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ABSTRACT

Support of discussion based learning at scale benefits from
automated analysis of discussion for enabling effective as-
signment of students to project teams, for triggering dynamic
support of group learning processes, and for assessment of
those learning processes. A major limitation of much past
work in machine learning applied to automated analysis of
discussion is the failure of the models to generalize to data
outside of the parameters of the context in which the training
data was collected. This limitation means that a separate train-
ing effort must be undertaken for each domain in which the
models will be used. This paper focuses on a specific construct
of discussion based learning referred to as Transactivity and
provides a novel machine learning approach with performance
that exceeds state-of-the-art performance within the same do-
main in which it was trained and a new domain, and does
not suffer any reduction in performance when transferring to
the new domain. These results stand as an advance over past
work on automated detection of Transactivity and increase the
value of trained models for supporting group learning at scale.
Implications for practice in at-scale learning environments are
discussed.
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INTRODUCTION

Over the past decade, increasing interest in automated analysis
of online discussion for learning, sometimes referred to as
Discourse Analytics, has been featured in research on learning
in at scale environments like Massive Open Online Courses
(MOOC:s). In particular, prior work in MOOCSs has demon-
strated that students can benefit from discussion encounters
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with other students [18]. Much of this prior work has targeted
short synchronous collaborative discussion assignments or
informal and unstructured discussion in asynchronous discus-
sion forums [36]. More recently the topic of supporting team
based project learning in MOOCs has emerged [53].

Prior work in Computer-Supported Collaborative Learning has
demonstrated the value in automated analysis of discussion for
enabling effective assignment of students to project teams [53],
for triggering dynamic support of group learning [29], and for
assessment of learning processes [32, 14]. Though a plethora
of frameworks for analysis of discussion for learning are in
operation, many include a dimension for collaborative knowl-
edge construction where a valued conversational behavior is
one where students explicitly make their reasoning visible in
a way that connects back to ideas and reasoning expressed
earlier in the encounter [23]. One popular and long standing
such construct is that of Transactivity.

The concept of Transactivity originally grows out of a Piage-
tian theory of learning where this conversational behavior is
said to reflect a balance of perceived power within an inter-
action [4, 15]. It is a property of discourse in an educational
context that is associated with interactions that are beneficial
for learning [2], and thus it has been of great interest within
the learning sciences in the area of discussion based learning.

Transactive contributions demonstrate consideration of the
earlier expressed ideas. Thus, it makes sense that recent work
has demonstrated that automated models for Transactivity
detection can be used as a foundation for highly effective as-
signment of students to project teams in MOOCs by estimating
the collaborative potential of pairs of participants based on the
exchange of Transactive contributions [53]. Even before this
recent work, there was much interest in automated detection
of transactivity in educational applications [25, 44, 32, 1, 22].
However, where there are reported successes, past work has
failed to produce models that generalize well to new domains
[34], which we address in this work.

A Transactive contribution to a discourse must meet two re-
quirements[22]. First it must display reasoning, in other words
revealing how a speaker thinks something works, which can
be accomplished through an expressed evaluation, comparison,
or reference to a causal mechanism. For example, "Use of coal
increases pollution” displays a causal mechanism and "Use of
wind power may not be reliable throughout the year” expresses
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an evaluation. But something like "I prefer coal power” does
not express reasoning. A Piagetian perspective on learning
would suggest that students display their reasoning more when
they are in a safe environment where they feel their ideas are
valued and respected [15, 2].

The second requirement for a Transactive contribution is that it
references and idea expressed earlier in a discourse. Students
reference the ideas of another student when they are listening
to that student. It is a sign that the student takes the other
student seriously enough to consider their ideas and how their
respective ideas relate to one another [15, 2]. If earlier a
speaker said, "Wind is my choice because it is sustainable”, a
Transactive reply would be "Wind is sustainable, but it fails
to be reliable throughout the year”. On the other hand, "Use
of coal is cheap and reliable” would not be a Transactive
reply. In one case, the speaker shows consideration of another
student’s ideas, while in the second case we do not see this
consideration. From our technical perspective, an important
aspect of the operationalization that we leverage in the work
reported in this paper is the idea relatedness of the Transactive
contribution and the earlier contribution it refers transactively
to.

In the remainder of the paper we review prior work that lays
a technical foundation for our machine learning approach to
automated Transactivity detection. Next we describe our novel
approach. We then present an evaluation that demonstrates
that the novel approach beats a state-of-the-art baseline both
within the domain in which it was trained and a separate
domain, without any drop in performance when moving to
the separate domain. We discuss implications for practice in
at-scale learning environments. We conclude with limitations
and directions for continued research.

RELATED WORK

This paper presents a technical approach in the Neural Net-
work modeling paradigm, which has experienced a recent
resurgence of interest. Within that sphere, this work draws
from additional related bodies of work. Thus, we begin with
a general discussion of how our work is situated within the
general sphere of Neural Network modeling, specifically in
recent work in Deep Learning. Next, we describe prior work
in computational modeling of Textual Entailment, as our ap-
proach is heavily influenced by Deep Learning work done in
that area. As we will explain, the concept of Entailment shares
the important foundation in idea relatedness introduced above
in the operationalization of Transactivity. Finally, we transi-
tion into a discussion of Transfer Learning, as our method falls
in the general class of models centered around domain transfer
of machine learning.

Neural Network Modeling

Neural network modeling was the central form of machine
learning in the 1980s and early 1990s [46] but gave way to
Probabilistic Graphical Models beginning at the end of the
1990s [28]. It fell out of favor in the interim but then ex-
perienced a resurgence of interest under the name of Deep
Learning in recent years [47]. Specifically within the area of
computational modeling of discourse, deep learning methods

have considerably advanced the state-of-the-art in the past
few years. Most notably, it has seen strong results in social
chatbots [30], speech act classification [26], and work on un-
derstanding conversational processes [17]. However, for many
researchers working on understanding specific discussion pro-
cesses, deep learning approaches can remain impractical due
to the inordinate amount of data it typically requires to be
effective [55], often tens or even hundreds of thousands of
instances. Typical annotated corpora in research on discussion
based learning even in at scale learning environments like
MOOC:s are at least an order of magnitude smaller if not two
or three orders of magnitude smaller. In this paper we have,
therefore, set out to explore options for drastically reducing
the amount of training data required as well as to increase the
domain generality of trained models in order to reduce the
preparatory effort required to employ machine learned models
in at scale learning environments. The largest Transactivity
coded data set used in our experiments had fewer than 500
instances.

Transfer learning in the field of machine learning is a method
for applying learning from a source task to some target task
that may differ in surface features but share structure at a deep
level [38]. The motivation, in general, is to leverage the knowl-
edge from some task that is more fundamental for use in a
more challenging, often more specialized setting. The advan-
tage is that one might expect the more fundamental task to
have broad applicability as a preparatory task for many more
specific target tasks. In that way, the effort to prepare a large
training corpus for the more fundamental task pays off tremen-
dously with each new target task where only a small effort
to prepare training data will then be required. We strive to
apply this concept to Transactivity detection, as one of many
detection problems in the field of computational discourse
analysis where there is a dirth of public datasets large enough
to make effective use of many published deep learning ap-
proaches. This stands in contrast to some more well studied
natural language tasks that have already benefited from deep
learning, such as parsing [11], sentiment analysis [20], and
textual entailment [6].

Entailment

In our work, we use the Entailment task as the more funda-
mental task that forms a foundation for Transactivity detec-
tion. The Entailment task, specifically, comprises of deciding
whether the concepts presented in one text can be determined
to be true given some context or premise given in a differ-
ent text [13]. For example, if an object is a shoe, then we
can assume it was made to be worn on the foot. Therefore,
shoe entails made to be worn on the foot. Because the task
requires inferring abstract connections between ideas within
two snippets of text, we considered it a good candidate for
transferring learning to more specific applied discourse tasks
where it is important to identify forms of idea relatedness,
such as Transactivity.

One text entails another text if there is a conceptual link via an
inference that associates those two texts. Similarly, a Transac-
tive contribution to a discussion is one that displays reasoning
and uses that reasoning display to evaluate, extend, transform,



or refer substantively to an assertion made earlier in the dis-
course. The simple way of thinking about what constitutes
a reasoning display is that it has to communicate an expres-
sion of some causal mechanism or express an evaluation or
comparison. Transactive contributions are reasoning displays
where the contribution either explicitly refers linguistically in
some way to a prior statement, such as through the use of a
pronoun or deictic expression, or implicitly by referring to a
related idea. Thus, both Transactivity detection and entailment
detection share the notion of concepts linked via inference.

What makes detection of Transactivity challenging in a do-
main general way is identification of the relevant conceptual
links between ideas related by inference. Instead, using state-
of-the-art approaches to Transactivity detection, such as linear
Support Vector Machine models with n-gram features [44] is
that rather than learn the general task of identifying idea relat-
edness, the models tend to learn which concepts in the training
domain are related to one another, and to identify them from
their associated words. Thus, the learned associations are not
useful anymore in a different domains since the set of related
concepts that are relevant in the new domain will be different.
Our work is based on the premise that networks trained to
perform the Entailment task may need to learn internal text
encoding representations that enable measurement of "close-
ness by inference” rather than "closeness in meaning”, in other
words identification of abstract connections between expressed
ideas. Since Transactive contributions build on or evaluate
assertions made earlier in a discourse, the sub-problem of de-
tecting idea relatedness is a foundational task. Note that the
concept of idea relatedness used here as in the operationaliza-
tion of Transactivity goes beyond text similarity. The idea is
not that the two concepts are rephrases of one another, but that
they are related to one another through some inference.

Transfer Learning

What we have alluded to above is that we employ a transfer
learning paradigm the builds upon the Entailment task in order
to train a Transactivity detector with a relatively small training
set.

Transfer learning, the process of transitioning learning from
one task to another, has long been studied in the context of re-
inforcement learning and robotics [49], but has more recently
began have strong influences in other domains [38]. In natural
language processing, transfer learning has been shown to sup-
port a variety of basic tasks including chunking, named entity
recognition, and semantic role labeling [12, 41, 43]. More
recently, deep learning models in the paradigm of sequence-
to-sequence modeling have been shown to be able to leverage
multi-task learning [31, 56]. However, many of these multi-
task transfers have been less challenging that what we attack
in this paper since both the initial task and the transfer task
made use of very large datasets. Here we approach a transfer
task in two domains where there is not a very large corpus in
either domain.

The most comparable work to ours is by Mou et al. [33]
where they examined several methods of multi-task learning
on entailment and paraphrase detection. They showed that
the success of transfer learning between NLP tasks appears

to be correlated with the structural relatedness of the pairs
of tasks with one another. Our contribution builds upon this
concept by applying transfer learning to real world data, select-
ing and structuring the model to properly leverage structural
relatedness of the chosen tasks.

In our work, we employ a transfer method that builds on train-
ing for the Entailment task as pretraining task. In particular,
for the entailment pretraining we specifically consider the sim-
ple attention model proposed in the Language Technologies
community [40]. It is notable because despite the presented
model’s simple structure and relatively small number of param-
eters, it performs comparably with far more complex models
that have orders of magnitude more parameters. As we are
looking to work with small datasets, models that are both
simple and effective are the natural choice.

In recent years, large datasets for the textual entailment task
have been developed and made available for researchers [6].
State of the art performance on these datasets have been rising
steadily with use of complex recurrent neural networks [48],
neural attention models [40], tree based neural models [35],
and hybrid methods using both of those approaches [51, §].
Models trained on such a corpus to identify concepts linked
through inference across a plethora of domains are required
through the training process to build conceptual representa-
tions for words that make identification of conceptual links
possible. The idea behind our computational approach is to
leverage this tendency in a pretraining step for training to de-
tect Transactivity in one topic domain so that rather than learn
just the associations between specific pairs of concepts, the
model would learn to leverage the entailment representation
space that enables computation of idea relatedness of texts
across domains. The hope is that a model trained to detect
transactivity in one domain but building on this general pur-
pose representation space would be able to transfer to another
domain where the relevant set of linked concepts is different
but still within the broad range of topics covered inside the
very broad and diverse entailment corpus.

MODELS

Decomposable Attention Model

For our modeling work, we adapt the previously published De-
composable Attention Model presented by [40] for the purpose
of transfer learning from the Entailment task to Transactivity
detection. This model was chosen as a starting point for this
work by virtue of it demonstrating benefits including using
an order of magnitude fewer trainable parameters than other
common methods in for approaching textual entailment while
maintaining a high level of performance. Furthermore, the
model was not bound by a task specific architecture or feature
set that makes it a good candidate for multi-task learning with
pairwise comparisons. The Decomposable Attention Model
operates in four stages: input, attention, comparison, and ag-
gregation. We will provide an overview of their model to pro-
vide context for our adaptations and an intuitive explanation
for the benefit of the reader. See Figure 1 for a visualization
of the structure of the model.
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Figure 1. Decomposable Attention Model. Arrows with dotted lines in-
dicate networks with shared weights.
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Input: The model is defined with input of two text segments,
a= (aj,...,ay) and b = (by,...,b,) where m and n are the
lengths of the respective segments. Each vector a; and b; are
real value, d dimensional vector embeddings for each word in
their respective text segments. For words not in the vocabulary,
an embedding is assigned randomly based on the word’s shape.
The output of the model is defined as y = (y,...yc) where C
is the number of output classes for the dataset.

Attend: At the first stage of the model, each input is passed
into network F where a soft alignment between word em-
beddings is computed via a type of neural attention [3]. The
attention mechanism weights the importance of each word
in each sentence for how it will be used in the subsequent
computations. The network, F' is a simple feed forward neural
network with rectified linear activation [19]. This results in
a matrix of dimension m x n, e;; = F(a;,b;), where each cell
contains a score of how important each given word in a text
segment is, given that it co-occurs with another word in the
other text segment.

The matrix is then normalized for each direction to obtain two
vectors, o and 3, to represent the aligned subphrases from b
toaandatob:

n

o exp (eij)
A J:Zl iy exp (eix)

Z exp (eij)
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Compare: In the next stage, each aligned phrase is compared
separately by an additional feed forward neural network, G:

V17i:G([ai,ﬁ,’]) Vie [1,...,}’}1], 2)

V2 i = G([bj,aj]) V] € [1,...,n].
There are now two sets of vectors that encode a comparison
between the input and the aligned subphrases of each input
text segment.

Aggregate: The final stage of the model compresses the two
sets of vectors via summation, giving a vector representation
for each text segment with respect to the other.

m n
Vi=Yvii o, Va=) v (3)
= =

These two vector representations are then concatenated and fed
into a final feedforward neural network with softmax activa-
tion, H, to predict probabilities of class values: § = H([v, V2]).
The predicted class is thus y = argmax; §;

Transferable Attention Model

We refer to our adaptation of the original Decomposable Atten-
tion Model as the Transferable Attention Model. Specifically,
we adapted the model described above for the purpose of trans-
fer learning. We started by separating the model into two
modules. The fist module includes both the attention and com-
parison components, which generate sentence representations
from the input representations referred to in deep learning
work as word embeddings. The second module includes the
classification step, which takes in the two text segment com-
parison vectors and makes a prediction for the text pair’s class.

The reason we needed to separate these components of the
model is that, while performing transfer learning, we need to
be able to dynamically manipulate the weights or structures of
the classification stage while maintaining the integrity of the
parameters learned in the representation stage. This allowed
us the flexibility to have varying numbers of classes between
our source task and our target task. The modularity also allows
for varying types of classifiers or bindings to other models that
we consider for future work.

METHOD

Throughout the experimental work reported in this paper, we
used five datasets to demonstrate first task transfer and then
domain generalizability. Short descriptions of each are pro-
vided here. We will refer to two main tasks: the Entailment
task, which is our source task, and Transactivity Detection,
which is our target task. We also refer to two domains in
which we perform the Transactivity task. The source domain,
which is a Power Plan domain, is where the training for the
Transactivity task is performed. And the target domain, which
is the Superheroes domain, is the domain for the Transactivity
task where we do the test of domain generality of the trained
Transactivity task model.



Data

Stanford Natural Language Inference Corpus: As our pri-
mary dataset for the Entailment task, we selected the Stanford
Natural Language Inference Corpus (SNLI), version 1.0 [6].
This corpus contains over 570 thousand annotated text pairs
for the recognizing textual entailment task. Pairs consist of a
premise and a hypothesis, and are labeled as entailment if the
hypothesis is definitely true given the premise, contradiction
if the hypothesis is definitely false given the premise, and neu-
tral if the hypothesis could be true, but is not guaranteed to
be given the premise. The premises were captions from the
Flickr30k corpus [57] and the hypotheses were generated via
an Amazon Mechanical Turk task where workers were asked
to write three alternate captions that followed certain rules to
create appropriate hypotheses for the entailment task.

Multi-Genre NLI Corpus: The Multi-genre Natural Lan-
guage Inference Corpus (MultiNLI), version 0.9 [54] consists
of over 390 thousand text pairs annotated in the same way
as the SNLI corpus described above. However, this dataset
includes text segments from four different categories: fiction,
government texts, magazine articles about popular culture,
and transcripts of telephone speech. As this is a comparable
dataset to SNLI, we determined that it was a valid alternative
for pretraining in our experiments.

Power Plant Transactivity Corpus: Our larger annotated
Transactivity dataset, which is a shared dataset we used as a
target task to transfer our Entailment model, comprises 426
annotated text segments [53]. These text segments come in the
form of posts made by participants from Amazon’s Mechanical
Turk working in teams where they needed to determine which
type of power source(s) a city should make use of given a set
of characteristics that the city possesses. For each instance,
the labeled post is in reply to a previous post which is also
included in the representation of the instance for reference.
Each instance was annotated as Transactive or not Transactive
with respect to the context.

Superhero MOOC Transactivity Corpus: This set of anno-
tated Transactivity data consists of 57 annotated text segments
from a Massive Open Online Course in which students de-
sign superheroes and discuss them with other members of the
course [52]. The data are collected conversations between stu-
dents. Each contribution was annotated as Transactive or not
Transactive with respect to the conversation. Each instance
was annotated as Transactive or not Transactive, just like in
the previous corpus.

Microsoft Research Paraphrase Corpus: The Microsoft Re-
search Paraphrase corpus [16], has 5801 annotated sentence
pairs that are either labeled as paraphrase or not a paraphrase.
This will be used in one of our validation experiments.

Training

Training the Transferable Attention Model is performed in
three stages: first training the model on the source task for
a given number of iterations, then dynamically changing the
classification module to match the target task, and finally
training the new model on the target task until convergence.

During the training of the target task, error is propagated
backwards through both modules of the model to allow for
fine tuning of the attention and comparison networks for the
Transactivity task. Input word embeddings are held fixed
throughout the training. This backpropagation method is a
standard training approach for neural network models.

Implementation Details

We implemented the Transferable Attention Model using the
Keras deep learning library [10] with the Theano tensor li-
brary [50] as a foundation. Each network, F, G, and H were
2 layer feed forward densely connected networks with 200
hidden units per layer. The structure of H was the same for
both target and source task with the exception that the output
dimension of the target task was 2 while in the source task
the output dimension was 3. Text segments were fixed at 100
tokens with zero vectors left padding the text segments if the
length was shorter and truncating if the length was longer.
Word embeddings were 300 dimension pretrained GloVe [42]
embeddings.

Our model was trained with the Adam optimizer [27] with
a learning rate of 0.001. Training was done on a NVIDIA
GeForce GTX 760 with CUDA 8.0 [37] and CuDNN 5 [9].
One iteration of pretraining on the source task was performed,
classification weights were reset with a random Gaussian dis-
tribution, and ten iterations of training on the target task were
performed per fold during the experiments. Metrics for the
tenth iteration of target dataset training were reported in all
cases.

EXPERIMENTS

Beyond demonstrating the performance of our model on the
given task, we also motivated our experiments with validating
that our model operated as our intuitions predicted.

The metrics that we collect throughout our experiments are ac-
curacy, to see the percent correct of the predictions each model
makes, and Cohen’s kappa, to evaluate the models’ accuracy
in a way that controls for agreement by chance. Results are
reported in the Results and Discussions section and in each of
the corresponding subsections.

Cross Domain Generality

In order to evaluate our method on the task of Transactivity de-
tection we test our method of transfer learning against several
baselines, which are described below.

After pretraining the model on the SNLI corpus, we perform
a standard ten-fold cross validation over our Transactivity
training corpus, in each fold beginning with the model weights
generated by the pretraining. After each fold, we evaluate
the trained model on the held out Transactivity data from the
source domain (i.e., the Power Plan data). We also apply the
model trained in each fold to the data in the target domain
(i.e., the Superheroes data). As is a standard practice for
evaluation by cross-validation, results for all the folds are
averaged together for our final metric, reported in the Cross
Domain Generality subsection.



Baselines

Logistic Regression with Unigrams: Previous work by Joshi
et al. [25] on predicting transactivity used a simple unigram
model [39] with logistic regression, trained on the Power Plant
Transactivity Corpus. We therefore use this as a baseline to
connect our method with previous work in that field.

Basic Neural Network: As our model consists of only feed
forward neural networks, we evaluated the performance of a
basic neural net architecture without an attention mechanism
using the same GloVe word embeddings. We use a 2 layer
feed forward neural network with 200 hidden units per layer,
as that is the equivalent structure for the classification step of
our model. We allowed this model to be pretrained as with our
Transferable Attention Model.

Bidirectional Long Short-Term Memory: Many systems
in entailment use LSTM [24], and the bidirectional variant,
BLSTM [21] based models with word embeddings [7]. We
also evaluated our model with sentence embeddings generated
by single layer BLSTMs with 128 hidden units each direction,
then classified with a densely connected layer. This model
was also pretrained on the SNLI corpus.

Lexical Overlap

In early work with textual entailment, it was shown that simple
word overlap is a strong predictor of entailment [5]. Because
of the similarity between entailment and transactivity, we
hypothesized that this may hold for our task as well so we in-
vestigated to ensure our model was making inferences beyond
that naive method. To eliminate this possibility, we removed
all overlapping words between target and context sentences
for both the entailment dataset and the transactivity datasets
during test and training. We then report the results of our
model, trained and evaluated as in our first experiment above.

This makes the task considerably more difficult as the model
loses access to a large amount of content based context. It
therefore must rely on non-overlapping structural information
in the texts, synonyms, or more abstractly connected words.

Dataset Alignment

In the SNLI dataset, there are three classes, entailment, contra-
diction, and neutral, one of which can be applied to each text
pair. However, in the transactivity dataset, each pair can only
be identified by either transactive or not transactive. When
arranging the data between pretraining on entailment and train-
ing on transactivity data, we need to decide how these classes
map to one another to give the pretraining the most impact.
Entailment and neutral are easy to correspond to transactive
and not transactive respectively given that the former indicates
a logical connection between the two while the latter indicates
there is not. Contradiction, on the other hand, is more difficult
to determine. The hypothesis can either be considered con-
nected to the premise through logic that makes the hypothesis
impossible or it can be considered not connected as it is not
entailment.

We tested applying the contradiction component of the pre-
training data differently to evaluate which performed the best
for the transfer learning. The conditions that we evaluated

were relabeling the contradiction cases as either entailment
(contradiction positive) or neutral (contradiction negative) be-
fore evaluating as in the Cross Domain Generality experiment.
We also pretrained with all three entailment classes and just ig-
nored the contradiction label while training and evaluating on
transactivity. Discussion of these results can be found below
in the Results section.

Ablation

This set of experiments was designed to make sure that the
transfer learning was having sufficient impact to warrant their
inclusion in the model. We first tested to ensure that the
pretraining was being utilized by the model and not simply
being overwritten by the training that the model performs over
the transactivity dataset. To accomplish this, we executed the
experiment as in the Cross Domain Generality case without
pretraining the model on the entailment dataset. We then
evaluated on only the in domain data.

To ensure that the model was not simply applying textual
entailment to our transactivity dataset and that it learned some-
thing meaningful from the small dataset, we ran the experiment
with only weights learned on the entailment task and evalu-
ating on the in domain transactivity test data. Both of these
experiments are reported below in the Results section.

Alternative Datasets

The last set of experiments were motivated by the possibility
that the entailment task was not necessarily the explanation
for the performance of the model. We considered two alterna-
tive explanations: that the SNLI corpus may be particularly
suited for transfer leaning in this domain, or that any sentence
comparison task would transfer sufficiently for transactivity to
be predicted.

To evaluate the first consideration, we tested the model using
an alternate source dataset, the MultiNLI corpus. In this eval-
uation, our source task was the same as before, but the data
used to pretrain was different.

To evaluate the second consideration, we evaluated our model
when the source task was changed to the similar, though not
identical, task of paraphrase detection using the MSRP corpus.
Key differences between paraphrase detection and entailment
is that entailment represents a directed relationship between
text pairs, while paraphrase detection is undirected. Para-
phrase detection also has only two output classes compared to
entailment’s three.

One issue that we needed to control for when pretraining with
paraphrase detection was that the dataset was significantly
smaller than either entailment corpus. To provide a fair com-
parison, we randomly selected an equivalent number of SNLI
and MultiNLI examples to pretrain with and reported those
results as well.

Data Set Size

One of the most frequent questions asked about automated
approaches to discussion analysis that require training is how
much data is required. Thus we include one additional experi-
ment that manipulates the amount of training data and shows
how performance varies as a result.



Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
Unigrams with LR 0.795 0.667 0.510 0.376
Basic Neural Network 0.798 0.721 0.498 0.305
Bidirectional LSTM 0.814 0.782 0.543 0.472
Transferable Attention (TA) 0.840 0.832 0.607 0.611

Table 1. Model performance in domain versus out of domain compared to baselines.

Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
Unigrams with LR 0.781 0.667 0.476 0.363
Basic Neural Network 0.761 0.733 0.412 0.309
Bidirectional LSTM 0.812 0.772 0.524 0.442
Transferable Attention (TA) 0.828 0.810 0.475 0.551

Table 2. Model performance in domain versus out of domain compared to baselines with no lexical overlap between target and context.

RESULTS
Models Accuracy Kappa
TA 0.840  0.607
- pretraining 0.700  0.035
- transactivity training 0.307  0.005

Table 3. Model performance with varying training stages removed.

Cross Domain Generality

Table 1 shows the results for our comparison of our model’s
performance on the in-domain transactivity dataset to the out
of domain transactivity data set after pretraining on the SNLI
corpus for the entailment task. We find that our model outper-
forms the baselines in all metrics, with over 80% accuracy and
a kappa of over 0.6 indicating good agreement with annotators.
When comparing accuracy between tests, we can see that our
model loses less than one percentage point, while the unigram
baseline drops over 12 percentage points when evaluating on
the out of domain set. The simple word embedding based
baselines also appeared to drop across domains, though not as
dramatically as the unigram model.

From this, we can infer that learning to operate over general
semantic vectors can influence the domain generality of classi-
fication models. We also demonstrate that transferring learned
representations from a deep model trained on a general source
task can improve performance on multiple domains of a target
task even if the model was only trained on a single domain of
the target task.

Lexical Overlap

A similar story is seen in Table 2 with lexical overlap between
target and context text segments is removed. All of the tested
models dropped performance modestly, though our model
still managed to get an accuracy of over 80%. This provides
compelling results that the reasoning our modeling is doing
between the two text segments is more abstract that simply
measuring word overlap.

Dataset Alignment

Because the source task is a three class classification and the
target task is a two class classification, we considered alterna-
tive alignments between categories, which we found to have

different implications for performance in the two transactivity
datasets. The results presented in Table 4 make sense when
the data is examined qualitatively.

In the condition in which contradiction was used as a positive
example, the model obtained a notably higher kappa on the
in domain dataset that contained more competitive transacts,
demonstrating disagreement. However, when contradictions
were treated as negative examples, the model performed much
better on the out of domain dataset which contains a lower
percentage of competitive transacts. When contradiction is
given a separate class during source task training and not used
in target task training, the kappa is higher for both target task
datasets indicating that the model was free to make a determi-
nation on the role of learned contradiction-type relationships
as it applies to the transactivity task.

Ablation

Table 3 reveals that the pretraining on the source task and the
training on the target task are both critical for the performance
of the model. This indicates that the model learned impor-
tant representation structure from the large amount of data
provided with the source task. It also can be seen to not only
classify the target task as if it were the source task, but rather
it learned about the difference between the tasks sufficiently
to adapt to the new task.

Alternative Datasets

In our final set of experiments as reported in Table 5, we can
see that there are comparable results between using SNLI
and MultiNLI for pretraining. An interesting observation is
that pretraining on the MultiNLI corpus seemed to perform
better for in domain transactivity detection while pretraining
on the SNLI corpus had stronger results for out of domain
prediction. This raises some interesting questions regarding
how the domain of the source data sets can influence the
generalizability of target datasets while transferring learning.

We can also see that with a smaller number of source task
text pairs, it appears that SNLI provides the best performance,
followed by MultiNLI, then MSRP performs the worst. This
provides some evidence that the entailment task is providing
more valuable pretraining as compared to paraphrase task.



Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
TA with contradiction negative 0.848 0.824 0.542 0.586
TA with contradiction positive 0.828 0.791 0.598 0.511
TA with three classes 0.840 0.832 0.607 0.611

Table 4. Model performance with respect to how contradiction was treated in task transfer.

Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
TA with full SNLI training set 0.840 0.832 0.607 0.611
TA with full MultiNLI training set 0.869 0.804 0.647 0.544
TA with both SNLI and MultiNLI 0.833 0.828 0.536 0.585
TA with truncated SNLI 0.781 0.786 0.328 0.464
TA with truncated MultiNLI 0.764 0.761 0.255 0.383
TA with MSRP training set 0.752 0.751 0.210 0.345

Table 5. Model performance with respect to dataset used for pretraining.
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Figure 2. Graph of the change in kappa score over varying number of
transactivity training instances.
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Figure 3. Graph of the change in accuracy score over varying number
of transactivity training instances.

Dataset Size

Here we address the question of how much data is required
for training in order to achieve the best performance. We
ran a series of cross-validation experiments using the full
Transfer Attention Model where we manipulated the number
of training instances sampled from the maximal training set on
each fold of the cross-validation. The results are displayed in
Figures 2 and 3 for Kappa and Accuracy respectively. Here we
see progressive improvement as more and more data is used,
without a substantial plateau. Thus, it is possible even better
performance could have been achieved had we provided more

data, and a smaller training set size would have yielded poorer
performance.

DISCUSSION AND IMPLICATIONS

The results presented in this paper demonstrate that the novel
neural approach to classification we present achieves an im-
provement in accuracy as well as generalizability over previ-

ously published work on automated Transactivity detection
[25, 44, 1, 34, 22].

Automated Transactivity detection has a variety of applications
in online learning environments, especially where discussion
is part of the learning process. The presence of Transactivity
is a significant predictor that a collaborative discussion is con-
ducive to learning [4, 2, 25, 22, 45]. That makes Transactivity
a construct that is particularly valuable to be able to detect.

In general, automated detection of discussion processes that
are either positively or negatively related to learning can be
applied to problems such as automated assignment of stu-
dents to project teams [53], for triggering dynamic support of
group learning processes [29, 18], and for assessment of those
learning processes [45]. Raising the level of accuracy at this
detection increases the feasibility of offering these forms of
automated support in massive online learning environments.

The generalizability result has particular implications for learn-
ing at scale. Scale is not just about reaching a large number of
students in one course or offering the same course many times,
but being able to apply a form of learning support broadly
across courses. Without the ability to generalize a model’s
performance to new data sources, it would be necessary to
train a new Transactivity detection model for every course, or
maybe even every assignment where the model will be used.
Clearly, a solution that requires retraining over and over is
more costly to use than one that can be trained once and then
reused many times in many different contexts.

CONCLUSIONS AND FUTURE WORK

We have demonstrated a method to utilize a general inference
task with a large corpus of annotated data to learn representa-
tions that can be used as pretraining for a small discourse task
with strong domain generality. We have also validated our



approach to control for alternate explanations of the perfor-
mance of the model that would indicate that it is not learning
a sufficiently abstract representation of the data.

We have also began to explore the use of other source tasks
for the transfer learning, though have found thus far that for
the purposes of Transactivity detection, using the entailment
task as a source appears to have the best results likely due to
the structural similarity between the tasks.

Though the results presented in this paper are promising, one
limitation is that the domain transfer was only tested on one
transfer domain (i.e., transfer from the Power Plan domain to
the Superheroes domain) and one transfer task (i.e., Transac-
tivity detection). In future, we will test this paradigm on a
wider variety of domains and tasks.

The promising results presented in this work inspire a number
of future research directions. For example, examining the fea-
sibility of injecting domain specific information into the model
during training to improve the ability of the model to adapt to
complex target domains is a potentially interesting direction
of study. Lastly, incorporating this model or representations
learned by this model as a component of a larger system may
be of interest for specific applications.
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