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Abstract—In a false data injection attack, an adversary
compromises one or more sensors of a networked system and
introduces false measurements in order to bias the control and
degrade the system performance. In this paper, we investigate
the problem of designing controllers for linear systems with
Gaussian noise in order to minimize a quadratic cost under both
normal operating conditions and false data injection attacks.
We develop a two-stage approach, in which the controller
chooses a set of admissible control signals in the first stage,
which limits the worst-case damage that the adversary can
cause by introducing false data. The control action at each time
step is then selected at the second stage. We demonstrate that
both stages can be solved optimally using convex optimization
techniques and present efficient algorithms for choosing the
optimal control policy. Our approach is evaluated through
numerical study.

I. INTRODUCTION

Advances in embedded systems have enabled integration
of highly accurate sensors into diverse control applications.
Such sensors are key enablers of cyber-physical systems
(CPS), with examples including GPS and other positioning
systems for vehicle navigation [1], haptic feedback sensors
for telerobotics [2], and state estimation systems in power
grids [3]. Sensors may either be co-located with the plant and
actuation, or geographically distributed; in the latter case,
the sensors may be unattended and communicate with the
controller via wired or wireless networks, as is typically the
case in networked control systems.
Sensors are appealing targets for malicious attacks on

CPS for a variety of reasons. First, their low cost and the
inherently open nature of sensing and wireless communica-
tion makes them easy to compromise via attacks including
physical capture of sensors, compromise of communication
channels, and introduction of deceptive signals to bias the
sensor measurements [4], [5]. Second, since such attacks do
not necessarily violate any cryptographic or other security
measures, they may only be detectable through statistical
tests on sensor readings, which can be deceived by an
intelligent adversary. Third, false data that are introduced
into sensors by an adversary may lead to incorrect con-
troller behavior, resulting in suboptimal performance or even
safety and stability violations. Such behaviors have been
demonstrated in diverse application domains including ve-
hicular [6], energy [7], and water infrastructure systems [8].
The severity of the threat of false data injection has led

to significant research interest in modeling and detecting
such attacks, as well as developing resilient state estimation
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techniques [9], [10], [11], [12]. These existing works have
focused on identifying the optimal strategy for an adversary
to maximally disrupt a targeted system [13], as well as
new methodologies for detecting which sensors have been
compromised [14], [15]. At present, however, the problem
of synthesizing controllers that provide performance guar-
antees in the presence of false data injection attacks, while
still preserving system performance in the absence of such
attacks, has received relatively little attention in the literature.
In this paper, we investigate the problem of optimal Linear

Quadratic Gaussian (LQG) control in the presence of an ad-
versary that has compromised one or more sensors. We focus
on the LQG control problem due to its widespread use, and
as a basic building block of more complex controller designs.
We consider a min-max setting, in which the controller first
selects a policy that determines the control response to each
set of sensor measurements. The adversary then observes the
policy and chooses a set of false data to inject in order to
maximally disrupt the system performance, as measured by
a quadratic cost function.
Our approach is based on the insight that the worst-case

performance achievable by the adversary is bounded above
by the maximum cost resulting from any set of control
inputs that can be achieved by injecting a sequence of
measurements. Motivated by this, we develop a two-stage ap-
proach to designing an LQG controller. In the first stage, the
system chooses control actions that are admissible in order
to optimize a trade-off between the expected performance in
the absence of an attacker, and the worst-case performance in
the presence of an attacker. In the second stage, for the given
set of observed sensor measurements, the system selects an
optimal control strategy.
Due to the complexity of the problem, we adopt a

receding-horizon design in which, at each time step, the
controller chooses the next L control actions by estimating
the cost function at future time steps. We show that under
this design, both stages described above can be formulated
as convex optimization problems and solved in polynomial
time. We present our proposed algorithms and evaluate them
through numerical study, which shows that our proposed
approach significantly reduces the quadratic cost under ad-
versarial attacks compared to optimal LQG control, while
experiencing only a small degradation in performance in a
non-adversarial setting.
This paper is organized as follows. Section II reviews

the related work. Section III presents the system and adver-
sary models. Section IV presents our problem formulation
and solution approach. Section V discusses our proposed
algorithms. Section VI contains the results of our numerical



study. Section VII concludes the paper.

II. RELATED WORK

Linear Quadratic Gaussian control has received extensive
attention in the control community spanning several decades
[16]. The standard methodologies, however, assume distur-
bances that are stochastic and independent of the control
action, which does not hold in an adversarial setting. In
general, the impact of cyber and other malicious attacks on
the performance of control systems has only recently gained
significant interest. False data injection attacks on power
systems were studied in [11]. Techniques for detecting false
data injection attacks have been proposed in [17], [15], [14],
[9]. The related problem of correctly estimating the system
state in the presence of false data attacks has been studied
in works including [18], [19], [12].
The impact of false data injection attacks on control

performance has mainly been studied from the perspective of
the adversary, i.e., computing the optimal adversary strategy
in order to maximally disrupt the system performance. In
[13], the optimal adversary strategy to maximize a quadratic
cost function for a system using an LQG controller with
Kalman filter and χ2 failure detector was characterized.
This approach, however, does not address how the controller
design can be modified in order to mitigate the attack.
Resilient control synthesis problems have been studied for

other classes of attacks. Resilient control in the presence of
denial of service attacks such as jamming was formulated
in [20], [21]. More powerful adversaries who are able to
directly tamper with control measurements were studied in
[22]. These works consider related attacks but are not directly
generalizable to false data injection.

III. PRELIMINARIES

This section presents the system and adversary models.

A. System Model

We consider a discrete-time LTI system with time index
k = 1, 2, . . . , state xk ∈ Rn, input uk ∈ Rm, and output
zk ∈ Rp. In the absence of any adversary, the system state
and output have dynamics

xk+1 = Axk +Buk +wk

zk = Cxk + vk

where A, B, and C are matrices with known dimensions and
wk and vk are i.i.d. Gaussian random noise vectors with
distributions wk ∼ N(0,Σw) and vk ∼ N(0,Σv). Both vk

and wk are independent of each other and the preceding
values of z, w, u, and v. The initial state x0 is assumed to
be distributed as x0 ∼ N(0,Σ0).
The controller has knowledge of the matrices A, B, C,

and the covariance matrices Σw and Σv . The controller ob-
servations up to time k are given by Ik = {u0, . . . ,uk−1}∪
{z0, . . . , zk}. Letting Ik denote the set of all possible values
of Ik, a control policy is a set of mappings µk : Ik → Rm for
k = 0, 1, . . . , which describe the control action selected at
each time k based on the prior observations of the controller.

In this paper, we focus on deterministic control policies. For
any µk, we let Uµk

(Ik) = {µk(Ik) : Ik ∈ Ik} ⊆ Rm, i.e.,
the set of control actions that are chosen by policy µk for
some set of observations Ik. We define µ = {µk : k =
0, 1, . . . , } to be a sequence of policies over time.
The goal of the controller is to choose a policy that

minimizes the cost function

J(µ) = E

{
L∑

k=0

(xT
kQkxk + ukRkuk)

}
, (1)

where Qk and Rk are symmetric, positive-definite matrices
and the expectation is taken over the sensor noise vk and
process noise wk.

B. Adversary Model

The adversary is assumed to corrupt one or more sen-
sors. By injecting false sensor measurements, the adversary
attempts to bias the system into reaching an undesired
operating point. We let α ⊆ {1, . . . , p} denote the set of
adversary-controlled sensors. The adversary is able to inject
arbitrary inputs to the sensors in α, so that the output zik of
sensor i at time k is given by

zik =

{
Cixk + vi

k, i /∈ α
aik, i ∈ α

where Ci denotes the i-th row of C, vi
k denotes the i-th

entry of vk, and aik is the signal introduced by the adversary
at time k. The set of compromised sensors is a random
variable, with Pr(α) denoting the probability of a given set
of compromised sensors α. The event ᾱ occurs when α = ∅,
and we let Pr(ᾱ) denote the probability that no sensor has
been compromised. For a given α, we let zαk = (zik : i ∈ α)
and ẑαk = (zik : i /∈ α) denote the outputs provided by
compromised and uncompromised sensors, respectively. The
set Iαk = {u0, . . . ,uk} ∪ {ẑα0 , . . . , ẑαk }.
At each time k, the adversary is assumed to have knowl-

edge of the control policy µk, the state value xk, and the
previous measurements z0, . . . , zk. The control policy µk

can be inferred by observing the system behavior over a
period of time. The state value xk may be estimated by
the adversary by deploying a sensor network to monitor
the targeted system. The sensor measurements zk may be
captured by eavesdropping on the communication channel
between the sensors and controller. Taken together, these
modeling assumptions capture the worst case of the attacker
information. The adversary’s information set at time k is
denoted

IAk = {z0, . . . , zk} ∪ {u0, . . . ,uk} ∪ {x0, . . . ,xk}.

We let IA
k denote the set of possible adversary observations

up to time k. Conversely, it is assumed that the controller
has knowledge of the probability distribution Pr(α), but not
the value of α itself.
The adversary’s strategy consists of a policy τk : IA

k →
R|α|, for k = 0, 1, . . ., which is a (possibly stochastic)
mapping from the set of observations by the adversary up
to time k to a set of false inputs at time k. We let τ = {τk :



k = 0, 1, 2, . . . , } denote a sequence of adversary policies
over time. The goal of the adversary is to select a policy that
disrupts the system performance by maximizing the system’s
cost function (1).

IV. PROBLEM FORMULATION AND SOLUTION APPROACH

This section gives an overview of our proposed approach
to LQG in the presence of false data injection. We first
give the problem formulation, and then describe a two-stage
solution approach.

A. Problem Formulation

The problem formulation is given as

min
µ

max
τ

{
E

(
L∑

k=0

(xT
kQkxk + uT

kRkuk)

)}
(2)

where the expectation is over α, wk, and vk. Under the min-
max formulation of (2), the controller attempts to choose
a policy µ that minimizes the expected cost function J(µ)
defined in (1), while the adversary chooses a policy τ that
maximizes the cost after observing µ.
We take a receding-horizon approach to solving (2). Under

our approach, at each time k the controller chooses a policy
µk that maps the information set Ik to a sequence of control
actions uk, . . . ,uk+L, with the goal of selecting a mapping
µk that minimizes

max
τ

E

(
k+L∑
l=k

(xT
l Qlxl + uT

l Rlul)

)
.

The following lemma gives a bound on the worst-case cost
experienced by a given policy. As a preliminary, define
uk:(k+L) = (uk, . . . ,uk+L), xk:(k+L) = (xk, . . . ,xk+L),
and

c(uk:(k+L),xk:(k+L)) =

k+L∑
l=k

(xT
l Qlxl + uT

l Rlul).

Define

Uµ(I
α
k ) =

∪
zα
0:k

Uµ(I
α
k ∪ {zα0:k})

Uk:(k+L) =
k+L∪
l=k

Uµ(I
α
l ).

The set Uµ(I
α
k ) is the set of possible control actions when

Iαk , while Uk:(k+L) is the set of all possible control actions
during steps k to (k + L).
Lemma 1: For any control policy µ, the expected cost is

bounded above by

J(µ) ≤ E(c(uk:(k+L),xk:(k+L))|ᾱ)Pr(ᾱ) +
∑
α

[
Pr(α)

·
∫
ẑα
0:k

∫
xk

max
uk:(k+L)

∈Uµ(Iα
k )

E(c(uk:(k+L),xk:(k+L))) dxk dẑα0:k
]
(3)

Proof: We have that

J(µ) = Eµ(c(uk:(k+L),xk:(k+L))|ᾱ)Pr(ᾱ)

+
∑
α

Pr(α)max
τ

{
E(c(uk:(k+L),xk:(k+L))|τ )

}
where conditioning on τ implies that the measurements zαk
are chosen according to the adversary policy τ . The second
term can be bounded by

max
τ

E(c(uk:(k+L),xk:(k+L)|τ)) (4)

=

∫
ẑα
0:k

∫
xk

{
max

τ
E(c(uk:(k+L),xk:(k+L))|τ, ẑα0:k,xk) (5)

·Pr(xk|ẑα0:k)Pr(ẑ0:k|α) dxk dẑα0:k

}
≤
∫
ẑα
0:k

∫
xk

{
max
zα
0:k

E(c(uk:(k+L),xk:(k+L))|τ, ẑα0:k,xk) (6)

·Pr(xk|ẑα0:k)Pr(ẑ0:k|α)) dxk dẑα0:k

}
=

∫
ẑα
0:k

∫
xk

max
uk:(k+L)∈

Uk:(k+L) (Iα
k )

E(c(uk:(k+L),xk:(k+L)|ẑα0:k,xk)

·Pr(xk|ẑα0:k)Pr(ẑ0:k|α) dxk dẑα0:k (7)

Eq. (5) follows from the fact that the adversary’s policy
τ takes xk and ẑα0:k as inputs. Eq. (6) holds because the
adversary attempts to maximize the cost function over all
functions of the form τ : IA

α (k) → {zα0:k}, which is
bounded by the maximizer over all zα0:k. Finally, Eq. (7)
holds because ul ∈ Ul(Iα

l ) if and only if there is a sequence
of measurements zα0:k such that µ(z0:k) = {uk, . . . ,uk+L}.
Summing Eq. (7) over α yields the desired upper bound.
The implication of Lemma 1 is that the adversary will

attempt to increase the cost J(µ) by introducing false inputs
that cause the controller to implement the set of actions
that maximizes the cost function. When the control policy is
deterministic, the adversary can effectively choose the set of
control actions by manipulating the inputs.
Motivated by this result, we develop a two-stage approach

to the controller design problem. At the first stage, we select
a set of admissible control inputs U at time k based on
the measurements Iαk for each possible set of compromised
sensors α. The controller effectively “commits” to only
choosing control actions from this set in order to minimize
the impact of the attack. At the second stage, we select a
control action from within this set in order to minimize the
cost function based on the observations Ik. The two stages
of our approach are described in the following two sections.

B. Selecting the Admissible Control Inputs

This section presents our approach to selecting a set of
admissible control inputs Uµ(Ik) at time k. Our approach is
to select Uµ in order to ensure that the second term of (3)
is bounded above. Intuitively, this corresponds to setting an
upper bound on the worst-case cost that can be achieved by
false data injection.
For each set α with Pr(α) > 0, we choose a set Uα(Iαk )

based on the observations from sensors outside α. We then



take
U(Ik) =

∩
α

U(Iαk ).

In particular, we select a set of bounds {γ(x) : x ∈ Rn} and
then construct Uµ(Ik) as

U(γ) =
∩

x∈Rn

{
uk:(k+L) : E(c(uk:(k+L),xk:(k+L))|xk = x)

≤ γ(x)} . (8)

The first stage of the optimal control problem is therefore
to choose a set of γ values as

min
γ

{
E

 min
uk:(k+L)

∈U(γ)

{E(c(uk:(k+L),xk:(k+L))|ᾱ)}

Pr(ᾱ)

+
∑
α

Pr(α)

∫
ẑα
0:k

∫
xk

γ(xk)Pr(xk, ẑ
α
0:k) dxk dẑα0:k

}
(9)

The first challenge in solving this problem is the fact
that there are uncountably many possible values of xk. We
mitigate this problem by discretizing the domain. We divide
Rn into regions of the form

Λα
i = {x : Pr(x|ẑα0:k) ∈ [βi, βi+1]}

for some values of β1, . . . , βN ∈ [0, 1] with 0 ≤ β1 < · · · <
βN ≤ 1. Since xk and ẑαk are Gaussian random variables,
the set Λi is equivalent to

(x− x̂α
k )

TΣ−1
k,α(x− x̂α

k ) ∈ [σi+1, σi]

where σi = − log βi and x̂k and Σk,α are the mean and
covariance of xk conditioned on ẑα0:k, which can be tracked
over time by a Kalman filter.
The set U(γ) is then defined by

U(γ) =
N∩
i=1

{
uk:(k+L) :

max
xk∈Λα

i

{
E(c(uk:(k+L),xk:(k+L))|xk)

}
≤ γα

i

}
.

The inequality

c(uk:(k+L),xk:(k+L)|xk) ≤ γα
i

can be expressed in a more tractable form as

xT
kQxk + uT

k:(k+L)Ruk:(k+L) + uT
k:(k+L)Sxk ≤ γα

i

by defining

Q =
k+L∑
l=k

(Al−k)TQlA
l−k

S = 2(Sk+1 · · ·Sk+L−1)

R =

 R11 · · · R1L

... · · ·
...

RL1 · · · RLL



Here,

Sl′ =

k+L∑
l=l′+1

(Al−k)TQlA
l−1−l′B

and

Rl′m =
∑k+L

l=max (l′,m)+1 B
T (Al−1−l′)TQlA

l−1−mB,

l′ ̸= m∑k+L
l=max (l′,m)+1 B

T (Al−1−l′)TQlA
l−1−mB +Rm,

l′ = m

Since computing

max
xk∈Λα

i

{xT
kQxk + uT

k:(k+L)Ruk:(k+L) + uT
k:(k+L)Sxk}

for a fixed uk:(k+L) involves maximizing a convex function
of xk, testing membership in U(γ) may still be compu-
tationally intractable. Hence, we introduce one additional
discretization by constructing the sets

Λα
ij = {x : Pr(x|ẑα0:k) ∈ [βi, βi+1], xTQx ∈ [δj , δj+1]}.

The problem of selecting the set of control actions is then
equivalent to choosing γα

ij for i, j = 1, . . . , N , where γα
ij

serves as an upper bound for xk ∈ Λα
ij . Under this approach,

the definition of U(γ) is then given as

U(γ) =
N∩

i,j=1

{
uk:(k+L) :

max
xk∈Λα

ij

{
E(c(uk:(k+L),xk)|xk)

}
≤ γα

ij

}
.

We are now ready to state the formulation for the problem
of selecting U . Define the function g(γ) as

g(γ)

= min

{
E

(
k+L∑
l=k

xT
l Qlxl + uT

l Rlul

)
: uk:(k+L) ∈ U(γ)

}
and define f(γ) as

f(γ) = g(γ) +
∑
α

Pr(α)

N∑
i,j=1

γα
ijPr(xk ∈ Λα

ij |ẑα0:k).

The problem of selecting U is then equivalent to

min
γ

f(γ). (10)

The following theorem leads to efficient algorithms for
solving (10).
Theorem 1: The function f(γ) is convex in γ.

Proof: The term∑
α

Pr(α)
N∑

i,j=1

γα
ijPr(xk ∈ Λα

ij |ẑα0:k)

is linear and hence convex in γ. It remains to show convexity
of g(γ).



Define h(uk:(k+L)) and hij(uk:(k+L)) by

h(uk:(k+L)) = xT
kQxk + uT

k:(k+L)Ruk:(k+L)

+uT
k:(k+L)Sxk

hα
ij(uk:(k+L)) = max

xk∈Λα
ij

E(c(uk:(k+L),xk:(k+L))|xk)

The value of g(γ) is therefore equivalent to

min h(uk:(k+L))
uk:(k+L)

s.t. hα
ij(uk:(k+L)) ≤ γα

ij , ∀i, j,α
(11)

Since each hij is a pointwise maximum of convex functions
of uk:(k+L), and hence is convex, g(γ) is the solution to a
convex program. By Slater’s Criterion [23], strong duality
holds and hence

g(γ) = max
λ≥0

inf
uk:(k+L)

{h(uk:(k+L))

+
∑
α,i,j

Pr(α)λα
ij(h

α
ij(uk:(k+L))− γ

α)
ij }

The function within the infimum is jointly convex in u and
γ, and hence is convex in γ. The function g(γ) is therefore a
pointwise maximum (over λ) of convex functions of γ, and
hence is convex.
In Section V, we will present an algorithm that exploits

convexity to compute an optimal U(γ).

C. Selecting a Control Action at Each Time Step

After the set of control actions U(γ) is chosen, the second
stage of our approach selects a control action based on the
observed sensor inputs in order to minimize the cost function.
This problem can be stated as

minimize E
{∑k+L

l=k (xT
l Qlxl + uT

l Rlul)|I(k), ᾱ
}

s.t. maxxk∈Λα
ij

{
δj + uT

k:(k+L)Rijuk:(k+L)

+xT
k Sijuk:(k+L)

}
≤ γα

ij ∀i, j,α
(12)

We adopt a certainty-equivalent approach [24], in which we
assume that xk is equal to its maximum-likelihood value
and all subsequent values of xl are equal to their maximum-
likelihood values. This leads to a refined formulation

minimize x̂T
kQx̂k + uT

k:(k+L)Ruk:(k+L) + x̂T
k Suk:(k+L)

s.t. maxxk∈Λα
ij

{
δj + uT

k:(k+L)Rijuk:(k+L)

+xT
k Sijuk:(k+L)

}
≤ γα

ij ∀i, j,α
(13)

Eq. (13) is a convex optimization problem that can be
solved in polynomial time. Algorithms for both stages of our
proposed approach are described in the following section.

V. ALGORITHMS FOR CHOOSING CONTROL POLICY

In this section, we present algorithms for selecting the
optimal control policy, including choosing the set of admis-
sible actions and choosing an action at each stage. We first
consider the problem of selecting the optimal action at each
stage, which will then act as a subroutine. The problem (13)

can be solved using a barrier function method, where the
distance from each constraint set

max
xk∈Λα

ij

δj + uT
k:(k+L)Rijuk:(k+L) + xT

k Sijuk:(k+L) ≤ γα
ij

can be computed in polynomial time by solving a quadratic
optimization problem.
The problem of choosing the optimal set of admissible

control actions U(γ) can be solved via a subgradient ap-
proach. We have the following preliminary result.
Proposition 1: Let λ∗ be a dual solution to (11). Then

−λ∗ is a subgradient of g(γ0) at γ0.
Proof: By the Lagrangian dual theorem, we have that

g(γ)

≤ max
λ

{
inf
u

xTQx+ uTRu+ uTSx+ λT (fij(u)− γ)
}
.

The maximum is achieved at the dual optimal solution λ∗.
Hence for any γ and γ0,

g(γ)− g(γ0) = max
λ

{
inf
u

{f(u) + λT (h(u)− γ)}
}

−max
λ

{
inf
u

{f(u) + λT (h(u)− γ0)}
}

= max
λ

{
inf
u

{f(u) + λT (h(u)− γ)}
}

− inf
u

{f(u) + (λ∗)T (h(u)− γ0)}

≥ inf
u

{f(u) + (λ∗)T (h(u)− γ)}

− inf
u

{f(u) + (λ∗)T (h(u)− γ0)}

= −(λ∗)T (γ − γ0),

implying that −λ∗ is a subgradient.
Proposition 1 implies that the following algorithm can be

used to solve the unconstrained optimization problem [23].
The policy γ is initialized to be any feasible value γ0. At each
iteration m, the subgradient of f at point γm is computed
as ym = −λ∗(γm) +

∑n
α,i,j=1 c

α
ij , where −λ∗(γm) is the

subgradient of g at γm defined in Proposition 1 and

cij = Pr(α)

·Pr((x−x̂α
k )

TΣ−1
k,α(x−x̂α

k ) ∈ [σi+1, σi],x
TQx ∈ [δi, δi+1]).

The value of γm+1 = γm − ϵmym, where ϵm > 0 and∑∞
k=1 ϵ

2
m < ∞. The optimal solution γ∗ is equal to

γ∗ = argmin {f(γ) : γ ∈ {γ0, γ1, . . . , }}.

A key step in this algorithm is computation of the coef-
ficients cαij . These coefficients can be computed by taking
random samples of x conditioned on ẑα0:k.
The approach outlined in this section requires solving a

convex program at each iteration in order to compute the
sub-gradient −λ∗. While the computation time is polynomial
in the number of states and inputs, as well as the number of
discretized states N , the convergence rate may be slow. A
faster heuristic with looser optimality bounds is described as
follows.
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Fig. 1. Numerical evaluation of proposed approach to resilient LQG control. (a) Comparison of the performance of our approach with standard LQG control
in both benign and adversarial environments with Gaussian random system matrices and parameter α = 0.01. The resilient and standard LQG controllers
provided the same cost function value under normal operating conditions, while the resilient controller provided significantly lower error compared to
the standard LQG controller under false data injection attack. (b) Effect of parameter Pr(α), equal to probability of compromise, on the cost metric.
The resilient control achieves the same performance as standard LQG control under benign operating conditions and outperforms the LQG control under
adversarial conditions. (c) Effect of attack on a water tank filling case study. The resilient control provides comparable performance to the optimal control
under benign operating conditions, and does not experience a loss of performance under false data injection attack.

Eq. (3) can be further bounded above by

J(µ) ≤ E(c(uk:(k+L),xk:(k+L))|ᾱ)Pr(ᾱ) +
∑
α

[
Pr(α)

·
∫
ẑα
0:k

max
uk:(k+L)

∈Uµ(Iα
k )

∫
xk

E(c(uk:(k+L),xk:(k+L))) dxk dẑα0:k
]

Hence a sufficient condition is to select Uµ(I
α
k ) as

{uk:(k+L) : E(c(uk:(k+L),xk:(k+L))|ẑα0:k) ≤ γ}.

The constraint

E(c(uk:(k+L),xk:(k+L))|ẑα0:k) ≤ γ

is quadratic in uk:(k+L). Under this relaxation, the parameter
γ is a scalar, and computing g(γ) is equivalent to solving a
quadratically-constrained quadratic program.

VI. SIMULATION

Our proposed approach was evaluated using Matlab. A
system with n = 10 states, m = 2 inputs, and p = 3
outputs was simulated. The system matrices A, B, and C
were generated randomly, with each entry selected as an
independent N(0, 1) Gaussian random variable. The ma-
trix A was then normalized so that the set of maximum
eigenvalue had magnitude 0.9. The matrices Q and R were
also generated randomly with each entry as an independent
N(0, 1) Gaussian random variable. The same Q and R
matrices were used at each time step. The noise vectors wk

and vk had covariance matrices Σw = Σv = I . The set
of compromised sensors α was empty with probability 0.99
and equal to {3} with probability 0.01.
Two control schemes were simulated. One scheme was

our proposed resilient LQG control under the quadratic re-
laxation presented in Section V. The other simulated scheme
was a standard LQG optimal control. Simulations occurred
under both benign and adversarial settings. In the adversarial
setting, the adversary followed a simple strategy of randomly
generating a set of possible measurements to inject at each

time step k, computing the control response to each measure-
ment (via the adversary’s knowledge of the control policy),
and injecting the measurement that maximized the expected
cost function (xk+1Qxk+1 + uk+1Ruk+1).
Figure 1(a) shows the system cost over time under the

benign and adversarial scenarios as well as the standard LQG
and resilient controllers. In order to ensure a fair comparison,
the same wk and vk noise vectors were used at each time
step. Each data point shows the summation

k∑
l=0

(xT
l Qxl + uT

l Rul)

at time k. Under benign operating conditions, we found that
our proposed approach provided roughly the same (within
1%) of the cost of the standard optimal LQG control. Under
adversarial conditions, our proposed approach led to a 26%
reduction in cost compared to optimal LQG control.
Figure 1(b) shows the impact of increasing Pr(α), equal

to the probability of compromise, on the cost in both benign
and adversarial environments. Increasing the probability of
compromise increased the average cost for both the optimal
LQG and resilient LQG methods, but the increase was slower
for the resilient LQG algorithm.
We also evaluated our approach on an existing model of

a set of interconnected water tanks, first proposed in [25].
The system is governed by the equations

∆L̇1 = − a1
A1

√
g

2L10
∆L1 +

Kp

A1
∆Vp

∆L̇2 =
a1
A2

√
g

2L10
∆L1 −

a2
A2

√
g

2L20
∆L2

where ∆L1 and ∆L2 represent the deviation of the water
tank levels from their equilibrium values, while ∆Vp is the
input. The parameter values were chosen as a1 = a2 =
0.178, A1 = A2 = 15.5, Kp = 2.775, g = 980, L20 = 1,
and L10 =

a2
2

a2
1
L20, consistent with [25]. We discretized the

system with sampling period 10ms and choose Q = I2 and
R = 1.



As in the randomly-generated systems, we found that the
resilient approach provided similar performance with and
without the false data injection attack, which was comparable
to the standard LQG control when no attacker was present.
In this case, the cost of the resilient control was one-fifth
that of the standard control in the presence of an adversary.

VII. CONCLUSIONS AND FUTURE WORK

This paper investigated Linear Quadratic Gaussian (LQG)
control in the presence of false data injection attacks, in
which the adversary has complete knowledge of the sys-
tem state and control policy and attempts to maximize
the quadratic cost function by introducing false inputs. We
propose a two-stage solution approach. In the first stage, the
system constructs a set of admissible control actions at each
time step, in order to minimize the worst-case impact of
an attack. The set of admissible actions is based on the
prior sensor measurements. In the second stage, a single
control action is chosen for each time step based on the
current sensor measurement. We showed that both stages
can be formulated as convex optimization problems and
derived efficient controller design algorithms that exploit the
convexity. Our approach was illustrated through a numerical
study.
Future work will attempt to reduce the complexity of our

approach to enable real-time control, as well as remove the
discrete approximations required at the first stage, potentially
using H2 and H∞ control techniques. We also plan to use
the resilient LQG control as a basic building block for
investigating more complex control problems, such as motion
planning, in the presence of adversaries.
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