
Toward Live Inter-Domain Network Services
on the ExoGENI Testbed

Yuanjun Yao† Qiang Cao† Rubens Farias† Jeff Chase† Victor Orlikowski†
Paul Ruth§ Mert Cevik§ Cong Wang§ Nick Buraglio‡

†Duke University §RENCI ‡ESnet

Abstract—A key dimension of reproducibility in testbeds is

stable performance that scales in regular and predictable ways

in accordance with declarative specifications for virtual resources.

We contend that reproducibility is crucial for elastic performance

control in live experiments, in which testbed tenants (slices)

provide services for real user traffic that varies over time.

This paper gives an overview of ExoPlex, a framework for

deploying network service providers (NSPs) as a basis for live

inter-domain networking experiments on the ExoGENI testbed.

As a motivating example, we show how to use ExoPlex to

implement a virtual software-defined exchange (vSDX) as a tenant

NSP. The vSDX implements security-managed interconnection of

customer IP networks that peer with it via direct L2 links stitched

dynamically into its slice. An elastic controller outside of the

vSDX slice provisions network links and computing capacity for

a scalable monitoring fabric within the tenant vSDX slice. The

vSDX checks compliance of traffic flows with customer-specified

interconnection policies, and blocks traffic from senders that

trigger configured rules for intrusion detection in Bro security

monitors. We present initial results showing the effect of resource

provisioning on Bro performance within the vSDX.

Index Terms—Networks, Testbeds, Intrusion Monitoring, SDN

I. INTRODUCTION

Network testbeds have an important role as platforms to
experiment with new approaches for networked systems. In
the GENI [1] community, it is common to distinguish two
aspects of this role: in the wind tunnel model researchers
experiment with prototypes under controlled conditions and
synthetic loads, while the petri dish model envisions the
testbed as a platform for live network services that serve real
users, and evolve under real-world conditions.

We focus on advancing support for GENI testbeds as a petri
dish to culture new approaches to security-managed network
services. Our approach is inspired in part by proposals put
forward by leading researchers more than a decade ago for
“pluralist” network architecture based on deep virtualization.
Most notably, the authors of Plutarch [2] and Cabo [3],
[4] build network service providers (NSPs) as a software
layer over programmable infrastructure: pipes, programmable
switching points, and in-network computation. They offer a
compelling vision of NSPs that manage end-to-end interoper-
able connectivity, riding over an architecture-neutral underlay
of infrastructure providers.

Reproducibility is crucial for testbeds that host live services,
just as for fixed (wind tunnel) experiments. In particular, tenant

NSPs must provide performance assurances to their customers
and adapt their slice configurations to meet their targets as
demands change. In this context, reproducibility means that
any slice with a given declarative resource specification S
delivers fixed performance under a given fixed workload W
at any time. This property is essential for elastic performance
control: it enables the tenant to predict the resources needed
to stay on target as the workload changes, and adapt its slice
accordingly. Stable and responsive elastic control based on
high-fidelity virtualization is an active research topic (e.g.,
Pulsar [5]), which our testbeds should support. Success means
demonstrating effectiveness under diverse conditions encoun-
tered in a live deployment.

Live tenant NSPs require performance assurances that are
precise and strong at the foundation—the testbed infrastructure
service. Recent post-GENI testbeds, including Chameleon [6],
emphasize bare-metal control to achieve high fidelity. Our
work uses ExoGENI [7] slices provisioned using open-source
virtualization (e.g., KVM), similarly to commercial IaaS
clouds. ExoGENI leverages advanced circuit fabrics (I2-AL2S,
ESnet) for the cross-site network backplane. Thus, slices may
instantiate end-to-end network topologies and evolve them
by allocating and releasing VMs and dynamic circuits, with
precise resource contracts from the infrastructure providers.

With these ingredients in place, our objective is to enable
testbed-hosted NSPs that benefit real users—for example, to
implement secure built-to-order virtual science networks that
span campuses. Going further, we strive to support inter-
domain networking experiments: traffic routing among NSPs
that are controlled by different principals and that peer with
one another as in today’s Internet.

Our initial efforts focus on three key elements. First, en-
able controllable packet flow into and among GENI slices.
ExoGENI stitchports allow slices to establish peering links
with other slices at L2 by mutual consent [8], [9]. Moreover,
Duke and other campuses have deployed SDN-enhanced edge
networks that support opt-in redirection of real user traffic
into the circuit fabrics and into locally hosted GENI edge
points of presence (PoPs). Second, introduce an elastic slice
controller architecture for slices to adapt their configurations
over time—we might call them “software-defined slices”. We
recently reported on initial experiments with Ahab controllers
and elastic NSP slices in ExoGENI [9]. Third, introduce tools
for participants to authorize their peering connections, traffic

vSDX NSP
Slice Controller

ExoPlex

OVS

OVS

OVS

OVS

OVS

Network
stitching

Network
connec-

tivity
OVS

Bro

Mirrored
flows

Deploy

Deploy

Client Domain

Client Domain

Stitchport

Client Domain REST API

Ahab
network manager

Fig. 1: The ExoPlex network service architecture. A vSDX NSP supported by ExoPlex uses an elastic slice controller to
coordinate dynamic circuits and Bro security monitors via Ahab. The controller exposes REST APIs for clients to request
network stitching and connectivity and uses a SAFE engine to check each request for compliance with logical trust policies.

flows, and related interactions. To this end we introduce a
declarative assertion and policy language—a trust logic—and
certificate transport for secure logical trust [10], [11].

This paper outlines these elements and presents experiments
with an example tenant NSP —a security-enhanced network
provider in a slice. We refer to the experimental NSP and the
ExoGENI-hosted framework that supports it as ExoPlex (§II).
An ExoPlex NSP offers edge-to-edge connectivity among
attached customer slices (or campus subnets) with bandwidth
assurances and declarative security policies. Our example NSP
is analogous to a software-defined exchange (SDX [12]):
customers attach their L2 networks to it at edge PoPs, stating
policies to govern their traffic flow and their connectivity
with other customers. The NSP then manages traffic flow in
accordance with the union of the customer policies. We refer
to the example NSP as a virtual SDX (vSDX) because its
topology is elastic and it occupies many edge PoPs rather
than a fixed exchange point (§III). The prototype vSDX also
deploys Bro [13] appliances for integrated security monitoring.
We investigate the performance of the Bro VMs as they filter
suspect traffic passing through a vSDX NSP slice (§IV).

II. OVERVIEW OF EXOPLEX

Figure 1 illustrates the ExoPlex structure for hosting end-to-
end tenant network providers (NSPs) with in-network services,
such as elastic security scanning. ExoGENI is a good foun-
dation for these NSPs because it provides on-demand com-
putation and programmable (virtual) switching/NFV capacity
at multiple sites/PoPs on advanced network circuit fabrics
linking many campuses and research centers. The customers
of a tenant NSP may be subnets in an SDN-enabled host
campus network, external networks or testbeds connected
through network circuits to edge interfaces (stitchports), or
other ExoGENI slices connected via direct L2 peering of the

slice dataplanes [8]. For example, the prototype vSDX (§III)
provides network transport service to the Chameleon testbed.

An ExoPlex NSP is a testbed slice containing a dynamic
virtual network topology. Each customer of an NSP attaches
to it at L2 to form a peering link (a stitch) between at least
one pair of interfaces on their network edges, via a circuit
attached to a stitchport, or (if colocated at a site) by direct
peering over an ExoGENI site interconnect. The customers
route traffic onto their peering links, and the NSP transports
the traffic onto an egress link to the destination customer—or
drops it—according to its configured policies.

Any ExoGENI slice may have an optional external slice
controller built with the Ahab toolkit [9]. Ahab controllers
invoke ExoGENI IaaS interfaces programmatically to adapt
the slice configuration and topology, and also make calls into
VMs or service elements instantiated in the slice. An NSP
slice controller may expose service-specific northbound REST
APIs to the clients or customers of the NSP. Calls to these
northbound APIs request network services, and may trigger
changes to the NSP slice as needed to provide that service,
according to an elastic control policy for the NSP.

ExoPlex is a tool to pilot traffic engineering, topology adap-
tation, and in-network security functions within tenant NSPs.
Our initial vSDX experiment based on ExoPlex combines
elements of three focus areas summarized below.

Authorizing interconnection and inter-domain traffic

flow. We use datalog trust logic (SAFE) to authorize vSDX
customer attachment and to validate both IP prefix ownership
and advertisements at both sides of each stitch, thereby provid-
ing security assurances equivalent to RPKI and BGPSEC. In
this way an NSP provides a secure and private interconnection
service for authorized customers.

Network management languages. Recent network man-
agement languages (such as PGA [14], PANE [15], or Mer-

Policy Category Description #Certificate

types

Chain

length

approveByUserACL Stitch Accept if the customer is on a vSDX access control list (ACL). 2 5
approveByUserAttr Stitch Accept if the customer is a member of an eligible GENI project. 4 10
approveBySliceAttr Stitch Accept if the customer slice is endorsed as eligible by a trusted party. 5 12
approveByProjectID Stitch Accept if the customer slice belongs to an eligible GENI project (by ACL). 3 6
approveByProjectAttr Stitch Accept if the customer slice is endorsed as eligible by a trusted party. 6 13
approveByUserACL Transit Accept if receiver agrees to accept traffic from peer requester (ACL). 2 4
approveByUserAttr Transit Accept if requester has a security attribute accepted by receiver. 3 6
approveByProjectID Transit Accept if requesting slice belongs to a project accepted by receiver. 5 11

TABLE I: Summary of policies for network authorization in ExoPlex and their complexity: the number of types of logical statements (certificates)

and the chain length of a typical logical proof of compliance for each policy.

lin [16]) provides declarative policy tools to manage con-
nectivity among network endpoints. While these systems are
designed for use within an enterprise, an NSP might use sim-
ilar tools to configure connectivity among customer domains
across a wide area. All of these languages are based on an
“off by default” whitelisting model for interconnection based
on user-defined attributes (labels) and predicates for network
endpoints. Our example vSDX allows customers to specify
their interconnection policies to the vSDX declaratively using
trust logic. Trust logic enables us to organize principal identi-
ties within an authority structure that governs which principals
have authority to assign labels and enable flows. This approach
is applicable to federated systems with no central point of
policy control and multiple sources of trust labels, which may
include security endorsements.

Deploying a Bro security monitor fabric. Network man-
agement languages also define syntax to impose path con-
straints on permitted flows, e.g., to mandate that flows transit
through a service chain of one or more NFV functions.
We focus on deployment of network security monitoring
as an exemplary NFV. The vSDX performs intrusion de-
tection/prevention based on Bro [13] appliances running in
elastically deployed virtual machines (§III-B). Given strong
reproducibility properties, the platform can serve as a testbed
for scalable on-demand Bro deployments for the community.

III. VIRTUAL SDX: A PROTOTYPE NSP

The prototype tenant NSP in this paper is a virtual software-
defined exchange (a vSDX) with integrated security monitor-
ing. The SDX concept was conceived as a physical facility
(PoP) with direct attachment to customer networks. IaaS
providers with broad reach, such as the ExoGENI federa-
tion, can host “virtual” SDX services that provide similar
functions decoupled from fixed peering points. A vSDX can
extend to many geographically distributed PoPs via a dynamic
bandwidth-provisioned network backplane topology.

The vSDX Network Service Provider is an elastic slice man-
aged by an Ahab controller. The controller runs outside of the
vSDX slice and exposes a northbound API for operations on
the slice by peer domains that are authorized to peer with the
vSDX as customers. Customers invoke these northbound APIs
to bind named subnets under their control to the vSDX via
L2 stitching, request bandwidth-provisioned connectivity with
other subnets (including subnets owned by other customers),

and specify logical policies that govern approval of requests
by other customers to connect to them.

The vSDX slice comprises virtual compute nodes running
OpenVSwitch, OpenFlow controllers, and Bro traffic monitors.
Traffic flow and routing within the vSDX slice are governed
by a variant of the Ryu rest router SDN controller similar
to the Plexus SDN controller used within Duke’s campus
SDN network. The vSDX slice controller computes routes
internally for traffic transiting the vSDX network, and invokes
the northbound SDN controller API to install them. The SDN
controller runs another Ryu module (rest ofctl) to block traffic
from offending senders. If a Bro node detects that traffic
violates a Bro policy, it blocks the sender’s traffic by invoking
a rest ofctl API via the Bro NetControl plugin.

As client requests for bandwidth-provisioned connectivity
arrive at the vSDX, the slice controller instantiates slice re-
sources as needed to carry the expected traffic. These resources
include peering stitchport interfaces at each PoP, the OVS
nodes that host these vSDX edge interfaces, Bro nodes to
monitor the traffic, and backplane links to carry the traffic
among the PoPs. The controller reuses existing resources in
the slice if they have sufficient idle capacity to carry the
newly provisioned traffic, and instantiates new resources as
needed. In particular, it adapts the vSDX backplane topology
by allocating and releasing dynamic network circuits as needed
to meet its bandwidth assurances to its customers.

A. Authorization
A key difference from a classical SDX is that domains

specify policy using trust logic rather than through OpenFlow
directly. The vSDX customers specify logical policy rules that
govern which other customers may interconnect with them;
these policies may consider the security properties of peer
networks and/or the accountable identities that control them.
Customers trust the vSDX to evaluate compliance of any
connecting peers with their security policies on their behalf.
Customers also present logical certificates that represent their
own identities, subnet ownership, and security properties when
they attach to the vSDX.

Logical trust provides a simple and powerful basis for autho-
rization of requests to the vSDX service. Clients authenticate
their REST calls to the vSDX API using keypairs. Clients
pass links to certificate chains that express their connectivity
policies and various attributes and permissions granted to
them by other parties. These include certificates assigning

identity attributes to their public keys, certificates from GENI
authorities endorsing the slice and naming a GENI project that
it belongs to, and attributes of the project and slice from these
authorities or other trusted parties. (For the GENI attributes
we use SAFE logical certificates from synthetic authorities
rather than standard GENI formats, but their content matches
the GENI trust model [17].) The vSDX slice controller runs an
instance of the SAFE logical inference engine to validate each
request against configured security policies before approval.

Stitching. A customer slice stitches to a vSDX provider’s
network at one or more named L2 peering points. The vSDX
applies its own policies to validate each request before in-
stalling each peering link.

Connectivity. Connectivity among customers is off by
default: flows are enabled among subnets only by customer
request, and only when compliant with the stated connectivity
policies of both affected customers.

Prefix ownership. The vSDX also uses trust logic to
validate ownership of prefixes advertised by its customers.
Following the model of RPKI, prefixes are delegated tran-
sitively through a hierarchy of owners, rooted in a trusted
authority (e.g., ICANN) with range containment checked at
each level. Following the model of BGPsec, customers must
own the prefixes they advertise, or must link to certificates
delegating the right to advertise those prefixes transitively from
their owners. These delegations are represented in SAFE logic
(rather than the RPKI or BGPsec standards), and are checked
with logical SAFE validation rules.

The stitching and connectivity policies may include arbitrary
attribute checks on the requesting client, slice, and/or project,
and on the set of authorities trusted to assert these attributes.
Table I lists some exemplary policies for vSDX stitching and
customer connectivity.

If transit is approved based on connectivity policies, the
vSDX slice controller finds a path for the connection and
installs the routes via SDN. As a result, the established
connectivity among customers is end-to-end and bidirectional,
and limited to the authorized subnets.

B. Bro Intrusion Detection
In our vSDX, permitted flows are inspected by out-of-band

Bro network security monitor appliances to detect intrusion.
As a simple form of intrusion prevention, it uses Bro’s
NetControl framework to interrupt all traffic from the source
of a suspect flow. The vSDX controller deploys Bro instances
elastically to scale capacity as customers join. Bohatei [18]
provides an elastic DDoS defense by deploying filtering ap-
pliances in a similar way.

Bro is a powerful, open-source out-of-band network mon-
itoring and analysis framework supporting a wide range of
traffic analysis tasks, including network activity logging, sanity
checks for various protocols, and intrusion activity matching.
It has been widely used by network infrastructures and service
providers.

Typically, a Bro instance is deployed alongside an edge
router, where intrusion detection is needed. A router or switch

mirrors network traffic to the out-of-band Bro instance, which
scans the network traffic without affecting performance. Scan-
ning applies a script of match-action rules to identify and flag
suspicious activities. If a sampled traffic pattern matches a
rule, Bro triggers its event engine to take a corresponding
action. These actions are selected from a library of connectors
(event handlers) in Bro’s NetControl framework. Typically,
these actions add the sender’s IP address (or subnet) to a
blacklist and/or use SDN to cut flows or sandbox endpoints.

Bro may also be deployed in a closed loop to install rules
that block (blackhole) traffic from a suspected attacker on
ingress at the network edge. Bro tooling may also cross-
reference with NetFlow data and install rules in access-filtering
edge devices to block attack traffic.

In this paper we explore the performance of closed-loop
traffic control based on Bro when operating within a vSDX
slice on the ExoPlex platform. Our experiments use synthetic
traffic, but we source and sink the traffic from a dynamic set
of customer slices that stitch to the vSDX at L2, modeling
a live deployment. Due to limitations of current testbeds, we
are limited to virtual host-based network appliances and SDN-
based access control within the vSDX slice. These functions
run within OpenVSwitch (OVS) instances. The Bro and OVS
instances run on elastically deployed ExoGENI VMs. An Ahab
slice controller is responsible for elastic provisioning of the
monitoring and filtering capacity within the vSDX slice.

IV. EXPERIMENT

In this section, we evaluate the effectiveness of the vSDX
Bro nodes under varying traffic. This evaluation explores
both the effectiveness and limitations of deploying Bro in
the ExoGENI testbed, and stability (reproducibility) of the
results across multiple deployments of the same declarative
slice specification.

A. Design
Our vSDX NSP experiment consists of an ExoPlex slice

deployed across two ExoGENI sites, which interconnects four
client domains (see Figure 2). Two of the client domains are
located on the Chameleon testbed, and connect to the vSDX
using dynamic circuits and stitchports. The other two client
domains are independent slices on ExoGENI, each connecting
to the vSDX using slice-to-slice stitching at each PoP—the
vSDX establishes a PoP on each ExoGENI site where it has an
authorized customer. For simplicity, all client domains specify
SAFE policies that allow incoming traffic from all other client
domains, but require that the secure ingress service terminates
flows identified as potentially malicious according to a pre-
established set of Bro match-action rules.

Each link within the ExoPlex vSDX is allocated 2 Gbps
of bandwidth, and the link between ExoPlex and each client
domain is 1 Gbps. All ExoGENI nodes (clients and ExoPlex
services) are VMs having 4 cores and 12 GB RAM (the “XO
Extra Large” instance type). Two types of nodes comprise
the vSDX: OVS nodes (running version 2.0.2) and Bro nodes
(running version 2.5.2). On the Bro nodes, we load all policy

Chameleon
Slices vSDX

Secure Ingress Service

ExoGENI
Slices

1 Gbps

1 Gbps

1 Gbps

1 Gbps
2 Gbps

2 Gbps 2 Gbps

Bro

Dynamic Virtual Network
ovsovs

Fig. 2: An experimental SDX network that exchanges traffic between customer nodes and mirrors traffic to Bro nodes for intrusion detection.

scripts included in the distribution, and add one of our own that
detects transfers of “malicious” files with specific signatures.
Should a “malicious” file be detected, Bro instructs the SDN
controller to drop traffic from the source using the NetControl
framework as described above.

We measured the performance of Bro nodes deployed on
several different sites within the vSDX. In each run a Bro node
filters a traffic flow between a pair of clients interconnected
via the vSDX. The flows are synthetic and have similar
traffic profiles, including attack traffic. For each experiment
we recorded selected metrics defined as follows:

• Response Time: We define response time as the period
between detection of a “malicious” file transmission and
the termination of the associated connection by the SDN
controller. Thus, we are able to quantify the delay in
protecting clients from an attack.

• CPU Utilization: As processing demand increases with
the traffic flow at a given instance, each instance’s mon-
itoring ability is eventually saturated.1

• Packet Drop Ratio: With high load of CPU utilization
and mirrored traffic, Bro begins dropping packets. We
define the packet drop ratio as the percentage of dropped
packets to the total that should have been mirrored.

• Detection Rate: As packets are dropped, the likelihood
of Bro failing to identify an attack increases. We define
detection rate as the percentage of malicious files detected
by Bro, relative to the total that are present.

During each run of our experiments, pairs of clients (one
each from Chameleon and ExoGENI) send measured amounts
of UDP traffic through the vSDX using iperf3 [19]. All
traffic traversing the vSDX is mirrored to a Bro node. While
this sample traffic is flowing, FTP is used to transfer 200
“malicious” files that should be detected by Bro. Each run
reports the four selected metrics.

A Bro instance can only process a bounded traffic load
before dropping packets—about 600 Mbps under our settings
(§IV-B). To handle higher traffic loads, the vSDX NSP dy-

1Since each Bro instance is single-threaded it can saturate at most one core,
so we clip the CPU utilization to 100% in the graphs. It may reach a peak
of 110% under a high flow volume due to other activity on the VM.

namically launches multiple Bro instances and balances flow
processing across them based on measured flow rates and
customer requirements. When the used capacity of a Bro pool
exceeds a certain threshold (i.e., 60%)—or no Bro instance
at the specific edge PoP has sufficient remaining capacity
to process new flows— the controller launches a new Bro
instance. To demonstrate the effectiveness, we have two pairs
of connections, with each of them sending traffic at the same
rate (300 Mbps). The initiation of one of these two flows is
offset by 10 seconds, during a given run of this experiment.
We evaluated Bro filtering performance against our metrics,
both when the traffic was mirrored to a single Bro instance
and when the mirrored traffic was diverted to different Bro
instances on a per-client-pair basis. We do not have support for
our OVS virtual routers to hash flows from the same (sender,
destination) pair across multiple Bro nodes. For this purpose
some switch vendors (e.g., Arista) have introduced high-speed
switches with configurable tap aggregation to mirror traffic
and distribute monitored flows across a cluster.

B. Results
Figure 3a shows the results measured from multiple runs on

different host ExoGENI PoP sites. At ⇠600 Mbps of mirrored
traffic, a single core begins to saturate: Bro begins dropping
packets and the detection rate decreases. When backgroud
traffic is less than 600 Mbps, the response time is constant (⇠5
seconds), due to Bro’s event scheduling mechanism. Beyond
600 Mbps of mirrored traffic, Bro’s response time increases
rapidly, but the detection rate does not fall until it begins
dropping packets. As we expected, even a minor increase
in packet packet drop ratio (⇠18% at 900 Mbps) can result
in a significant decrease of the detection rate (⇠55%), since
a few consecutive dropped packets disrupt matching for file
detection. For predictable and reliable performance, a single
Bro instance’s processing capacity is limited to ⇠500 Mbps
(given the Bro scripts, traffic features, and VM types used
in our experiment). The error bars indicate the performance
variability we experienced on the ExoGENI VMs hosting Bro
at different times and across different sites. We believe that
performance is sufficiently stable to support elastic perfor-
mance control at some cost in efficient utilization to allow

(a) Performance of a single Bro instance on the VM, measured

from two ExoGENI sites with 5 runs on each.

(b) CPU Utilization when mirroring two 300 Mbps flows to a single

Bro instances versus two separate Bro instances.

Fig. 3: Bro performance in ExoPlex experiments.

headroom for variable performance.
Figure 3b reveals the effectiveness of scaling across multiple

Bro instances for reducing the CPU utilization of individual
instances. When we mirror both 300 Mbps flows to a single
Bro instance, CPU saturation occurs after the second flow is
initiated, 10 seconds into the run. When the individual flows
are mirrored to separate Bro instances, both instances exhibit
stable and predictable performance that can be attributed to
the decreased CPU utilization by each individual instance.

C. Repeatability
The experiments described in this paper can be repeated

using the ExoGENI and Chameleon testbeds along with source
code available on github. Detailed instructions are with the
code in the cnert-2018 branch of the SAFE project located
here: https://github.com/RENCI-NRIG/SAFE.git.

V. CONCLUSION

These initial experiments are steps toward effective elastic
configuration policies for scalable monitoring in the virtual
SDX service. These policies require a performance model for
Bro that predicts performance and effectiveness as a function
of load and capacity. We can infer such a model and apply it
for elastic provisioning in the vSDX slice controller only to
the extent that the testbed exhibits reproducible performance.

VI. ACKNOWLEDGMENTS

We are grateful to the Chameleon team for providing re-
sources from the Chameleon sites as part of the experimenting
infrastructure for ExoPlex. This work was supported partially
by NSF awards OAC-1642140 and OAC-1642142.

REFERENCES

[1] R. McGeer, M. Berman, C. Elliott, and R. Ricci, Eds., The GENI Book,
2016.

[2] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield, “Plutarch:
An argument for network pluralism,” SIGCOMM Computer Communi-
cation Review, vol. 33, pp. 258–266, October 2003.

[3] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your
spare time,” SIGCOMM Computer Communication Review, vol. 37, pp.
61–64, January 2007.

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI veritas: Realistic and controlled network experimentation,” in
SIGCOMM, 2006, pp. 3–14.

[5] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska, “End-
to-end performance isolation through virtual datacenters,” in USENIX
OSDI, 2014, pp. 233–248.

[6] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
Chameleon Cloud testbed, and Software Defined Networking (SDN),” in
International Conference on Cloud Computing Research and Innovation
(ICCCRI), Oct 2015, pp. 73–79.

[7] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Or-
likowski, C. Heermann, and J. Mills, “ExoGENI: A multi-domain
infrastructure-as-a-service testbed,” in The GENI Book, 2016, pp. 279–
315.

[8] Y. Xin, I. Baldin, A. Mandal, P. Ruth, and J. Chase, “Towards an
experimental legoland: Slice modification and recovery in ExoGENI
testbed,” in Testbeds and Research Infrastructures for the Development
of Networks and Communities, 2016, pp. 35–45.

[9] Y. Yao, Q. Cao, J. S. Chase, P. Ruth, I. Baldin, Y. Xin, and A. Mandal,
“Slice-based network transit service: Inter-domain L2 networking on
ExoGENI,” in IEEE INFOCOM Workshop on Distributed Cloud Com-
puting (DCC), 2017.

[10] Q. Cao, V. Thummala, J. S. Chase, Y. Yao, and B. Xie, “Certificate
Linking and Caching for Logical Trust,” http://arxiv.org/abs/1701.06562,
2016, Duke University Technical Report.

[11] Q. Cao, Y. Yao, and J. S. Chase, “A logical approach to cloud federa-
tion,” http://arxiv.org/abs/1708.03389, 2017, Duke University Technical
Report.

[12] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A software defined Internet exchange,” in ACM Conference on
SIGCOMM, 2014, pp. 551–562.

[13] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, Dec. 1999.

[14] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs to
express and automatically reconcile network policies,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM), 2015.

[15] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An api for application control of sdns,” in
ACM SIGCOMM computer communication review, vol. 43, no. 4. ACM,
2013, pp. 327–338.

[16] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the network with merlin,” in Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks. ACM, 2013, p. 24.

[17] M. Brinn, N. Bastin, A. Bavier, M. Berman, J. Chase, and R. Ricci,
“Trust as the foundation of resource exchange in GENI,” in Proceedings
of the 10th EAI International Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(TridentCom), June 2015.

[18] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and
elastic ddos defense,” in Proceedings of the 24th USENIX Conference
on Security Symposium, 2015.

[19] “Iperf - the network bandwidth measurement tool,” https://iperf.fr/.

http://arxiv.org/abs/1701.06562
http://arxiv.org/abs/1708.03389
https://iperf.fr/

	Introduction
	Overview of ExoPlex
	Virtual SDX: A Prototype NSP
	Authorization
	Bro Intrusion Detection

	Experiment
	Design
	Results
	Repeatability

	Conclusion
	Acknowledgments
	References

