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Abstract

We present an algorithm STRSAGA for efficiently maintaining a machine learning
model over data points that arrive over time, quickly updating the model as new
training data is observed. We present a competitive analysis comparing the sub-
optimality of the model maintained by STRSAGA with that of an offline algorithm
that is given the entire data beforehand, and analyze the risk-competitiveness of
STRSAGA under different arrival patterns. Our theoretical and experimental results
show that the risk of STRSAGA is comparable to that of offline algorithms on a
variety of input arrival patterns, and its experimental performance is significantly
better than prior algorithms suited for streaming data, such as SGD and SSVRG.

1 Introduction

We consider the maintenance of a model over streaming data that are arriving as an endless sequence
of data points. At any point in time, the goal is to fit the model to the training data points observed
so far, in order to accurately predict/label unobserved test data. Such a model is never “complete”
but instead needs to be continuously updated as newer training data points arrive. Methods that
recompute the model from scratch upon the arrival of new data points are infeasible due to their high
computational costs, and hence we need methods that efficiently update the model as more data arrive.
Such efficiency should not come at the expense of accuracy—the accuracy of the model maintained
through such updates should be close to that obtained if we were to build a model from scratch, using
all the training data points seen so far.

Fitting a model is usually cast as an optimization problem, where the model parameters are those that
optimize an objective function. In typical cases, the objective function is the empirical or regularized
risk, usually the sum of a finite number of terms, and often assumed to be convex. Consider a stream
of training data points Si arriving before or at time i consisting of ni data points. Let w denote the
set of parameters characterizing the learned function. The empirical risk functionRSi

measures the
average loss of w over Si: RSi

(w) = 1
ni

∑ni

j=1 fj(w), where fj(w) is the loss of w on data point j.

The goal is to find the empirical risk minimizer (ERM), i.e., the parameters w∗ that minimize the
empirical risk over all data points observed so far. Typically, some form of gradient descent is used in
pursuit of w∗.
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There are two common approaches: batch learning and incremental learning (sometimes called
“online learning”) [BL03, Ber16]. Batch learning uses all available data points in the training set to
compute the gradient for each step of gradient descent—this method renders a gradient computation
to be expensive, especially for a large dataset. In contrast, an incremental learning algorithm operates
on only a single data point at each step of gradient descent, and hence a single step of an incremental
algorithm is much faster than a corresponding step of a batch algorithm. Incremental algorithms,
e.g., Stochastic Gradient Descent (SGD) [RM51, BL03] and variance-reduced improvements such
as SVRG [JZ13] and SAGA [DBLJ14], have been found to be more effective on large datasets than
batch algorithms, and are widely used.

Both batch and incremental algorithms assume that all training data points are available in advance—
we refer to such algorithms as offline algorithms. However, in the setting that we consider, data points
arrive over time according to an unknown arrival distribution, and neither batch nor incremental
algorithms are able to update the model efficiently as more data arrives. Though incremental learning
algorithms use only a single data point in each iteration, they typically select that point from the
entire set of training data points—this set of training data points is constantly changing in our setting,
rendering incremental algorithms inapplicable. In the rest of the paper, we refer to an algorithm
that can efficiently update a model upon the arrival of new training data points as a streaming data
algorithm. Note that streaming data algorithms (which are not limited in their memory usage) are
broader than traditional streaming algorithms (which work in a single pass with limited memory).
Streaming data algorithms are relevant in many practical settings given the abundance of memory
these days.

The optimization goal of a streaming data algorithm is to maintain a model using all the data points
that have arrived so far, such that the model’s empirical risk is close to the ERM over those data
points. The challenges include (i) because the training data is changing at each time step, the ERM
on streaming data is a “moving target”; (ii) the ERM is an optimal solution that cannot be realized
in limited processing time, while a streaming data algorithm is not only limited in processing time,
but is also presented the data points only sequentially; (iii) with increasing arrival rates, it becomes
increasingly difficult for the streaming data algorithm to keep up with the ERM; and (iv) data points
may not arrive at a steady rate: the numbers of points arriving at different points in time can be
highly skewed. We present and analyze a streaming data algorithm, STRSAGA, that overcomes these
challenges and achieves an empirical risk close to the ERM in a variety of settings.

Contributions. We present STRSAGA, a streaming data algorithm for maintaining a model. STRSAGA
sees data points in a sequential manner, and can efficiently incorporate newly arrived data points into
the model. Yet, its accuracy at each point in time is comparable to that of an offline algorithm that has
access to all training data points in advance. We prove this using a “competitive analysis” framework
that compares the accuracy of STRSAGA to a state-of-the-art offline algorithm DYNASAGA [DLH16],
which is based on variance-reduced SGD. We show that given the same computational power, the
accuracy of STRSAGA is competitive to DYNASAGA at each point in time, under certain conditions
on the schedule of input arrivals. Our notion of “risk-competitiveness” is based on the sub-optimality
of risk with respect to the ERM (“sub-optimality” is defined in Section 3). Our theoretical analysis
relies on a connection between the “effective sample size” of the algorithm (whether a streaming data
algorithm or an offline algorithm) and its sub-optimality of risk with respect to the ERM. We show
that if a streaming data algorithm is “sample-competitive” to an offline algorithm, i.e., its effective
sample size is close to that of an offline algorithm, then it is also risk-competitive to the offline
algorithm.

A key aspect of our work is that we carefully consider the schedule of arrivals of the data points—we
care not only about which training data points have arrived so far, and how many of them, but
also about when they arrived. In our setting where the streaming data algorithm is computationally
bounded, it is not possible to be always risk-competitive with an offline algorithm. However, we
show that it is possible to achieve risk-competitiveness, if the schedule of arrivals of training data
points obeys certain conditions that we lay out in Section 5. We show that these conditions are
satisfied by a number of common arrival distributions, including Poisson arrivals and many classes
of skewed arrivals. For all these arrival distributions, we show that STRSAGA is risk-competitive to
DYNASAGA.

Our experimental results for two machine learning tasks, logistic regression and matrix factorization,
on two real data sets each, support our analytical findings: the sub-optimality of STRSAGA on data

2



points arriving over time (according to a variety of input arrival distributions) is almost always
comparable to the offline algorithm DYNASAGA that is given all data points in advance, when
each algorithm is given the same computational power. We also show that STRSAGA significantly
outperforms natural streaming data versions of both SGD and SSVRG [FGKS15]. Moreover, the
update time of STRSAGA is small, making it practical even for settings when the arrival rate is high.

2 Related work

Stochastic Gradient Descent (SGD) [RM51] and its extensions are used extensively in practice for
learning from large datasets. While an iteration of SGD is cheap relative to an iteration of a full
gradient method, its variance can be high. To control the variance, the learning rate of SGD must
decay over time, resulting in a sublinear convergence rate. Newer variance-reduced versions of SGD,
on the other hand, achieve linear convergence on strongly convex objective functions, generally by
incorporating a correction term in each update step that approximates a full gradient, while still
ensuring each iteration is efficient like SGD.

SAG [RSB12] was among the first variance reduction methods proposed and achieves linear con-
vergence rate for smooth and strongly convex problems. SAG requires storage of the last gradient
computed for each data point and uses their average in each update. SAGA [DBLJ14] improves on
SAG by eliminating a bias in the update. Stochastic Variance-Reduced Gradient (SVRG) [JZ13]
is another variance reduction method that does not store the computed gradients, but periodically
computes a full-data gradient, requiring more computation than SAGA. Semi-Stochastic Gradient
Descent (S2GD) [KR13] differs from SVRG by computing a random stochastic gradient at each iter-
ation and a full gradient occasionally. The gap between two full gradient computations is determined
by a geometric law. CHEAPSVRG [SAKS16] is another variant of SVRG. In contrast with SVRG, it
estimates the gradient through computing the gradient on a subset of training data points rather than
all the data points. However, all of the above variance-reduced methods require O(n log n) iterations
to guarantee convergence to statistical accuracy (to yield a good fit to the underlying data) for n
data points. DYNASAGA [DLH16] achieves statistical accuracy in only O(n) iterations by using a
gradually increasing sample set and running SAGA on it.

So far, all the algorithms we have discussed are offline, and assume the entire dataset is available
beforehand. Streaming SVRG (SSVRG) [FGKS15] is an algorithm that handles streaming data
arrivals, and processes them in a single pass through data, using limited memory. In our experimental
study, we found STRSAGA to be significantly more accurate than SSVRG. Further, our analysis of
STRSAGA shows that it handles arrival distributions which allow for burstiness in the stream, while
SSVRG is not suited for this case. In many practical situations, restricting a streaming data algorithm
to use limited memory is overly restrictive and as our results show, leads to worse accuracy.

3 Model and preliminaries

We consider a data stream setting in which the training data points arrive over time. For i =
1, 2, 3, . . . , let Xi be the set of zero or more training data points arriving at time step i. We assume
that each training data point is drawn from a fixed distribution P , which is not known to the algorithm.
Dealing with distributions that change over time is beyond the scope of this paper. Let Si = ∪

i
j=1Xj

denote the set of data points that have arrived in time steps 1 through i (inclusive). Let ni denote the
number of data points in Si.

The model being trained/maintained is drawn from a class of functions F . A function in this class
is parameterized by a vector of weights w ∈ R

d. For a function w, we define its expected risk as
R(w) = E [fx(w)] where fx(w) is the loss of function w on input x and the expectation is taken
over x drawn from distribution P . Let function w

∗ = arg min
w∈FR(w) denote the optimal function

with respect toR(w). LetR∗ = R(w∗) denote the minimum expected risk possible over distribution
P , within function class F . The function w

∗ is called the distributional risk minimizer. Given a
sample S of training data points drawn from P , the best we can do is minimize the empirical risk
over this sample. We have analogous definitions for minimizers of empirical risk over this sample.
The empirical risk of function w over a sample S of n elements is: RS(w) = 1

n

∑
x∈S fx(w). The

optimizer of the empirical risk is denoted as w∗
S , defined as w∗

S = arg min
w∈FRS(w). The optimal
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empirical risk isR∗
S = RS(w

∗
S). We denote the optimizer of the empirical risk over Si as w∗

i = w
∗
Si

.

Similarly, the optimal empirical risk over Si isR∗
i = RSi

(w∗
i ).

Suppose a minimization algorithm is given a set of training examples Si, and that it outputs ap-
proximate solution wi. The statistical error is E [R(w∗

i )−R(w
∗)] and the optimization error is

E [R(wi)−R(w
∗
i )], where the expectation is taken over the randomness of Si. The total error

(restricting to a fixed function class F) is the sum of the two.

Following Bottou and Bousquet [BB07], we define the sub-optimality of an algorithm A over
training data S to be the difference between A’s empirical risk and the optimal empirical risk:
SUBOPTS(A) := RS(w) −RS(w

∗
S) where w is the solution returned by A on S and w

∗
S is the

empirical risk minimizer over S. Let H(n) = cn−α, for a constant c and 1/2 ≤ α ≤ 1, be an
upper bound on the statistical error. Bottou and Bousquet [BB07] show that if ε is a bound on the
sub-optimality of w on Si, then the total error is bounded byH(ni) + ε. Therefore, in designing an
efficient algorithm for streaming data, we focus on reducing the sub-optimality to asymptotically
balance with H(ni)—it does not pay to reduce the empirical risk even further. Note that although
H(ni) is only an upper bound on the statistical error, Bottou and Bousquet remark “it is often accepted
that these upper bounds give a realistic idea of the actual convergence rates” [BB07], in which case
balancing the sub-optimality withH(ni) asymptotically minimizes the total error.

We focus on time-efficient algorithms for maintaining a model over streaming data. We focus on a
basic step used in all SGD-style algorithms (or variants such as SAGA): A random training point x is
chosen from a set of training samples, and the vector w is updated through a gradient computed at
point x. Let ρ ≥ 1 denote the number of such basic steps that can be performed in a single time step.

4 STRSAGA: gradient descent over streaming data

We present our algorithm STRSAGA for learning from streaming data. Stochastic gradient descent (or
one of its variants, such as SAGA [DBLJ14]) works by repeatedly sampling a point from a training
set T and using its gradient to determine an update direction. One option to handle streaming data
arrivals is to simply expand the set T from which further sampling is conducted, by adding all the new
arrivals. However, the problem with this approach is that the size of the training set T can change in
an uncontrolled manner, depending on the number of arrivals. As illustrated in prior work [DLH16],
the optimization error of SAGA increases with the size of the training set T . With an uncontrolled
increase in the size of T , the corresponding sub-optimality of the algorithm over T increases, so that
the function that is finally computed may have poor accuracy.

To handle this, we use an idea from DYNASAGA [DLH16], which increases the size of the training
set T in a controlled manner, according to a schedule. Upon increasing the size of T , further increases
are placed on hold until a sufficient number of SAGA steps have been performed on the current state
of T . By using this idea, DYNASAGA was able to achieve statistical accuracy sooner than SAGA.
However, DYNASAGA is still an offline algorithm that assumes that all training data is available in
advance.

STRSAGA deals with streaming arrivals as follows. Arriving points from the next set of points Xi

are stored in a buffer Buf. The effective sample set T is expanded in a controlled manner, similar
to DYNASAGA. However, instead of choosing new points from a static training set, such as in
DYNASAGA, STRSAGA chooses new points from the dynamically changing buffer Buf. If Buf is
empty, then available CPU cycles are used to perform further steps of SAGA. After any time step, it
is possible that STRSAGA may have trained over only a subset of the points that are available in Buf,
but this is to ensure that the optimization error on the subset that has been trained is balanced with the
statistical error of the effective sample size. Algorithm 1 depicts the steps taken to process the zero or
more points Xi arriving at time step i. Before any input is seen, the algorithm initializes buffer Buf
to empty, effective sample T0 to empty, and function w0 to random values. STRSAGA as described
here uses the basic framework of DYNASAGA, of adding one training point to Ti every two steps of
SAGA (the linear schedule in [DLH16]), and both algorithms borrow variance-reduction steps from
SAGA (lines 8-9 in Algorithm 1 and the use of A).

Analysis of STRSAGA: Suppose data points Si have been seen till time step i, and ni = |Si|. We first
note that the time taken to process a set of training points Xi is dominated by the time taken for ρ
iterations of SAGA. Ideally, the empirical risk of the solution returned by STRSAGA is close to the
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Algorithm 1: STRSAGA: Process a set of training points Xi that arrived in time step i, i > 0.

// wi−1 is the current function. Ti−1 the effective sample set.
1 Add Xi to Buf // Buf is the set of training points not added to Ti yet
2 w̃0 ← wi−1 and Ti ← Ti−1

// Do ρ steps of SAGA at each time step
3 for j ← 1 to ρ do

// Every two steps of SAGA, add one training point to Ti, if available
4 if (Buf is non-empty) AND (j is even) then
5 Move a single point, z, from Buf to Ti

6 α(z)← 0 // α(z) the prior gradient of z, initialized to 0
7 A←

∑
p∈Ti

α(p)/|Ti| // A the average of all gradients, used by

SAGA, and can be maintained incrementally

8 Sample a point p uniformly from Ti

9 g ← ∇fp(w̃j−1) // compute the gradient
10 w̃j ← w̃j−1 − η(g − α(p) +A) // η is the learning rate
11 α(p)← g

12 wi ← w̃ρ

// wi is the current function and Ti is the effective sample set.

empirical risk of the ERM over Si. However, this is not possible in general. Suppose the number of
points arriving at each time step i was much greater than ρ, the number of iterations of SAGA that
can be performed at each step. Not even an offline algorithm such as DYNASAGA that has all points
at the beginning of time can expect to converge to an empirical risk that matches the empirical risk of
the ERM within the available time. In what follows, we present a competitive analysis, where the
performance of STRSAGA is compared with that of an offline algorithm that has all data available to it
in advance. We consider two offline algorithms, ERM and DYNASAGA(ρ), described below.

Algorithm ERM is the empirical risk minimizer, sees all of Si at the beginning of time, and has
infinite computational power to process it. A streaming data algorithm has two obstacles if it has to
compete with ERM: (i) Unlike ERM, a streaming data algorithm does not have all data in advance,
and (ii) Unlike ERM, a streaming data algorithm has limited computational power. It is clear that no
streaming data algorithm can do better than ERM. We can practically approach the performance of
ERM through executing DYNASAGA until convergence is achieved.

Algorithm DYNASAGA(ρ) sees all of Si at the beginning of time, and is given ρ iterations of
gradient computations in each step. The parenthetical ρ denotes this algorithm is the extension of
the original DYNASAGA [DLH16], parameterized by the available amount of processing time. The
algorithm DYNASAGA performs 2ni steps of gradient computations on Si and then terminates,
while DYNASAGA(ρ) performs ρi steps, where if ρi > 2ni, the additional steps are uniformly
over Si. The computational power of DYNASAGA(ρ) over i time steps matches that of a streaming
data algorithm. However, DYNASAGA(ρ) is still more powerful than a streaming data algorithm,
since it can see all data in advance. In general, it is not possible for a streaming data algorithm to
compete with DYNASAGA(ρ) either, one issue being that streaming arrivals may be very bursty.
Consider the extreme case when all of Si arrives in the ith time step, and there were no arrivals in
the time steps 1 till (i− 1). An algorithm for streaming data has only ρ gradient computation steps
that it can perform on ni points, and its earlier ρ(i− 1) gradient steps were not useful. In contrast,
DYNASAGA(ρ) can perform ρi gradient steps on Si, and achieve a smaller empirical risk.

Each algorithm STRSAGA, DYNASAGA(ρ), and ERM, after seeing Si, have trained their model on
a subset Ti ⊆ Si. We call this subset as the “effective sample set”. Let tSTRi , tDi , tERM

i respectively
denote the sizes of the effective sample sets of STRSAGA,DYNASAGA(ρ),ERM respectively, after
i time steps. The following lemma shows that the expected sub-optimality of DYNASAGA(ρ) over
Si is directly related to tDi .

Lemma 1 (Lemma 5 in [DLH16]). After i time steps, tDi = min{ni, ρi/2}, and tERM
i = ni. The

expected sub-optimality of DYNASAGA(ρ) over Si after i time steps is O(H(tDi )).
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Our goal is for a streaming data algorithm to achieve an empirical risk that competitive to that of an
offline algorithm. We present our notion of risk-competitiveness in Definition 1.

Definition 1. For c ≥ 1, a streaming data algorithm I is said to be c-risk-competitive to
DYNASAGA(ρ) at time step i if E [SUBOPTSi(I)] ≤ cH(tDi ). Similarly, I is said to be c-risk-
competitive to ERM at time step i if E [SUBOPTSi

(I)] ≤ cH(ni).

Note that the expected sub-optimality of I is compared with H(tDi ) and H(ni), which are upper
bounds on the statistical errors of DYNASAGA(ρ) and ERM respectively. IfH() is a tight bound
on the statistical error, and hence, a lower bound on the total error, then the definition implies that the
expected sub-optimality of Algorithm I is within a factor of c of the total risk of DYNASAGA(ρ).
We next show if a streaming data algorithm is risk-competitive with respect to DYNASAGA(ρ) then
it is also risk-competitive with respect to the empirical risk minimizer, under certain conditions.

Lemma 2. If a streaming data algorithm I is c-risk-competitive to DYNASAGA(ρ) at time step i,

and the statistical riskH(n) = n−α, then I is c ·max
((

2λ̃i

ρ

)α
, 1
)

-risk-competitive to ERM at time

step i, where λ̃i =
(
ni

i

)
and ni is the size of Si.

Proof. From Definition 1 we have: E [SUBOPTSi(I)] ≤ cH(tDi ). We know tDi = min(ni, ρi/2)
(Lemma 1). First consider the case when ni ≤ ρi/2. We have: E [SUBOPTSi(I)] ≤ cH(tDi ) =
cH(ni). Therefore, for this case, I is c-risk-competitive to Algorithm ERM.

In the other case, when ni > ρi/2, we have: tDi = ρi/2 =
(

ρ

2λ̃i

)
ni. Further, E [SUBOPTSi

(I)] ≤

cH(tDi ) = cH( ρ

2λ̃i
ni) = c

(
2λ̃i

ρ

)α
H(ni) �

Discussion: λ̃i = (ni/i) is the average rate of arrivals in a time step. We expect the ratio (λ̃i/ρ) to
be a small constant. If this ratio is a large number, much greater than 1, the total number of arrivals
over i time steps far exceeds the number of gradient computations the algorithm can perform over i
time steps. This rate of arrivals is unsustainable, since most practical algorithms such as SGD and
variants, including SVRG and SAGA require more than one gradient computation for each training
point. Hence, the above lemma implies that if I is O(1)-risk-competitive to DYNASAGA(ρ), then
it is also O(1)-risk-competitive to ERM, under reasonable arrival patterns.

Finally, we will bound the expected sub-optimality of STRSAGA over its effective sample set Ti (not
Si). In Section 5, we will show how to apply the following result to establish the risk-competitiveness
of STRSAGA.

Lemma 3. Suppose all fx are convex and their gradients are L-Lipschitz continuous, and thatRTi

is µ-strongly convex. At the end of each time step i, the expected sub-optimality of STRSAGA over Ti

is

E [SUBOPTTi(STRSAGA)] ≤ H(t
STR

i ) + 2 (R(w0)−R(w
∗))

(
L

µ

)3(
1

tSTRi

)2

.

If we additionally assume that the condition number L/µ is bounded by a constant at each time, the
above simplifies to E [SUBOPTTi

(STRSAGA)] ≤ (1 + o(1))H(tSTRi ).

5 Competitive analysis of STRSAGA on specific arrival distributions

Lemma 3 shows that the expected sub-optimality of STRSAGA over its effective sample set Ti is
O(H(tSTRi )) (note tSTRi is not equal to ni the number of points so far). However, our goal is to show
that STRSAGA is risk-competitive to DYNASAGA(ρ) at each time step i; i.e., the expected sub-
optimality of STRSAGA over Si is within a factor ofH(tDi ). The connection between the two depends

on the relation between tSTRi and tDi . This relation is captured using sample-competitiveness, which is
introduced in this section. Although not every arrival distribution provides sample-competitiveness,
we will show a number of different patterns of arrival distributions that do provide this property. To
model different arrival patterns, we consider a general arrival model where the number of points
arriving in time step i is a random variable xi which is independently drawn from distribution P
with a finite mean λ. We consider arrival distributions of varying degrees of generality, including
Poisson arrivals, skewed arrivals, general arrivals with a bounded maximum, and general arrivals
with an unbounded maximum. The proofs of results about specific distributions can be found in the
supplementary material.
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Definition 2. At time i, STRSAGA is said to be k-sample-competitive to DYNASAGA(ρ) if tSTRi /tDi ≥
k.

Lemma 4. If STRSAGA is k-sample-competitive to DYNASAGA(ρ) at time step i, then it is c-risk-
competitive to DYNASAGA(ρ) at time step i with c = k−α(2 + o(1)).

Proof. Let Ti
STR and Ti

D denote the effective samples that were used at iteration i for STRSAGA and

DYNASAGA(ρ), respectively. We know that Ti
STR, Ti

D ⊂ Si. Using Theorem 3 from [DLH16],

we have: E [SUBOPTSi
(STRSAGA)] ≤ E [SUBOPTTi

(STRSAGA)] + ni−ti
STR

ni
H(ti

STR)

Using Lemma 3, we can rewrite the above inequalities as:

E [SUBOPTSi
(STRSAGA)] ≤ (1 + o(1))H(ti

STR) + ni−ti
STR

ni
H(ti

STR) ≤ (2 + o(1))H(ti
STR).

If STRSAGA is k-sample-competitive to DYNASAGA(ρ), then we have:
E [SUBOPTSi

(STRSAGA)] ≤ (2 + o(1))H(ti
STR) ≤ (2 + o(1))H(k · ti

D) = k−α(2 + o(1))H(ti
D),

completing the proof. �

Lemma 5. At time step i, suppose the streaming arrivals satisfy: ni/2 ≥ kni. Then, STRSAGA is

min{k, 1
2}-sample-competitive to DYNASAGA(ρ) at time step i.

Proof. We first bound tSTRi . At time i/2, at least kni points have arrived. In Algorithm 1, at
time i/2, these points are either in the Buf or already in the effective sample T STR

i/2 . We note that

for every two iterations of SAGA, the algorithm moves one point from Buf (if available) to the
effective sample, thus increasing the size of the effective sample set by 1. In the i/2 time steps from
i/2 + 1, . . . , i, STRSAGA can perform ρi/2 iterations of SAGA. Within these iterations, it can move
ρi/4 points to T STR

i , if available in the buffer. Hence, the effective sample size for STRSAGA at time i
is: tSTRi ≥ min{ρi/4, kni}. We know tDi = min{ni, ρi/2}.

We consider four cases. In the first case, (1) if ρi/4 < ni/2 and ni < ρi/2, then tDi = ni

and tSTRi ≥ ρi/4. In this case, we have tSTRi ≥ ρi/4 > ni/2 = tDi /2. The other three cases,
(2) ρi/4 < ni/2 and ni ≥ ρi/2, (3) ρi/4 ≥ ni/2 and ni < ρi/2, and (4) ρi/4 ≥ ni/2 and ni ≥ ρi/2,
can be handled similarly. �

Skewed Arrivals with a Bounded Maximum. We next consider an arrival distribution parameter-
ized by integer M > 0, where the number of arrivals per time step can either be high (M ) or zero.

More precisely, xi = M with prob. λ
M and xi = 0 with prob. 1− λ

M . Thus, E[xi] = λ. Depending
on the value of M , this can model bursty arrivals, with a number of “quiet” time steps with no arrivals,
combined with an occasional burst of arrivals. We have the following result for skewed arrivals.

Lemma 6. For a skewed arrival distribution with maximum M and mean λ, STRSAGA is 6α(2+o(1))-
risk-competitive to DYNASAGA(ρ), with probability at least 1− ε, at any time step i > 16M

λ ln 1
ε .

At a high level, the proof relies on showing sample-competitiveness of STRSAGA. For a time step i
greater than the threshold above, we can prove the concentration of ni and ni/2 using a Chernoff

bound. Using Lemma 5, STRSAGA and DYNASAGA(ρ) are 1
6 -sample-competitive, and the risk-

competitiveness follows from Lemma 4. Note that as M increases, arrivals become more bursty, and
it takes longer for the algorithm to be competitive, with a high confidence.

General Arrivals with a Bounded Maximum. We next consider a more general arrival distribution
with a maximum of M arrivals, and a mean of λ. xi = j with probability pj for j = 0, . . . ,M , such
that

∑
j pj = 1 and E[xi] = λ, for an integer M > 0.

Lemma 7. For a general arrival distribution with mean λ and maximum M , at any time step
i > ( 16Mλ + 8

3 ) ln
1
ε , STRSAGA is 8α(2 + o(1))-risk-competitive to DYNASAGA(ρ), with probability

at least 1− ε.

The high-level proof sketch for this case is similar to the case of skewed arrivals. The technical aspect
is that in order to prove concentration bounds for ni and ni/2, we use Bernstein’s inequality that lets
us bound the sum of independent random variables in a more flexible manner than Chernoff bounds
(for random variables that are not necessarily binary valued), in conjunction with a bound on the
variance of the distribution. Proof details are in the supplementary material.

General Arrivals with an Unbounded Maximum. More generally, the number of arrivals in a time
step may not have a specified maximum. Instead, it’s distribution can have a finite mean, but a small
probability of reaching arbitrarily large values. We consider a sub-class of such distributions where

7



all the polynomial moments are bounded, as in the following Bernstein’s condition with parameter
b. The random variable xi has mean λ, variance σ2, and |E

[
(xi − λ)k

]
| ≤ 1

2k!σ
2bk−2 for k =

3, 4, . . ..

Lemma 8. For any arrival distribution with mean λ, bounded variance σ2 and satisfying Bernstein’s
condition with parameter b, STRSAGA is 8α(2 + o(1))-risk-competitive to DYNASAGA(ρ), with

probability at least 1− ε, at any time step i > max((16(σλ )
2 + 8

3 ) ln
1
ε ,

2(σ2+bλ)
λ2 ln 1

ε ).

Poisson Arrivals. We next consider the case where the number of points arriving in each time step

follows a Poisson distribution with mean λ, i.e., Pr [xi = k] = e−λλk

k! for integer k ≥ 0.

Lemma 9. For Poisson arrival distribution with mean λ, STRSAGA is 8α(2 + o(1))-risk-competitive
to DYNASAGA(ρ) with probability at least 1− ε, at any time step i > 16

λ ln 1
ε .

The proofs depend on a version of the Chernoff bounds tailored to Poisson distribution, further details
presented in the supplementary material.

6 Experimental results

We empirically confirm the competitiveness of STRSAGA with the offline algorithm DYNASAGA(ρ)
through a set of experiments on real world datasets streamed in under various arrival distributions.
We consider two optimization problems that arise in supervised learning, logistic regression (con-
vex) and matrix factorization (nonconvex). For logistic regression, we use the A9A [DKT17] and
RCV1.binary [LYRL04] datasets, and for matrix factorization, we use two datasets of user-item rat-
ings from Movielens [HK16]. More detail on the datasets are provided in the supplementary material.
These static training data are converted into streams, by ordering them by a random permutation, and
defining an arrival rate λ dependent on the dataset size. In our experiments, the training data arrives
over the course of 100 time steps, with skewed arrivals parameterized by M = 8λ. Poisson arrivals
are given in the supplementary material.

At each time step i, a streaming data algorithm has access to ρ gradient computations to update the
model; we show results for ρ/λ = 1 and ρ/λ = 5. We compare the sub-optimality of STRSAGA
with the offline algorithm DYNASAGA(ρ), which is run from scratch at each time i using ρi steps
on Si. We also compare with two streaming data algorithms, SGD, and for the case ρ/λ = 1, the
single-pass algorithm SSVRG. 4 In the streaming data setting, in which we are not limited in storage
and the available processing time ρ may permit revisiting points, our implementation of SGD needs
clarification in its sampling procedure. We tried two sampling policies. In the first, at each time step
i we sample points uniformly from Si, the set of all points received till time step i. In the second,
at each time step i we first visit points in Si that have not been seen yet, and spend any remaining
processing time to sample uniformly from all of Si. In every case, the second method was better
or indistinguishable from the first, and so all of our results are based on the second method. For
our implementation of SSVRG, we have relaxed the memory limitation of the original streaming
algorithm by introducing a buffer to store points that have arrived but not yet been processed. With
this additional storage, we allow SSVRG to make progress during time steps even when no new
points arrive, and hence make for a fairer comparison when data points do not arrive at a steady rate.

The main results are summarized in Figure 1, showing the sub-optimality of each algorithm and the
sample-competitive ratio for STRSAGA. Additional plots of the test loss are given in the supplementary
material. The dips in the sample-competitive ratio represent the arrival of a large group of points,
and correspondingly at those times, the sub-optimality spikes, since there are now many new points
added to Si that have yet to be processed. We observe that the sample-competitive ratio improves
over the lifetime of the stream and tends towards 1, outperforming our pessimistic theoretical
analysis. Furthermore, as the sample-competitive ratio increases, the risk-competitiveness of STRSAGA
improves so that the sub-optimality of STRSAGA is comparable to that of the offline DYNASAGA(ρ),
which is the best we can do given limited computational power. In Figure 1, we also observe that
STRSAGA outperforms both our streaming data version of SGD, due to the faster convergence rate
when using SAGA steps with reduced variance, and also SSVRG, showing the benefit of revisiting
data points, even when the processing rate is constrained at ρ = 1λ.

4We consider SSVRG a ρ/λ = 1 algorithm, because for most data points it receives, it uses 1 gradient
computation, and only for an o(1) fraction of the data points does it require 2 gradient computations.
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Figure 1: Sub-optimality under skewed arrivals with M = 8λ. Top row is processing rate ρ = 1λ,
and bottom row is ρ = 5λ. The median is taken over 5 runs.

To better understand the impact of the skewed arrival distribution on the performance of STRSAGA, we
did three experiments in Figure 2: (1) As M/λ increases, the arrivals become more bursty and it takes
longer for STRSAGA to be sample-competitive, and as a result, risk-competitive to DYNASAGA(ρ).
Note that the far left endpoint, for skewed arrival parameterized with M = λ, is the case of constant
arrivals. (2) We observe that there is an intermediate point for ρ/λ where it is more difficult to be
sample-competitive, but at the extremes the ratio tends towards 1. This is because for large ρ/λ,
whenever a big group of points arrives they can all be processed quickly. On the other hand, for small
ρ/λ, at any time i, both STRSAGA and the offline algorithm are still processing points that arrived at
some time significantly before i, and so a large variance in the amount of fresh arrivals at the tail
of the stream can be tolerated. (3) The bound on sub-optimality we showed earlier is dependent on
the number of data points processed so far. As we see, as time passes and STRSAGA sees more data
points, its sub-optimality on Si improves. Additionally as ρ/λ increases, STRSAGA has more steps
available to incorporate newly arrived data points and becomes more resilient to bursty arrivals.
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Figure 2: Sensitivity analysis. The first plot varies the skew M/λ for a fixed processing rate ρ/λ, and
the second two plots vary the processing rate for a fixed skew. Results are plotted for 4 time steps
over a stream of the RCV dataset of 100 time steps. The median is taken over 9 runs.

7 Conclusion

We considered the ongoing maintenance of a model over data points that are arriving over time,
according to an unknown arrival distribution. We presented STRSAGA, and showed through both
analysis and experiments that, for various arrival distributions, (i) its empirical risk over the data
arriving so far is close to the empirical risk minimizer over the same data, (ii) it is competitive with a
state-of-the-art offline algorithm DYNASAGA, and (iii) it significantly outperforms streaming data
versions of both SGD and SSVRG. We conclude that STRSAGA should be the algorithm of choice for
variance-reduced SGD on streaming data in the setting where memory is not limited.
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A Proofs from the analysis of STRSAGA

This section contains proof details from the analysis of STRSAGA. Throughout, we will assume that
all fx are convex and their gradients are L-Lipschitz continuous, and thatRS is µ-strongly convex
for the set of training samples S . In addition, we will use U which we define as follow:

U(t, n) = min

{
ρnU(t− 1, n)

min
m<n

[U(t,m) +
n−m

n
H(m)],

(1)

where ρn is the convergence rate of SAGA and defines as ρn = 1−min( 1n ,
µ
L ). And, the initial error

U(0,m) = ζ is defined as:

ζ :=
4L

µ
[R(w0)−R(w

∗)].

We will use the following results from [DLH16].

Lemma 10. (THEOREM 3 IN [DLH16]) Suppose the expected sub-optimality of an algorithm A
over a training set T ⊆ S is bounded as E [SUBOPTT (A)] ≤ ε. Then the expected sub-optimality of
A over S is bounded by E [SUBOPTS(A)] ≤ ε+ n−m

n H(m), where |T | = m, |S| = n.

Lemma 11. (PROPOSITION 4. IN [DLH16]) The expected sub-optimality of DYNASAGA over a
training set S at iteration t is

E [SUBOPTS(DYNASAGA)] ≤ U(t, n).

where the expectation is taken over randomness of S , and U is defined in (1).

Lemma 12. (LEMMA 5 IN [DLH16]) ForH(n) = cn−α,where 1/2 ≤ α ≤ 1,

U(2n, n) ≤ H(n) +
ζ

2

(
L

µn

)2

.

Using above results, we will bound the expected sub-optimality of STRSAGA in terms of the U

function.

Lemma 13. At the end of each time step i, the expected sub-optimality of STRSAGA over Ti is

E [SUBOPTTi
(STRSAGA)] ≤ U(2tSTRi , tSTRi ).

where U is the upper bound function defined in (1).

Proof. The proof is similar to the proof of Proposition 4 in [DLH16]. Note that performing extra
steps of SAGA when the Buf is empty does not weaken the bound.

Next, we prove the main result we stated in Section 4 bounding the expected sub-optimality of
STRSAGA by theH function of its effective sample set size.

Lemma 3. Suppose all fx are convex and their gradients are L-Lipschitz continuous, and thatRTi

is µ-strongly convex. At the end of each time step i, the expected sub-optimality of STRSAGA over Ti

is

E [SUBOPTTi
(STRSAGA)] ≤ H(tSTRi ) + 2 (R(w0)−R(w

∗))

(
L

µ

)3(
1

tSTRi

)2

.

If we additionally assume that the condition number L/µ is bounded by a constant at each time, the
above simplifies to E [SUBOPTTi(STRSAGA)] ≤ (1 + o(1))H(tSTRi ).

Proof. The expected sub-optimality is bounded by the U function by Lemma 13, and we have a
bound on U by Lemma 12. Therefore,

E [SUBOPTTi
(STRSAGA)] ≤ U(2tSTRi , tSTRi )

≤ H(tSTRi ) +
ζ

2

(
L

µtSTRi

)2

= H(tSTRi ) + 2 (R(w0)−R(w
∗))

(
L

µ

)3(
1

tSTRi

)2

.
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In addition, we have the following result on the expected sub-optimality of DYNASAGA(ρ).

Lemma 14. At the end of each time step i, the expected sub-optimality of DYNASAGA(ρ) over Si is

E [SUBOPTSi
(DYNASAGA(ρ))] ≤


max


1,

(
2λ̃i

ρ

)1+α

+ o(1)


H(ni)

where λ̃i =
(
ni

i

)
and ni = |Si|.

Proof. According to Lemma 11, the expected sub-optimality of DYNASAGA(ρ) over the sample
set Si of size ni after t iterations is bounded by U(t, ni). As mentioned earlier, the Algorithm
DYNASAGA(ρ) has limited computational power and can performs only ρi steps of SAGA. Thus,

E [SUBOPTSi
(DYNASAGA(ρ))] ≤ U(ρi, ni)

If λ̃i ≤ ρ/2, then

E [SUBOPTSi
(DYNASAGA(ρ))] ≤ U(ρi, ni) = U(ρi, λ̃ii)

≤ U(2λ̃ii, λ̃ii) = U(2ni, ni)

≤ H(ni) +
ζ

2

(
L

µni

)2

If λ̃i > ρ/2, then ni = (λ̃i)i > (ρ/2) i. Let T be a subset of Si such that |T | = (ρ/2) i, then
Lemma 10 results

E [SUBOPTSi(DYNASAGA(ρ))] ≤ E [SUBOPTTi(DYNASAGA(ρ))] +
λ̃ii− (ρ/2) i

(ρ/2) i
H ((ρ/2)i)

≤ U(ρi, (ρ/2) i) +
λ̃ii− (ρ/2) i

(ρ/2) i
H((ρ/2) i)

≤ H((ρ/2) i) +
ζ

2

(
L

µ(ρ/2)i

)2

+

(
2λ̃i

ρ
− 1

)
H((ρ/2) i)

=

(
2λ̃i

ρ

)
H

(
ρ

2λ̃i

ni

)
+

ζ

2

(
L

µ(ρ/2)i

)2

=

(
2λ̃i

ρ

)1+α

H(ni) +
ζ

2

(
2λ̃i

ρ

)2(
L

µni

)2

B Proofs from competitive analysis of STRSAGA on specific arrival

distributions

This section contains proof details from the competitive analysis of STRSAGA on specific arrival
distributions. Throughout, we will assume that all fx are convex and their gradients are L-Lipschitz
continuous, and that RS is µ-strongly convex for the set of training samples S. In addition, we
assume that the condition number L/µ is bounded by a constant at each time.

Constant Arrival Rate. We first consider the case where xi = λ for each i, so that the number of
arrivals in each time step is the same.

Lemma 15. For a constant arrival rate, STRSAGA is (1 + o(1))-risk-competitive to DYNASAGA(ρ)
at any time step.

Proof. If ρ/2 ≤ λ, for each time i, we have tSTRi = tDi = ρi/2. Similarly, if λ < ρ/2, we have

tSTRi = tDi = λ. Using Lemma 3, we have: E [SUBOPTTi
(STRSAGA)] ≤ (1 + o(1))H(ti

STR) =
(1 + o(1))H(ti

D). Note that (1 + o(1))H(ti
D) is identical to the upper bound that we get for the

expected sub-optimality of DYNASAGA(ρ).
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We use the following Theorem1 from [MU17]

Theorem 1. (Chernoff Bound) Let X1, ..., Xn be independent Poisson trials such that Pr [Xi] = pi.

Let X =
n∑

i=1

Xi and µ = E [X]. Then the following Chernoff bounds hold:

• For 0 < δ < 1,

Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2

• For 0 < δ ≤ 1,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ2/3

Lemma 16. For a skewed arrival distribution with mean λ and parameterized by M , for i > 3M
δ2λ ln 1

ε ,
with probability at least 1− ε, we have ni ≤ (1 + δ)λi, where 0 < δ ≤ 1.

Proof. Let Yi denotes the number of non-empty arrivals in time steps 1, . . . , i. Yi follows the binomial
distribution with parameters n = i, and p = λ/M , i.e., Yi ∼ B(i, λ/M) and E [Yi] = λi/M .
According to Theorem 1, for 0 < δ ≤ 1:

Pr [Yi ≥ (1 + δ)λi/M ] ≤ e−
δ2λi
3M ≤ ε

On the other hand, we have ni, the number of arrivals in the first i time steps, is M · Yi. Thus, for
i > 3M

δ2λ ln 1
ε with probability at least 1− ε, we have ni ≤ (1 + δ)λi.

Lemma 17. For a skewed arrival distribution with mean λ and parameterized by M , for i > 4M
δ2λ ln 1

ε ,
with probability at least 1− ε, we have ni/2 ≥ (1− δ)λi/2, where 0 < δ < 1.

Proof. Same as Lemma 16, let Yi denotes the number of non-empty arrivals in time steps 1, . . . , i.
Yi follows the binomial distribution with parameters n = i, and p = λ/M , i.e., Yi ∼ B(i, λ/M) and
E [Yi] = λi/M . According to Theorem 1, for 0 < δ < 1:

Pr

[
Yi/2 ≤ (1− δ)

λi

2M

]
≤ e−

δ2λi
4M ≤ ε

On the other hand, we have ni/2, total number of arrivals in the first i/2 time steps, is M · Yi/2. Thus,

for i > 4M
δ2λ ln 1

ε with probability at least 1− ε, we have ni/2 ≥ (1− δ)λi/2.

Lemma 6. For a skewed arrival distribution with maximum M and mean λ, STRSAGA is 6α(2+o(1))-
risk-competitive to DYNASAGA(ρ), with probability at least 1− ε, at any time step i > 16M

λ ln 1
ε .

Proof. By setting δ = 1/2 in Lemma 16, for i > 12M
λ ln 1

ε , with probability at least 1− ε, we have

ni ≤
(
3
2

)
λi. On the other hand, by setting δ = 1/2 in Lemma 17, for i > 16M

λ ln 1
ε , with probability

at least 1− ε, we have ni/2 ≥ λi/4. Therefore, using union bound we can conclude with probability

at least 1 − 2ε, we have ni/2 ≥
1
6ni for i > 16M

λ ln 1
ε . As a result, using Lemma 5, STRSAGA

and DYNASAGA(ρ) are at least 1
6 -sample-competitive and therefore by Lemma 4, STRSAGA is

6α(2 + o(1))-risk-competitive with DYNASAGA(ρ).

Observation 1. Let x1, x2, . . . , xn be independent random variables such that E [xi] = λ and the
range of these random variables is {0, 1, , . . . ,M}, then the variance of xi is no more than λ(M−λ).

Proof.

V ar[xi] =
M∑

j=0

pj(j − λ)
2
=




M∑

j=0

j2pj


− λ2

≤M

M∑

j=0

jpj − λ2 = Mλ− λ2
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Theorem 2. (Bernstein’s Inequality) Let x1, x2, . . . , xn be independent bounded random variables

such that E [xi] = 0 and xi ≤M with probability 1 and let σ2 = 1
n

n∑
i=1

V ar[xi]. Then for any a > 0

we have:

Pr


 1

n

n∑

j=1

xi ≥ a


 ≤ e

− na2

2σ2+2Ma/3

Using Theorem 2, we can show:

Lemma 18. For any general arrival distribution with mean λ and bounded maximum M , for

i > 2(k+2)
3(k−1)2

M
λ ln 1

ε , with probability at least 1− ε, we have ni ≤ kλi, for any k > 1.

Proof. According to Observation 1, we have V ar[xi] ≤ Mλ. Let’s define random variable zi =
xi − λ. We have E [zi] = 0 and V ar[zi] = V ar[xi] ≤ Mλ. Now, using Theorem 2 (Bernstein’s
inequality) and setting a to λ we have:

Pr [ni ≥ kλi] = Pr

[
1

i
(ni − λi) ≥ (k − 1)λ

]
= Pr


1
i

i∑

j=1

(xj − λ) ≥ (k − 1)λ




= Pr


1
i

i∑

j=1

zj ≥ (k − 1)λ


 ≤ e−

i(k−1)2λ2

2Mλ+2M(k−1)λ/3 = e−
3(k−1)2

2(k+2)
λ
M i

For i > 2(k+2)
3(k−1)2

M
λ ln 1

ε , this probability is at most ε.

We use the following Theorem 3 from [BDR15]

Theorem 3. Let x1, x2, . . . , xn be a finite sequence of independent and non-negative random vari-
ables with finite variances. Denote Sn = x1 + x2 + . . . + xn and Vn = V ar(Sn). Then, for any
positive a,

Pr [Sn ≤ E [Sn]− a] ≤ e−
a2

2Vn+Wn

where

Wn =
1

3

n∑

k=1

(
mk

2 − vk
mk

)2

, mk = E [xk] and vk = V ar(xk)

Lemma 19. For any general arrival distribution with mean λ and bounded maximum M , for

i > 12M/λ+2
3(1−2k)2 ln 1

ε , with probability at least 1− ε, we have ni/2 ≥ kλi, for any k < 1
2 .

Proof. According to Theorem 3:

Pr
[
ni/2 ≤ kλi

]
= Pr

[
ni/2 ≤

(
λ
i

2
− λi(

1

2
− k)

)]
≤ e−

a2

2Vn+Wn ≤ e
−

λ2i2(1/2−k)2

λMi+λ2i/6 = e−
3(1−2k)2

12M/λ+2
i

Thus, for i > 12M/λ+2
3(1−2k)2 ln 1

ε with probability at least 1− ε, we have ni/2 ≥ kλi.

Lemma 7. For a general arrival distribution with mean λ and maximum M , at any time step
i > ( 16Mλ + 8

3 ) ln
1
ε , STRSAGA is 8α(2 + o(1))-risk-competitive to DYNASAGA(ρ), with probability

at least 1− ε.

Proof. Similar to the proof of Lemma 6, by setting k = 2 in Lemma 16 and k = 1/4 in Lemma 17.

According to Bernstein-type Bound presented in Theorem 4, we have:

Theorem 4. For any random variable xi with mean λ and variance σ2 satisfying the Bernstein
condition with parameter b, we have:

Pr [|xi − λ| ≥ t] ≤ 2e
− t2

2(σ2+bt) for t ≥ 0
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Using above theorem we have:

Lemma 20. For any arrival distribution xi with E [xi] = λ and variance σ2 that satisfies Bernstein’s

condition with parameter b, for i > 2(σ2+bλ)
(k−1)2λ2 ln

1
ε , with probability at least 1− ε, we have ni ≤ kλi,

for any k > 1.

Proof. According to Theorem4, we have:

Pr[ni ≥ kλi] = Pr[(ni − λi) ≥ (k − 1)λi] ≤ e
−

(k−1)λ2

2(σ2+bλ)
i

when i ≥ 2(σ2+bλ)
(k−1)2λ2 ln

1
ε , this probability is at most ε.

Lemma 21. For any arrival distribution xi with mean λ and variance σ2 that satisfies Bernstein’s

condition with parameter b, for i > 12M/λ+2
3(1−2k)2 ln 1

ε , with probability at least 1−ε, we have ni/2 ≥ kλi

for any k < 1
2 .

Proof. Similar to the proof of Lemma 19.

Lemma 8. For any arrival distribution with mean λ, bounded variance σ2 and satisfying Bernstein’s
condition with parameter b, STRSAGA is 8α(2 + o(1))-risk-competitive to DYNASAGA(ρ), with

probability at least 1− ε, at any time step i > max((16(σλ )
2 + 8

3 ) ln
1
ε ,

2(σ2+bλ)
λ2 ln 1

ε ).

Proof. Similar to the proof of Lemma 6, by setting k = 2 in Lemma 16 and k = 1/4 in Lemma 17.

Lemma 22. For i > 3
λ ln 1

ε , with probability at least 1− ε, we have ni ≤ 2λi.

Proof. It can be inferred from Theorem 1 by setting δ = 1.

Lemma 23. For i > 16
λ ln 1

ε , with probability at least 1− ε, we have ni/2 ≥ λi/4.

Proof. It can be inferred from Theorem 1 by setting δ = 1/2.

Lemma 9. For Poisson arrival distribution with mean λ, STRSAGA is 8α(2 + o(1))-risk-competitive
to DYNASAGA(ρ) with probability at least 1− ε, at any time step i > 16

λ ln 1
ε .

Proof. Similar to the proof of Lemma 6.

C Additional experimental details

Setup All algorithms were implemented in Python using numpy, and the experiments were run on a
64-bit Intel(R) Xeon(R) CPU clocked at 3.30 GHz and 8G DDR3 RAM.

Datasets Details of the 4 real-world datasets we used are given in Tables 1 and 2. We reserve 10% of
each dataset for testing and use the remaining 90% for training.

Table 1: Datasets for logistic regression

Dataset Size Number of Features

RCV1.BINARY 20242 47236
A9A 32561 123

The loss function for the binary classification task is L2-regularized logistic loss. For a data point
(x, y), the corresponding loss is f(x,y)(w) = log(1 + exp(−ywTx)) + µ

2 ||w||
2
2. For collaborative

filtering, we solve the matrix factorization problem of finding two rank-10 matrices, w = (L,R), so
that LRT approximates the known elements of the data matrix M . The regularized loss function for
the data point Mij is f(i,j)(w) = ((LRT )ij −Mij)

2 + µ
2 (||L||

2
F + ||R||2F ). The rank 10 for matrix

factorization was chosen for good validation set error after optimizing with SGD after a single pass
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Table 2: Datasets for matrix factorization

Dataset Users Movies Date Range Rating Scale Density

MovieLens100K 943 1682 9/1997-4/1998 1-5, stars 6.30%
MovieLens1M 6040 3706 4/2000-2/2003 1-5, stars 4.47%

over the static dataset. The setting of µ for each dataset similarly chosen to minimize the validation
set error, µA9A = 10−3, µRCV = 10−5, µMovieLens = 10−1. The step sizes we used for each algorithm
and each dataset were again chosen to minimize the validation set error after a single pass. For
SGD, we used a constant step size, which performed better than a decaying step size of the form
ηt = η0/(1 + η0µt).

Additional Results In the main paper, we only showed the sub-optimality under skewed arrivals. In
Figure 3, we plot the test loss. We observe that the accuracy of STRSAGA is comparable with the
offline algorithm DYNASAGA(ρ) under this bursty arrival pattern even at limited processing rates.
Furthermore, STRSAGA yields a more accurate model than either SGD or SSVRG.
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Figure 3: Test loss under skewed arrivals with M = 8λ. Top row is processing rate ρ = 1λ, and
bottom row is ρ = 5λ. The median is taken over 5 runs.

We also consider Poisson arrivals. Sub-optimality is shown in Figure 4 and test loss in Figure 5.
The median sample-competitive ratio is 1 from the beginning of the stream, which is significantly
better than the ratio we showed analytically. Note that the curves for STRSAGA and DYNASAGA(ρ)
coincide for ρ/λ = 1 when STRSAGA is sample-competitive at all points in the stream, since the two
algorithms are identical in this regime. Again we find that STRSAGA outperforms SGD and SSVRG.

All plots for the MovieLens100K dataset were omitted in the main paper. Sub-optimality is shown in
Figure 6 and test loss in Figure 7. The trends are similar to those for the MovieLens1M dataset. One
notable exception is the poorer performance of SSVRG. We have chosen similar hyperparameters for
both the 100K and 1M datasets (in a streaming data setting, we generally do not know how much
data will arrive in advance), and the slower convergence on the 100K dataset is likely due to a greater
sensitivity to the hyperparameter selection of SSVRG.

Consistently we observe STRSAGA is increasingly close to the offline DYNASAGA(ρ) as time
passes and that STRSAGA performs better than SGD and SSVRG across each dataset and both arrival
distributions.
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Figure 4: Sub-optimality under Poisson arrivals with mean λ. Top row is processing rate ρ = 1λ, and
bottom row is ρ = 5λ. The median is taken over 5 runs.
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Figure 5: Test loss under Poisson arrivals with mean λ. Top row is processing rate ρ = 1λ, and
bottom row is ρ = 5λ. The median is taken over 5 runs.
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Figure 6: Additional plots of sub-optimality for MovieLens100k.
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Figure 7: Additional plots of test loss for MovieLens100k.
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