
Frontiers in Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 841

Edited by:

Jorg Conradt,

Technische Universität München,

Germany

Reviewed by:

Shimeng Yu,

Arizona State University, United States

Julien N. P. Martel,

ETH Zürich, Switzerland

*Correspondence:

Guoqi Li

liguoqi@mail.tsinghua.edu.cn

Jing Pei

peij@mail.tsinghua.edu.cn

Yuan Xie

yuanxie@ucsb.edu

† These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 31 May 2018

Accepted: 29 October 2018

Published: 16 November 2018

Citation:

Deng L, Zou Z, Ma X, Liang L, Wang

G, Hu X, Liu L, Pei J, Li G and

Xie Y (2018) Fast Object Tracking on a

Many-Core Neural Network Chip.

Front. Neurosci. 12:841.

doi: 10.3389/fnins.2018.00841

ORIGINAL RESEARCH

published: 16 November 2018
doi: 10.3389/fnins.2018.00841

Fast Object Tracking on a Many-Core
Neural Network Chip

Lei Deng 1,2† , Zhe Zou 1† , Xin Ma 2 , Ling Liang 2 , Guanrui Wang 1 , Xing Hu 2 , Liu Liu 2 ,

Jing Pei 1*, Guoqi Li 1* and Yuan Xie 2*

1 Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing, China,
2 Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA,

United States

Fast object tracking on embedded devices is of great importance for applications such

as autonomous driving, unmanned aerial vehicle, and intelligent monitoring. Whereas,

most of previous general solutions failed to reach this goal due to the facts that (i) high

computational complexity and heterogeneous operation steps in the tracking models

and (ii) parallelism-limited and bloated hardware platforms (e.g., CPU/GPU). Although

previously proposed devices leverage neural dynamics and near-data processing for

efficient tracking, their flexibility is limited due to the tight integration with vision sensor

and the effectiveness on various video datasets is yet to be fully demonstrated. On the

other side, recently the many-core architecture with massive parallelism and optimized

memory locality is being widely applied to improve the performance for flexibly executing

neural networks. This motivates us to adapt and map an object tracking model based on

attractor neural networks with continuous and smooth attractor dynamics onto neural

network chips for fast tracking. In order to make the model hardware friendly, we

add local-connection restriction. We analyze the tracking accuracy and observe that

the model achieves comparable results on typical video datasets. Then, we design

a many-core neural network architecture with several computation and transformation

operations to support the model. Moreover, by discretizing the continuous dynamics to

the corresponding discrete counterpart, designing a slicing scheme for efficient topology

mapping, and introducing a constant-restricted scaling chain rule for data quantization,

we build a complete mapping framework to implement the tracking model on the

many-core architecture. We fabricate a many-core neural network chip to evaluate the

real execution performance. Results show that a single chip is able to accommodate

the whole tracking model, and a fast tracking speed of nearly 800 FPS (frames per

second) can be achieved. This work enables high-speed object tracking on embedded

devices which normally have limited resources and energy.

Keywords: object tracking, many-core architecture, neural network chip, recurrent neural networks, attractor

dynamics

1. INTRODUCTION

Object tracking is important for many applications including autonomous driving, unmanned

aerial vehicle, intelligent monitoring, etc. The object tracking models used by prior work can be

clustered into several categories: discriminative or generative models (Li et al., 2013; Wang N. et al.,

2015), machine learning models (Grabner et al., 2008; Wang and Yeung, 2013; Hare et al., 2016),

http://www.frontiersin.org/
mailto:liguoqi@mail.tsinghua.edu.cn
mailto:liguoqi@mail.tsinghua.edu.cn
mailto:peij@mail.tsinghua.edu.cn
mailto:yuanxie@ucsb.edu

Frontiers in Neuroscience | www.frontiersin.org 2 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

and dynamic neural models (Faubel and Schöner, 2008; Spencer

and Perone, 2008; Wu et al., 2008; Martel and Sandamirskaya,

2016). The generative models leverage specific characteristics

to represent the object, i.e., using representative methods such

as the PCA (Ross et al., 2008; Wang et al., 2013) and sparse

coding methods (Jia et al., 2012; Zhang T. et al., 2012), while the

discriminative models separate the object from the backgrounds

by training binary classifier (Kalal et al., 2012; Zhang K. et al.,

2012). To improve the tracking accuracy, various machine

learning algorithms, such as boosting (Grabner et al., 2008),

structured output SVM (Hare et al., 2016), and correlation

filter (Bolme et al., 2010; Henriques et al., 2015) have been

applied. Recently, deep learning, convolutional neural network

in particular, has shown the ability to automatically extract high-

level features and improve the accuracy significantly (Wang and

Yeung, 2013; Hong et al., 2015; Held D. et al., 2016; Wang et al.,

2017). However, these emerging neural network (NN) algorithms

are usually very demanding in terms of compute and memory

resources, limiting their execution speed. In addition, many

of these algorithms usually involve several separate steps with

heterogeneous operations to construct a complete tracking model

(Gurcan and Temizel, 2015; Wang et al., 2017), which affects

the hardware compatibility of all these different operations.

To realize fast object tracking still remains as a challenge but

important for applications such as motion posture capture in

sports field (Chen et al., 2015; Pueo, 2016), cell imaging and

movement analysis in biomedical field (Beier and Ibey, 2014),

and some real-life scenarios (Galoogahi et al., 2017a). Compared

to above complex models, the recurrent neural networks (RNNs)

with attractor dynamics (Faubel and Schöner, 2008; Spencer

and Perone, 2008; Wu et al., 2008; Martel and Sandamirskaya,

2016) are more promising for fast tracking. They are capable

of holding a continuous family of stationary states and form a

continuous manifold wherein the dynamic behavior is neutrally

stable, facilitating the smoothness of the object tracking. The

compact and end-to-end paradigm promises efficient hardware

implementation.

Another factor limiting the tracking speed comes from the

hardware aspect. It is well known that conventional CPU and

GPU platforms suffer from von Neumann bottleneck limited by

the memory bandwidth. Furthermore, these platforms are usually

bloated to keep the programming flexibility for general purpose

applications. These characteristics together with their bulky size

and huge energy consumption make it difficult for the embedded

deployment. Previous work (Martel and Sandamirskaya, 2016)

implemented neural dynamics on dedicated vision chip for

efficient tracking benefit from the near-data processing. Whereas,

the flexibility of programming and application is limited due to

the tight integration with the vision sensor and the effectiveness

on various video datasets is yet to be fully demonstrated.

Recently, many-core architecture for efficient execution of NN

models has been widely demonstrated (Merolla et al., 2014;

Shi et al., 2015; Chi et al., 2016; Shafiee et al., 2016). Via

parallel computation and optimized memory locality, many-core

architectures can achieve high throughput and power efficiency.

Besides, the support for various neural network structures and

inter-chip communication brings better flexibility and potential

scalability, respectively. This motivates us to adapt and map an

end-to-end NN model onto a many-core chip for fast object

tracking.

However, we should note that a many-core NN architecture

usually suffers from some hardware constraints, such as limited

connections and data precision, which must be addressed prior

to model deployment. To this end, first, we adapt an RNNs-

based object tracking model to make it hardware-friendly. Then,

we design a many-core NN architecture with five vector/matrix

operations and three transformation operations to support the

model computation. In order to deploy the tracking model,

we propose several optimization techniques: (1) to address

the fan-in and fan-out limitation of the single core, we add

a local connection restriction that makes the model more

hardware-friendly and use a slicing scheme for efficient topology

mapping; (2) to implement the differential equations in digital

circuits, we discretize the continuous temporal dynamics to the

corresponding discrete counterpart; (3) to meet the requirement

of fixed-point data with limited bit width, we propose a

constant-restricted scaling chain rule for model quantization.

Comprehensive evaluations of the model accuracy on various

tracking datasets are demonstrated, and a real chip is fabricated

for validation. Results show that a fast tracking speed of nearly

800 FPS (frames per second) can be achieved. The compact

size and high efficiency present great potential for intelligence

on embedded devices, especially in the scenarios that require

high-speed object tracking.

The rest of the paper is organized as follows. Section 2 provides

backgrounds for the tracking model and the hardware-friendly

modification. Section 3 presents the design of many-core NN

architecture. How to deploy the tracking model onto hardware

is illustrated in section 4. Then, comprehensive evaluations on

the tracking accuracy and system performance are conducted

in section 5. Finally, this work is concluded and discussed in

section 6.

2. HARDWARE-FRIENDLY TRACKING
MODEL

In this section, we provide backgrounds for the tracking model

we use in this paper and introduce local-connection restriction.

We select an RNN model proposed by Wu et al. (Fung et al.,

2008, 2010; Wu et al., 2008) named continuous attractor neural

network (CANN), which is a neuroscience-inspired model.

In fact, similar models with self-sustaining neural dynamics,

termed as dynamic neural fields (DNF), can also be found

in Faubel and Schöner (2008), Spencer and Perone (2008),

Martel and Sandamirskaya (2016) and Schöner and Spencer

(2016) where the only difference is the format of inhibition

function.

We first review the original dynamic model of a two-
dimensional (2D) CANN, as shown in Figure 1. Denote x as a

coordinate position on the 2D plane, V(x, t) as the membrane

potential of the neuron at position x and time t, and r(x, t) as

the firing rate of this neuron. It is reasonable to assume that

r(x, t) increases along with V(x, t), but saturates in the presence

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 3 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

¸

2π a

of global inhibition. A model that captures this feature obeys

V2(x, t)

r(x, t) = +∞ ′ (1) ′ the external stimulus in Equation (2). Each neuron receives the
1 + k −∞ V

2(x , t)dx

where k is a small positive hyper-parameter that controls the

strength of global inhibition.

Let Vext(x, t) be the external stimulus to neuron x at time

t. In the CANN model, V(x, t) is determined by the external

stimulus and the recurrent inputs from other neurons, and its

own relaxation, which is governed by

intensity of the corresponding pixel in the 2D difference frame.

CANN model is able to track objects smoothly because of the

continuous neural dynamics that results in a smooth moving

trajectory of the response bump. The trajectory presents as: (1)

in the absence of external stimulus, the network can still keep a

fixed response bump via recurrent injection; (2) in the presence

of an object, especially a continuously moving one, the network

can smoothly shift its response bump in accordance with the

∂V(x, t)
τ = −V(x, t) + β

∫

+∞

J(x, x′)r(x′, t)dx′ + Vext(x, t)
moving target. Here the external stimulus acts as the object to be

tracked, and the neuronal response bump indicates the predicted

∂t −∞
(2)

object location. Figure 2 illustrates the tracking process. The red

bounding box is the ground truth of the object location, and
where τ is a time constant, which is typically at the magnitude of

1 ms, and β determines the ratio between the recurrent inputs
and the external stimulus. J(x, x′) is the neuronal interaction

(synaptic weight) from the neuron at location x′ to the neuron

at location x. J(x, x′) is configured as

 J0 − |x−x′ |2

the yellow bounding box represented by the response bump

reflects the predicted location. The original high-resolution video

is resized to the CANN network scale before running the tracking

model.

However, the above CANN model is not hardware friendly

when we map it onto a hardware for real-time tracking. One

J(x, x′) = 2π a2
e

2a2 (3) of the major obstacles is the huge connections in the model.

Take a network with 1000 neurons as an example, if they are

where J0 is a constant, a denotes the Gaussian interaction range,

|x − x′| represents the Euclidean distance between neuron x

and x′. J0
2 is the maximum interaction. We can see that

equation (3) encodes a synapse pattern (bump shape) with

translational invariance, producing a similar response bump

pattern represented by large fire rates of neurons. The response

bump implies where the object is. Furthermore, the neuronal

distance is circular, which means that the most top and bottom

neurons, as well as the most left and right neurons, are connected

as adjacent neurons. This symmetry guarantees the bump

stability at the boundary.

The overview of CANN model is shown in Figure 1, where

the bump-shape pattern of synaptic connections and fire rates

forms a hallmark feature. The difference signal of every two

adjacent frames from the video is injected into the network as

fully connected, there are one million connections causing a

huge wiring overhead. In this section, we introduce a distance-

aware local connection to address this issue. Actually, for

practical hardware implementation, other constraints are also

required to be solved, such as mapping differential equation

onto digital circuit, changing floating point operation to fixed

point one with limited data bit width, partitioning the whole

computational graph to sub-graphs for mapping it onto the

many-core architecture, which will be explained in latter sections.

2.1. Distance-Aware Local Connection
Despite the interconnection limitation from hardware, each

neuron has strong connections only within the Gaussian bump

field (usually a circle) as shown in Equation (3). In this sense, the

remote connections usually have small impact on the neuronal

FIGURE 2 | Illustration of CANN-based object tracking.

FIGURE 1 | Illustration of the CANN model.

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

2π a

membrane potential and fire rate. Therefore, it is possible to

remove the remote connections without much accuracy loss. To

this end, we propose a distance-aware local connection topology,

as below

arithmetic operations. The emerging non-volatile memory

(NVM) devices (Yu, 2018) have demonstrated great potential

to build ideal FunC with efficient processing of the mentioned

vector/matrix operations, via integrating both computation and

memory on the same memory crossbar in analog domain (Chi

J(x, x′) =
 J0

2 · e

− |x−x′ |
2

2a2 , if neuron x′ ∈ CF(x, R)

(4)
et al., 2016; Shafiee et al., 2016; Ambrogio et al., 2018). However,

the large-scale fabrication of this “physical crossbar” is still

0, otherwise

where x′ ∈ CF(x, R) represents that each neuron x is only locally

connected to its neighboring neurons within a R × R rectangle

area centered by x. We term this local area as connection field

(CF). The local pruning modification reduces many remote

connections to save interconnection resources in the following

chip implementation. The rectangle shape rather than circle is for

matching with the slicing scheme for efficient mapping that will

be introduced in section 4.2.

3. MANY-CORE NEURAL NETWORK
ARCHITECTURE

As aforementioned, the many-core NN architecture holds

great potential for high throughput because of the extreme

processing parallelism with decentralized cores and improved

memory locality without off-chip memory access. Usually, this

architecture consists two levels of design: (1) functional core

(FunC) that is a small self-contained NN for supporting various

vector/matrix arithmetic operations; (2) many-core network

wired by a scalable routing infrastructure. Here we design a

many-core NN architecture shown in Figure 3 for implementing

the CANN-based object tracking on chip.

3.1. Functional Core
The basic computation in NNs are the vector/matrix operations,

such as vector-matrix multiplication (VMM) or vector-vector

addition/multiplication, which should be well supported by the

basic building block in an NN architecture. Therefore, the FunC

in this paper can be viewed as a compute engine for vector/matrix

challenging. Therefore, we use a fully digital design with memory
array and additional processing elements (e.g., multipliers and

accumulators) to simulate the crossbar-like dataflow, which can

be treated as “virtual crossbar". The fully digital design is able

to save fabrication cost and reduce development period. Despite

of this development simplification, our mapping framework for

implementing CANN-based tracking is suitable for any many-

core NN architecture, no matter what device technology is

used.

Next, we introduce our architecture design. As shown in

Figure 3A, each FunC is comprised of six units, including axon,

synapse, dendrite, soma, router, and controller. Specifically, axon

acts as a data buffer and provides the input for dendrite, as

well as buffers the output from router (generated by soma). It

has two SRAM chunks (256 × 8b for each), that act as two

ping-pong buffers switching between the router write and the

dendrite read. Synapse locally stores the connection weights

(256 × 256 × 8b), which is logically organized as a crossbar

and physically placed near to the dendrite computing for
memory locality optimization. Dendrite is an integration engine

occupying 16 8-bit multipliers and 16 24-bit accumulators, and

soma is another computing block for neuronal transformation.

Besides intra-FunC computing and data movement, inter-FunC

communication is wired by routers. The overall dataflow follows:

“remote FunC or local FunC ⇒ router ⇒ axon/synapse ⇒

dendrite ⇒ soma ⇒ router ⇒ local FunC or remote FunC”, and

the controller manages the execution state machine.

As shown in Table 1, we design five operations in dendrite,

including VMM (vector-matrix multiplication), VVM (vector-

vector multiplication), VVA (vector-vector accumulation),

VS (vector scaling), and VB (vector buffer), and three

FIGURE 3 | Many-core neural network architecture: (A) functional core (FunC); (B) scalable many-core network.

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

.

. .

. .

TABLE 1 | Dendrite and soma operations.

Unit Operation Definition

VMM y = W · x

VVM y = x1 ⊙ x2

Dendrite VVA y = i xi, i = 0, 1, ..., 127

VS y = xα x

VB y = x

LUT_Fun y = ϕ(x)

Soma Lat_Acc yj = xj + yj−1

Out_Trans Send output to router

transformations in soma, including LUT_Fun (look up

table function), Lat_Acc (lateral accumulation), and Out_Trans

(output transmission). Thus, it is able to cover all the arithmetic

requirements in the CANN model. In particular, for the 256

columns in the synapse array, the calculation is divided into 16

groups (16 columns for each group). The column-wise execution

within each group is parallel while the inter-group execution

is serial. In VMM operation, at each cycle, dendrite reads one

input from axon, reads 16 weights from 16 columns on the same

row from the synapse array, and then concurrently executes 16

MACs (multiply and accumulate) that share the same axon data.

In VVM operation, dendrite ignores axon and reads dynamic

data (e.g., membrane potential) rather than static weight

from synapse, and executes variable-variable multiplications.

Considering the practical requirement of CANN model, VVM

only supports two-vector multiplication. VVA bypasses the

multipliers, and it supports up to 128-vector addition operation

for dimensional reduction. VS operation only requires one

input from axon (scaling factor) and one row of dynamic data

from synapse. Synapse is totally disabled in VB operation, and

dendrite only copies data from axon, which is usually used for

timing alignment via data delay. Note that, for the element-wise

vector operations (e.g., VVM, VVA and VS), the synapse array

is split into two chunks (128 × 256 × 8b for each), which

alternately holds dynamic inputs from router and provides input
for the consequent dendrite computation, i.e., working as two

ping-pong buffers like that in axon.

long-distance communication to a great extent, and the routing

table in each router is reconfigurable to support arbitrary network

topologies. A synchronous clock is required within each FunC,

while asynchronous communication with handshaking is enough

for inter-FunC communication. A global phase synchronization

for a complete round of computation and communication is used

for ensuring the correct timing schedule. Besides the P2P routing,

we will introduce a multicast routing scheme in section 4.2.

4. CANN DEPLOYMENT

To deploy the modified CANN model onto the many-

core NN architecture, we propose a mapping framework

including dynamics discretization, topology mapping, and data

quantization, which will be introduced in this section.

4.1. Discretization of the Continuous
Dynamics
Since digital circuits cannot directly support the continuous

differential dynamics in Equation (2), we propose an iterative

state update method for discretizing the continuous dynamics to

an equivalent difference equation so that we can implement it in

an iterative manner. By setting τ = 1 and ∂t = 1, the continuous

state update of CANN can be modified to an iterative version of

3.2. Scalable Many-Core Network ′ ′

FunC is a small self-contained NN with 256 neurons and 256
V(x, t + 1) = β x′ ∈CF J(x, x) · r(x , t) + Vext(x, t)
r(x, t + 1) = V

2 (x,t+1)

. (5)
× 256 programmable synaptic connections. Larger NNs can be 2 ′

constructed by wiring multiple FunCs together through routers,
as shown in Figure 3B. In this way, the hierarchical scalability,

i.e., FunC⇒chip⇒board⇒system, is easily to be obtained.

k
.

x′ V (x ,t+1)

Note that we always constrain the membrane potential to be

positive, i.e., V(x, t) ≥ 0, and we change the term 1 +
2 ′ 2 ′

Specifically, a typical routing topology of 2D mesh, XY Point-to-

point (P2P) routing (Merolla et al., 2014; Akopyan et al., 2015),

is used. The communication in X direction has a higher priority

than the Y direction. Each router has five channels: Local, East,

West, North, and South. A routing packet starts from the source

neuron to the destination neurons through two stages: (1) move

to a target memory cell in intra- or inter-chip FunC; (2) fan out

to the target neurons when the computation starts in that FunC

(VMM and VS operation). The input sharing mechanism saves

k x′ V (x , t + 1) to k x′ V (x , t + 1) for simplification.

V(x, t) ≥ 0 can be simply implemented through designing ReLU

function of ReLU(x) = max(0, x) in LUT_Fun.
Figure 4 presents the iterative state update of the above

difference equation. The overall computational dataflow
therefore becomes “{r(x, t) & Vext(x, t)} ⇒ V(x, t + 1) ⇒

r(x, t + 1) ⇒ ...”. Via above discretization, CANN model

becomes realizable in digital circuit through the iterative

execution.

FIGURE 4 | State update described by

“{r(x, t) & Vext(x, t)} ⇒ V(x, t + 1) ⇒ r(x, t + 1) ⇒ ...” according to the

discretized difference Equation (5).

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 6 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

.

 x y x y

F ρF

ϕ(x + y) = z ⇔ ϕρ (ρ · x + ρ · y) = ρ z ⇔ ρz = ρ

4.2. Mapping of the Network Topology
To better understand the process of mapping the CANN topology

onto the many-core NN architecture, we decompose each

iteration of the difference Equation (5) into five steps as below.

Among the five steps at each iteration, Step 1 consumes the most

resources because of the expensive matrix multiplication while

the other four steps only execute vector computation needing

less resources. Therefore, here we provide the mapping details of

this step and then briefly introduce the overall mapping scheme.

Take a relatively small network as an example that includes 30 ×

56 neurons where each one connects to all of its neighboring

neurons in a 15 × 15 CF area. In Step 1, the neuronal outputs

at time phase t will be fetched back to these neurons as inputs
at next phase, and then participate in the generation of the

next neuronal outputs at t + 1. The 30 × 56 inputs r(x′, t) and

(30 × 56) × (15 × 15) synaptic weights J(x, x′) form a heavy

weighted connections (e.g., I4 ⇒ O41, I4 ⇒ O42, I4 ⇒ O43)

could be mapped onto a single FunC. The routing from I4 to O41,

O42, and O43 is handled by a routing strategy different from the

regular P2P routing introduced in section 3.2. Here we design

an adjacent multicast (AMC) routing in which each FunC can

pack its received packets again with a new address of an adjacent

FunC (configured in the AMC registers) and send it out. In

this way, a source FunC is able to communicate with multiple

continuous destination FunCs without increasing the memory

cost of routing table. Theoretically, there is no limitation on the

number of destination FunCs via this relay-like AMC routing.

Compared to the P2P routing, AMC routing is more suitable for

the inter-FunC bulky data sharing.

Furthermore, note that the outputs from the FunCs at this step
is just a partial potential because each neuron is usually affected
by several different column-wise slices. For instance, each neuron

in the left part of O41 is also driven by I2 and I3, so its complete

state should be obtained by accumulating the corresponding

outputs from three adjacent column-wise slices of I2, I3 and

I4. This indicates that a second-order accumulation using extra

FunCs with VVA operations is required for the complete VMM

operation in Step 1. In our implementation, we incorporate this
VVA accumulation into Step 2 (to be shown in Table 5). Note

that here we use a 30 × 56 network with 15 × 15 CF just for case

study. The larger size could also be implemented using this slicing

scheme at the cost of more resources.

4.3. Data Quantization
After mapping the network topology, the data quantization

becomes an essential step to convert the model in software

into its hardware counterpart since the data type and bit width

on the NN chip are usually limited. In our NN architecture,
′ ′ all the computations are in the fixed-point format, and the

VMM operation for achieving V1(x, t) = β x′ J(x, x) · r(x , t).
However, each FunC has a connection constraint with only 256

fan-ins and 256 fan-outs (determined by the size of synapse

array), which makes it impossible to execute the large VMM on

a single core. To reduce the resource requirements, we propose

a slicing scheme for efficient topology mapping. Combined with

the aforementioned distance-aware local connection, the slicing

scheme further helps obtain a regular placement pattern.

precision for input-weight multiplication and intermediate

accumulation is 8 bits and 24 bits, respectively. Actually, the

quantization from floating-point data to bit-limited fixed-point

data can be transformed to a scaling and rounding problem. For

simplification, we use integer and integralization to replace the

fixed-point quantization. At each execution step mentioned in

section 4.2, we observe a scaling chain rule governed by
As shown in Figure 5, first, we partition the 2D locally- ρ ·ρ ρ ·ρ

.
ϕ(x × y) = z ⇔ ϕρ (ρx · x × ρy · y) = z ⇔ ρz =

the fan-in number of each FunC. Here we partition it to 8 slices,
F ρF ρF

(6)

wherein each one (such as I4) contains 30 × 7 ≤ 256 neurons. On

the other side, considering that each neuron is only connected to

its local CF covering 15 × 15 neurons, each slice is possible to

affect the membrane potential of adjacent three slices including

itself. For example, I4 would affect the membrane potential of

I3, I4 and I5. However, the total number of output neurons in

these affected slices are more than 256. To this end, we further

partition the possible outputs of these three column-wise slices

to three row-wise slices, e.g., I4 ⇒ {O41, O42, O43}, wherein

each row-wise slice only has 10 × 21 ≤ 256 output neurons.

According to the proposed column-wise and row-wise slicing for

addressing the issue of limited inputs and outputs, respectively,

a minimum block of input neurons, output neurons, and their

where x or y denotes the original floating-point input or weight

at each FunC, z is the corresponding output, and ρx (or ρ), ρy (or

ρ), and ρz are their scaling coefficients, respectively. Note that

an extra bit truncation is required to reduce the bit width of the
accumulated potential (24 bits) from dendrite to 10 bits before
feeding it into the LUT_Fun, which can reduce the memory cost
of LUT. The scaling effect of the bit truncation and LUT can

be modeled as an equivalent scaling factor ρF, and ϕρF denotes

both the truncation and LUT_Fun. If the LUT function is a linear

function (or piecewise linear function, such as ReLU), Equation

(6) is valid for describing a linear scaling relationship, termed as

a linear scaling chain rule in this paper. This chain rule indicates

the scaling factor of neuronal output at the l-th execution step

, and delay V2(x, t + 1).
5. Step 5 - firing rate:

r(x, t + 1) = V2(x, t + 1) · sinh(t + 1).

2 ′ V (x ,t+1) ′ x

.
k sinh(t + 1) = 1

V(x, t + 1) = ReLU(V1(x, t + 1) + Vext(x, t)).
3. Step 3 - potential squared:

V2(x, t + 1) = V(x, t + 1) · V(x, t + 1)

4. Step 4 - inhibition factor:

2. Step 2 - membrane potential:

J(x, x) · r(x , t). ′ x ∈CF
.

1
′ ′

Five execution steps for each iteration

1. Step 1 - recurrent input:

V (x, t + 1) = β

connected recurrent network into several column-wise slices, and ρF

the slice width is jointly determined by the network height and

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

 x y x y
F ρF

ϕ(x + y) = z ⇔ φ(ϕρ (φ(ρ · x) + φ(ρ · y))) ≈ ρ z ⇔ ρz ≈ ρ

can be deterministically derived based on the output value at the

(l-1)-th step, and can be propagated step by step. Equation (6)

only describes the scaling relationship, and doesn’t include the

rounding operation. Updating the equation to include rounding,

it becomes

ρ ·ρ ρ ·ρ

.
ϕ(x × y) = z ⇔ φ(ϕρ (φ(ρx · x) × φ(ρy · y))) ≈ z ⇔ ρz ≈

F ρF ρF

(7)

where φ(·) is the rounding operation. Equation (7) is equivalent

to adding random noise to the original chain rule shown in

Equation (6).

The proposed linear scaling chain rule can describe the scaling

effect well as data propagates in a feedforward structure under

the quantization constraint. However, the recurrent network

has a feedback connection that will influence the normal data

scaling. First, as shown in Figure 6, each difference iteration in

the forward pass subjects to the above linear scaling chain rule

across the five execution steps. Second, the firing rate at time

phase t will be fetched back to the network as the input for next

phase t + 1. So the overall scaling factor on firing rate at each

iteration should keep unchanged, i.e., a constant ρr, otherwise the

firing rate will become larger and larger or smaller and smaller

causing state explosion or vanishing issue, respectively. To this

end, we have to configure the scaling factor of connection weights

(ρJ) and truncation/LUT_Fun (ρF) in each FunC to guarantee a

constant-scaling restriction on the input/output firing rate after

the feedforward scaling propagation. This is a typical closed-

loop control that requires repeated verification, i.e., testing the

network performance and adjusting the hardware configuration

or modifying the original floating-point parameters until a

satisfactory result is achieved. It is worthy noting that the

rounding operations would introduce random errors, but the

simulation results show that the CANN model can tolerate

noises to a great extent, which was also mentioned in Martel

and Sandamirskaya (2016). To avoid possible data overflow

caused by the rounding noise, we enforce a clipping operation

to keep the data in limited range, such as [-128, 127] under 8-bit

quantization.

FIGURE 5 | Illustration of the proposed slicing scheme for efficient network mapping.

FIGURE 6 | Quantization with a linear scaling chain rule in the feedforward

pass corresponding to the five execution steps mentioned in section 4.2 and

an extra constant-scaling restriction in the feedback pass.

ρF .

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 8 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

TABLE 2 | Chip configuration. TABLE 3 | Information about the five video workloads.

FunCs per chip MACs per FunC Synapse array per FunC Video Frames Attributes

12 × 13 16 256 × 256 (SRAM)

Jogging-1

307

OCC, DEF, OPR

Data precision Clock frequency Phase latency Jogging-2 307 OCC, DEF, OPR

8 bits (I/O) 300 MHz 16.8 µs Sylvester 1345 IV, IPR, OPR

 Tiger1 354 IV, OCC, DEF, MB, FM, IPR, OPR

 Tiger2 365 IV, OCC, DEF, MB, FM, IPR, OPR, OV

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup
The simulation environment for the algorithm analysis is

based on a PC with Intel i7 6700K CPU (4GHz) and Matlab

R2017a software. For the hardware validation, we fabricate a

chip in UMC 28nm HLP CMOS process (named Tianjic) to

implement the many-core NN architecture described in section

3 along with the AMC routing strategy mentioned in section

4.2. To emulate the object tracking scenario, we develop a

single-chip PCB equipped with an Altera Cyclone 4 FPGA

and four SDRAMs (total 128 MB), as shown in Figure 7.

Tianjic accommodates the tracking model with pre-programmed

synaptic weights. The resized video is pre-stored in SDRAM

and then injected into the NN chip through FPGA. Table 2

lists the chip configuration. Considering the fabrication cost, we

only integrate 156 FunCs onto one chip. With 300 MHz clock,

the chip can finish all computations and communications in

16.8 µs during each time phase which reflects the minimum

phase latency for guaranteeing the running correctness. The

power consumed by each FunC is 1.95∼6.29 mW in different

operation modes (Table 1) or idle mode, which includes the
chip-level overhead. Other components on PCB consume 5.5

W in total. Although only a single chip is enough in this work,

we also design an inter-chip communication infrastructure for

supporting multi-chip scalability if larger networks are required,

which is compatible with the intra-chip routing strategies (P2P

and AMC). Specifically, four bidirectional LVDS (low voltage

differential signaling) interfaces are incorporated at each of the

four chip sides.

We test the CANN tracking on several video datasets from

OTB-13 (Wu et al., 2013) and OTB-15 (Wu et al., 2015),

the video attributes of which are shown in Table 3. For each

IV, Illumination Variation; OCC, Occlusion; DEF, Deformation; MB, Motion Blur; FM, Fast

Motion; IPR, In-Plane Rotation; OPR, Out-of-Plane Rotation; OV, Out-of-View. More details

can be found in Wu et al. (2013).

difference frame, we execute 15 iterations of Equation (5).

Regarding the experimental evaluation, the accuracy results

are simulated in Matlab (Figures 8–11, 16 don’t consider

any hardware constraints while Figures 12–14 incorporate the

hardware constraints on connection and data bit width), and the

resource overhead and tracking speed (involving Figures 15–17

and Table 5) come from chip simulator and real measurements.

FIGURE 7 | Single-chip PCB.

FIGURE 8 | Comparison of several metrics: center error, precision, overlap,

and success rate.

http://www.frontiersin.org/

Frontiers in Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 841

Deng et al. Fast Tracking on Many-Core Chip

t

t t

.
δt, δt = "x − x ". (9)

5.2. Model Analysis
5.2.1. Evaluation Metrics
Several metrics are widely used for quantitative evaluation of

predicted center location and xG as the ground-truth one. Then

the center error over all frames in one sequence is governed by

tracking accuracy (Cehovin et al., 2016). At this stage, none of

them is a killer standard. To compare these different methods,

we first recall some general definitions. An object location set in

a frame sequence with length T is defined as

O(KP, KG) =

T
P G
t t

t=1

K = {(R , x)}T

(8)

Center error is used to evaluate the overall tracking accuracy
for a sequence. Usually, the precision further describes the

t t t=1

where Rt denotes the cover region of the bounding box and xt is

the center location of the object.

The center error measures the difference between

the predicted and ground-truth center, which is defined as

the average Euclidean distance in pixel units. Denote xP as the

percentage of accurately predicted centers (within a given

distance threshold).

Another evaluation metric is the overlap, which is determined

by the intersection area between the predicted and ground-truth

bounding boxes. This measure accounts for both the location and

size of the object, and does not result in extremely large errors at

tracking failures. Given the predicted bounding box RP and the

FIGURE 9 | Success rate of OPE, SRE and TRE, wherein the overall AUC score is listed in the legend. For clarity, only 8 trackers on three videos are plotted.

T

1

http://www.frontiersin.org/

Deng et al. Fast Tracking on Many-Core Chip

Frontiers in Neuroscience | www.frontiersin.org 10 November 2018 | Volume 12 | Article 841

t

R ∩ R
. . t t=1 t P G

ground-truth bounding box RG, the overlap of one sequence is

defined as

P G 8(KP, KG) = {φ }T , φ =
.

t t
.

(10)
Rt ∪ Rt

where ∩ is the intersection, ∪ is the union, and |·| denotes

the number of pixels in the corresponding region. Furthermore,

the success plot records a curve wherein each point represents the

percentage of the accurately predicted bounding boxes (with

overlap larger than a given threshold). The overall success score

is defined as the area under curve (AUC). It can be proved that

the AUC equals to average overlap (Cehovin et al., 2016).

For an intuitive understanding of these metrics, Figure 8

presents a comprehensive visualization of the tracking accuracy

under different metrics on video tiger2. The center error and

overlap are curves having nothing to do with the threshold,

and they usually fluctuate along the temporal dimension (i.e.,

frame). While every point on the precision or success plot

corresponds to an overall accuracy obtained from the center

errors or overlaps across all frames under a pre-given comparison

threshold, respectively. Note that the precision, overlap and

success rate are all in [0, 1]. Because the success rate and AUC

score provide number within [0, 1] (including both accuracy

and threshold) and does not fluctuate, we mainly use them for

evaluating our model in the following sections.

5.2.2. Tracking Accuracy
To analyze the tracking accuracy comprehensively, we adopt

the tests of one-pass evaluation (OPE), temporal robustness

evaluation (TRE), and spatial robustness evaluation (SRE).

Specifically, OPE is to run trackers throughout the whole

sequence using ground truth of the first frame as initialization.

This is a simple but useful way to evaluate trackers. For the

robustness evaluation, TRE and SRE can be applied. In TRE, the

whole sequence is split into several segments, then the influence

FIGURE 11 | Influence of the model hyper-parameters.

FIGURE 10 | AUC score of CANN on several videos.

FIGURE 12 | Influence of the connection area: (A) CF clipping; (B) AUC score

as R size increases.

FIGURE 13 | The constant-scaling restriction for the data quantization of

recurrent networks.

http://www.frontiersin.org/

Deng et al. Fast Tracking on Many-Core Chip

Frontiers in Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 841

TABLE 4 | Parameter configuration.

Video β/k Network size CF size

Sylvester 300

Jogging-1 600

Jogging-2 900 96 × 128 15 × 15

Tiger1 200

Tiger2 100

of initialization location can be analyzed (the first frame of each

segment can calibrate the initialization). SRE is to sample the

initial bounding box in the first frame by shifting or scaling the

ground truth, which focuses on the spatial robustness. Please
refer to Wu et al. (2013) for more detailed information. Table 4

provides our parameter configuration for all the model analysis

experiments. The reason why we only give the β/k value rather

than individual β and k will be explained latter.

Figure 9 presents the success rate compared to existing

trackers under OPE, TRE, and SRE tests. For figure clarity, only

8 trackers on three videos (sylvester, tiger1, tiger2) are shown.

We can see that the CANN model performs quite well, which

can approach or surpass other trackers. The overall success

scores on all five videos are further shown in Figure 10. CANN

presents advanced success scores across all these videos. Recalling

Table 3, the sylvester video is in a simpler environment (e.g.,

FIGURE 14 | Influence of the data quantization.

FIGURE 17 | Resource overhead before and after adding the local-connection

restriction.

FIGURE 15 | Speed comparison with existing tracking algorithms (Danelljan et

al., 2014a,b, 2015; Zhang et al., 2014; Galoogahi et al., 2015, 2017b;

Henriques et al., 2015; Ma et al., 2015; Wang L. et al., 2015; Bertinetto et al.,

2016a,b; Nam and Han, 2016; Qi et al., 2016). The data marked with “(GPU)”

are tested on GPU while others are on CPU.

FIGURE 16 | Trade-off between tracking accuracy and resource overhead as

the network size increases.

http://www.frontiersin.org/

Deng et al. Fast Tracking on Many-Core Chip

Frontiers in Neuroscience | www.frontiersin.org 12 November 2018 | Volume 12 | Article 841

TABLE 5 | Mapping details and resource overhead at every step for a 30 × 56 CANN example.

Step Functionality Implementation Operation No. FunC

1

Recurrent input

8 column-wise slices

3 FunCs for each column-wise slice

VMM

3 × 8

 30 × 7 fan-ins and 10 × 21 fan-outs for each FunC

2 Membrane potential

(2 copies)

Integrate 3 partial potentials and external stimulus

240 × 4 fan-ins and 240 fan-outs for each FunC

VVA 7 × 2

3 Potential squared 240 × 2 fan-ins and 240 fan-outs for each FunC VVM 7 × 2

 (2 copies)

4-1 Inhibition factor 30 × 56 fan-ins and 1 fan-out for each FunC VVA + Lat_Acc 1 × 7

 (7 copies) nonlinear LUT_Fun

4-2 Potential delay 240 fan-ins and 240 fan-outs for each FunC VB 7

5 Firing rate 241 fan-ins and 240 fan-outs for each FunC VS 7

Total: 73

with less occlusion, deformation, and motion blur), so all trackers

(including CANN) perform the best on it.

Figure 11 analyzes the influence of the model hyper-

parameters, k and β in Equation (5). Here we test on video tiger2.

The X axis represents the ratio between β and k, i.e., β/k, and the

Y axis is k. The color indicates different AUC score. We can see

that the individual value of k (also reflecting the β value under the

same β/k condition) has little impact on the tracking accuracy.

In contrast, the ratio β/k heavily affects the AUC score. The

underlying mechanism lies in Equation (5), in which we can find

that the state of membrane potential V(x, t) is only determined

by the ratio of β/k if we substitute the firing rate r(x, t) into the

difference equation of V(x, t). When β/k is fixed, V(x, t) keeps

unchanged under the same external stimulus. In this case, the

bump pattern of firing rate remains the same or with an overall

scaling effect under different k value, which will not affect the

object prediction because it is only determined by the location

of central neuron with the maximum firing rate.

5.3. System Analysis
5.3.1. Influence of Hardware Constraints
Mapping the original CANN model onto the many-core NN

hardware, two major constraints must be considered: connection

and precision. The former one is caused by the limited wiring

resources resulting in limited fan-in and fan-out connectors on a

single FunC. This restricts the connection number of each neuron

and the overall network size as well. The latter one is caused

by the limited compute and memory resources which makes it

impractical for high-precision floating-point operations. In our

design, we just take 8 bits as a case study, but it is easy to extend

to other precisions.

First, Figure 12 shows the influence of CF size (i.e., R) in the

local-connection restriction (on video tiger1). We can see that

larger R usually generates higher AUC score. However, the AUC

score gradually saturates when R is sufficiently large. From the

guidance of this result, we configure the CF size to be 15 × 15

in our experiments to achieve both the best accuracy and fewest

connections.

Then, we investigate the precision influence. By using our

quantization method proposed in section 4.3, the overall firing

rate curve is equivalent to scale the original floating-point curve

by a constant factor of ρr, which is shown in Figure 13 (on

video sylvester). The constant-scaling restriction for recurrent

networks is critical to address the state explosion or vanishing

issue. The slight fluctuation of the scaling ratio is caused by

the aforementioned rounding noise in Equation (7). Figure 14

further shows the comparison of tracking accuracy before and

after data quantization on all videos. The AUC scores are

shown in the legend for each sub-figure. We can see that

the “feedforward linear scaling chain rule & feedback constant

scaling” quantization method proposed in Figure 6 is effective

and causes little accuracy loss. The object in jogging-2 video has

the similar color with the backgrounds, so the tracking accuracy

presents a slightly larger degradation.

5.3.2. System Performance

Here we take a CANN model with 30 × 56 network size

as an example to show the hardware implementation. Table 5

illustrates the mapping details and the resource overhead in all

the execution steps mentioned in section 4.2. Step 1 for the

integration of recurrent inputs consumes the most resources due

to the heavy VMM operation. By leveraging the slicing scheme

proposed in section 4.2, it generates the partial membrane

potential using 24 FunCs as shown in Figure 5. Each 3 FunCs

for one column-wise slice share the same inputs through AMC

routing. The following steps only involve vector operations, such

as VVA, VVM, VB, and VS. In these operations, the output data

from previous step is dynamically buffered in synapse, different

from the static weights in VMM operation at Step 1. To provide

enough inputs for the next step, the outputs from Step 2, Step 3,

and Step 4-1 have to be copied through configuring FunCs that

have the same parameters and modes and share packets through

http://www.frontiersin.org/

Deng et al. Fast Tracking on Many-Core Chip

Frontiers in Neuroscience | www.frontiersin.org 13 November 2018 | Volume 12 | Article 841

AMC routing. On the contrary, the inter-step communication

still uses P2P routing, since the bulky AMC routing is invalid in

these cases for routing to the next step due to the requirements

for different input data or addresses in post-FunCs. In Step 4-1,

the nonlinear LUT should be configured to calculate the division

for producing the inhibition factor. The potential delay is used

for timing alignment that guarantees the correct dataflow step by

step. Totally, 73 FunCs are enough for this CANN model, which

indicates that we can finish object tracking task on one single chip

with 156 FunCs shown in Figure 7 and Table 2.

Figure 15 compares the throughput of the CANN object

tracking on our many-core chip with those on conventional

CPU and GPU. By using the modified CANN model and our

mapping framework, the many-core NN architecture holds great

potential for fast object tracking. Specifically, we implement the

CANN model with 5 execution steps and one time phase for

each step. According to the chip performance of 16.8µs phase

latency (Table 2) and 15 iterations for each difference frame,

a throughput of 794 frames-per-second (FPS) can be achieved.

This is significantly faster than the advanced trackers (4.7x-

305x) on CPU or GPU. Note that the throughput in Figure 15

means the speed based on pre-stored resized video, which doesn’t

count the time for video resizing itself. In this paper, we focus

on the efficient execution of tracking model rather than the

video pre-processing which can be completed by anterior camera

circuits. In fact, previous work (Carey et al., 2012) reported

ultra-fast speed 100,000 FPS for closed-shape detection on vision

chip with analog-digital mixed signals. However, the application

scenario is very different, so we don’t include it into our

comparison.

Regarding the scalability of network size, it is a software-

hardware trade-off. As shown in Figure 16 (on video tiger1), it

is possible to achieve better tracking accuracy if we deploy larger

network (remaining R =15). However, larger network causes

exponentially increasing resource consumption. In real-world
applications, it is better to determine the network size according

to the requirement for tracking accuracy. From Figure 16 we

can see that, with 156 FunCs per chip, we still have space for

scale increasing (e.g., up to 50 × 70 network size). Smaller

than this threshold, one single chip is enough; otherwise, we

should consider multi-chip interconnection. In fact, our many-

core architecture is fully scalable, as shown in Figure 3B, which

makes it easy to be extended to a multiple-chip system mentioned

in section 5.1. The similar 2D mesh network-on-chip with the

inter-FunC/intra-chip communication is also compatible with

the inter-chip communication. The only difference is that a

merge-split technique is needed for the inter-chip interface due

to the limited chip I/O.

Figure 17 shows the comparison of resource overhead before

and after adding the local-connection restriction proposed in

Section 2. For small networks, the resource saving is not

significant since each input slice with CF size of 15 × 15 probably

has impacts on the states of all slices, which degrades to the

fully-connected case. For larger networks, the local-connection

restriction gradually helps reduce the resources since each input

slice only affects its neighboring slices. With this adaption, a

single chip can accommodate a network of up to 50 × 70 size

(consuming 154 FunCs); while without it, a smaller network (e.g.,

40 × 60 size consuming 170 FunCs) already exceeds the resources

of one single chip.

6. CONCLUSION AND DISCUSSION

In this paper, we adapt and map the CANN model onto

the many-core NN architecture for fast object tracking. By

adding a restriction for distance-aware local connection, we

remove most remote connections to make the model hardware-

friendly. Then we design a many-core NN architecture with five

vector/matrix operations in dendrite and three transformation

operations in soma to cover all the computations in the

CANN model. A mapping framework is further built for

deploying the model onto the NN hardware, which includes

three stages: dynamics discretization, topology mapping, and

data quantization. Based on the five discrete execution steps, a

slicing scheme for efficient topology mapping and a constant-

restricted scaling chain rule for lossless data quantization are

elaborated. Comprehensive tracking analysis is demonstrated

and a real chip is fabricated for performance evaluation. Putting

the tracking model onto one single chip, we achieve comparable

tracking accuracy and fast tracking speed (nearly 800 FPS).

This work enables high speed for tracking applications in

scenarios with limited resources and energy, such as in embedded

systems.

Besides the emphasized compact end-to-end model and

fast tracking speed, next we discuss more on the advantage-

disadvantage trade-off of the proposed solution. First, the

continuous dynamics makes the CANN model suitable for

continuous tracking with smooth trajectory. However, it is

still challenging for it to tackle well in the complex scenarios

with strong disturbance from other close objects or variable

backgrounds. In those cases, the CANN model performs

worse than the detection-recognition combined methods (Wang

and Yeung, 2013; Hong et al., 2015). Second, CANN is

driven by difference signal that makes it more sensitive to

the object edge rather than the center. This will add noise

on the recognized bounding box and degrade the tracking

accuracy based on current evaluation metrics. In any case,

our framework indeed provides an efficient solution for fast

tracking on the widely used many-core NN architecture. In

the scenarios with simpler environment but strong dependency

on high speed, this solution presents a great potential.

The single-chip accommodation also makes it suitable for

various embedded systems with constraints on resources and

power.

AUTHOR CONTRIBUTIONS

LD and ZZ proposed the idea, designed and did the experiments.

LD, ZZ, LingL, and XH conducted the modeling work. LD, XM,

GW, LiuL and JP conducted the design and testing of the tracking

system. LD, ZZ and GL wrote the manuscript, then YX revised

it. GL, JP, and YX directed the project and provided overall

guidance.

http://www.frontiersin.org/

Deng et al. Fast Tracking on Many-Core Chip

Frontiers in Neuroscience | www.frontiersin.org 14 November 2018 | Volume 12 | Article 841

ACKNOWLEDGMENTS

This work was partially supported by National Science

Foundation of China (Grant No. 61475080, 61603209,

and 61876215) and National Science Foundation (Grant

No. 1725447 and 1730309). Financial support from the

Beijing Innovation Center for Future Chip is also gratefully

acknowledged.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Ambrogio, S., Narayanan, P., Tsai, H., Shelby, R. M., Boybat, I., di Nolfo, C.,

et al. (2018). Equivalent-accuracy accelerated neural-network training using

analogue memory. Nature 558:60. doi: 10.1038/s41586-018-0180-5

Beier, H. T., and Ibey, B. L. (2014). Experimental comparison of the high-speed

imaging performance of an em-ccd and scmos camera in a dynamic live-cell

imaging test case. PLoS ONE 9:e84614. doi: 10.1371/journal.pone.0084614

Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., and Torr, P. H. (2016a).

“Staple: Complementary learners for real-time tracking,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (Las Vegas, NV),

1401–1409.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and Torr, P. H. (2016b).

“Fully-convolutional siamese networks for object tracking,” in European

Conference on Computer Vision (Amsterdam: Springer), 850–865.

Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M. (2010). “Visual

object tracking using adaptive correlation filters.” in 2010 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (IEEE), 2544–2550.

Carey, S. J., Barr, D. R., Wang, B., Lopich, A., and Dudek, P. (2012). “Locating high

speed multiple objects using a scamp-5 vision-chip,” in 2012 13th International

Workshop on Cellular Nanoscale Networks and Their Applications (CNNA)
(IEEE), 1–2.

Cehovin, L., Leonardis, A., and Kristan, M. (2016). Visual object tracking

performance measures revisited. IEEE Trans. Image Process. 25, 1261–1274.

doi: 10.1109/TIP.2016.2520370

Chen, J. G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W. T., and

Buyukozturk, O. (2015). Modal identification of simple structures with high-

speed video using motion magnification. J. Sound Vibrat. 345, 58–71. doi:

10.1016/j.jsv.2015.01.024

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). “Prime: a novel

processing-in-memory architecture for neural network computation in reram-

based main memory,” in ACM SIGARCH Computer Architecture News, Vol 44

(IEEE Press), 27–39.

Danelljan, M., Häger, G., Khan, F., and Felsberg, M. (2014a). “Accurate scale

estimation for robust visual tracking,” in British Machine Vision Conference,

September 1-5, 2014 (Nottingham: BMVA Press).

Danelljan, M., Hager, G., Shahbaz Khan, F., and Felsberg, M. (2015). “Learning

spatially regularized correlation filters for visual tracking,” in Proceedings

of the IEEE International Conference on Computer Vision (Santiago), 4310–

4318.

Danelljan, M., Shahbaz Khan, F., Felsberg, M., and Van de Weijer, J. (2014b).

“Adaptive color attributes for real-time visual tracking,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (Columbus, OH: IEEE

Computer Society), 1090–1097.

Faubel, C., and Schöner, G. (2008). Learning to recognize objects on the

fly: a neurally based dynamic field approach. Neural Netw. 21, 562–576.

doi: 10.1016/j.neunet.2008.03.007

Fung, C. A., Wong, K. M., and Wu, S. (2008). Dynamics of neural

networks with continuous attractors. Europhys. Lett. 84:18002.

doi: 10.1209/0295-5075/84/18002

Fung, C. C., Wong, K. Y., and Wu, S. (2010). A moving bump in a

continuous manifold: a comprehensive study of the tracking dynamics

of continuous attractor neural networks. Neural Comput. 22, 752–792.

doi: 10.1162/neco.2009.07-08-824

Galoogahi, H. K., Fagg, A., Huang, C., Ramanan, D., and Lucey, S. (2017a).

“Need for speed: a benchmark for higher frame rate object tracking,” in 2017

IEEE International Conference on Computer Vision (ICCV) (Venice: IEEE),

1134–1143.

Galoogahi, H. K., Fagg, A., and Lucey, S. (2017b). “Learning background-

aware correlation filters for visual tracking,” in Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu,

HI), 21–26.

Galoogahi, H. K., Sim, T., and Lucey, S. (2015). “Correlation filters with limited

boundaries,” in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (Boston, MA: IEEE), 4630–4638.

Grabner, H., Leistner, C., and Bischof, H. (2008). “Semi-supervised on-line

boosting for robust tracking. In European Conference on Computer Vision
(Marseille: Springer), 234–247.

Gurcan, I., and Temizel, A. (2015). Heterogeneous cpu–gpu tracking–learning–

detection (h-tld) for real-time object tracking. J. Real Time Image Process. 10,

1–15. doi: 10.1007/s11554-015-0538-y

Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M. M., Hicks, S. L.,

et al. (2016). Struck: structured output tracking with kernels. IEEE

Trans. Patt. Anal. Mach. Intellig. 38, 2096–2109. doi: 10.1109/TPAMI.2015.

2509974

Held, D., Thrun, S., and Savarese, S. (2016). “Learning to track at 100 fps

with deep regression networks,” in European Conference on Computer Vision
(Amsterdam: Springer), 749–765.

Henriques, J. F., Caseiro, R., Martins, P., and Batista, J. (2015). High-speed tracking

with kernelized correlation filters. IEEE Trans Patt. Anal. Mach. Intellig. 37,

583–596. doi: 10.1109/TPAMI.2014.2345390

Hong, S., You, T., Kwak, S., and Han, B. (2015). “Online tracking by

learning discriminative saliency map with convolutional neural network,” in

International Conference on Machine Learning (Lille), 597–606.

Jia, X., Lu, H., and Yang, M.-H. (2012). “Visual tracking via adaptive

structural local sparse appearance model,” in 2012 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Rhode, RI Island: IEEE),

1822–1829.

Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Tracking-learning-detection.

IEEE Trans. Patt. Anal. Mach. Intellig. 34, 1409–1422. doi: 10.1109/TPAMI.

2011.239

Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., and Hengel, A. V. D. (2013). A survey

of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol.
4:58. doi: 10.1145/2508037.2508039

Ma, C., Yang, X., Zhang, C., and Yang, M.-H. (2015). “Long-term correlation

tracking,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (Boston, MA: IEEE), 5388–5396.

Martel, J. N., and Sandamirskaya, Y. (2016). “A neuromorphic approach for

tracking using dynamic neural fields on a programmable vision-chip,” in

Proceedings of the 10th International Conference on Distributed Smart Camera

(ACM) (Paris), 148–154.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Nam, H., and Han, B. (2016). “Learning multi-domain convolutional neural

networks for visual tracking,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (Las Vegas, NV: IEEE), 4293–4302.

Pueo, B. (2016). High speed cameras for motion analysis in sports science. J. Hum.
Sport Exerc. 11, 53–73. doi: 10.14198/jhse.2016.111.05.

Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., et al. (2016). “Hedged deep

tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (Las Vegas, NV), 4303–4311.

Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). Incremental

learning for robust visual tracking. Int. J. Comput. Vis. 77, 125–141.

doi: 10.1007/s11263-007-0075-7

http://www.frontiersin.org/

Deng et al. Fast Tracking on Many-Core Chip

Frontiers in Neuroscience | www.frontiersin.org 15 November 2018 | Volume 12 | Article 841

Schöner, G., and Spencer, J. (2016). Dynamic Thinking: A Primer on Dynamic Field

Theory. Oxford: Oxford University Press.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,

M., et al. (2016). Isaac: a convolutional neural network accelerator with in-situ

analog arithmetic in crossbars. ACM SIGARCH Comput. Architect. News 44,

14–26. doi: 10.1145/3007787.3001139

Shi, L., Pei, J., Deng, N., Wang, D., Deng, L., Wang, Y., et al. (2015). “Development

of a neuromorphic computing system,” in 2015 IEEE International Electron

Devices Meeting (IEDM) (Washington, DC), 4.3.1–4.3.4.

Spencer, J., and Perone, S. (2008). A dynamic neural field model of multi-object

tracking. J. Vis. 8, 508–508. doi: 10.1167/8.6.508

Wang, D., Lu, H., and Yang, M.-H. (2013). “Least soft-threshold squares tracking,”

in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Portland: IEEE), 2371–2378.

Wang, L., Ouyang, W., Wang, X., and Lu, H. (2015). Visual tracking with fully

convolutional networks. in Proceedings of the IEEE International Conference on

Computer Vision (Santiago), 3119–3127.

Wang, M., Liu, Y., and Huang, Z. (2017). “Large margin object tracking with

circulant feature maps,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (Honolulu, HI), 21–26.

Wang, N., Shi, J., Yeung, D.-Y., and Jia, J. (2015). “Understanding and diagnosing

visual tracking systems,” in 2015 IEEE International Conference on Computer

Vision (ICCV) (Santiago: IEEE), 3101–3109.

Wang, N., and Yeung, D.-Y. (2013). “Learning a deep compact image

representation for visual tracking,” in Advances in Neural Information

Processing Systems (Lake Tahoe), 809–817.

Wu, S., Hamaguchi, K., and Amari, S. (2008). Dynamics and

computation of continuous attractors. Neural Comput. 20, 994–1025.

doi: 10.1162/neco.2008.10-06-378

Wu, Y., Lim, J., and Yang, M.-H. (2013). “Online object tracking: a benchmark,”

in 2013 IEEE Conference on Computer Vision and Pattern recognition (CVPR)
(Portland: IEEE), 2411–2418.

Wu, Y., Lim, J., and Yang, M. H. (2015). Object tracking benchmark. IEEE

Trans. Patt. Anal. Mach. Intellig. 37, 1834–1848. doi: 10.1109/TPAMI.2014.

2388226

Yu, S. (2018). Neuro-inspired computing with emerging nonvolatile memorys.

Proc. IEEE 106, 260–285. doi: 10.1109/JPROC.2018.2790840

Zhang, J., Ma, S., and Sclaroff, S. (2014). “Meem: robust tracking via multiple

experts using entropy minimization,” in European Conference on Computer

Vision (Zurich: Springer), 188–203.

Zhang, K., Zhang, L., and Yang, M.-H. (2012). “Real-time compressive

tracking,” in European Conference on Computer Vision (Florence: Springer),

864–877.

Zhang, T., Ghanem, B., Liu, S., and Ahuja, N. (2012). “Robust visual tracking via

multi-task sparse learning,” in 2012 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (Providence, RI: IEEE). 2042–2049.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Deng, Zou, Ma, Liang, Wang, Hu, Liu, Pei, Li and Xie. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

http://www.frontiersin.org/

