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Abstract

The future of main memory appears to lie in the direction of new non-volatile memory technolo-

gies that provide strong capacity-to-performance ratios, but have write operations that are much

more expensive than reads in terms of energy, bandwidth, and latency. This asymmetry can

have a significant effect on algorithm design, and in many cases it is possible to reduce writes

at the cost of more reads. This paper studies which algorithmic techniques are useful in design-

ing practical write-efficient algorithms. We focus on several fundamental algorithmic building

blocks including unordered set/map implemented using hash tables, comparison sort, and graph

traversal algorithms including breadth-first search and Dijkstra’s algorithm. We introduce new

algorithms and implementations that can reduce writes, and analyze the performance experi-

mentally using a software simulator. Finally, we summarize interesting lessons and directions in

designing write-efficient algorithms that can be valuable to share.
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1 Introduction

The future of main memory appears to lie in the non-volatile memory technologies that

promise persistence, significantly lower energy costs, and higher density than the DRAM

technology used in today’s main memories [21, 24, 33, 43]. However, despite the advantages,

a key property of such memory technologies is their asymmetric read-write costs: compared

to reads, writes can be much more expensive in terms of latency, bandwidth, and energy.

Because bits are stored in these technologies as at rest “states” of the given material that can

be quickly read but require physical change to update, this asymmetry appears fundamental.
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This motivates the need for write-efficient algorithms that largely reduce the number of

writes compared to existing algorithms.

In the related work section, we review the literature on studying this read-write asymmetry

on NAND Flash chips [4, 17, 18, 35] and algorithms targeting database operators [12, 39, 40].

These works provide novel aspects on rethinking algorithm design. However, most of the

papers either treat NVMs as external memories, or are based on hardware simulators for

existing architecture, which may have many concerns that we will further discuss in the

related work section.

Blelloch et al. [5, 7, 8] formally defined and analyzed several sequential and parallel

computation models with good caching and scheduling guarantees. The models abstract

such asymmetry between reads and writes, and can be used to analyze algorithms on future

memory. The basic model, which is the Asymmetric RAM (ARAM), extends the well-known

external-memory model [1] and parameterizes the asymmetry using ω, which corresponds

to the cost of a write relative to a read to the non-volatile main memory. The cost of an

algorithm on the ARAM, the asymmetric I/O cost, is the number of write transfers to

the main memory multiplied by ω, plus the number of read transfers. This model captures

different system consideration (latency, bandwidth, or energy) by simply plugging in different

values of ω, and also allows algorithms to be analyzed theoretically. Based on this idea,

many interesting algorithms (and lower bounds) are designed and analyzed by various recent

papers [5, 6, 7, 8, 10, 25].

Unfortunately, all of the analyses of such write-efficient algorithms are asymptotic,

showing the upper and lower bounds on the complexity of these problems. Also, to prove

the bounds, the theoretical models simplify the real architecture (e.g., without considering

blocking of cache-lines or cache policies). It still remains unknown what the performance of

these algorithms are in practice. In this paper, our goal is to show such performance on a

number of fundamental algorithmic building blocks. We believe the lessons in designing and

implementing them are useful for our community to use new memory in the future.

Contribution of this paper

In this work, our goal is to bridge the gap between theory and practice. We try to study

and understand which algorithmic techniques are useful in designing practical write-efficient

algorithms. As the first paper of this kind, we focus on several of the most commonly-seen

algorithmic building blocks in modern programming. Due to the page limit, in this paper

we briefly discuss unordered set/map implemented using hash tables, and graph traversal

algorithms: breadth-first search for unweighted graphs and Dijkstra’s algorithm for

weighted graphs. In the full version of this work, we discuss more details of these algorithms,

as well as ordered set/map implemented using binary search trees and comparison sort.

Unfortunately, no non-volatile main memory is currently available, making it impossible to

get real timings. Furthermore, details about latency and other parameters of the memory and

how they will be incorporated into the architecture are also not available. This makes detailed

cycle-level simulation (e.g., PTLsim [36], MARSSx86 [34] or ZSim [38]) of questionable utility.

However, it is quite feasible to count the number of reads and write to main memory while

simulating a variety of cache configurations. For I/O-bounded algorithms, these numbers

can be used as reasonable proxies for both running time (especially when implemented in

parallel) and energy consumption.1 Moreover, conclusions drawn from these numbers can

likely give insights into tradeoffs between reads and writes among different algorithms.

1 The energy consumption of main memory is a key concern since it costs 25-50% energy on data

centers and servers [28, 32, 30].
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For these reasons, we propose a framework based on a software simulator that can

efficiently and precisely measure the number of read and write transfers of an algorithm

using different caching policies. We also consider variants in caching policies that might lead

to improvements when read and write are not the same.

We also note that designing write-efficient algorithms falls in a high dimensional parameter

space since the asymmetries on latency, bandwidth, and energy consumption between reads

and writes are different. Here we abstract this as a single value ω. This value together with

the cache size M and cache-line size B (set to be 64 bytes in this paper) form the parameter

space of an algorithm.

Our framework provides a simple, clean and hardware-independent method to analyze

and experiment the performance on the asymmetric memory. We investigate the algorithmic

techniques and learn lessons from the experiments that generally apply for a reasonably large

parameter space of ω, M and B. This framework also allows monitoring, reasoning and

debugging the code easily, so it can remain useful even after the new hardware is available.

With the framework, we design, implement and discuss many algorithms and data

structures and their write-efficient implementations. Although some of the implementations

are standard, like quicksort and hash tables, many others, including k-level hash tables,

sample sort and phased Dijkstra, require careful algorithmic design, analysis, and coding.

Under our measurement which is the asymmetric I/O cost and compared to the most

commonly-used ones on symmetric memories, we provide better alternatives to all problems

we studied in this paper.

With the algorithms and their experimental results, we draw many interesting algorithmic

strategies and guidance in designing write-efficient algorithms. A common theme is to trade

(more) reads for (fewer) writes (apparently it is hard to directly decrease the writes since this

can improve the performance on symmetric memory as well and should have been investigated

already). Some interesting lessons we learned and can be valuable to share are listed as

follows, which can suggest some potential directions to design and engineer write-efficient

algorithms in the future.

1. Indirect addressing is less problematic. In the classic setting, indirect addressing should

be avoided if possible, since each addressing can be a random access to the memory.

However, when writes are expensive, moving the entire data is costly, while indirect

addressing only modifies the pointers (at the cost of a possible random access per lookup).

2. Multiple candidate positions for a single entry in a data structure can help. It can be a

good option to use more reads per lookup but apply less frequent data movements, when

the size of a data structure changes significantly. This is a common strategy we have

applied in this paper to provide an algorithmic tradeoff between reads and writes.

3. It is usually worth to investigate existing algorithms that move or modify the data less.

These algorithms can be less efficient in the symmetric setting due to various reasons

(e.g., more random accesses, less balanced), but the property that they use fewer writes

can be useful in the asymmetric setting (like samplesort vs. quicksort, treap vs. AVL or

red-black tree).

4. In-cache data structures should draw more attention. Since the data structures are

kept in the cache (or small symmetric memory), the algorithm requires significantly less

writes to the large asymmetric memory, although may require extra reads to compensate

for less information we can keep within the data structure. In this paper, we discuss

Dijkstra’s algorithm on shortest-paths as an example, and such idea can also be applied

to computing minimum spanning tree, sorting, and many other problems.

ESA 2018
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2 Related Work

There exist a rich literature to show the read-write asymmetry on the new memories [2, 3,

7, 8, 11, 13, 15, 16, 22, 23, 26, 27, 31, 37, 41, 42, 44, 45]. Regarding adapting softwares for

such read-write asymmetry, some work has studied the system aspect. For example, there

exist many papers on how to balance the writes across the chip to avoid uneven wear-out of

locations in the context of NAND Flash chips [4, 17, 18, 35].

The early and inspirational attempts to design algorithms with fewer writes targeting

database operators: Chen et al. [12] and Viglas [39, 40] presented several write-efficient

sequential algorithms for searching, hash joins and sorting. However, their results are mainly

shown by assuming external memories rather than main memories, or on the cycle-based

simulators for existing architecture. For the latter case however, the prototypes of the new

memories are still under development, and yet nobody actually knows the exact parameters

of the new memories, or how they are incorporated into the actual architecture. As a result,

we believe that the results based on cycle-based simulator might not be very accurate. In the

meantime, the asymmetries on latency, bandwidth, and energy consumption between reads

and writes are different, and any of these constraints can be the bottleneck of an algorithm.

Hence, designing algorithms on asymmetric memory are in a multiple-dimension parameter

space, rather than just recording the running time from a simulator. Therefore, it is essential

to develop theoretical models and tools that account for, and abstract this asymmetry and

use them to analyze algorithms on future memory.

Blelloch et al. [5, 7, 8] formally defined several sequential and parallel computation models

that take asymmetric read-write costs into account. Based on the computational models,

many interesting algorithms (and lower bounds) are designed and analyzed in both sequential

and parallel settings, which includes sorting, permuting, matrix multiplication, FFT, list/tree

contraction, BFS/DFS and other graph algorithms, and many computational geometric and

dynamic programming problems [5, 6, 7, 8, 10, 25, 9, 19]. Carson et al. [11] also presented

write-efficient sequential algorithms for a similar model, as well as write-efficient parallel

algorithms (and lower bounds) on a distributed memory model with asymmetric read-write

costs, focusing on linear algebra problems and direct N-body methods. Although many

problems under the asymmetric setting have been studied, all the analyses are asymptotic

and only show the upper and lower bounds on the complexity of these problems.

3 Our Model and Simulator

To start with, we discuss how to measure the performance of algorithms on asymmetric

memories. We begin with the computational model that estimates the cost of an algorithm.

This model requires the numbers of read and write transfers between the non-volatile memory

and the cache, so later we introduce how the numbers of an algorithm can be simulated.

The Cost Model for Asymmetric Memory. The most commonly-used cost measure of an

algorithm is the time complexity based on the RAM model, which is the overall number of

instructions and memory accesses executed in this algorithm. Nowadays, since the latency of

an memory access is at least two orders of magnitudes more expensive than a CPU instruction,

the I/O cost based on the external-memory model [1] is widely used to analyze the cost of

an I/O-bounded algorithm. This model assumes a small-memory (cache) of size M ≥ 1,

and a unbounded-size large-memory. Both memories are organized in blocks (cache-lines)

of B words. The CPU can only access the small-memory (with no cost), and it takes unit
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cost to transfer one block between the small-memory and the large-memory. This cost

measure estimates the running time reasonably well for I/O-bounded algorithms, especially

in multi-core parallelism. An efficient algorithm in practice should achieve optimality in both

time complexity and I/O cost.

To account for more expensive writes on future memories, here we adopt the idea of an

(M, ω)-Asymmetric RAM (ARAM) [8]: similar to the external-memory model, transferring a

block from large-memory to small-memory takes unit cost; on the other direction, the cost is

either 0 if this block is clean and never modified, or ω � 1 otherwise. The asymmetric I/O

cost Q of an algorithm is the overall costs for all memory transfers. We abbreviate such

cost Q as the I/O cost throughout the paper, unless stated otherwise explicitly. Theoretical

results on this new model have been studied in [5, 6, 7, 8, 10, 25, 9, 19].

Cache Policies. Either the classic external-memory model or the new ARAM assumes

that we can explicitly manipulate the cache in the algorithm. This largely simplifies the

analysis, and in many cases is provably within a constant factor of a more realistic cache’s

performance. For example, the standard least-recent used (LRU) policy is 2-competitive

against the optimal offline cache-replacement sequence. However, the competitive ratio does

not hold in the asymmetric setting in the worst case. The overhead is proportional to ω,

which can be significant and problematic. In the full version of this paper [20], we discuss

several alternative solutions with worst-case performance guarantees. In this conference

version we show our experiment results based on the LRU policy, and the comparison to

other policies are covered in the full version of this paper.

The Cache Simulator. To capture the number of reads and writes to the main memory,

we developed a software simulator that can adapt to different cache policies. The cache

simulator is composed of an ordered map that keeps tracks of the time stamp of the last

visit to each cache-line in the current cache, and an unordered map that stores the mapping

from each cache-line to the corresponding location in the ordered map if this cache-line is

currently in the cache. Interestingly, the implementation of this cache simulator is a natural

application of the techniques discussed in this paper.

The cache simulator encapsulates a new structure Array that is used in coding algorithms

in this paper. It is like a regular array that can be dynamically allocated and freed, and

supports two functions: Read and Write to a specific location in this array. The Arrays

are responsible for reporting the memory accesses of the algorithm to the cache simulator,

and the cache simulator will update the state of the cache accordingly. Therefore, coding

using the Arrays is not different from regular programming much.

The memory accesses to loop variables and temporary variables are ignored, as well as

the call stack. This is because the number of such variables is small in all of the algorithms

in this paper (usually no more than 10). Meanwhile, the call stack of all algorithms in this

paper has size O(log n). The overall amount of uncaptured space is orders of magnitudes

smaller than the amount of fast memory in our experiments.

The cache simulator maintains two counters: the number of read transfers, and the

number of write transfers. When testing each algorithm on a specific input instance, the

cache is emptied at the beginning and flushed at the end. A read or write is free if the

location is already in the cache; otherwise, the corresponding cache-line is loaded, the counter

of read transfer increments by 1, and the least-recently-used cache-line in this pool is evicted.

Also, a write will mark the dirty-bit of the cache-line to be true. When evicting a dirty

cache-line, the counter of write transfer increments by 1. Notice that memory reads can

cause write transfers, and memory writes can lead to read transfers.

ESA 2018
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When simulating the Classic policy (i.e., the standard one), we also verified our simulated

results to ZSim (cycle-level simulator for current architecture), and the numbers always differ

by no more than 10% when the parameters are set correctly.

4 Unordered Sets and Maps

Sets and maps are two of the most commonly-used data types in modern programming. Most

programming languages either have them built in as basic types (e.g., python) or supply

them as standard libraries (C++, C#, Java, Scala, Haskell, ML). In this section, we discuss

efficient implementations of unordered sets and maps implemented using hash tables.

Our implementation of unordered sets and maps is based on hash tables that support

lookup, insertion, and deletion. The hash tables discussed in this section use open

addressing and linear probing, since the goal of the data structure is to try to minimize the

I/O cost focusing on smaller entries (accessing and reading larger entries are costly anyway so

different hash-table implementations make minor differences). For simplicity, we assume no

duplicate keys, and it is straightforward to handle the duplicates with minor modifications.

In this setting, each operation of the hash table reads a small number of cache-lines, and an

insertion or deletion will modify exactly one cache-line that contains the location of the key

and will be eventually written back to the large-memory.

The challenge emerges when the set size changes dynamically. For an efficient implement-

ation, we hope the overall size of the hash table to be neither too large nor too small. If the

load factor passes 80%, linear probing’s performance drastically degrades. On the other hand,

we want the hash table size to be reasonably small to better utilize the small-memory (cache),

since each cache-line holds more entries in this case. In practice, some implementations

keep the load factor up- and lower-bounded by some constant. For example, a typical

implementation keeps the occupancy of the hash table between 1/8 and 1/2, and the size

doubles or shrinks by half if the number of entries exceeds this range. Such resizing reinserts

p entries after at least p/2 insertions and deletions (where p is the set/map size). When

reads and writes have approximately the same cost, the extra cost for such resizing is small

compared to the query and update costs (e.g., the queries read from lots of memory locations).

In the asymmetric setting however, the reads cost much less, but the extra writes in resizing

can be significant: the resizing can incur at most twice (p/(p/2) = 2) the writes compared

to the initial insertions (3× writes in total). Hence, our goal is to discuss an alternative

approach that optimizes such extra writes.

4.1 The k-level Hash Table

Instead of keeping one hash table, our main idea is to maintain a small number k of hash

tables simultaneously, where k is a pre-determined parameter. In particular, the k-level hash

table HashTable is initialized with k arrays HashTable1,··· ,k with size 2c′+i for 1 ≤ i ≤ k (or

smaller in specific applications) and a constant c′. In practice we set c′ to be 5.

For insertions, when the overall load factor exceeds some threshold r, we allocate a new

chunk of memory with the double size of the largest current array, and the smallest hash

table is discarded after all elements in it have been reinserted back. Similarly for deletions, if

the occupancy of the hash tables drops below a threshold l, a small array with half size of

the current smallest hash table is allocated, and the largest table is freed after the entries in

it being reinserted. For instance, a valid k-level hash table may contain two arrays of size

215 = 32768 and 216 = 65536, when k = 2 and 30000 entries in the current configuration.

We show the pseudocode of the k-level hash table in Algorithm 1. The occupancy range
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Algorithm 1: The k-level hash table.

Input: Parameter k, occupancy range l and r

1 function Lookup(x)
2 for i← 1 to k do
3 p← HashTablei.Lookup(x)
4 if p 6= null then return (i, p)
5 return null

6 function Insert(x) // x is not in HashTable
7 for i← 1 to k do
8 if HashTablei.occupancy < r then
9 HashTablei.Insert(x)

10 return
11 Allocate HashTablek+1 of size 2 ·HashTablek.size
12 Relabel the hash tables with indices from 0 to k
13 foreach y ∈ HashTable0 do
14 Insert(y)
15 Free HashTable0

16 function Delete(x; i, p) // x is located p-th in HashTablei

17 HashTablei.Delete(x, p)
18 if Overall occupancy is less than l (and HashTable1.size > 1) then
19 Allocate HashTable0 of size HashTable1.size/2
20 Relabel the hash tables with indices between 1 to k + 1
21 foreach y ∈ HashTablek+1 do
22 Insert(y)
23 Free HashTablek+1

0 < l < r < 1 indicates when the resizing happens (an example of l and r can be 1/8 and

1/2). A classic implementation can be viewed as the special case of the k-level hash table

when k = 1.

We now analyze the I/O cost Q of the k-level hash table. Here we assume that the size

of the k-level hash table is larger than the small-memory and 1− r < 1/B, so on average,

one lookup, insertion or deletion in a single level in the hash table requires no more than

c < 2 cache-line loads to locate the position.

Lookup. In a k-level hash table, a lookup requires ck instead of c read transfers (c is the

constant just defined) in the worst case (can quit earlier once the entry is found). The cost

increases by a factor of k at most.

Insert. There are two definitions of insertions: an insertion that the key is known to be not

in the set/map, or an insertion that it is unknown whether the key is in this set/map. Both

cases are commonly-used. In this paper, we take the first definition and analyze the cost of

this type of insertions. The second type of insertion can be viewed as a lookup first, then an

insert if the lookup fails.

When inserting an element in a k-level hash table, we always try the smaller tables first.

Once all tables are full, we resize it. More details can be found in Algorithm 1.

The I/O cost Q of an insertion comes in two parts: the cost of the initial insertion to the

hash table, and the cost of this entry in future hash-table resizings. The cost of the initial

insertion is no more than c + ω, where c is the number of cache-line reads to find the position

to insert, plus ω, one cache-line write for the actual insertion. The cost of resizing is more

complicated to analyze.

ESA 2018
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We note that although a specific entry can be reinserted multiple times during different

resizing processes, the overall number of element reinsertion is bounded, and thus we can

a amortize the work. A resizing occurs when an insertion comes in and the hash table

contains exactly r · 2p(2k − 1) elements for some positive integer p. In this case, at most

r · 2p entries (the size of the smallest hash table), are reinserted during the resizing. The

total number of insertions from the last resizing is at least r · 2p−1(2k − 1) (assuming

4l ≤ r), so the amortized I/O cost Q of reinsertion for each insertion is upper bounded by
(c + ω)r · 2p

r · 2p−1(2k − 1)
= (c + ω) · 2/(2k − 1).

In the asymmetric setting when ω � 1, the I/O cost of each insertion is approximately

ω · (1 + 2/(2k − 1)), indicating that compared to the classic implementation where k = 1, in

the worst-case the improvement when k = 2, 3, 4 is about 44%, 57% and 62% respectively.

The asymptotic improvement when k → +∞ is 67% ( 2
3 ).

Delete. A deletion in the k-level hash table is similar to an insertion except that a lookup

for the location is required (details in Algorithm 1). The cost of the initial deletion is ck + ω.

A resizing of the hash table can occur after at least l · 2p(2k − 1) deletions for some positive

integer p, and the current hash table keeps l · 2p(2k − 1) entries. However, it is possible that

all of these entries are in the last hash table so they are all reinserted. We note that when

reinserting the elements from the discarded array, we always try smaller arrays first. This

means that a reinserted entry, if not being deleted in the future, will not be reinserted again

in the next min(k − 1, log2 r/2l) shrinking resizings. Namely, the amortized extra cost of a

deletion in future resizings is about ω/k if l is set to be about 2−kr. The overall I/O cost for

a deletion is Q = ck + ω(1 + 1/k).

We have bounded of the I/O cost of each lookup, insertion or deletion, and the overall

cost Q can be estimated by summing the amount of each operation multiplied by the cost

of this operation. In practice, insertions and deletions can interleave. For example, when a

deletion comes after an insertion, the number of entries remains the same, which leads to no

further cost for these two updates afterward. The exact cost is also affected by the pattern

of the sequence of the operations, and we will show by experiments.

4.2 Experiments

We provide the full experiment of our k-level hash table in the full version of this paper [20].

We test the performance on various update/query patterns, and report the numbers of read

transfers and write transfers, as well as I/O costs. We also justify our result by comparing to

the wall-clock running time (in the full paper [20]). Due to the space limit, in this conference

version we only show one of the experiments here that contains insertions and queries.

In all experiments, we insert 1 million elements to an empty hash table. Each of the

element is a 4-byte integer, and we vary the number of queries. The simulated cache contains

10,000 cache-lines. The occupancy rate is set to be l = 0.2 and r = 0.8. We have tried other

parameters (r between 0.6 and 0.8 and l = r/4). The results slightly vary, but all general

conclusions in this section still hold.

Many applications, like webpage caching or the breadth-first searches, only insert but

never delete elements in a hash table. Our experiment starts with this simpler case. We

first show the relationship between k (the number of hash tables) and the numbers of read

transfers and write transfers for a variety of insertion/query ratios, and the results are shown

in Table 1. We fix the number of insertions to be one million, and query α times after each

insertion. We vary α from 0, 1/8, to 8 (α < 1 indicates one query per 1/α insertions). About
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We note that more queries cause more reads, and larger k also leads to more reads. Since

these reads flush the cache-lines, the numbers of writes in these cases also marginally increase.

The optimal choice of k is decided by the update/query distribution as well as the write-read

ratio ω. In general, more queries lead to worse performance with larger k, and larger ω

prefers larger k. In Table 2, we underline the numbers indicating the best choice of k in that

specific setting. The experiment results indicate that picking k to be 2 or 3 is always a good

choice when ω = 10, and 3 or 4 when ω = 100.

4.3 Conclusions

We proposed a new data structure, the k-level hash table, to implement unordered set and

map that has the same space utilization compared to the classic open-addressing hash tables.

The key idea is to keep multiple instead of one level of hash tables. As a result, the algorithm

uses fewer writes during resizings, at the cost of more reads in other operations.

The best choice of k is decided by the ratio of updates and queries. Our experiment

shows that k = 2 always leads to a lower or similar I/O cost when the query/insert ratio is

no more than 8, compared to the classic k = 1 setting. For the ratio of write/read cost is

larger (like 100), larger values of k, like 3 or 4, are even more preferable than the k = 2 case.

5 Graph Traversal Algorithms

In this paper, we discuss two of the most commonly-used graph traversal algorithms: breadth-

first search (BFS), and Dijkstra’s algorithm. We show that using the new implementations

discussed in this paper, these algorithms use much fewer writes in most cases, compared to

the classic ones. Due to the page limit, we abstract our approaches and conclusions here in

this section, and provide the full details in the full version of this paper [20].

Given a graph G = (V, E), we assume n = |V | is the number of vertices, and m = |E| is

the number of edges.

5.1 Breadth-First Search

We discuss our implementations and experiment results on breadth-first searches (BFS) on

undirected graph traversing or searching. Our algorithms compute the single-source shortest

paths (SSSP) or pairwise shortest-paths (given the specific source and target) on unweighted

graphs, which can further apply to graph radii estimation, eccentricity estimation and

betweenness centrality, and act as a basic building block for other graph algorithms like graph

connectivity, reachability, biconnected components, and strongly connected components.

Implementations. The classic implementation of BFS keeps a vertex queue of size n, and

an array of boolean flags of size n indicating whether each vertex is visited or not during

the search. This implementation requires at most 2 writes per vertex, and the overall I/O

cost of BFS Q(n, m) = O(ωn + m) [8]. This bound is asymptotically optimal for arbitrary

graphs since the output size of BFS is Θ(n). However, a number of applications (e.g., s-t

shortest-path or connectivity, graph radii estimation or eccentricity estimation) have output

size O(1), which allows utilizing the small-memory and reducing the number of writes.

The key observation to improve the write-efficiency is that, at any time, we only need

the information of three consecutive frontiers (a frontier is the set of vertices with the same

distance to the source node). We hence use the k-level hash table discussed in Section 4 to

implement the frontiers. This avoids the writes to mark the visited flag of each vertex. We
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We note that the idea of fitting the data structure or the computation in the small-memory

can also be applied to computing minimum spanning tree, sorting, and many other problems.

References

1 Alok Aggarwal and Jeffrey S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9), 1988. doi:10.1145/48529.48535.

2 Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajech K. Gupta, and Steven Swanson.

Onyx: A prototype phase change memory storage array. In USENIX Workshop on Hot

Topics in Storage and File Systems (HotStorage), 2011.

3 Manos Athanassoulis, Bishwaranjan Bhattacharjee, Mustafa Canim, and Kenneth A. Ross.

Path processing using solid state storage. In International Workshop on Accelerating Data

Management Systems Using Modern Processor and Storage Architectures (ADMS), 2012.

4 Avraham Ben-Aroya and Sivan Toledo. Competitive analysis of flash-memory algorithms.

In European Symposium on Algorithms (ESA), 2006.

5 Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu,

Charles McGuffey, and Julian Shun. Parallel algorithms for asymmetric read-write costs.

In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

6 Naama Ben-David, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan Gu,

Charles McGuffey, and Julian Shun. Implicit decomposition for write-efficient connectiv-

ity algorithms. In Proc. IEEE International Parallel & Distributed Processing Symposium

(IPDPS), 2018.

7 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Sorting

with asymmetric read and write costs. In ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA), 2015.

8 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Ef-

ficient algorithms with asymmetric read and write costs. In European Symposium on Al-

gorithms (ESA), pages 14:1–14:18, 2016.

9 Guy E Blelloch, Phillip B Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. The

parallel persistent memory model. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2018.

10 Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallel write-efficient algorithms

and data structures for computational geometry. In ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). ACM, 2018.

11 Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool,

Oded Schwartz, and Harsha Vardhan Simhadri. Write-avoiding algorithms. In IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS), pages 648–658, 2016.

12 Shimin Chen, Phillip B. Gibbons, and Suman Nath. Rethinking database algorithms for

phase change memory. In Conference on Innovative Data Systems Research (CIDR), 2011.

13 Sangyeun Cho and Hyunjin Lee. Flip-N-Write: A simple deterministic technique to improve

PRAM write performance, energy and endurance. In IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2009.

14 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1), 1959.

15 Xiangyu Dong, Norman P. Jouupi, and Yuan Xie. PCRAMsim: System-level performance,

energy, and area modeling for phase-change RAM. In ACM International Conference on

Computer-Aided Design (ICCAD), 2009.

16 Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai H. Li, and Yiran Chen. Circuit

and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal

memory replacement. In ACM Design Automation Conference (DAC), 2008.

ESA 2018



44:14 Algorithmic Building Blocks for Asymmetric Memories

17 David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawel Pszona. Wear

minimization for cuckoo hashing: How not to throw a lot of eggs into one basket. In ACM

International Symposium on Experimental Algorithms (SEA), 2014.

18 Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories. ACM

Computing Surveys, 37(2), 2005.

19 Yan Gu. Write-Efficient Algorithms (draft). PhD Thesis, 2018.

20 Yan Gu, Yihan Sun, and Guy E. Blelloch. Algorithmic building blocks for asymmetric

memories (full version). In arXiv preprint:1806.10370, 2018.

21 HP, SanDisk partner on memristor, ReRAM technology. http://www.bit-tech.net/news/

hardware/2015/10/09/hp-sandisk-reram-memristor, 2015.

22 Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, Shouzhen Gu, and Ed-

win Sha. Scheduling to optimize cache utilization for non-volatile main memories. IEEE

Transactions on Computers, 63(8), 2014.

23 www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014.

24 Intel and Micron produce breakthrough memory technology. http://newsroom.intel.com/

community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-

memory-technology, 2015.

25 Riko Jacob and Nodari Sitchinava. Lower bounds in the asymmetric external memory

model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages

247–254, 2017.

26 Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chu. Evaluating phase

change memory for enterprise storage systems: A study of caching and tiering approaches.

In USENIX Conference on File and Storage Technologies (FAST), 2014.

27 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change

memory as a scalable DRAM alternative. In ACM International Symposium on Computer

Architecture (ISCA), 2009.

28 Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and

Tom W Keller. Energy management for commercial servers. Computer, 36(12):39–48, 2003.

29 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,

2014.

30 Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and sub-

millisecond quality-of-service. In European Conference on Computer Systems, page 4. ACM,

2014.

31 Jasmina Malicevic, Subramanya Dulloor, Narayanan Sundaram, Nadathur Satish, Jeff Jack-

son, and Willy Zwaenepoel. Exploiting NVM in large-scale graph analytics. In Workshop

on Interactions of NVM/FLASH with Operating Systems and Workloads. ACM, 2015.

32 Krishna T Malladi, Ian Shaeffer, Liji Gopalakrishnan, David Lo, Benjamin C Lee, and Mark

Horowitz. Rethinking DRAM power modes for energy proportionality. In IEEE/ACM

International Symposium on Microarchitecture, pages 131–142, 2012.

33 Jagan S. Meena, Simon M. Sze, Umesh Chand, and Tseung-Yuan Tseng. Overview of

emerging nonvolatile memory technologies. Nanoscale Research Letters, 9, 2014.

34 MARSSx86. http://marss86.org.

35 Hyoungmin Park and Kyuseok Shim. FAST: Flash-aware external sorting for mobile data-

base systems. Journal of Systems and Software, 82(8), 2009. doi:10.1016/j.jss.2009.

02.028.

36 PTLsim. http://www.ptlsim.org.

37 Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase Change

Memory: From Devices to Systems. Morgan & Claypool, 2011.



Y. Gu, Y. Sun, and G. E. Blelloch 44:15

38 Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitectural simula-

tion of thousand-core systems. In ACM SIGARCH Computer Architecture News, volume 41,

pages 475–486. ACM, 2013.

39 Stratis D. Viglas. Adapting the B+-tree for asymmetric I/O. In East European Conference

on Advances in Databases and Information Systems (ADBIS), 2012.

40 Stratis D. Viglas. Write-limited sorts and joins for persistent memory. VLDB Endowment,

7(5), 2014.

41 Cong Xu, Xiangyu Dong, Norman P. Jouppi, and Yuan Xie. Design implications of

memristor-based RRAM cross-point structures. In IEEE Design, Automation and Test

in Europe (DATE), 2011.

42 Byung-Do Yang, Jae-Eun Lee, Jang-Su Kim, Junghyun Cho, Seung-Yun Lee, and Byoung-

Gon Yu. A low power phase-change random access memory using a data-comparison write

scheme. In IEEE International Symposium on Circuits and Systems (ISCAS), 2007.

43 Yole Developpement. Emerging non-volatile memory technologies, 2013.

44 Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient main

memory using phase change memory technology. In ACM International Symposium on

Computer Architecture (ISCA), 2009.

45 Omer Zilberberg, Shlomo Weiss, and Sivan Toledo. Phase-change memory: An architectural

perspective. ACM Computing Surveys, 45(3), 2013.

ESA 2018


