if 
it's OK to try. Participants found the social features of 
CrowdCode, especially the points and leaderboard, to be 
motivating and to “help building a productive vibe to cod-
ing” (P10).  

11 of the 12 participants agreed that they would be more 
likely to contribute to an open source project using Crowd-
Code than with a traditional development process. Each 
cited the lower barrier to entry and ease of jumping in as 
opposed to the “taxing” “learning and involvement curve” 
(P7) of open source projects now, as well as the ability to 
specialize by skipping some tasks. P1 pointed out that the 
microtasks could be too constraining for seasoned develop-
ers but may be better for someone starting out and under-
standing a new system. 

Work submitted with errors sometimes created issues in the 
microtasks that derived from the completed work.  For ex-
ample, workers sometimes entered incorrect parameter 
types in the Write Function Description microtask, such as 
indicating the type of a parameter or return value to be a 
String when it should be a client-defined data type. As a 
result, participants in the Write Test microtask were forced 
to write tests with the wrong data types, as they were unable 
to request a change in the function description. 

The study also revealed several usability and platform ro-
bustness issues. Participants submitted syntactically invalid 
code that was not correctly flagged by the system. As a 
result, some participants were unable to successfully com-
plete the Debugging microtask, as the test running infra-
structure threw an exception and could not display the re-
sults of running the unit tests. Early in the session, some 
workers were forced to wait to receive microtasks. All of 
the microtasks were initially spawned in response to a client 
request for two functions, generating initial microtasks to 
write the functions and write test cases. Workers writing the 
functions initially spent a long time working, causing a de-
lay in creating other microtasks for workers to perform. 

DISCUSSION 
We found that the workers in our study were successfully 
able to write code and tests within a dynamic microtasking 
workflow.  Especially after the tutorial and early experience 
with the system, participants seemed to “get it” and found 
aspects of the system and microtask style that they enjoyed. 
We were surprised at the motivational power of the points 
system and leaderboard, especially because participants 
were well-paid and did not expect the points to have value 
after the conclusion of the study.    

CrowdCode enables developers in a larger project to speci-
fy the behavior of a requested functionality as a library 
through an API (e.g., the API for executing checkers moves 
in our study), which can be implemented through Crowd-
Code and added to the project. However, this model impos-
es a significant burden on the requesting developer: they 
must precisely specify the behavior of the library, listing 
descriptions of functions and all necessary data structures. 
This model might be relaxed by enabling iterative commu-
nication between the crowd and requestors, allowing the 
API to evolve through the joint work of the requesting de-
veloper and crowd. Or, in some cases, it may be advanta-
geous to allow requesting developers to play a larger role in 
the work itself, enabling them to see and direct a global 
view of the crowd’s work.  

Microtasking workflows clearly impose an overhead on a 
development process, and the total amount written per per-
son-hour is likely lower with CrowdCode than with tradi-
tional approaches.  However, if microtasking is able to suc-
cessfully reduce the barriers to contribution and thereby 
harness value from the “long tail” of participation – the 
many willing to donate small amounts of time and effort – 
the benefits of tapping into a much larger available resource 
may still outweigh the overhead costs of using that “free” 
resource less efficiently.   

Another important question is whether or not participants 
engaged in microtasked work feel that they are making an 
important and meaningful contribution. On the one hand, 
microtasked work decontextualizes contributions, which 
may make it more challenging for workers to understand 
the impact and significance of their work. On the other 
hand, by making work products more fine-grained and ex-
plicit, it may be possible to provide more information about 
the impact of work done. For example, a worker writing a 
function description might receive a notification in the 
newsfeed whenever the function is reused, letting them see 
how successfully they were able to craft a reusable API.  

A fundamental challenge in crowdsourcing is that workers 
may produce bad work, even through good faith efforts. In 
CrowdCode, any of the information workers enter in mi-
crotasks may ultimately be wrong and need to be corrected. 
Unlike more traditional microtasking workflows in which 
redundant work or explicit reviews are used to ensure the 
quality of the work [6], CrowdCode embeds corrections 
into the workflow itself. CrowdCode provides two mecha-
nisms to enable such corrections: workers may directly edit 
the artifact corresponding to the current microtask or may 
report an issue with related artifacts that are visible but not 
editable (e.g., a test case description in Write Test). Work-
ers were often faced with a microtask resulting from bad 
work. The one area in which this was impossible – report-
ing an issue with a function signature when writing a test – 
caused significant problems. This highlights the importance 
of ensuring that all worker-produced data can be corrected. 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

53



 

Creative work done by large groups often has the structure 
of separate artifacts with dependencies, leading to corre-
sponding challenges communicating about these dependen-
cies (i.e., socio-technical congruence [3]). The general prin-
ciples of our approach may apply to many of these do-
mains. For example, in an engineering task, sub-
components may be spun off like pseudocalls, and automat-
ed test cases could include static and thermal analyses. In 
writing text, editing a paragraph in an article might be a 
microtask, enabling workers to create bullet points fleshed 
out by the crowd, requests for other related paragraphs to be 
written, and automatic tracking of dependencies to create 
microtasks to update work. Our approach may be most use-
ful in contexts where parallelism-based speedups or broad 
participation through low barriers to entry are needed. 

ACKNOWLEDGEMENTS 
We thank Steven Morad, Patrick Nguyen, and Eric Chiquil-
lo for their contributions to CrowdCode, we thank the par-
ticipants in the study for their participation, and we thank 
Christoph Hannebauer and the anonymous reviewers for 
their helpful comments and suggestions on previous drafts. 
This work was supported in part by the National Science 
Foundation under grants NSF IIS-1111446, IIS-1302522, 
and CCF-1414197. 

REFERENCES 
1.   Beck, K. Test-Driven Development: By Example. Ad-

dison-Wesley, Boston, 2003. 

2.   Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent: 
A Word Processor with a Crowd Inside. Proc. of UIST 
2010, 313–322. 

3.   Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and 
Carley, K. M. Identification of Coordination Require-
ments: Implications for the Design of Collaboration 
and Awareness Tools. Proc. of CSCW 2006, 353-362 

4.   Crowston, K., Wei, K., Howison, J., and Wiggins, A. 
Free/Libre Open-source Software Development: What 
We Know and What We Do Not Know. ACM Comput. 
Surv. 44, 2 (2012), 7:1–7:35. 

5.   Dietl, W., Dietzel, S., Ernst, M.D., et al. Verification 
Games: Making Verification Fun. Proc. of FTfJP 2012, 
42–49. 

6.   Doan, A., Ramakrishnan, R., and Halevy, A. Y. 
Crowdsourcing Systems on the World-Wide Web. 
Commun. of ACM 54, 4 (2011), 86-96. 

7.  Goldman, M., Little, G., and Miller, R.C. Real-time Col-
laborative Coding in a Web IDE. Proc. of UIST 2011, 
155–164. 

8.  Goldman, Max. Software Development with Real-Time 
Collaborative Editing. PhD Diss. Massachusetts Insti-
tute of Technology, 2012. 

9.   Hartmann, B., MacDougall, D., Brandt, J., and Klem-
mer, S.R. What Would Other Programmers Do: Sug-
gesting Solutions to Error Messages. Proc. of CHI 
2010, 1019–1028. 

10.  Jergensen, C., Sarma, A., and Wagstrom, P. The Onion 
Patch: Migration in Open Source Ecosystems. Proc. of 
ESEC/FSE 2011, 70–80. 

11.  Jiau, H.C. and Yang, F.-P. Facing Up to the Inequality 
of Crowdsourced API Documentation. SIGSOFT 
Softw. Eng. Notes 37, 1 (2012), 1–9. 

12.  Kittur, A., Smus, B., Khamkar, S., and Kraut, R.E. 
CrowdForge: Crowdsourcing Complex Work. Proc. of 
UIST 2011, 43–52. 

13.  Kraut, R.E. and Resnick, P. Building Successful Online 
Communities: Evidence-Based Social Design. MIT 
Press, 2012. 

14. Krogh, G. v., Spaeth, S., and Lakhani, K. R. Communi-
ty, Joining, and Specialization in Open Source Soft-
ware Innovation: A Case Study. Research Policy 32, 7 
(2003), 1217–1241. 

15.  Li, W., Seshia, S.A., and Jha, S. CrowdMine: Towards 
Crowdsourced Human-Assisted Verification. Proc. of 
DAC 2012, 1254–1255. 

16.  Little, G., Chilton, L.B., Goldman, M., and Miller, R.C. 
TurKit: Human Computation Algorithms on Mechani-
cal Turk. Proc of UIST 2010, 57–66. 

17.  Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., 
and Hartmann, B. Design Lessons from the Fastest 
Q&A Site in the West. Proc. of CHI 2011, 2857–2866. 

18.  Mujumdar, D., Kallenbach, M., Liu, B., and Hartmann, 
B. Crowdsourcing Suggestions to Programming Prob-
lems for Dynamic Web Development Languages. CHI 
’11 Extended Abstracts on Human Factors in Compu-
ting Systems, ACM (2011), 1525–1530. 

19.  Pastore, F., Mariani, L., and Fraser, G. CrowdOracles: 
Can the Crowd Solve the Oracle Problem? Proc. of 
ICST 2013, 342–351. 

20.  Shirky, C. Here Comes Everybody: the Power of Or-
ganizing Without Organizations. Penguin, 2008. 

21. Steinmacher, I., Silva, M. A. G., and Gerosa, M. A. 
Barriers Faced by Newcomers to Open Source Pro-
jects: A Systematic Review. IFIP Adv. Inf. Commun. 
Technol. 47 (2014), 153-163, Springer Berlin Heidel-
berg. 

22.  Watson, C., Li, F.W.B., and Godwin, J.L. BlueFix: Us-
ing Crowd-Sourced Feedback to Support Programming 
Students in Error Diagnosis and Repair. In E. Popescu, 
Q. Li, R. Klamma, H. Leung, and M. Specht, eds., Ad-
vances in Web-Based Learning - ICWL 2012. Springer 
Berlin Heidelberg, 2012, 228–239. 

 

Working with Crowds UIST’14, October 5–8, 2014, Honolulu, HI, USA

54




