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Abstract— Cyber-physical systems must satisfy performance
and safety criteria in spite of malicious attacks. In this paper, we
investigate the problem of automatically synthesizing a control
policy that maximizes the probability of satisfying safety and
liveness constraints modeled using Linear Temporal Logic in
the presence of an adversary. We develop a Stackelberg game
framework, in which the controller chooses a probabilistic
policy and the adversary chooses an attack strategy based
on observation of that policy. We prove that maximizing the
probability of satisfying safety and liveness constraints in this
framework is equivalent to a worst-case reachability problem,
and propose polynomial-time algorithms for computing the
optimal policy. We illustrate our approach via numerical study.

I. INTRODUCTION

Cyber-physical systems (CPS) are expected to perform
increasingly complex tasks with autonomy. An emerging ap-
proach to CPS design is to formulate performance and safety
properties as formal logic constraints and then automatically
synthesize a controller satisfying these requirements [1]–
[3]. Existing approaches of this type typically map the
constraints to a formal language such as linear temporal
logic (LTL), which express system goals such as liveness
(e.g., “always eventually A”) and safety (“always not A”)
[4]. These constraints are then combined with a model
of the system behavior to obtain a finite state abstraction,
enabling synthesis of control strategies via model-checking
algorithms.

In addition to uncertainties and stochastic errors, CPS
will also be subject to malicious attacks, including denial-
of-service and injection of false sensor measurements and
control inputs [5]. Such attacks will have different character-
istics from uncertainties and errors. Unlike stochastic errors,
adversaries will exhibit strategic behaviors, and in particular
may adapt their strategies to maximize impact against a given
controller. At the same time, unlike modeling uncertainties,
adversaries will have limited information regarding the sys-
tem state and control inputs, making techniques such as
randomized control strategies potentially effective in miti-
gating attacks. Due to these factors, control strategies that
are designed for safety and performance under errors and
uncertainties may be suboptimal against intelligent attacks.
At present, however, automatic synthesis of control systems
in adversarial scenarios has received little research attention.

In this paper, we investigate the problem of selecting
an optimal control strategy for a probabilistic autonomous
system to satisfy safety and liveness constraints, which are
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commenly required for real world CPS, modeled using LTL
in the presence of an adversary. We consider adversaries
who tamper with control inputs based on the current system
state. We assume the information structure to be concurrent
Stackelberg game, in which the controller and adversary
take actions simultaneously and jointly control the system
transitions. Stackelberg games are popular models in security
domain [6]–[8] and turn-based Stackelberg games have been
used to construct model checkers [9] and compute control
strategy [10], however, to the best of our knowledge, con-
trol synthesis in concurrent Stackelberg setting has not be
investigated. We make the following specific contributions:

• We formulate a model of the interaction between the
CPS and attacker via a stochastic game that describes
the system dynamics and the effects of inputs from the
controller and adversary. We give a heuristic algorithm
for abstracting the stochastic game based on given
system and adversary models.

• We consider the problem of maximizing the worst-case
probability of satisfying an LTL specification consists
of liveness and safety properties. For safety and live-
ness constraints, we demonstrate that this problem is
equivalent to a zero-sum stochastic Stackelberg game,
in which the controller chooses a policy to maximize the
probability of reaching a desired set of states and the
adversary chooses a policy to minimize that probability.

• We propose a novel algorithm for computing an optimal
stationary policy, defined as a policy that depends only
on the current system state. Our approach is based on
iteratively computing the best-response at each system
state. We prove that our approach converges to a Stack-
elberg equilibrium and characterize the convergence rate
of the algorithm.

• Our approach is illustrated through simulation study,
which shows that the control strategy obtained using our
proposed approach outperforms existing techniques for
satisfying the same specifications on Markov decision
processes (MDPs) that do not consider the adversary’s
presence.

The remainder of this paper is organized as follows. Sec-
tion II presents related work. Section III gives background
on temporal logic, stochatic games and Stackelberg games.
Section IV introduces the system model. Section V presents
our problem formulation and solution algorithm. Section VI
contains an illustrative motion planning case study. Section
VII concludes the paper.



II. RELATED WORK

Temporal logics such as linear temporal logic and com-
putation tree logic (CTL) are widely used to specify and
verify system properties [4], especially complex system
behaviors [3], [11], [12]. Sensor-based temporal logic motion
planning to conduct high level task specifications is studied
in [11], [13], [14]. An online motion planning algorithm is
proposed for dynamical systems to synthesize controllers
or control strategies to satisfy a class of temporal logic
specifications, while a receding horizon based framework
that incorporates a class of LTL specifications is investigated
in [3]. Feedback control design for deterministic system
models specified by LTL formulas is studied in [15], while
the algorithms for probabilistic system models are investi-
gated in [4]. Control synthesis under PCTL constraints has
been investigated in [16]–[18]. These existing works do not
consider the impact of malicious attacks.

MDPs are widely used as finite state abstractions to
capture the non-determinism and probabilistic behaviors of
CPS [1], [2], which enables the application of off-the-shelf
model checking algorithms for temporal logic [3], [15], [17],
[19]. Robust control of MDP under uncertainties has been
extensively studied [20]–[23]. However, robust MDPs are
typically used to model uncertainties such as environmental
disturbances and modeling errors, which are fundamentally
different from malicious attacks.

Stochastic games, as generalization of MDP, model strate-
gic interactions between multiple players. Turn-based two-
player stochastic games have been used to construct model
checkers [9] and abstraction-refinement framework for model
checking [24]–[26]. Unlike the turn-based games studied in
[9], [24]–[26], however, we consider a different information
structure, in which both players take actions simultaneously
at each system state.

Several existing works focus on computing Nash equilibria
of stochastic games [27]–[29]. In the present paper, however,
we consider a Stackelberg setting in which the adversary
chooses an attack strategy based on the control policy
selected by the system. A stochastic hybrid Stackelberg game
with different information structure was presented in [10].
In the work of [10], the authors present an asymmetric
information pattern similar to turn-based games that favors
the adversary and derive a pure control strategy. However
the information pattern in this paper allows the controller
to potentially obtain advantage since we allow simultaneous
action (see [6] for a simple example) and leads to a more
general class of control strategies, i.e., mixed strategy. While
stochastic Stackelberg security games have been studied in
[7], [8], to the best of our knowledge they do not consider
safety or liveness constraints. We also present algorithms
for computing Stackelberg equilibria under reachability con-
straints that are not available in the literature to the best of
our knowledge.

Game- and control-theoretic methods for CPS security
have attracted recent research interest. Secure estimation
and control for CPS is studied in [5], [30]. Game theoretic

methods for CPS security and privacy are surveyed in [31].
Efficient algorithms for security games are presented in [6].
Resilient control using game theory is considered in [32].

III. PRELIMINARIES

In this section, we present background on LTL, stochastic
games and Stackelberg games.

A. Linear Temporal Logic

In this paper, control specifications are modeled using
LTL. An LTL formula consists of [4], [33]
• a set of atomic propositions Π;
• Boolean operators: negation (¬), conjunction (∧) and

disjunction (∨).;
• temporal operators: next (X) and until (U).

An LTL formula thus is defined inductively as follows:

φ = True | π | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2.

Other operators can be defined accordingly. In particular,
implication ( =⇒ ) operator can be descirbed as ¬φ ∨ ψ,
eventually (F ) operator Fφ can be described as Fφ =
True U φ, and always (G) operator Gφ can be described as
Gφ = ¬F¬φ.

The semantics of LTL formulas are defined over infinite
words in 2Π. Informally speaking, Gφ is true if and only if
φ is true for the current time step and all the future time.
Fφ is true if φ is true at some future time. Xφ is true if and
only if φ is true in the next time step. A word η satisfying
an LTL formula φ is denoted as η |= φ.

B. Stochastic Games

Stochastic games generalize MDPs and are widely used for
control synthesis under temporal logic constraints [34]–[36].
In these games, there are two or more players whose utilities
are coupled, either due to players’ action jointly controlling
transition probabilities or coupling of reward functions. In the
following, we present background on finite state/action space
stochastic games involving two players, i.e., the controller
and adversary.

Definition 1. (Stochastic Game): A stochastic game SG
is a tuple SG = (S,UC , UA, P r, s0,Π,L), where S =
{1, 2, · · · , n} is a finite set of states, UC is a set of actions
of the controller, UA is a set of actions of an adversary,
Pr : S × UC × UA × S → [0, 1] is a transition function
where Pr(s, uC , uA, s

′) is the probability of a transition
from state s to state s′ when the controllers action is uC
and the adversarys action is uA. We let UC(s) and UA(s)
denote the subset of controller actions and adversary actions
available at state s, respectively. s0 ∈ S is the initial state.
Π is a set of atomic propositions. L : S → 2Π is a labeling
function, which maps each state to a set of propositions that
are realized to be true in Π.

We define a control policy for the controller
µ : S∗ → [0, 1]|UC |, which maps a sequence of states
S∗ = {s0, s1, · · · , sk} to a probability distribution over the
set of actions UC(sk) available at state sk. A control policy



τ for the adversary is defined as τ : S∗ → [0, 1]|UA|. A
control policy is stationary if it is only a function of the
current state, i.e., µ : s → [0, 1]|UC | is only dependent on
the last state of S∗. A stationary policy is said to be proper
if the probability of reaching the terminal state after finite
steps is positive under this policy. We let µ(s) denote the
function µ(s) : UC(s) → [0, 1]|UC | that maps each action
uC to µ(s, uC) ∈ [0, 1]; an analogous definition holds for
adversary policies τ(s). A pair of stationary policies µ
and τ induces a Markov chain whose state set is S and
transition probability from state s to s′ is Pµτ (s, s′) =∑
uC∈UC(s)

∑
uA∈UA(s) µ(s, uC)τ(s, uA)Pr(s, uC , uA, s

′).
An infinite sequence wµτSG = s0s1 · · · for a given initial state
s0 on SG under policies µ and τ is called a path on SG if
there exist uC and uA such that µ(k, uC) > 0, τ(k, uA) > 0
for all k and Pr(sk, uC , uA, sk+1) > 0, ∀k. Given a path
wµτSG , a word is generated as L(wµτSG) = L(s0)L(s1) · · · .
Denote the set of all infinite paths generated under policies
µ and τ on SG as Wµτ

SG . Then the probability of satisfying
an LTL formula φ under policies µ and τ on SG is denoted
as PrµτSG = PrµτSG{w

µτ
SG ∈W

µτ
SG : L(wµτSG) |= φ}.

In the following, we briefly review a subclass of stochastic
games denoted Stackelberg games, involving two players
[37], [38]. In the Stackelberg setting, player 1 (also called
leader) commits to a strategy first. Then player 2 (also known
as follower) observes the strategy of the leader and plays its
best response. The information structure under Stackelberg
setting can be classified into the following two categories.
• Turn-based games: Only one player is allowed to take

action at each time step.
• Concurrent games: All the players take actions simul-

taneously at each time step.
Unlike [9], [24]–[26], which are turn-based, in this paper,
we focus on concurrent games.

The concept of Stackelberg equilibrium is defined formally
in the following.

Definition 2. (Stackelberg Equilibrium): Denote the utility
that the leader gained in a stochastic game SG under
leader follower strategy pair (µ, τ) as QSG(µ, τ). A pair of
leader follower strategy (µ, τ) is a Stackelberg equilibrium
if leader’s strategy µ is optimal given that the follower
observes its strategy and plays its best response.

(µ, τ) = argmax
µ′∈M,τ ′∈BR(µ′)

QSG(µ′, τ ′), (1)

where M is the set of all admissible policies of the controller
and BR(µ′) denotes the best response to palyer 1 strategy
µ′ palyed by player 2.

IV. SYSTEM MODEL

In this section, we present our system model. Consider a
finite state discrete time system with dynamics as

x(t+ 1) = f(x(t), uC(t), uA(t), ϑ(t)) ∀t = 0, 1, · · · , (2)

where x(t) is the system state, uC(t) and uA(t) are the
control inputs from the controller and adversary, respectively,
and ϑ(t) is stochastic disturbance.

In this work, we focus on the scenarios where a strategic
adversary can manipulate the control input of the system
by tampering with control inputs. For instance, the control
input of the system consists of the original input from the
controller uC(t) and the false data injected by the adversary
uA(t), i.e., u(t) = uC(t) + uA(t).

We adopt the concurrent Stackelberg setting in our prob-
lem, which is widely used in security domains to model
the interaction between the defender and attacker. Here, we
let the controller be the leader and the adversary be the
follower. The contoller first commits to a mixed strategy
by considering the potential presence of the adversary. The
adversary then can observe how the controller behaves over
time and then plays its best response to maximize its own
utility.

A specification modeling liveness and safety constraints is
given as an LTL formula φ over a set of atomic propositions
Π in form of φ = GFπ ∧ ψ, where the livenesss constraint
GFπ requires that the system satisfy a property π ∈ Π
infinitely often and the safety constraint ψ requires that the
system remain within a certain safe region. The region is
partitioned into a finite set of sub-regions with respect to the
atomic proposition set Π. Assume each system state x can be
mapped to a sub-region. Hence, we can generate a stochastic
game as an abstraction for the dynamical system (2).

To generalize the proposed approach in this paper, mo-
tivated by [21], [39], we use the following algorithm to
generate a finite state/action stochastic game from continuous
system. The difference is that we need to consider the
presence of adversary. For each sub-region Xi and pair of
(control, adversary) inputs (uC , uA), we randomly select K
samples in Xi and adversary and control inputs that map
to uC and uA. We compute the state Xj that the system
transitions to, the transition probability Pr(Xi, uC , uA, Xj)
can be updated as the fraction of samples located in sub-
region Xj . To approximate the transition probability, Monte
Carlo simulation or particle filter can be used [21], [39], [40].

V. PROBLEM FORMULATION - MAXIMIZING
SATISFACTION PROBABILITY

In this section, we formulate the problem of maximizing
the probability of satisfying a given LTL specification in
the presence of an adversary. We first present the problem
formulation, and then give solution algorithms for computing
the optimal control policy. Due to space constraint, the proofs
for propositions and lemmas can be found in [41].

A. Problem Statement
For a system with the presence of an adversary modeled

as (2), the problem is defined as follows. Given a stochastic
game SG and an LTL specification φ, compute a control
policy µ that maximizes the probability of satisfying the
specification φ under any adversary policy τ , i.e.,

max
µ

min
τ
PrµτSG(φ). (3)

We assume that φ = GFπ ∧ ψ, letting V denote the set
of states that satisfy π and W denote the set of states that



Algorithm 1 Algorithm for constructing a stochastic game
approximation of a continuous system.

1: procedure CREATE STOCHASTIC GAME(X1, . . . , Xn)
2: Input: Set of sub-regions X1, . . . , Xn

3: Output: Stochastic game SG =
(S,UC , UA, P r, s0,Π,L)

4: Initialize K
5: S = {X1, . . . , Xn} and L is determined accordingly
6: Generate control primitive sets UC =
{uC1 , uC2 · · · , uCΞ} and UA{uA1 , uA2 · · · , uAΓ}

7: for i = 1, . . . , n do
8: for All uC ∈ UC and uA ∈ UA do
9: for k = 1, . . . ,K do

10: x← sampled state in Xi

11: ûC , ûA ← sampled inputs from uC , uA
12: j ← region containing f(x, ûC , ûA, ϑ)
13: Invoke particle filter to approximate tran-

sition probabilities Pr between sub-region i and j for
all i and j.

14: end for
15: end for
16: end for
17: end procedure

violate ψ (unsafe states). While the initial state is encoded
in the stochastic game SG by Definition 1, for ease of
exposition we make dependence on the initial state explicit
by letting PrµτSG(φ|s) denote the probability of satisfying φ
using control and adversary policies µ and τ , respectively,
when the initial state is s.

In the stochastic game we formulated, the players involved
are the controller (leader) and the adversary (follwer). Since
the objectives of the palyers are contradictive, the stochastic
game is thus viewed as a zero-sum stochastic two-player
Stackelberg game. In this game, the controller first chooses
a randomized policy µ while taking into account the presence
of the adversary and its response, and the adversary observes
empirical µ and selects a policy τ to minimize PrµτSG(φ).
We rely on the solution concept of Stackelberg equilibrium
to solve the problem defined above. The policies µ and τ
that achieve the max-min value of (3) can be interpreted
as an equilibrium in a zero-sum Stackelberg game between
the controller and adversary. We restrict our attention to the
class of stationary policies, leaving the general case for future
work. We have the following preliminary lemma.

Lemma 1. Let vs = maxµ minτ Pr
µτ
SG(φ|s). Then

vs = max
µ

min
τ

∑
uC∈UC(s)

∑
uA∈UA(s)

∑
s′∈S

µ(s, uC)τ(s, uA)vs′

· Pr(s, uC , uA, s′) (4)

The proof is omitted due to space constraints. Our ap-
proach to computing the solution to (3) is as follows.
We first characterize and compute the set of states G that
are guaranteed to satisfy φ, regardless of the adversary’s
actions. We then prove that the max-min probability of (3) is

equivalent to maximizing (over µ) the worst-case probability
(over the set of adversary policies τ ) of reaching G. Finally,
we present an efficient algorithm for computing a policy µ
that maximizes the worst-case probability of reaching G.

Definition 3. A state s is defined to be accepting if there
exists a stationary control policy µ such that, for any
stationary adversary policy, the specification φ is guaranteed
to be satisfied with probability 1 when the system starts in
state s.

We denote the accepting states as G. The following pre-
liminary results that give properties of the set G.

Lemma 2. Let R = S \ G and s ∈ S. Suppose that, for any
control policy µ, there exists an adversary policy τ such that
s reaches R with nonzero probability. Then s ∈ R.

We now describe a procedure for computing the set of
accepting states. Algorithms 2 and 3 provide two sub-
routines that are used. Algorithm 2 computes the sets of
states and actions that result in transitions to a given set
of states R with positive probability. Algorithm 3 computes
the set of states that are reachable to a set V under any
adversary policy. The main procedure for computing G is
given as Algorithm 4.

Algorithm 4 initially uses Algorithm 2 to remove from G
all states that can be driven to an unsafe state with nonzero
probability by any adversary strategy, as well as all actions
that may cause transitions to unsafe states.

Algorithm 4 then computes a collection of states such that
the system is guaranteed to reach V infinitely often without
reaching an unsafe state. The approach is to iteratively
remove actions from UC(s) that can cause a transition to
a state in S \ G. Nodes are removed from G if all actions
cause a transition to S \ G with positive probability.

Algorithm 2 Computing states and actions that transition to
S \ G with nonzero probability under any control policy.

1: procedure COMPUTE UNSAFE(SG, R, ŨC)
2: Input: Stochastic game SG, set of states R, set of

feasible actions ŨC(s) for each state s
3: Output: Set of states R′ that reach R with positive

probability, updated set of actions Ũ ′C(s)
4: Initialization: R′ ← R, Ũ ′C(s)← ŨC(s) ∀s, x← 1
5: while x == 1 do
6: x← 0
7: for s ∈ S \R′ do
8: Ũ′C ← Ũ ′C(s) \ {uC :

9:
∑
uA∈UA(s)

∑
s′∈R′ Pr(s, uC , uA, s

′) > 0
}

10: if Ũ ′C(s) == ∅ then
11: R′ ← R′ ∪ {s}, x← 1
12: end if
13: end for
14: end while
15: return (R′, Ũ′C)
16: end procedure



Algorithm 3 Computing states that transition to V with
positive probability under any adversary policy.

1: procedure COMPUTE REACHABLE(SG, V , Q, ŨC)
2: Input: Stochastic game SG, set of states to reach V ,

set of initial states Q, set of feasible actions ŨC(s) for
each state s

3: Output: Set of states T that are reachable to V with
positive probability under any adversary strategy

4: Initialization: T ← ∅, x← 1
5: while x == 1 do
6: x← 0
7: for s ∈ Q \ T do
8: for uA ∈ UA(s) do
9: Zs,uA

←
10: {s′ :

∑
uC∈ŨC(s) Pr(s, uC , uA, s

′) > 0}
11: end for
12: if Zs,uA

∩ (T ∪ V ) 6= ∅ ∀uA ∈ UA(s) then
13: T ← T ∪ {s}, x← 1
14: end if
15: end for
16: end while
17: return T
18: end procedure

Algorithm 4 Computing accepting states of stochastic game.
1: procedure COMPUTE ACCEPTING STATES(SG, R, V )
2: Input: Stochastic game SG, set of unsafe states R,

set of states V that must be reached infinitely often
3: Output: Set of accepting states G and set of actions
ŨC(s) for all s ∈ G

4: Initialization: R′ ← R, G ← ∅, V ′ ← V , ŨC(s)←
UC(s), x← 0

5: (R′, ŨC)← Compute Unsafe(SG, R′, ŨC)
6: while x == 0 do
7: T ← Compute Reachable(SG, V , S, ŨC)
8: T ′ ← ∅
9: while T ′ 6= T do

10: T ′ ← T
11: R′ ← R′ ∪ (S \ T )
12: (R′, ŨC)← Compute Unsafe(SG, R′, ŨC)
13: T ← T \R′.
14: T ← Compute Reachable(SG, V , T , ŨC)
15: end while
16: V ′ ← V ∩ T
17: if V ′ == V then
18: x← 1
19: else
20: V ← V ′

21: end if
22: end while
23: G ← T
24: return (G, ŨC)
25: end procedure

The correctness of the algorithm is shown as follows. We
first have the following preliminary lemmas that describe the
behavior of Algorithms 2 and 3.

Lemma 3. Suppose that the set of states R given as input to
Algorithm 2 is disjoint from G. Then (i) for the set of actions
ŨC returned by the algorithm and any policy µ that selects
an action from UC(s) \ ŨC(s) with positive probability at
any node s, there exists an adversary policy τ such that
PrµτSG(φ|s) < 1, and (ii) the set of states R′ returned by
Algorithm 2 is disjoint from G.

Lemma 4. Let T denote the set returned by Algorithm 3.
There exists a stationary policy µ over the action space
ŨC that ensures that a state in V is reached with positive
probability under any stationary adversary policy when the
initial state is in T . If s /∈ T , then for any policy µ, there
exists a stationary adversary policy τ that ensures that the
set V is not reached under any stationary policy over ŨC .

We now prove the correctness of Theorem 1.

Theorem 1. Let G̃ denote the set returned by Algorithm 4.
Then G̃ = G.

Proof. To prove the correctness of Algorithm 4, we first
show that no accepting states will be removed. Then we show
that the set of states from which the system can be driven to
unsafe states under some adversary policy is removed.

First, we show that G̃ ⊆ G. Let ŨC be the set of actions
returned by Algorithm 4. Let µ be a stationary policy that
selects each action in ŨC(s) with positive probability. For
any adversary policy, the induced Markov chain results in a
graph with an edge between two states if there is a positive
transition probability between them. By Line 14 and Lemma
4, each state in the graph is connected to a state in V ′,
where V ′ is a set of states in V , and each state in V ′ is
connected to at least one other state in V ′. Furthermore, by
Line 7 and Lemma 3, no state in the set G̃ is connected to
any state outside G̃. Hence, under the policy µ, if the system
is initially at a state in G, then it will remain in G for all
time; furthermore, at each time, connectivity to V ′ implies
that the system will eventually reach a state in V ′. Thus the
condition GFπ is satisfied with probability 1. Furthermore,
by Line 7 and Lemma 3, no state in G is connected to any
state in W , ensuring that ψ is satisfied with probability 1.

To complete the proof, we show that G ⊆ G̃, or equiv-
alently, (S \ G̃) ⊆ (S \ G). We prove by induction, noting
that the result holds trivially initially. We have that a state is
removed from G̃ either at Line 13 or Line 14 of the algorithm.
If a state s is removed because s ∈ R′ at Line 13, then by
Lemma 1 and induction, the set R′ is disjoint from G, and
hence s /∈ G. Furthermore, if s is removed from Line 14, then
by Lemma 4, there exists an adversary policy that prevents
the system starting from s from reaching V ∩ G̃, and hence
from reaching V ∩G by the inductive assumption that G ⊆ G̃.
Hence s /∈ G. Since these are the only two scenarios in which
a state is removed from G̃, we have that (S \ G̃) ⊆ (S \ G)
and hence G ⊆ G̃.



B. Computing the Optimal Policy

Our proposed solution is based on the following.

Proposition 1. For any stationary control policy µ and
initial state s, the minimum probability over all stationary
adversary policies of satisfying the LTL formula is equal
to the minimum probability over all stationary policies of
reaching G.

Proposition 1 implies that the problem of maximizing
the worst-case success probability can be mapped to the
following equivalent problem. Define a stochastic game SG′
as follows. For all nodes in G∪R, remove all outgoing edges
and add a self-transition, which occurs with probability 1
regardless of the actions taken. The transition probabilities
and action spaces of all other nodes are unchanged. The
problem (3) is then equivalent to

max
µ

min
τ
PrµτSG′(reach G) (5)

The solution to (3) can be obtained from the solution to
(5) by following the optimal policy µ∗ for (5) at all states
not in G, and following the policy of choosing each strategy
in ŨC returned by Algorithm 4 with positive probability for
all states in G.

Our approach for solving (5) is to first compute a value
vector v ∈ R|S|, where

vs = max
µ

min
τ
Pr(reach G|s).

The optimal policy can then be obtained from v by choosing
the distribution µ that solves the optimization problem of
Eq. (4) at each state s. Algorithm 5 gives an algorithm for
computing v. The idea of the algorithm is to initialize v
to be zero except on G, and then greedily update vs at each
iteration by computing the optimal Stackelberg policy at each
state.

Algorithm 5 Algorithm for a control strategy that maximizes
the probability of satisfying φ.

1: procedure MAX REACHABILITY(SG′, G)
2: Input: Stochastic game SG′, set of states to be

reached G
3: Output: Vector v ∈ R|S|, where vs =

max minPr(reach G|s0 = s)
4: Initialization: v0 ← 0, v1

s ← 1 for s ∈ G, v1
s ← 0

otherwise, k ← 0
5: while max {|vk+1

s − vks | : s ∈ S} > δ do
6: k ← k + 1
7: for s /∈ G do
8: vk+1

s ←
9: maxµ minτ

{∑
s′
∑
uC∈Uc(s)

∑
uA∈UA(s) vs′µ(uC)

10: τ(uA)Pr(s, uC , uA, s
′)}

11: end for
12: end while
13: return v
14: end procedure

We note that the computation of Lines 8-10 can be
performed in polynomial time by solving a linear program
[42].

Corrolary 1. The complexity of computing the optimal
control policy is O(|S|2|UC ||UA|).

The following theorem shows that Algorithm 5 guarantees
convergence to a Stackelberg equilibrium.

Theorem 2. There exists v∞ such that for any ε > 0, there
exists δ and K such that ||vk − v∞||∞ < ε for k > K.
Furthermore, v∞ satisfies the conditions of v in Lemma 1.

Proof. We first show that, for each s, the sequence vks :
k = 1, 2, . . . , is bounded and monotone. Boundedness
follows from the fact that, at each iteration, vks is a convex
combination of the states of its neighbors, which are bounded
above by 1. To show monotonicity, we induct on k. Note that
v1
s ≥ v0

s and v2
s ≥ v1

s since v1
s = 0 for s /∈ G and vks ≡ 1

for s ∈ G.
Let µks denote the optimal control policy at state s and

step k. We have that

vk+1
s ≥ min

τ

∑
uC∈UC(s)

∑
uA∈UA(s)

∑
s′∈S

vks′µ
k
s(uC) (6)

·τ(uA)Pr(s, uC , uA, s
′)

≥ min
τ

∑
uC∈UC(s)

∑
uA∈UA(s)

∑
s′∈S

vk−1
s′ µks(uC) (7)

·τ(uA)Pr(s, uC , uA, s
′)

= vks (8)

Eq. (6) follows because the value of vk+1
s , which corresponds

to the maximizing policy, dominates the value achieved by
the particular policy µks . Eq. (7) holds by induction, since
vks′ ≥ vk−1

s′ for all s′. Finally, (8) holds by construction of
µks . Hence vks is monotone in k.

We therefore have that vks is a bounded monotone se-
quence, and hence converges by the monotone convergence
theorem. Let v∞ denote the vector of limit points, so that
we can select δ sufficiently small (to prevent the algorithm
from terminating before convergence) and K large in order
to satisfy ||vk − v∞||∞ < ε.

We now show that v∞ is a Stackelberg equilibrium. Since
vks converges, it is a Cauchy sequence and thus for any ε > 0,
there exists K such that k > K implies that |vks −vk+1

s | < ε.
By construction, this is equivalent to∣∣∣∣∣∣vks −max

µ
min
τ

∑
uC∈UC(s)

∑
uA∈UA(s)

∑
s′∈S

[
vk−1
s′ µ(uC)

·τ(uA)Pr(s, uC , uA, s
′)]| < ε,

and hence v∞ is within ε of a Stackelberg equilibrium for
every ε > 0.

While this approach guarantees asymptotic convergence to
a Stackelberg equilibrium, there is no guarantee on the rate
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Fi g. 1: Pr o b a bilit y of s atisf yi n g L T L s p e ci fi c ati o n u n d er
o pti m al p oli c y.

of c o n v er g e n c e. B y m o dif yi n g Li n e 8 of t h e al g orit h m s o
t h at v k + 1

s is u p d at e d if

m a x
µ

mi n
τ





s u C ∈ U c ( s ) u A ∈ U A ( s )

[v s µ (u C )

· τ (u A )P r (s, u C , uA , s )]} > ( 1 + )v k
s ( 9)

a n d is c o nst a nt ot h er wis e, w e d eri v e t h e f oll o wi n g r es ult o n
t h e t er mi n ati o n ti m e.

P r o p ositi o n 2. T h e -r el a x ati o n of ( 9) c o n v er g es t o a v al u e
of v s atisf yi n g ( 1 + )v > v ∞ wit hi n

n m a x
s






l o g 1
x 0

s

l o g ( 1 + )






it er ati o ns, w h er e x 0
s is t h e s m all est p ositi v e v al u e of x k

s f or
k = 0 , 1 , . . ..

VI. C A S E S T U D Y

I n t his s e cti o n, w e pr es e nt a c as e st u d y t o d e m o nstr at e o ur
pr o p os e d m et h o d. We c o nsi d er t h e r e a c h- a v oi d pr o bl e m of
a r o b ot f oll o wi n g st a n d ar d dis cr et e ti m e u ni c y cl e m o d el as
f oll o ws:

x (t + 1) = x (t) + ( u C x (t) + u A x (t) + ϑ v (t)) c o s( θ )

y (t + 1) = y (t) + ( u C y (t) + u A y (t) + ϑ v (t)) si n( θ )

θ (t + 1) = θ (t) + ( u C ω (t) + u A ω (t) + ϑ ω (t)) ,

w h er e t h e c o ntr ol i n p ut fr o m t h e c o ntr oll er u C (t) =
[u C x (t), uC y (t), uC ω (t)] T , t h e c o ntr ol i n p ut fr o m t h e a d-
v ers ar y u A (t) = [ u A x (t), uA y (t), uA ω (t)] T a n d ϑ (t) =
[ϑ v (t), ϑω (t)] T is t h e st o c h asti c dist ur b a n c e.

S u p p os e t h e r o b ot is m o vi n g i n a 5 m × 5 m r e gi o n t h at is
f urt h er di vi d e d i nt o 2 5 s u b-r e gi o ns. F or e a c h s u b-r e gi o n, its
l o c ati o n c a n b e u ni q u el y d et er mi n e d b y t h e first t w o st at es of
t h e r o b ot [x (t), y(t)]. We s et e a c h s u b-r e gi o n t o b e a st at e i n
t h e st o c h asti c g a m e a bstr a ct e d fr o m t h e s yst e m. T h e a cti o ns
a v ail a bl e at e a c h st at e i n cl u d e m o vi n g t o a n ei g h b or a n d
st a yi n g i n t h e s a m e st at e. F or e a c h st at e, a l a b eli n g f u n cti o n
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Fi g. 2: C o m p aris o n of t h e pr o b a bilit y of s atisf yi n g t h e L T L
s p e ci fi c ati o n usi n g pr o p os e d a n d b as eli n e a p pr o a c h es. T h e
pr o p os e d a p pr o a c h i m pr o v es t h e s atisf a cti o n pr o b a bilit y f or
all i niti al st at es.

is us e d t o m a p t h e st at e t o o n e or s e v er al at o mi c pr o p ositi o ns
i n pr o p ositi o n s et Π = { i niti al, u ns af e , g o al } . I n p arti c ul ar,
t h e 2 5 t h st at e (t o p ri g ht) is m a p p e d t o g o al a n d all t h e st at es
ar e s af e e x c e pt t h e t hir d a n d ei g ht h st at es ar e m a p p e d t o
u ns af e. T h e d et ail e d l a b el f or e a c h st at e is s h o w n i n Fi g. 1.

L et t h e r o b ot b e r e q uir e d t o n a vi g at e fr o m t h e i niti al st at e
t o t h e g o al st at e w hil e a v oi di n g all u ns af e st at es. T h us, w e
h a v e t h e s p e ci fi c ati o n f or t h e r o b ot d es cri b e d i n L T L f or m ul a
as φ = G F g o al ∧ G ¬ u ns af e.

We first s h o w t h e pr o b a bilit y of s atisf yi n g t h e L T L s p e ci-
fi c ati o n st arti n g fr o m diff er e nt st at e usi n g o ur a p pr o a c h i n
Fi g. 1. As w e o bs er v e i n Fi g. 1, t h e o nl y st at e t h at h as
pr o b a bilit y 1 is t h e g o al st at e, w hil e t h e u ns af e st at es h a v e
0 pr o b a bilit y of s atisf yi n g t h e s p e ci fi c ati o n. Ot h er st at es
ar e c ol or e d a c c or di n gl y. I n or d er t o e v al u at e t h e b e n e fit
of i n c or p or ati n g r esili e n c e t o a d v ers ari es, w e c o m p ar e t h e
r es ult o bt ai n e d usi n g o ur pr o p os e d m et h o d ( Al g orit h m 5)
a n d t h e r es ult o bt ai n e d usi n g t h e m et h o d wit h o ut c o nsi d eri n g
t h e pr es e n c e of t h e a d v ers ar y. I n p arti c ul ar, w e c al c ul at e
t h e o pti m al p oli c y f or t h e s yst e m wit h o ut c o nsi d eri n g t h e
p ot e nti al i m p a ct of a d v ers ar y, d e n ot e d µ 2 , a n d s et it as t h e
b as eli n e. T h e n w e i m pl e m e nt t h e p oli c y of Al g orit h m 5,
d e n ot e d µ 1 . T h e c o m p aris o n of t h e pr o b a bilit y of s atisf yi n g
t h e L T L s p e ci fi c ati o n st arti n g fr o m e a c h st at e is s h o w n i n
Fi g. 2, w h er e t h e v erti c al a xis is e q u al t o

(P r µ 1 τ 1

S G (φ |s ) − P r µ 2 τ 2

S G (φ |s ))/ P r µ 2 τ 2

S G (φ |s ).

w h er e τ 1 a n d τ 2 ar e t h e o pti m al a d v ers ar y r es p o ns es t o µ 1

a n d µ 2 , r es p e cti v el y. We s e e t h at t h e o v er all p erf or m a n c e is
i m pr o v e d u n d er o ur pr o p os e d s e c ur e c o ntr ol m et h o d.

VII. C O N C L U S I O N

I n t his p a p er, w e i n v esti g at e d t h e pr o bl e m of s atisf yi n g
L T L s af et y a n d li v e n ess s p e ci fi c ati o ns i n t h e pr es e n c e of m a-
li ci o us a d v ers ari es. We f or m ul at e d a st o c h asti c St a c k el b er g
g a m e f or s el e cti n g a st ati o n ar y c o ntr ol p oli c y t h at m a xi mi z es
t h e pr o b a bilit y of s atisf yi n g t h e c o nstr ai nts i n t h e pr es e n c e



of an adversary who observes the policy and chooses a
strategy to minimize the satisfaction probability. We mapped
the problem to an equivalent reachability game, and proposed
a deterministic polynomial-time algorithm for computing an
optimal control strategy. Future work will consider more
general LTL specifications and non-stationary control and
adversary strategies.
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