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Abstract

In several emerging technologies for computer memory (main memory), the cost of reading is

significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fun-

damentally different model from the RAM for algorithm design. In this paper we study lower

and upper bounds for various problems under such asymmetric read and write costs. We con-

sider both the case in which all but O(1) memory has asymmetric cost, and the case of a small

cache of symmetric memory. We model both cases using the (M, ω)-ARAM, in which there is a

small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random

access, and where reading from the large memory has unit cost, but writing has cost ω � 1.

For FFT and sorting networks we show a lower bound cost of Ω(ωn logωM n), which indicates

that it is not possible to achieve asymptotic improvements with cheaper reads when ω is bounded

by a polynomial in M . Moreover, there is an asymptotic gap (of min(ω, log n)/ log(ωM)) between

the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM,

and most other models, in which the asymptotic costs are the same. We also show a lower bound

for computations on an n × n diamond DAG of Ω(ωn2/M) cost, which indicates no asymptotic

improvement is achievable with fast reads. However, we show that for the minimum edit distance

problem (and related problems), which would seem to be a diamond DAG, we can beat this lower

bound with an algorithm with only O(ωn2/(M min(ω1/3, M1/2))) cost. To achieve this we make

use of a “path sketch” technique that is forbidden in a strict DAG computation. Finally, we

show several interesting upper bounds for shortest path problems, minimum spanning trees, and

other problems. A common theme in many of the upper bounds is that they require redundant

computation and a tradeoff between reads and writes.
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1 Introduction

Fifty years of algorithms research has focused on settings in which reads and writes (to

memory) have similar cost. But what if reads and writes to memory have significantly

different costs? How would that impact algorithm design? What new techniques are useful

for trading-off doing more cheaper operations (say more reads) in order to do fewer expensive

operations (say fewer writes)? What are the fundamental limitations on such trade-offs (lower

bounds)? What well-known equivalences for traditional memory fail to hold for asymmetric

memories?

Such questions are coming to the fore with the arrival of new main-memory techno-

logies [29, 32] that offer key potential benefits over existing technologies such as DRAM,

including nonvolatility, signicantly lower energy consumption, and higher density (more bits

stored per unit area). These emerging memories will sit on the processor’s memory bus

and be accessed at byte granularity via loads and stores (like DRAM), and are projected to

become the dominant main memory within the decade [36, 49].1 Because these emerging

technologies store data as “states” of a given material, the cost of reading (checking the

current state) is significantly cheaper than the cost of writing (modifying the physical state

of the material): Reads are up to an order of magnitude or more lower energy, lower latency,

and higher (per-module) bandwidth than writes [5, 6, 10, 11, 20, 21, 30, 31, 33, 41, 47].

This paper provides a first step towards answering these fundamental questions about

asymmetric memories. We introduce a simple model for studying such memories, and a

number of new results. In the simplest model we consider, there is an asymmetric random-

access memory such that reads cost 1 and writes cost ω � 1, as well as a constant number of

symmetric “registers” that can be read or written at unit cost. More generally, we consider

settings in which the amount of symmetric memory is M � n, where n is the input size: We

define the (M, ω)-Asymmetric RAM (ARAM), comprised of a symmetric small-memory of

size M and an asymmetric large-memory of unbounded size with write cost ω. The ARAM

cost Q is the number of reads from large-memory plus ω times the number of writes to

large-memory. The time T is Q plus the number of reads and writes to small-memory.

We present a number of lower and upper bounds for the (M, ω)-ARAM, as summarized in

Table 1. These results consider a number of fundamental problems and demonstrate how the

asymptotic algorithm costs decrease as a function of M , e.g., polynomially, logarithmically,

or not at all.

For FFT we show an Ω(ωn logωM n) lower bound on the ARAM cost, and a matching

upper bound. Thus, even allowing for redundant (re)computation of nodes (to save writes),

it is not possible to achieve asymptotic improvements with cheaper reads when ω ∈ O(M c)

for a constant c. Prior lower bound approaches for FFTs for symmetric memory fail to

carry over to asymmetric memory, so a new lower bound technique is required. We use an

interesting new accounting argument for fractionally assigning a unit weight for each node of

the network to subcomputations that each have cost ωM . The assignment shows that each

subcomputation has on average at most M log(ωM) weight assigned to it, and hence the

total cost across all Θ(n log n) nodes yields the lower bound.

For sorting, we show the surprising result that on asymmetric memories, comparison

sorting is asymptotically faster than sorting networks. This contrasts with the RAM model

(and I/O models, parallel models such as the PRAM, etc.), in which the asymptotic costs are

the same! The lower bound leverages the same key partitioning lemma as in the FFT proof.

1 While the exact technology is continually evolving, candidate technologies include phase-change memory,
spin-torque transfer magnetic RAM, and memristor-based resistive RAM.
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Table 1 Summary of Our Results for the (M, ω)-ARAM (†indicates main results).

problem
ARAM cost time

section
Q(n) or Q(n, m) T (n) or T (n, m)

FFT Θ(ωn log n/ log(ωM))† Θ(Q(n) + n log n) 3, 6

sorting networks Ω(ωn log n/ log(ωM))† Ω(Q(n) + n log n) 3

sorting (comparison) O(n(log n + ω)) Θ(n(log n + ω)) 6, [10]

diamond DAG Θ(n2ω/M)† Θ(Q(n) + n2) 3

longest common subsequence,

edit distance
O(n2ω/ min(ω1/3M, M3/2))† O(n2(1 +

ω/ min(ω1/3M2/3, M3/2)))† 4

single-source shortest path
O(min(n(ω + m/M), (m +

n log n)ω, m(ω + log n)))† O(Q(n, m) + n log n) 5

all-pairs shortest-path O(n2(ω + n/
√

M)) O(Q(n) + n3) 6

search tree, priority queue O(ω + log n) per update O(ω + log n) per update 6

2D convex hull, triangulation O(n(log n + ω)) Θ(n(log n + ω)) 6

BFS, DFS, topological sort,
Θ(ωn + m) Θ(ωn + m) 6

biconnected components, SCC

minimum spanning tree O(m min(log n, n/M)+ωn)† O(Q(n, m) + n log n) 6

We present a tight lower bound for DAG computation on diamond DAGs that shows

there is no asymptotic advantage of cheaper reads. On the other hand, we also show that

allowing a vertex to be “partially” computed before all its immediate predecessors have been

computed (thereby violating a DAG computation rule), we can beat the lower bound and

show asymptotic advantage. Specifically, for both the longest common subsequence and edit

distance problems (normally thought of as diamond DAG computations), we devise a new

“path sketch” technique that leverages partial aggregation on the DAG vertices. Again we

know of no other models in which such techniques are needed.

Finally, we show how to adapt Dijkstra’s single-source shortest-paths algorithm using

phases so that the priority queue is kept in small-memory, and briefly sketch how to adapt

Borůvka’s minimum spanning tree algorithm to reduce the number of shortcuts and hence

writes that are needed. A common theme in many of our algorithms is that they use

redundant computations and require a tradeoff between reads and writes.

Related Work. Prior work [7, 22, 25, 37, 38, 46] has studied read-write asymmetries in

NAND flash memory, but this work has focused on (i) the asymmetric granularity of reads

and writes in NAND flash chips: bits can only be cleared by incurring the overhead of erasing

a large block of memory, and/or (ii) the asymmetric endurance of reads and writes: individual

cells wear out after tens of thousands of writes to the cell. Emerging memories, in contrast,

can read and write arbitrary bytes in-place and have many orders of magnitude higher write

endurance, enabling system software to readily balance application writes across individual

physical cells by adjusting its virtual-to-physical mapping. Other prior work has studied

database query processing under asymmetric read-write costs [12, 13, 45, 46] or looked at other

systems considerations [14, 30, 35, 48, 50, 51]. Our recent paper [10] introduced the general

study of parallel (and external memory) models and algorithms with asymmetric read and

write costs, focusing on sorting. Our follow-on paper [8] defined an abstract nested-parallel

model of computation with asymmetric read-write costs that maps efficiently onto more

ESA 2016
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concrete parallel machine models using a work-stealing scheduler, and presented reduced-

write, work-efficient, highly-parallel algorithms for a number of fundamental problems such

as tree contraction and convex hull. In contrast, this paper considers a much simpler model

(the sequential (M, ω)-ARAM) and presents not just algorithms but also lower bounds—plus,

the techniques are new. Finally, concurrent with this paper, Carson et al. [11] developed

interesting upper and lower bounds for various linear algebra problems and direct N-body

methods under asymmetric read and write costs. For sequential algorithms, they define a

model similar to the (M, ω)-ARAM (as well as a cache-oblivious variant), and show that

for “bounded data reuse” algorithms, i.e., algorithms in which each input or computed value

is used only a constant number of times, the number of writes to asymmetric memory is

asymptotically the same as the sum of the reads and writes to asymmetric memory. This

implies, for example, a tight Ω(n log n/ log M) lower bound on the number of writes for

FFT under the bounded data reuse restriction; in contrast, our tight bounds for FFT do

not have this restriction and use fewer writes. They also presented algorithms without this

restriction for matrix multiplication, triangular solve, and Cholesky factorization that reduce

the number of writes to Θ(output size), without increasing the number of reads, as well as

various distributed-memory parallel algorithms.

2 Model and Preliminaries

We analyze algorithms in an (M, ω)-ARAM. In the model we assume a symmetric small-

memory of size M ≥ 1, an asymmetric large-memory of unbounded size, and a write cost

ω ≥ 1, which we assume without loss of generality is an integer. (Typically, we are interested

in the setting where n � M , where n is the input size, and ω � 1.) We assume standard

random access machine (RAM) instructions. We consider two cost measures for computations

in the model. We define the (asymmetric) ARAM cost Q as the total number of reads from

large-memory plus ω times the number of writes to large-memory. We define the (asymmetric)

time T as the ARAM cost plus the number of reads from and writes to small-memory.2

Because all instructions are from memory, this includes any cost of computation. In the

paper we present results for both cost measures.

The model contrasts with the widely-studied external-memory model [1] in the asymmetry

of the read and write costs. Also for simplicity in this paper we do not partition the memory

into blocks of size B. Another difference is that the asymmetry implies that even the case

of M = O(1) (studied in [10] for sorting) is interesting. We note that our ARAM cost is

a special case of the general flash model cost proposed in [4]; however that paper presents

algorithms only for another special case of the model with symmetric read-write costs.

We use the term value to refer to an object that fits in one word (location) of the memory.

We assume words are of size Θ(log n) for input size n. The size M is the number of words in

small-memory. All logarithms are base 2 unless otherwise noted. The DAG computation

problem is given a DAG and a value for each of its input vertices (in-degree = 0), compute

the value for each of its output vertices (out-degree = 0). The value of any non-input vertex

can be computed in unit time given the value of all its immediate predecessors. As in

standard I/O models [1] we assume values are atomic and cannot be split when mapped

into the memory. The DAG computation problem can be modeled as a pebbling game

2 The time metric models the fact that reads to certain emerging asymmetric memories are projected to
be roughly as fast as reads to symmetric memory (DRAM). The ARAM cost metric Q does not make
this assumption and hence is more generally applicable.
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on the DAG [28]. Note that we allow (unbounded) recomputation of a DAG vertex, and

indeed recomputation is a useful technique for reducing the number of writes (at the cost of

additional reads).

3 Lower Bounds

We start by showing lower bounds for FFT DAGs, sorting networks and diamond DAGs.

The idea in showing the lower bounds is to partition a computation into subcomputations

that each have a lower bound on cost, but an upper bound on the number of inputs and

outputs they can use. Our lower bound for FFT DAGs then uses an interesting accounting

technique that gives every node in the DAG a unit weight, and fractionally assigns this

weight across the subcomputations. In the special case ω = 1, this leads to a simpler proof

for the lower bound on the I/O complexity of FFT DAGs than the well-known bound by

Hong and Kung [27].

We refer to a subcomputation as any contiguous sequence of instructions. The outputs of

a subcomputation are the values written by the subcomputation that are either an output

of the full computation or read by a later subcomputation. Symmetrically, the inputs of

a subcomputation are the values read by the subcomputation that are either an input of

the full computation or written by a previous subcomputation. An (l, m)-partitioning of a

computation is a partitioning of instructions into subcomputations such that each has at

most l inputs and at most m outputs. We allow for recomputation—instructions in different

subcomputations might compute the same value.

I Lemma 1. Any computation in the (M, ω)-ARAM has an ((ω + 1)M, 2M)-partitioning

such that at most one of the subcomputations has ARAM cost Q < ωM .

Proof. We generate the partitioning constructively. Starting at the beginning, partition

the instructions into contiguous blocks such that all but possibly the last block has cost

Q ≥ ωM , but removing the last instruction from the block would have cost Q < ωM . To

remain within the cost bound each such subcomputation can read at most ωM values from

large-memory. It can also read the at most M values that are in the small-memory when

the subcomputation starts. Therefore it can read at most (ω + 1)M distinct values from

the input or from previous subcomputations. Similarly, each subcomputation can write at

most M values to large-memory, and an additional M values that remain in small-memory

when the subcomputation ends. Therefore it can write at most 2M distinct values that are

available to later subcomputations or the output. J

FFT. We now consider lower bounds for the DAG computation problem for the family

of FFT DAGs (also called FFT networks, or butterfly networks). The FFT DAG of input

size n = 2k consists of k + 1 levels each with n vertices (for a total of n log 2n vertices).

Each vertex (i, j) at level i ∈ 0, . . . , k − 1 and row j has two out-edges, which go to vertices

(i + 1, j) and (i + 1, j ⊕ 2i) (⊕ is the exclusive-or of the bit representation). This is the DAG

used by the standard FFT (Fast Fourier Transform) computation. We note that in the FFT

DAG there is at most a single path from any vertex to another.

I Lemma 2. Any (l, m)-partitioning of a computation for simulating an n input FFT DAG

has at least n log n/(m log l) subcomputations.

Proof. We refer to all vertices whose values are outputs of any subcomputation, as partition

output vertices. We assign each such vertex arbitrarily to one of the subcomputations for

which it is an output.

ESA 2016
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Consider the following accounting scheme for fractionally assigning a unit weight for

each non-input vertex to some set of partition output vertices. If a vertex is a partition

output vertex, then assign the weight to itself. Otherwise take the weight, divide it evenly

between its two immediate descendants (out-edges) in the FFT DAG, and recursively assign

that weight to each. For example, for a vertex x that is not a partition output vertex, if an

immediate descendant y is a partition output vertex, then y gets a weight of 1/2 from x, but

if not and one of y’s immediate descendants z is, then z gets a weight of 1/4 from x. Since

each non-input vertex is fully assigned across some partition output vertices, the sum of the

weights assigned across the partition output vertices exactly equals |V | − n = n log n. We

now argue that every partition output vertex can have at most log l weight assigned to it.

Looking back from an output vertex we see a binary tree rooted at the output. If we follow

each branch of the tree until we reach an input for the subcomputation, we get a tree with

at most l leaves, since there are at most l inputs and at most a single path from every vertex

to the output. The contribution of each vertex in the tree to the output is 1/2i, where i is

its depth (the root is depth 0). The leaves (subcomputation inputs) are not included since

they are partition output vertices themselves, or inputs to the whole computation, which

we have excluded. By induction on the tree structure, the weight of that tree is maximized

when it is perfectly balanced, which gives a total weight of log l.

Because every subcomputation can have at most m outputs, the total weight assigned to

each subcomputation is at most m log l. Since the total weight across all subcomputations is

n log n, the total number of subcomputations is at least n log n/(m log l). J

I Theorem 3 (FFT Lower Bound). Any solution to the DAG computation problem on the

family of FFT DAGs parametrized by input size n has costs Q(n) = Ω(ωn log n/ log(ωM))

and T (n) = Ω(Q(n) + n log n) on the (M, ω)-ARAM.

Proof. By Lemma 1 every computation must have an ((ω + 1)M, 2M)-partitioning with

subcomputation cost Q ≥ ωM (except perhaps one). Plugging in Lemma 2 we have

Q(n) ≥ ωMn log n/(2M log((ω + 1)M)), which gives our bound on Q(n). For T (n) we just

add in the cost of the computation of each vertex. J

Note that when ω ∈ O(M c) for a constant c, these lower bounds match those for the

standard external memory model [1, 27] assuming both reads and writes have cost ω. This

implies that cheaper reads do not help asymptotically in this case. However, when this is not

the case, cheaper reads do provide an asymptotic advantage, as will be seen by our matching

upper bound given in Section 6.

Sorting Networks. A sorting network is a acyclic network of comparators, each of which

takes two input keys and returns the minimum of the keys on one output, and the maximum

on the other. For a family of sorting networks parametrized by n, each network takes

n inputs, has n ordered outputs, and when propagating the inputs to the outputs must

place the keys in sorted order on the outputs. A sorting network can be modeled as a

DAG in the obvious way. Ajtai, Komlós and Szemerédi [3] described a family of sorting

networks that have O(n log n) comparators and O(log n) depth. Follow-on work has provided

many simplifications and constant factor improvements, including the well-known Patterson

variant [40] and a simplification by Seiferas [43]. Recently Goodrich [26] gave a much simpler

construction of an O(n log n) comparator network, but it requires polynomial depth. Here

we show lower bounds for simulating any sorting network on the (M, ω)-ARAM.
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I Theorem 4 (Sorting Lower Bound). Simulating any family of sorting networks parametrized

on input size n has Q(n) = Ω(ωn log n/ log(ωM)) and T (n) = Ω(Q(n) + n log n) on the

(M, ω)-ARAM.

Proof. Consider an (l, m)-partitioning of the computation. Each subcomputation has at

most l inputs from the network, and m outputs for the network. The computation is

oblivious to the values in the network (it can only place the minimum and maximum on the

outputs of each comparator). Therefore locations of the inputs and outputs are independent

of the input values. The total number of choices the subcomputation has is therefore
(

l
m

)

m! = l!/(l −m)! < lm. Since there are n! possible permutations, we have that the number

of subcomputations k must satisfy (lm)k ≥ n!. Taking the logarithm of both sides, rearranging,

and using Stirling’s formula we have k > log(n!)/(m log l) > 1
2 n log n/(m log l) (for n > e2).

By Lemma 1 we have Q(n) > ωM · 1
2 n log n/(2M log((1 + ω)M)) = 1

4 ωn log n/ log((1 + ω)M)

(for n > e2). J

These bounds are the same as for simulating an FFT DAG, and, as with FFTs, they

indicate that faster reads do not asymptotically affect the lower bound unless ω is larger

than any polynomial in M . These lower bounds rely on the sort being done on a network,

and in particular that the location of all read and writes are oblivious to the data itself. As

discussed in Section 6, for general comparison sorting algorithms, we can get better upper

bounds than indicated by these lower bounds.

Diamond DAG. We consider the family of diamond DAGs parametrized by size n × m.

Each DAG has nm vertices arranged in a n × m grid such that every vertex (i, j), 0 ≤ i <

(n − 1), 0 ≤ j < (m − 1) has two out-edges to (i + 1, j) and (i, j + 1). The DAG has one

input at (0, 0) and one output at (n − 1, m − 1). Diamond DAGs have many applications in

dynamic programs, such as for the edit distance (ED), longest common subsequence (LCS),

and optimal sequence alignment problems.

I Lemma 5 (Cook and Sethi, 1976). Solving the DAG computation problem on the family

of diamond DAGs of size n × n requires n memory locations to store vertex values from the

DAG.

Proof. Cook and Sethi [16] showed that evaluating the top half of an n × n diamond DAG

(i + j ≥ n − 1), which they call a pyramid DAG, requires n memory locations to store partial

results. Because all paths of the diamond DAG must go through the top half, it follows for

the diamond DAG. J

I Theorem 6 (Diamond DAG Lower Bound). The family of diamond DAGs parametrized by

size n×m has Q(n, m) = Ω(ωnm/M) and T (n, m) = Ω(Q(n, m)+nm) on the (M, ω)-ARAM.

Proof. Consider the sub-DAG induced by a 2M × 2M diamond (a ≤ i < a + 2M, b ≤ j <

b + 2M) of vertices. By Lemma 5 any subcomputation that computes the last output vertex

of the sub-DAG requires 2M memory locations to store values from the diamond. The extra

in-edges along two sides and out-edges along the other two can only make the problem harder.

Half of the 2M required memory can be from small-memory, and so the remaining M must

require writing those values to large-memory. Therefore every 2M × 2M diamond requires

M writes of values within the diamond. Partitioning the full diamond DAG into 2M × 2M

sub-diamonds, gives us nm/(2M)2 partitions. Therefore the total number of writes is at

least M × nm/(2M)2 = nm/(4M), each with cost ω. For the time bound we need to add

the nm calculations for all vertex values. J

ESA 2016
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This lower bound is asymptotically tight since a diamond DAG can be evaluated with

matching upper bounds by evaluating each M/2 × M/2 diamond sub-DAG as a subcompu-

tation with M inputs, outputs and memory.

These bounds show that for the DAG computation problem on the family of diamond

DAGs there is no asymptotic advantage of having cheaper reads. In Section 4 we show that

for the ED and LCS problems (normally thought of as a diamond DAG computation), it is

possible to do better than the lower bounds. This requires breaking the DAG computation

rule by partially computing the values of each vertex before all inputs are ready. The lower

bounds are interesting since they show that improving asymptotic performance with cheaper

reads requires breaking the DAG computation rule.

4 Longest Common Subsequence and Edit Distance

This section describes a more efficient dynamic-programming algorithm for longest common

subsequence (LCS) and edit distance (ED). The standard approach for these problems (an

M ×M tiling) results in an ARAM cost of O(mnω/M) and time of O(mn +mnω/M), where

m and n are the length of the two input strings. Lemma 6 states that the standard bound is

optimal under the standard DAG computation rule that all inputs must be available before

evaluating a node. Perhaps surprisingly, we are able to beat these bounds by leveraging the

fact that dynamic programs do not perform arbitrary functions at each node, and hence we

do not necessarily need all inputs to begin evaluating a node.

Our main result is captured by the following theorem for large input strings. For smaller

strings, we can do even better (see the full version of the paper [9]).

I Theorem 7. Let kT = min((ω/M)1/3,
√

M) and suppose m, n = Ω(kT M). Then it is

possible to compute the ED or length of the LCS with time T (m, n) = O(mn + mnω/(kT M)).

Let kQ = min(ω1/3,
√

M) and suppose m, n = Ω(kQM). Then it is possible to compute

the ED or length of the LCS with an ARAM cost of Q(m, n) = O(mnω/(kQM)).

To understand these bounds, our algorithm beats the ARAM cost of the standard tiling

algorithm by a kQ factor. And if ω ≥ M , our algorithm (using different tuning parameters)

beats the time of the standard tiling algorithm by a kT factor.

Overview. The dynamic programs for LCS and ED correspond to computing the shortest

path through an m × n grid with diagonal edges, where m and n are the string lengths. We

focus here on computing the length of the shortest path, but it is possible to output the path

as well with the same asymptotic complexity (see [9]). Without loss of generality, we assume

that m ≤ n, so the grid is at least as wide as it is tall. For LCS, all horizontal and vertical

edges have weight 0; the diagonal edges have weight −1 if the corresponding characters in the

strings match, and weight ∞ otherwise. For ED, horizontal and vertical edges have weight 1,

and diagonal edges have weights either 0 or 1 depending on whether the characters match.

Our algorithm is not sensitive to the particular weights of the edges, and thus it applies to

both problems and their generalizations.

Note that the m × n grid is not built explicitly since building and storing the graph would

take Θ(mn) writes if mn � M . To get any improvement, it is important that subgrids

reuse the same space. The weights of each edge can be inferred by reading the appropriate

characters in each input string.

Our algorithm partitions the implicit grid into size-(hM ′ × kM ′), where h and k are

parameters of the algorithm to be set later, and M ′ = M/c for large enough constant c > 1
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to give sufficient working space in small-memory. When string lengths m and n ≥ m are

both “large”, we use h = k and thus usually work with kM ′ × kM ′ square subgrids. If the

smaller string length m is small enough, we instead use parameters h < k. To simplify the

description of the algorithm, we assume without loss of generality that m and n are divisible

by hM ′ and kM ′, respectively, and that M is divisible by c.

Our algorithm operates on one hM ′ × kM ′ rectangle at a time, where the edges are

directed right and down. The shortest-path distances to all nodes along the bottom and right

boundary of each rectangle are explicitly written out, but all other intermediate computations

are discarded. We label the vertices ui,j for 1 ≤ i ≤ hM ′ and 1 ≤ j ≤ kM ′ according to

their row and column in the square, respectively, starting from the top-left corner. We call

the vertices immediately above or to the left of the square the input nodes. The input nodes

are all outputs for some previously computed rectangle. We call the vertices uhM ′,j along

the bottom boundary and ui,kM ′ along the right boundary the output nodes.

The goal is to reduce the number of writes, thereby decreasing the overall cost of computing

the output nodes, which we do by sacrificing reads and time. It is not hard to see that

recomputing internal nodes enables us to reduce the number of writes. Consider, for example,

the following simple approach assuming M = Θ(1): For each output node of a k × k square,

try all possible paths through the square, keeping track of the best distance seen so far;

perform a write at the end to output the best value.3 Each output node tries 2Θ(k) paths,

but only a Θ(1/k)-fraction of nodes are output nodes. Setting k = Θ(lg ω) reduces the

number of writes by a Θ(lg ω)-factor at the cost of ωO(1) reads. This same approach can be

extended to larger M , giving the same lg ω improvement, by computing “bands” of nearby

paths simultaneously. But our main algorithm, which we discuss next, is much better as M

gets larger (see Theorem 7).

Path sketch. The key feature of the grid leveraged by our algorithm is that shortest paths

do not cross, which enables us to avoid the exponential recomputation of the simple approach.

The noncrossing property has been exploited previously for building shortest-path data

structures on the grid (e.g., [42]) and more generally planar graphs (e.g., [23, 34]). These

previous approaches do not consider the cost of writing to large-memory, and they build

data structures that would be too large for our use. Our algorithm leverages the available

small-memory to compute bands of nearby paths simultaneously. We capture both the

noncrossing and band ideas through what we call a path sketch, which we define as follows.

The path sketch enables us to cheaply recompute the shortest paths to nodes.

We call every M ′-th row in the square a superrow, meaning there are h superrows in

the square. The algorithm partitions the i-th superrow into segments 〈i, `, r〉 of consecutive

elements uiM ′,`, uiM ′,`+1, . . . , uiM ′,r. The main restriction on segments is that r < ` + M ′,

i.e., each segment consists of at most M ′ consecutive elements in the superrow. Note that

the segment boundaries are determined by the algorithm and are input dependent.

A path sketch is a sequence of segments 〈s, `s, rs〉, 〈s+1, `s+1, rs+1〉, 〈s+2, `s+2, rs+2〉, . . . ,

〈i, `i, ri〉, summarizing the shortest paths to the segment. Specifically, this sketch means that

for each vertex in the last segment, there is a shortest path to that vertex that goes through

a vertex in each of the segments in the sketch. If the sketch starts at superrow 1, then the

path originates from a node above the first superrow (i.e., the top boundary or the topmost

3 This approach requires constant small-memory to keep the best distance, the current distance, and
working space for computing the current distance. We also need bits proportional to the path length to
enumerate paths.
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Figure 1 Example square grid and path sketch for M ′ = 3 and h = k = 4. The circles are nodes

in the square. The diamonds are input nodes (outputs of adjacent squares), omitting irrelevant

edges. The red slashes are the 4 superrows, and the solid red are the sketch segments.

M ′ nodes of the left boundary). If the sketch starts with superrow s > 1, then the path

originates at one of the M ′ nodes on the left boundary between superrows s − 1 and s. Since

paths cannot go left, the path sketch also satisfies `s ≤ `s+1 ≤ · · · ≤ `i.

Evaluating a path sketch. Given a path sketch, we refer to the process of determining the

shortest-path distances to all nodes in the final segment 〈i, `i, ri〉 as evaluating the path sketch

or evaluating the segment, with the distances in small-memory when the process completes.

Note that we have not yet described how to build the path sketch, as the building process

uses evaluation as a subroutine.

The main idea of evaluating the sketch is captured by Figure 1 for the example sketch

〈1, 4, 6〉, 〈2, 6, 6〉, 〈3, 8, 9〉. The sketch tells us that shortest paths to u9,8 and u9,9 pass through

one of u3,4, u3,5, u3,6 and the node u6,6. Thus, to compute the distances to u9,8 and u9,9, we

need only consider paths through the darker nodes and solid edges—the lighter nodes and

dashed edges are not recomputed during evaluation.

The algorithm works as follows. First compute the shortest-path distances to the first

segment in the sketch. To do so, horizontally sweep a height-(M ′ + 1) column across the

(M ′ + 1) × kM ′ slab raising above the s-th superrow, keeping two columns in small-memory

at a time. Also keep the newly computed distances to the first segment in small-memory,

and stop the sweep at the right edge of the segment. More generally, given the distances

to a segment in small-memory, we can compute the values for the next segment in the

same manner by sweeping a column through the slab. This algorithm yields the following

performance.

I Lemma 8. Given a path sketch 〈s, `s, rs〉, . . . , 〈i, `i, ri〉 in an hM ′ ×kM ′ grid with distances

to all input nodes computed, our algorithm correctly computes the shortest-path distances to

all nodes in the segment 〈i, `i, ri〉. Assuming k ≥ h and small-memory size M ≥ 5M ′ + Θ(1),

the algorithm requires O(kM2) operations in small-memory, O(kM) reads, and 0 writes.

Proof. Correctness follows from the definition of the path sketch: the sweep performed by

the algorithm considers all possible paths that pass through these segments.

The algorithm requires space in small-memory to store two columns in the current

slab, the previous segment in the sketch, and the next segment in the sketch, and the two
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segment boundaries themselves, totaling 4M ′ +Θ(1) small-memory. Due to the monotonically

increasing left endpoints of each segment, the horizontal sweep repeats at most M ′ columns

per supperrow, so the total number of column iterations is O(kM ′ + hM ′) = O(kM ′).

Multiplying by M ′ gives the number of nodes computed.

The main contributor to reads is the input strings themselves to infer the structure/weights

of the grid. With M ′ additional small-memory, we can store the “vertical” portion of the

input string used while computing each slab, and thus the vertical string is read only once

with O(hM ′) = O(kM ′) reads. The “horizontal” input characters can be read with each of

the O(kM ′) column-sweep iterations. An additional k reads suffice to read the sketch itself,

which is a lower-order term. J

Building the path sketch. The main algorithm on each rectangle involves building the set

of sketches to segments in the bottom superrow. At some point during the sketch-building

process, the distances to each output node is computed, at which point it can be written

out. The main idea of the algorithm is a sketch-extension subroutine: given segments in the

i-th superrow and their sketches, extend the sketches to produce segments in the (i + 1)-th

superrow along with their sketches.

Our algorithm builds up an ordered list of consecutive path sketches, one superrow

at a time. The first superrow is partitioned into k segments, each containing exactly M ′

consecutive nodes. The list of sketches is initialized to these segments.

Given a list of sketches to the i-th superrow, our algorithm extends the list of sketches to

the (i + 1)-th superrow as follows. The algorithm sweeps a height-(M ′ + 1) column across the

(M ′ + 1) × kM ′ slab between these superrows (inclusive). The sweep begins at the left end

of the slab, reading the input values from the left boundary, and continuing across the entire

width of the slab. In small-memory, we evaluate the first segment of the i-th superrow (using

the algorithm from Lemma 8). Whenever the sweep crosses a segment boundary in the i-th

superrow, again evaluate the next segment in the i-th superrow. For each node in the slab,

the sweep calculates both the shortest-path distance and a pointer to the segment in the

previous superrow from whence the shortest path originates (or a null pointer if it originates

from the left boundary). When the originating segment of the bottom node (the node in

the (i + 1)-th superrow) changes, the algorithm creates a new segment for the (i + 1)-th

superrow and appends it to the sketch of the originating segment. If the segment in the

current segment in the (i + 1)-th superrow grows past M ′ elements, a new segment is created

instead and the current path sketch is copied and spliced into the list of sketches. Any sketch

that is not extended through this process is no longer relevant and may be spliced out of

the list of sketches. When the sweep reaches a node on the output boundary (right edge or

bottom edge of the square), the distance to that node is written out.

I Lemma 9. The sketching algorithm partitions the i-th superrow into at most ik segments.

Proof. The proof is by induction over superrows. As a base case, the first superrow consists

of exactly k segments. For the inductive step, there are two cases in which a new segment is

started in the (i + 1)-th superrow. The first case is that the originating segment changes,

which can occur at most ik times by inductive assumption. The second case is that the

current segment grows too large, which can occur at most k times. We thus have at most

(i + 1)k segments in the (i + 1)-th superrow. J

I Lemma 10. Suppose h ≤ k and small-memory M ≥ 11M ′ + Θ(1), and consider an

hM ′ × kM ′ grid with distances to input nodes already computed. Then the sketch building

algorithm correctly computes the distances to all output boundary nodes using O((hk)2M2)
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operations in small-memory, O((hk)2M) reads from large-memory, and O(h2k + X) writes

to large-memory, where X = O(kM) is the number of boundary nodes written out.

Proof. Consider the cost of computing each slab, ignoring the writes to the output nodes.

We reserve 5M ′ + Θ(1) small-memory for the process of evaluating segments in the previous

superrow. To perform the sweep in the current slab, we reserve M ′ small-memory to store

one segment in the previous row, M ′ small-memory to store characters in the “vertical” input

string, 4(M ′ + 1) small-memory to store two columns (each with distances and pointers)

for the sweep, and an additional Θ(1) small-memory to keep, e.g., the current segment

boundaries. Since there are at most hk segments in the previous superrow (Lemma 9),

the algorithm evaluates at most hk segments; applying Lemma 8, the cost is O(hk2M2)

operations, O(hk2M) reads, and 0 writes. There are an additional O(kM2) operations to

sweep through the kM2 nodes in the slab, plus O(kM) reads to scan the “horizontal” input

string. Finally, there are O(hk) writes to extend existing sketches and O(hk) writes to copy

at most k sketches.

Summing across all h slabs and accounting for the output nodes, we get O((hk)2M2 +

hkM2) operations, O((hk)2M + hkM) reads, and O(h2k + X) writes. Removing the lower-

order terms gives the lemma. J

Combining across all rectangles in the grid, we get the following corollary.

I Corollary 11. Let m ≤ n be the length of the two input strings, with m ≥ M . Suppose

h = O(m/M) and k = O(n/M) with h ≤ k. Then it is possible to compute the LCS or edit

distance of the strings with O(mnhk) operations in small-memory, O(mnhk/M) reads to

large-memory, and O(mnh/M2 + mn/(hM)) writes to large-memory.

Proof. There are Θ(mn/(hkM2)) size-(hM/11) × (kM/11) subgrids. Multiplying by the

cost of each grid (Lemma 10) gives the bound. J

Setting h = k = 1 gives the standard M × M tiling with O(nm) time and O(mnω/M)

ARAM cost. As the size of squares increase, the fraction of output nodes and hence writes

decreases, at the cost of more overhead for operations in small-memory and reads from large-

memory. Assuming both n and m are large enough to do so, plugging in h = k = max{1, kT }
or h = k = kQ with a few steps of algebra to eliminate terms yields Theorem 7.

5 Single-Source Shortest Paths

The single-source shortest-paths (SSSP) problem takes a directed weighted graph G = (V, E)

and a source vertex s ∈ V , and outputs the shortest distances d(s, v) from s to every other

vertex in v ∈ V . For graphs with non-negative edge weights, the most efficient algorithm is

Dijkstra’s algorithm [19].

In this section we will study (variants of) Dijkstra’s algorithm in the asymmetric setting.

We describe and analyze three versions (two classical and one new variant) of Dijkstra’s

algorithm, and the best version can be chosen based on the values of M , ω, the number of

vertices n = |V |, and the number of edges m = |E|.

I Theorem 12. The SSSP problem on a graph G = (V, E) with non-negative edge weights can

be solved with Q(n, m) = O(min(n(ω + m/M), (m + n log n)ω, m(ω + log n))) and T (n, m) =

O(Q(n, m) + n log n), both in expectation, on the (M, ω)-ARAM.
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We start with the classical Dijkstra’s algorithm [19], which maintains for each vertex v,

δ(v), a tentative upper bound on the distance, initialized to +∞ (except for δ(s), which is

initialized to 0). The algorithm consists of n − 1 iterations, and the final distances from

s are stored in δ(·). In each iteration, the algorithm selects the unvisited vertex u with

smallest finite δ(u), marks it as visited, and uses its outgoing edges to relax (update) all

of its neighbors’ distances. A priority queue is required to efficiently select the unvisited

vertex with minimum distance. Using a Fibonacci heap [24], the time of the algorithm is

O(m+n log n) in the standard (symmetric) RAM model. In the (M, ω)-ARAM, the costs are

Q = T = O((m + n log n)ω) since the Fibonacci heap requires asymptotically as many writes

as reads. Alternatively, using a binary search tree for the priority queue reduces the number

of writes (see Section 6) at the cost of increasing the number of reads, giving Q = T =

O(m log n + ωm). These bounds are better when m = o(ωn). Both of these variants store

the priority queue in large-memory, requiring at least one write to large-memory per edge.

We now describe an algorithm, which we refer to as phased Dijkstra, that fully maintains

the priority queue in small-memory and only requires O(n) writes to large-memory. The idea

is to partition the computation into phases such that for a parameter M ′ each phase needs a

priority queue of size at most 2M ′ and visits at least M ′ vertices. By selecting M ′ = M/c

for an appropriate constant c, the priority queue fits in small-memory, and the only writes to

large-memory are the final distances.

Each phase starts and ends with an empty priority queue P and consists of two parts.

A Fibonacci heap is used for P , but is kept small by discarding the M ′ largest elements

(vertex distances) whenever |P | = 2M ′. To do this P is flattened into an array, the M ′-th

smallest element dmax is found by selection, and the Fibonacci heap is reconstructed from

the elements no greater than dmax , all taking linear time. All further insertions in a given

phase are not added to P if they have a value greater than dmax . The first part of each

phase loops over all edges in the graph and relaxes any that go from a visited to an unvisited

vertex (possibly inserting or decreasing a key in P ). The second part then runs the standard

Dijkstra’s algorithm, repeatedly visiting the vertex with minimum distance and relaxing its

neighbors until P is empty. To implement relax, the algorithm needs to know whether a

vertex is already in P , and if so its location in P so that it can do a decrease-key on it. It is

too costly to store this information with the vertex in large-memory, but it can be stored in

small-memory using a hash table.

The correctness of this phased Dijkstra’s algorithm follows from the fact that it only ever

visits the closest unvisited vertex, as with the standard Dijkstra’s algorithm.

I Lemma 13. Phased Dijkstra’s has Q(n, m) = O(n(ω + m/M)) and T (n, m) = O(Q(n, m)+

n log n) both in expectation (for M ≤ n).

Proof. During a phase either the size of P will grow to 2M ′ (and hence delete some entries) or

it will finish the algorithm. If P grows to 2M ′ then at least M ′ vertices are visited during the

phase since that many need to be deleted with delete-min to empty P . Therefore the number

of phases is at most dn/M ′e. Visiting all edges in the first part of each phase involves at most

m insertions and decrease-keys into P , each taking O(1) amortized time in small-memory,

and O(1) time to read the edge from large-memory. Since compacting Q when it overflows

takes linear time, its cost can be amortized against the insertions that caused the overflow.

The cost across all phases for the first part is therefore Q = W = O(mdn/M ′e). For the

second part, every vertex is visited once and every edge relaxed at most once across all phases.

Visiting a vertex requires a delete-min in small-memory and a write to large-memory, while

relaxing an edge requires an insert or decrease-key in small-memory, and O(1) reads from

large-memory. We therefore have for this second part (across all phases) that Q = O(ωn+m)

ESA 2016



14:14 Efficient Algorithms with Asymmetric Read and Write Costs

and W = O(n(ω + log n) + m). The operations on P each include an expected O(1) cost for

the hash table operations. Together this gives our bounds. J

Compared to the first two versions of Dijkstra’s algorithm with Q = T = O(ωm +

min(ωn log n, m log n)), the new algorithm is strictly better when ωM > n. More specifically,

the new algorithm performs better when nm/M < max{ωm, min(ωn log n, m log n)}. Com-

bining these three algorithms proves Theorem 12, when the best one is chosen based on the

parameters M , ω, n, and m.

6 Further Results and Open Problems

In this section we outline results for a variety of other problems. The bounds are summarized

as part of Table 1.

FFT. For the FFT we can match the lower bound using the algorithm described else-

where [10], although in that case the computation cost was not considered. The idea is to first

split the DAG into layers of log(ωM) levels. Then divide each layer so that the last log M

levels are partitioned into FFT networks of output size M . Attach to each partition all needed

inputs from the layer and the vertices needed to reach them (note that these vertices will over-

lap among partitions). Each extended partition will have ωM inputs and M outputs, and can

be computed in M small-memory with Q = O(ωM), and T = O((ω + log M)M). This gives

a total upper bound of Q = O(ωM × n log n/(M log(ωM))) = O(ωn log n/ log(ωM)), and

T = O(Q(n) + n log n), which matches the lower bound (asymptotically). All computations

are done within the DAG model.

Search Trees and Priority Queues. We now consider algorithms for some problems that

can be implemented efficiently using balanced binary search trees. In the following discussion

we assume M = O(1). Red-black trees with appropriate rebalancing rules require only

O(1) amortized time per update (insertion or deletion) once the location for the key is

found [44]. For a tree of size n finding a key’s location uses O(log n) reads but no writes,

so the total amortized cost Q = T = O(ω + log n) per update in the (M, ω)-ARAM. For

arbitrary sequences of searches and updates, Ω(ω + log n) is a matching lower bound on the

amortized cost per operation when M = O(1). Because priority queues can be implemented

with a binary search tree, insertion and delete-min have the same bounds. It seems more

difficult, however, to reduce the number of writes for priority queues that support efficient

melding or decrease-key.

Sorting. Sorting can be implemented with Q = T = O(n(log n + ω)) by inserting all keys

into a red-black tree and then reading them off in priority order [10]. We note that this

bound on time is better than the sorting network lower bound (Theorem 4). For example,

when ω = M = log n it gives a factor of log n/ log log n improvement. The additional power

is a consequence of being able to randomly write to one of n locations at the leaves of the

tree for each insertion. The bound is optimal for T because n writes are required for the

output and comparison-based sorting requires O(n log n) operations.

Convex Hull and Triangulation. A variety of problems in computational geometry can be

solved optimally using balanced trees and sorting. The planar convex-hull problem can be

solved by first sorting the points by x coordinates and then either using Overmars’ technique

or Graham’s scan [18]. In both cases, the second part takes linear time so the overall cost is
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O(Sort(n)). The planar Delaunay triangulation problem can be solved efficiently with the

plane sweep method [18]. This involves maintaining a priority queue on x coordinate, and

maintaining a balanced binary search tree on the y coordinate. A total of O(n) operations

are required on each, again giving bounds O(Sort(n)).

BFS and DFS. Breadth-first and depth-first search can be performed with Q = T =

O(ωn + m). In particular each vertex only requires a constant number of writes when it is

first added to the frontier (the stack or queue) and a constant number of writes when it is

finished (removed from the stack or queue). Searches along an edge to an already visited

vertex require no writes. This implies that several problems based on BFS and DFS also

only require Q = T = O(DFS(n)). Such problems include topological sort, biconnected

components, and strongly connected components. The analysis is based on the fact that

there are only O(n) forward edges in the DFS. However when using priority-first search on a

weighted graph (e.g., Dijkstra’s or Prim’s algorithm) then the problem is more difficult to

perform optimally as the priority queue might need to be updated for every visited edge.

Dynamic Programming. With regards to dynamic programming, some problems are reas-

onably easy and some harder. We covered LCS and ED in Section 4. The standard

Floyd-Warshall algorithm for the all-pairs shortest-path (APSP) problem uses O(n3) writes.

However, by rearranging the loops and carefully scheduling the writes it is possible to imple-

ment the algorithm using only O(n2) writes and O(n3) reads, giving T = O(ωn2 + n3) [9].

This version, however, is not efficient in terms of Q. Kleene’s divide-and-conquer algorithm [2]

can be used to reduce the ARAM cost [39]. Each recursive call makes two calls to itself on

problems of half the size, and six calls to matrix multiply over the semiring (min, +). Here we

analyze the algorithm in the (M, ω)-ARAM. The matrix multiplies on two matrices of size n×n

can be done in the model in QM (n) = O(n2(ω + n/
√

M)) [10]. This leads to the recurrence

QKleene(n) = 2QKleene(n/2) + O(QM (n)) + O(ωn2), which solves to QKleene(n) = O(QM (n))

because the cost is dominated at the root of the recurrence. It is not known whether this

is optimal. A similar approach can be used for several other problems, including sequence

alignment with gaps, optimal binary search trees, and matrix chain multiplication [15].

Minimum Spanning Tree. The standard algorithms for the minimum spanning tree (MST)

problem are not write efficient. However using a variant of Borůvka’s algorithm, and careful

management of a union-find data structure, MST can be made write-efficient. In particular,

for an input graph in adjacency-list format with n vertices and m edges, MST has cost

Q(n, m) = T (n, m) = O(m log n + ωn) on the (M, ω)-ARAM, with M = O(1). We outline

the idea here—a more detailed description is given in the full paper [9].

The algorithm proceeds in two phases. For the first phase, consisting of the first log log n

rounds of Borůvka steps, the algorithm performs no shortcuts on a union-find tree. Thus it

will leave chains of length up to log log n that need to be followed for each root lookup. Also

all vertices of each component are maintained in a linked list so that a component (root)

can be searched with just reads. Because there are at most O(m log log n) queries during the

first log log n rounds, the total number of reads for identifying the minimum edges between

components in the first phase is O(m(log log n)2). There are O(n) writes for creating links

in the tree, linking components in the lists, and outputting selected edges.

After this first phase, the algorithm shortcuts all vertices to point directly to their root

(O(n) reads and writes). We refer to the roots as the phase-one components. In the second

phase, after each of the remaining rounds the algorithm shortcuts the phase-one components
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to point directly to their new root. Because there can only be at most n/ log n phase-one

components, and at most log n − log log n rounds in the second phase, the total number of

reads and writes for these updates is O(n). Looking up a vertex takes two steps: one to

find its phase-one component and another to get to the current component (root), both

taking constant time. Therefore the total number of reads for identifying the minimum

edges between components in the second phase is O(m) × (log n − log log n) = O(m log n).

Summing the reads and writes gives the above bounds. Observing that the SSSP algorithm

in Section 5 can be adapted to implement Prim’s MST algorithm [17] yields the bounds in

Table 1 (the n/M term is in expectation).
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