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Fast object tracking on embedded devices is of great importance for applications such 

as autonomous driving, unmanned aerial vehicle, and intelligent monitoring. Whereas, 

most of previous general solutions failed to reach this goal due to the facts that (i) high 

computational complexity and heterogeneous operation steps in the tracking models 

and (ii) parallelism-limited and bloated hardware platforms (e.g., CPU/GPU). Although 

previously proposed devices leverage neural dynamics and near-data processing for 

efficient tracking, their flexibility is limited due to the tight integration with vision sensor 

and the effectiveness on various video datasets is yet to be fully demonstrated. On the 

other side, recently the many-core architecture with massive parallelism and optimized 

memory locality is being widely applied to improve the performance for flexibly executing 

neural networks. This motivates us to adapt and map an object tracking model based on 

attractor neural networks with continuous and smooth attractor dynamics onto neural 

network chips for fast tracking. In order to make the model hardware friendly, we 

add local-connection restriction. We analyze the tracking accuracy and observe that 

the model achieves comparable results on typical video datasets. Then, we design  

a many-core neural network architecture with several computation and transformation 

operations to support the model. Moreover, by discretizing the continuous dynamics to 

the corresponding discrete counterpart, designing a slicing scheme for efficient topology 

mapping, and introducing a constant-restricted scaling chain rule for data quantization, 

we build a complete mapping framework to implement the tracking model on the 

many-core architecture. We fabricate a many-core neural network chip to evaluate the 

real execution performance. Results show that a single chip is able to accommodate 

the whole tracking model, and a fast tracking speed of nearly 800 FPS (frames per 

second) can be achieved. This work enables high-speed object tracking on embedded 

devices which normally have limited resources and energy. 

 
Keywords: object tracking, many-core architecture, neural network chip, recurrent neural networks, attractor 

dynamics 

 

 

1. INTRODUCTION 

Object tracking is important for many applications including autonomous driving, unmanned 

aerial vehicle, intelligent monitoring, etc. The object tracking models used by prior work can be 

clustered into several categories: discriminative or generative models (Li et al., 2013; Wang N. et al., 

2015), machine learning models (Grabner et al., 2008; Wang and Yeung, 2013; Hare et al., 2016), 
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and dynamic neural models (Faubel and Schöner, 2008; Spencer 

and Perone, 2008; Wu et al., 2008; Martel and Sandamirskaya, 

2016). The generative models leverage specific characteristics 

to represent the object, i.e., using representative methods such 

as the PCA (Ross et al., 2008; Wang et al., 2013) and sparse 

coding methods (Jia et al., 2012; Zhang T. et al., 2012), while the 

discriminative models separate the object from the backgrounds 

by training binary classifier (Kalal et al., 2012; Zhang K. et al., 

2012). To improve the tracking accuracy, various machine 

learning algorithms, such as boosting (Grabner et al., 2008), 

structured output SVM (Hare et al., 2016), and  correlation  

filter (Bolme et al., 2010; Henriques et al., 2015) have been 

applied. Recently, deep learning, convolutional neural network 

in particular, has shown the ability to automatically extract high- 

level features and improve the accuracy significantly (Wang and 

Yeung, 2013; Hong et al., 2015; Held D. et al., 2016; Wang et al., 

2017). However, these emerging neural network (NN) algorithms 

are usually very demanding in terms of compute and memory 

resources, limiting their  execution  speed.  In  addition,  many 

of these algorithms usually involve several separate steps with 

heterogeneous operations to construct a complete tracking model 

(Gurcan and Temizel, 2015; Wang et al., 2017), which affects 

the hardware compatibility of all  these  different  operations. 

To realize fast object tracking still remains as a challenge but 

important for applications such as motion posture capture in 

sports field (Chen et al., 2015; Pueo, 2016), cell imaging and 

movement analysis in biomedical field (Beier and Ibey, 2014), 

and some real-life scenarios (Galoogahi et al., 2017a). Compared 

to above complex models, the recurrent neural networks (RNNs) 

with attractor dynamics (Faubel and Schöner, 2008; Spencer 

and Perone, 2008; Wu et al., 2008; Martel and Sandamirskaya, 

2016) are more promising for fast tracking. They are capable   

of holding a continuous family of stationary states and form a 

continuous manifold wherein the dynamic behavior is neutrally 

stable, facilitating the smoothness of the object tracking. The 

compact and end-to-end paradigm promises efficient hardware 

implementation. 

Another factor limiting the tracking speed comes from the 

hardware aspect. It is well known that conventional CPU and 

GPU platforms suffer from von Neumann bottleneck limited by 

the memory bandwidth. Furthermore, these platforms are usually 

bloated to keep the programming flexibility for general purpose 

applications. These characteristics together with their bulky size 

and huge energy consumption make it difficult for the embedded 

deployment. Previous work (Martel and Sandamirskaya, 2016) 

implemented neural dynamics on dedicated vision chip for 

efficient tracking benefit from the near-data processing. Whereas, 

the flexibility of programming and application is limited due to 

the tight integration with the vision sensor and the effectiveness 

on various video datasets is yet to be fully demonstrated. 

Recently, many-core architecture for efficient execution of NN 

models has been widely demonstrated (Merolla et al., 2014;   

Shi et al., 2015; Chi et al., 2016; Shafiee et al., 2016). Via 

parallel computation and optimized memory locality, many-core 

architectures can achieve high throughput and power efficiency. 

Besides, the support for various neural network structures and 

inter-chip communication brings better flexibility and potential 

scalability, respectively. This motivates us to adapt and map an 

end-to-end NN model onto a many-core chip for fast object 

tracking. 

However, we should note that a many-core NN architecture 

usually suffers from some hardware constraints, such as limited 

connections and data precision, which must be addressed prior 

to model deployment. To this end, first, we adapt an RNNs- 

based object tracking model to make it hardware-friendly. Then, 

we design a many-core NN architecture with five vector/matrix 

operations and three transformation operations to support the 

model computation. In order to  deploy  the  tracking  model,  

we propose several optimization techniques:  (1)  to  address  

the fan-in and  fan-out  limitation  of  the  single  core,  we  add 

a local connection restriction that makes the model more 

hardware-friendly and use a slicing scheme for efficient topology 

mapping; (2) to implement the differential equations in digital 

circuits, we discretize the continuous temporal dynamics to the 

corresponding discrete counterpart; (3) to meet the requirement 

of fixed-point data with limited bit width, we propose a 

constant-restricted scaling chain rule for model quantization. 

Comprehensive evaluations of the model accuracy on various 

tracking datasets are demonstrated, and a real chip is fabricated 

for validation. Results show that a fast tracking speed of nearly 

800 FPS (frames per second) can be achieved. The compact  

size and high efficiency present great potential for intelligence 

on embedded devices, especially in the scenarios that require 

high-speed object tracking. 

The rest of the paper is organized as follows. Section 2 provides 

backgrounds for the tracking model and the hardware-friendly 

modification. Section 3 presents the design of many-core NN 

architecture. How to deploy the tracking model onto hardware  

is illustrated in section 4. Then, comprehensive evaluations on 

the tracking accuracy and system performance are conducted   

in section 5. Finally, this work is concluded and discussed in 

section 6. 

 
 

2. HARDWARE-FRIENDLY TRACKING 
MODEL 

In this section, we provide backgrounds for the tracking model 

we use in this paper and introduce local-connection restriction. 

We select an RNN model proposed by Wu et al. (Fung et al., 

2008, 2010; Wu et al., 2008) named continuous attractor neural 

network (CANN), which  is  a  neuroscience-inspired  model.  

In fact, similar models with self-sustaining neural dynamics, 

termed as dynamic  neural  fields  (DNF),  can  also  be  found 

in Faubel and Schöner (2008), Spencer and Perone (2008), 

Martel and Sandamirskaya (2016) and Schöner and Spencer 

(2016) where the only difference is the format of inhibition 

function. 

We first review the original dynamic model of a two- 
dimensional (2D) CANN, as shown in Figure 1. Denote x as a 

coordinate position on the 2D plane, V(x, t) as the membrane 

potential of the neuron at position x and time t, and r(x, t) as  

the firing rate of this neuron. It is reasonable to assume that   

r(x, t) increases along with V(x, t), but saturates in the presence 
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of global inhibition. A model that captures this feature obeys 

 
V2(x, t) 

r(x, t) = +∞ ′ (1) ′ the external stimulus in Equation (2). Each neuron receives the 
1 + k −∞ V

2(x , t)dx 

where k is a small positive hyper-parameter that controls the 

strength of global inhibition. 

Let Vext(x, t) be the external stimulus to neuron x at time 

t. In the CANN model, V(x, t) is determined by the external 

stimulus and the recurrent inputs from other neurons, and its 

own relaxation, which is governed by 

intensity of the corresponding pixel in the 2D difference frame. 

CANN model is able to track objects smoothly because of the 

continuous neural dynamics that results in a smooth moving 

trajectory of the response bump. The trajectory presents as: (1) 

in the absence of external stimulus, the network can still keep a 

fixed response bump via recurrent injection; (2) in the presence 

of an object, especially a continuously moving one, the network 

can smoothly shift its response bump in accordance with the 

∂V(x, t) 
τ = −V(x, t) + β 

∫

 
+∞ 

J(x, x′)r(x′, t)dx′ + Vext(x, t) 
moving target. Here the external stimulus acts as the object to be 

tracked, and the neuronal response bump indicates the predicted 

∂t −∞ 
(2) 

object location. Figure 2 illustrates the tracking process. The red 

bounding box is the ground truth of the object location, and 
where τ is a time constant, which is typically at the magnitude of 

1 ms, and β determines the ratio between the recurrent inputs 
and the external stimulus. J(x, x′) is the neuronal interaction 

(synaptic weight) from the neuron at location x′ to the neuron  

at location x. J(x, x′) is configured as 

   J0 − |x−x′ |2 
 

 

the yellow bounding box represented by the response bump 

reflects the predicted location. The original high-resolution video 

is resized to the CANN network scale before running the tracking 

model. 

However, the above CANN model is not hardware friendly 

when we map it onto a hardware for real-time tracking. One 

J(x, x′) = 2π a2 
e
 

2a2 (3) of the major obstacles is the huge connections in the model. 

Take a network with 1000 neurons as an example, if they are 

where J0 is a constant, a denotes the Gaussian interaction range, 

|x − x′| represents the Euclidean distance between neuron x 

and x′. J0 
2 is the maximum interaction. We can see  that 

equation  (3)  encodes  a  synapse  pattern  (bump  shape)  with 

translational invariance, producing a similar response bump 

pattern represented by large fire rates of neurons. The response 

bump implies where the object is. Furthermore, the neuronal 

distance is circular, which means that the most top and bottom 

neurons, as well as the most left and right neurons, are connected 

as adjacent neurons. This symmetry guarantees the bump 

stability at the boundary. 

The overview of CANN model is shown in Figure 1, where 

the bump-shape pattern of synaptic connections and fire rates 

forms a hallmark feature. The difference signal of every two 

adjacent frames from the video is injected into the network as 

fully connected, there are one million connections causing a 

huge wiring overhead. In this section, we introduce a distance- 

aware local connection to address this issue. Actually, for 

practical hardware implementation, other constraints are also 

required to be solved, such as mapping differential equation 

onto digital circuit, changing floating point operation to fixed 

point one with limited data bit width, partitioning the whole 

computational graph to sub-graphs for mapping it onto the 

many-core architecture, which will be explained in latter sections. 

 

2.1. Distance-Aware Local Connection 
Despite the interconnection limitation from hardware, each 

neuron has strong connections only within the Gaussian bump 

field (usually a circle) as shown in Equation (3). In this sense, the 

remote connections usually have small impact on the neuronal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2 | Illustration of CANN-based object tracking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1 | Illustration of the CANN model. 
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membrane potential and fire rate. Therefore, it is possible to 

remove the remote connections without much accuracy loss. To 

this end, we propose a distance-aware local connection topology, 

as below 

arithmetic operations. The emerging non-volatile memory 

(NVM) devices (Yu, 2018) have demonstrated great potential  

to build ideal FunC with efficient processing of the mentioned 

vector/matrix operations, via integrating both computation and 

memory on the same memory crossbar in analog domain (Chi 
   

J(x, x′) = 
  J0  

2   · e 

− |x−x′ |
2 

2a2 , if neuron x′ ∈ CF(x, R) 
 

(4) 
et al., 2016; Shafiee et al., 2016; Ambrogio et al., 2018). However, 

the large-scale fabrication of this “physical crossbar” is still 

0, otherwise 
 

where x′ ∈ CF(x, R) represents that each neuron x is only locally 

connected to its neighboring neurons within a R × R rectangle 

area centered by x. We term this local area as connection field 

(CF). The local pruning modification reduces many remote 

connections to save interconnection resources in the following 

chip implementation. The rectangle shape rather than circle is for 

matching with the slicing scheme for efficient mapping that will 

be introduced in section 4.2. 

 

3. MANY-CORE NEURAL NETWORK 
ARCHITECTURE 

As aforementioned, the many-core NN  architecture  holds  

great potential for high throughput because of the extreme 

processing parallelism with decentralized cores and improved 

memory locality without off-chip memory access. Usually, this 

architecture consists two levels of design: (1) functional core 

(FunC) that is a small self-contained NN for supporting various 

vector/matrix arithmetic operations; (2) many-core network 

wired by a scalable routing infrastructure. Here we design a 

many-core NN architecture shown in Figure 3 for implementing 

the CANN-based object tracking on chip. 

3.1. Functional Core 
The basic computation in NNs are the vector/matrix operations, 

such as vector-matrix multiplication (VMM) or vector-vector 

addition/multiplication, which should be well supported by the 

basic building block in an NN architecture. Therefore, the FunC 

in this paper can be viewed as a compute engine for vector/matrix 

challenging. Therefore, we use a fully digital design with memory 
array and additional processing elements (e.g., multipliers and 

accumulators) to simulate the crossbar-like dataflow, which can 

be treated as “virtual crossbar". The fully digital design is able 

to save fabrication cost and reduce development period. Despite 

of this development simplification, our mapping framework for 

implementing CANN-based tracking is suitable for any many- 

core NN architecture, no matter what device technology is  

used. 

Next, we introduce our architecture design. As shown in 

Figure 3A, each FunC is comprised of six units, including axon, 

synapse, dendrite, soma, router, and controller. Specifically, axon 

acts as a data buffer and provides the input for dendrite, as    

well as buffers the output from router (generated by soma). It 

has two SRAM chunks (256 × 8b for each), that act as two 

ping-pong buffers switching between the router write and the 

dendrite read. Synapse locally stores the connection weights 

(256 × 256 × 8b), which is logically organized as a crossbar 

and physically placed near to the dendrite computing for 
memory locality optimization. Dendrite is an integration engine 

occupying 16 8-bit multipliers and 16 24-bit accumulators, and 

soma is another computing block for neuronal transformation. 

Besides intra-FunC computing and data movement, inter-FunC 

communication is wired by routers. The overall dataflow follows: 

“remote FunC or local FunC ⇒ router ⇒ axon/synapse ⇒ 

dendrite ⇒ soma ⇒ router ⇒ local FunC or remote FunC”, and 

the controller manages the execution state machine. 

As shown in Table 1, we design five operations in dendrite, 

including VMM (vector-matrix multiplication), VVM (vector- 

vector  multiplication),  VVA  (vector-vector   accumulation), 

VS (vector scaling), and VB (vector buffer), and three 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3 | Many-core neural network architecture: (A) functional core (FunC); (B) scalable many-core network. 
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TABLE 1 | Dendrite and soma operations. 

Unit Operation Definition 
 

VMM y = W · x 

VVM y = x1 ⊙ x2 

Dendrite VVA y = i xi, i = 0, 1, ..., 127 

VS y = xα x 

VB y = x 

LUT_Fun y = ϕ(x) 

Soma Lat_Acc yj = xj + yj−1 

Out_Trans Send output to router 

 

transformations  in  soma,  including  LUT_Fun  (look  up   

table function), Lat_Acc (lateral accumulation), and Out_Trans 

(output transmission). Thus, it is able to cover all the arithmetic 

requirements in the CANN model. In particular, for the 256 

columns in the synapse array, the calculation is divided into 16 

groups (16 columns for each group). The column-wise execution 

within each group is parallel while the inter-group execution    

is serial. In VMM operation, at each cycle, dendrite reads one 

input from axon, reads 16 weights from 16 columns on the same 

row from the synapse array, and then concurrently executes 16 

MACs (multiply and accumulate) that share the same axon data. 

In VVM operation, dendrite ignores axon and reads dynamic 

data (e.g., membrane  potential)  rather  than  static  weight  

from synapse, and executes variable-variable multiplications. 

Considering the practical requirement of CANN model, VVM 

only supports two-vector multiplication. VVA bypasses the 

multipliers, and it supports up to 128-vector addition operation 

for dimensional reduction. VS operation only requires  one  

input from axon (scaling factor) and one row of dynamic data 

from synapse. Synapse is totally disabled in VB operation, and 

dendrite only copies data from axon, which is usually used for 

timing alignment via data delay. Note that, for the element-wise 

vector operations (e.g., VVM, VVA and VS), the synapse array 

is split into two chunks (128 × 256 × 8b for each), which 

alternately holds dynamic inputs from router and provides input 
for the consequent dendrite computation, i.e., working as two 

ping-pong buffers like that in axon. 

 

 

 

long-distance communication to a great extent, and the routing 

table in each router is reconfigurable to support arbitrary network 

topologies. A synchronous clock is required within each FunC, 

while asynchronous communication with handshaking is enough 

for inter-FunC communication. A global phase synchronization 

for a complete round of computation and communication is used 

for ensuring the correct timing schedule. Besides the P2P routing, 

we will introduce a multicast routing scheme in section 4.2. 

 

4. CANN DEPLOYMENT 

To  deploy  the  modified  CANN  model  onto   the   many- 

core NN architecture, we propose a mapping framework 

including dynamics discretization, topology mapping, and data 

quantization, which will be introduced in this section. 

4.1. Discretization of the Continuous 
Dynamics 
Since digital circuits cannot directly support the continuous 

differential dynamics in Equation (2), we propose an iterative 

state update method for discretizing the continuous dynamics to 

an equivalent difference equation so that we can implement it in 

an iterative manner. By setting τ = 1 and ∂t = 1, the continuous 

state update of CANN can be modified to an iterative version of 

3.2. Scalable Many-Core Network ′ ′ 

FunC is a small self-contained NN with 256 neurons and 256 
V(x, t + 1) = β x′ ∈CF J(x, x ) · r(x , t) + Vext(x, t) 
r(x, t + 1) = V

2 (x,t+1)
 

 
 

. (5) 
× 256 programmable synaptic connections. Larger NNs  can be 2 ′ 

constructed by wiring multiple FunCs together through routers, 
as shown in Figure 3B. In this way, the hierarchical scalability, 

i.e., FunC⇒chip⇒board⇒system, is easily to be obtained. 

k 
.

x′ V  (x ,t+1) 

Note that we always constrain the membrane potential to be 

positive, i.e., V(x, t) ≥ 0, and we change the term 1 + 
2    ′ 2 ′ 

Specifically, a typical routing topology of 2D mesh, XY Point-to- 

point (P2P) routing (Merolla et al., 2014; Akopyan et al., 2015), 

is used. The communication in X direction has a higher priority 

than the Y direction. Each router has five channels: Local, East, 

West, North, and South. A routing packet starts from the source 

neuron to the destination neurons through two stages: (1) move 

to a target memory cell in intra- or inter-chip FunC; (2) fan out 

to the target neurons when the computation starts in that FunC 

(VMM and VS  operation). The input sharing mechanism  saves 

k     x′ V  (x , t  + 1)  to  k     x′ V  (x , t  + 1)  for  simplification. 

V(x, t) ≥ 0 can be simply implemented through designing ReLU 

function of ReLU(x) = max(0, x) in LUT_Fun. 
Figure 4  presents  the  iterative  state  update  of  the  above 

difference equation. The overall computational dataflow 
therefore becomes “{r(x, t) & Vext(x, t)}  ⇒  V(x, t  + 1)  ⇒ 

r(x, t + 1) ⇒ ...”. Via above discretization, CANN model 

becomes   realizable   in   digital   circuit   through   the iterative 

execution. 

 

 
 

FIGURE 4 | State update described by 

“{r(x, t) & Vext(x, t)} ⇒ V(x, t + 1) ⇒ r(x, t + 1) ⇒ ...” according to the 

discretized difference Equation (5). 
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. 

   x    y  x y 

F ρF 

ϕ(x + y) = z ⇔ ϕρ (ρ · x + ρ · y) = ρ z ⇔ ρz = ρ  

 

4.2. Mapping of the Network Topology 
To better understand the process of mapping the CANN topology 

onto the many-core NN architecture, we decompose each 

iteration of the difference Equation (5) into five steps as below. 
 

 

Among the five steps at each iteration, Step 1 consumes the most 

resources because of the expensive matrix multiplication while 

the other four steps only execute vector computation needing 

less resources. Therefore, here we provide the mapping details of 

this step and then briefly introduce the overall mapping scheme. 

Take a relatively small network as an example that includes 30 × 

56 neurons where each one connects to all of its neighboring 

neurons in a 15 × 15 CF area. In Step 1, the neuronal outputs  

at time phase t will be fetched back to these neurons as inputs  
at next phase, and then participate in the  generation  of  the 

next neuronal outputs at t  + 1. The 30 × 56 inputs r(x′, t)  and 

(30 × 56) × (15 × 15) synaptic weights J(x, x′) form a heavy 

weighted connections (e.g., I4 ⇒ O41, I4 ⇒ O42, I4 ⇒ O43) 

could be mapped onto a single FunC. The routing from I4 to O41, 

O42, and O43 is handled by a routing strategy different from the 

regular P2P routing introduced in section 3.2. Here we design 

an adjacent multicast (AMC) routing in which each FunC can 

pack its received packets again with a new address of an adjacent 

FunC (configured in the AMC registers) and send it out. In    

this way, a source FunC is able to communicate with multiple 

continuous destination FunCs without increasing the memory 

cost of routing table. Theoretically, there is no limitation on the 

number of destination FunCs via this relay-like AMC routing. 

Compared to the P2P routing, AMC routing is more suitable for 

the inter-FunC bulky data sharing. 

Furthermore, note that the outputs from the FunCs at this step 
is just a partial potential because each neuron is usually affected 
by several different column-wise slices. For instance, each neuron 

in the left part of O41 is also driven by I2 and I3, so its complete 

state should be obtained by accumulating the corresponding 

outputs from three adjacent  column-wise  slices  of  I2, I3  and 

I4. This indicates that a second-order accumulation using extra 

FunCs with VVA  operations is required for the complete VMM 

operation in Step 1. In our implementation, we incorporate this 
VVA accumulation into Step 2 (to be shown in Table 5). Note 

that here we use a 30 × 56 network with 15 × 15 CF just for case 

study. The larger size could also be implemented using this slicing 

scheme at the cost of more resources. 

4.3. Data Quantization 
After mapping the network topology, the data quantization 

becomes an essential step to convert the  model  in  software 

into its hardware counterpart since the data type and bit width 

on the NN chip are usually limited. In our NN architecture, 
′ ′ all the computations are in the fixed-point format, and the 

VMM operation for achieving V1(x, t) = β x′ J(x, x ) · r(x , t). 
However, each FunC has a connection constraint with only  256 

fan-ins and 256 fan-outs (determined by the size of synapse 

array), which makes it impossible to execute the large VMM on 

a single core. To reduce the resource requirements, we propose 

a slicing scheme for efficient topology mapping. Combined with 

the aforementioned distance-aware local connection, the slicing 

scheme further helps obtain a regular placement pattern. 

precision for input-weight multiplication and intermediate 

accumulation is 8 bits and 24 bits, respectively. Actually, the 

quantization from floating-point data to bit-limited fixed-point 

data can be transformed to a scaling and rounding problem. For 

simplification, we use integer and integralization to replace the 

fixed-point quantization. At each execution step mentioned in 

section 4.2, we observe a scaling chain rule governed by 
As shown in Figure 5, first, we partition the 2D locally- ρ  ·ρ ρ  ·ρ 

.
ϕ(x × y) = z ⇔ ϕρ (ρx · x × ρy · y) = z ⇔ ρz = 

the fan-in number of each FunC. Here we partition it to 8 slices, 
F ρF ρF 

(6) 

wherein each one (such as I4) contains 30 × 7 ≤ 256 neurons. On 

the other side, considering that each neuron is only connected to 

its local CF covering 15 × 15 neurons, each slice is possible to 

affect the membrane potential of adjacent three slices including 

itself. For example, I4 would affect the membrane potential of 

I3, I4 and I5. However, the total number of output neurons in 

these affected slices are more than 256. To this end, we further 

partition the possible outputs of these three column-wise slices 

to three row-wise slices, e.g., I4 ⇒ {O41, O42, O43}, wherein  

each row-wise slice only has 10 × 21 ≤ 256 output neurons. 

According to the proposed column-wise and row-wise slicing for 

addressing the issue of limited inputs and outputs, respectively, 

a  minimum block  of  input neurons,  output  neurons, and their 

where x or y denotes the original floating-point input or weight 

at each FunC, z is the corresponding output, and ρx (or ρ), ρy (or 

ρ), and ρz are their scaling coefficients, respectively. Note that 

an extra bit truncation is required to reduce the bit width of the 
accumulated potential (24 bits) from dendrite to 10 bits before 
feeding it into the LUT_Fun, which can reduce the memory cost 
of LUT. The scaling effect of the bit truncation  and LUT  can 

be modeled as an equivalent scaling factor ρF, and ϕρF denotes 

both the truncation and LUT_Fun. If the LUT function is a linear 

function (or piecewise linear function, such as ReLU), Equation 

(6) is valid for describing a linear scaling relationship, termed as 

a linear scaling chain rule in this paper. This chain rule indicates 

the scaling factor of neuronal  output at the  l-th  execution  step 

, and delay V2(x, t + 1). 
5. Step 5 - firing rate: 

r(x, t + 1) = V2(x, t + 1) · sinh(t + 1). 

2 ′ V (x ,t+1) ′ x 

. 
k sinh(t + 1) =  1  

V(x, t + 1) = ReLU(V1(x, t + 1) + Vext(x, t)). 
3. Step 3 - potential squared: 

V2(x, t + 1) = V(x, t + 1) · V(x, t + 1) 

4. Step 4 - inhibition factor: 

2. Step 2 - membrane potential: 

J(x, x ) · r(x , t). ′ x ∈CF 
. 

1 
′ ′ 

Five execution steps for each iteration 

1. Step 1 - recurrent input: 

V (x, t + 1) = β 

connected recurrent network into several column-wise slices, and ρF 

the slice width is jointly determined by the network height and 
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    x    y  x y 
F ρF 

ϕ(x + y) = z ⇔ φ(ϕρ (φ(ρ · x) + φ(ρ · y))) ≈ ρ z ⇔ ρz ≈ ρ  

 
 

 
 

can be deterministically derived based on the output value at the 

(l-1)-th step, and can be propagated step by step. Equation (6) 

only describes the scaling relationship, and doesn’t include the 

rounding operation. Updating the equation to include rounding, 

it becomes 
 

ρ  ·ρ ρ  ·ρ 

.
ϕ(x × y) = z ⇔ φ(ϕρ (φ(ρx · x) × φ(ρy · y))) ≈ z ⇔ ρz ≈ 

F ρF ρF 

(7) 

where φ(·) is the rounding operation. Equation (7) is equivalent 

to adding random noise to the original chain rule shown in 

Equation (6). 

The proposed linear scaling chain rule can describe the scaling 

effect well as data propagates in a feedforward structure under 

the quantization constraint. However, the recurrent  network  

has a feedback connection that will influence the normal data 

scaling. First, as shown in Figure 6, each difference iteration in 

the forward pass subjects to the above linear scaling chain rule 

across the five execution steps. Second, the firing rate at time 

phase t will be fetched back to the network as the input for next 

phase t + 1. So the overall scaling factor on firing rate at each 

iteration should keep unchanged, i.e., a constant ρr, otherwise the 

firing rate will become larger and larger or smaller and smaller 

causing state explosion or vanishing issue, respectively. To this 

end, we have to configure the scaling factor of connection weights 

(ρJ ) and truncation/LUT_Fun (ρF) in each FunC to guarantee a 

constant-scaling restriction on the input/output firing rate after 

the feedforward scaling propagation. This is a typical closed- 

loop control that requires repeated verification, i.e., testing the 

network performance and adjusting the hardware configuration 

or modifying the original floating-point parameters until a 

satisfactory  result  is  achieved.  It  is  worthy  noting  that  the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rounding operations would introduce random errors, but the 

simulation results show that the CANN model can tolerate 

noises to a great extent, which was also mentioned in Martel 

and Sandamirskaya (2016). To avoid possible data overflow 

caused by the rounding noise, we enforce a clipping operation  

to keep the data in limited range, such as [-128, 127] under 8-bit 

quantization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 | Illustration of the proposed slicing scheme for efficient network mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6 | Quantization with a linear scaling chain rule in the feedforward 

pass corresponding to the five execution steps mentioned in section 4.2 and 

an extra constant-scaling restriction in the feedback pass. 

ρF . 
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TABLE 2 | Chip configuration. TABLE 3 | Information about the five video workloads. 
 

FunCs per chip MACs per FunC Synapse array per FunC  Video Frames Attributes 

12 × 13 16 256 × 256 (SRAM) 
   

  
Jogging-1 

 
307 

 
OCC, DEF, OPR 

Data precision Clock frequency Phase latency  Jogging-2 307 OCC, DEF, OPR 

8 bits (I/O) 300 MHz 16.8 µs  Sylvester 1345 IV, IPR, OPR 

  Tiger1 354 IV, OCC, DEF, MB, FM, IPR, OPR 

  Tiger2 365 IV, OCC, DEF, MB, FM, IPR, OPR, OV 

5. EXPERIMENTAL RESULTS 

5.1. Experimental Setup 
The simulation environment for the algorithm  analysis  is  

based on a PC with Intel i7 6700K CPU (4GHz) and Matlab 

R2017a software. For the hardware validation, we fabricate a 

chip in UMC 28nm HLP CMOS process (named Tianjic) to 

implement the many-core NN architecture described in section 

3 along with the AMC routing strategy mentioned in section 

4.2. To emulate the object tracking scenario, we develop a 

single-chip PCB equipped with an Altera  Cyclone  4  FPGA 

and four SDRAMs (total 128 MB), as shown in Figure 7. 

Tianjic accommodates the tracking model with pre-programmed 

synaptic weights. The resized video is pre-stored in SDRAM 

and then injected into the NN chip  through  FPGA.  Table 2 

lists the chip configuration. Considering the fabrication cost, we 

only integrate 156 FunCs onto one chip. With 300 MHz clock, 

the  chip  can  finish  all  computations  and  communications in 

16.8 µs during each time phase which reflects the minimum 

phase latency for guaranteeing the running correctness. The 

power consumed by each FunC is 1.95∼6.29 mW in different 

operation modes (Table 1) or idle mode, which includes the 
chip-level overhead. Other components on PCB consume 5.5 

W in total. Although only a single chip is enough in this work, 

we also design an inter-chip communication infrastructure for 

supporting multi-chip scalability if larger networks are required, 

which is compatible with the intra-chip routing strategies (P2P 

and AMC). Specifically, four bidirectional LVDS (low voltage 

differential signaling) interfaces are incorporated at each of the 

four chip sides. 

We test the CANN tracking on several video datasets from 

OTB-13  (Wu  et  al.,  2013)  and  OTB-15  (Wu  et   al.,  2015), 

the video attributes of which are shown in Table 3. For each 

IV, Illumination Variation; OCC, Occlusion; DEF, Deformation; MB, Motion Blur; FM, Fast 

Motion; IPR, In-Plane Rotation; OPR, Out-of-Plane Rotation; OV, Out-of-View. More details 

can be found in Wu et al. (2013). 

 
 

 
 
 

 

difference frame, we execute 15 iterations of Equation (5). 

Regarding the experimental evaluation, the accuracy  results  

are simulated in Matlab  (Figures 8–11,  16  don’t  consider  

any hardware constraints while Figures 12–14 incorporate the 

hardware constraints on connection and data bit width), and the 

resource overhead and tracking speed (involving Figures 15–17 

and Table 5) come from chip simulator and real measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 7 | Single-chip PCB. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

FIGURE 8 | Comparison of several metrics: center error, precision, overlap, 

and success rate. 
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δt,  δt = "x  − x  ". (9) 

 
 

 
 

 

5.2. Model Analysis 
5.2.1. Evaluation Metrics 
Several metrics are widely used for quantitative evaluation of 

predicted center location and xG as the ground-truth one. Then 

the center error over all frames in one sequence is governed by 

tracking accuracy (Cehovin et al., 2016). At this stage, none of 

them is a killer standard. To compare these different methods, 

we first recall some general definitions. An object location set in 

a frame sequence with length T is defined as 

O(KP, KG) = 

T 
P G 
t t 

t=1 

 
K = {(R , x )}T 

 
(8) 

Center error is used to evaluate the overall tracking accuracy 
for  a  sequence.  Usually,  the  precision  further  describes   the 

t t t=1 

 

where Rt denotes the cover region of the bounding box and xt is 

the center location of the object. 

The   center   error   measures   the   difference    between  

the predicted and ground-truth  center,  which  is  defined  as  

the average Euclidean distance in pixel units. Denote xP as the 

percentage of accurately predicted centers (within a given 

distance threshold). 

Another evaluation metric is the overlap, which is determined 

by the intersection area between the predicted and ground-truth 

bounding boxes. This measure accounts for both the location and 

size of the object, and does not result in extremely large errors at 

tracking failures. Given the predicted bounding box RP and the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9 | Success rate of OPE, SRE and TRE, wherein the overall AUC score is listed in the legend. For clarity, only 8 trackers on three videos are plotted. 
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R ∩ R 
. . t t=1 t P G 

 
 

 
 

 

ground-truth bounding box RG, the overlap of one sequence is 

defined as 
 

P G 8(KP, KG) = {φ }T    , φ  = 
. 

t t 
. 

(10) 
Rt ∪ Rt 

where ∩ is the intersection, ∪ is the union, and |·| denotes   

the number of pixels in the corresponding region. Furthermore, 

the success plot records a curve wherein each point represents the 

percentage of the accurately predicted bounding boxes (with 

overlap larger than a given threshold). The overall success score 

is defined as the area under curve (AUC). It can be proved that 

the AUC equals to average overlap (Cehovin et al., 2016). 

For an intuitive understanding of these metrics, Figure 8 

presents a comprehensive visualization of the tracking accuracy 

under different metrics on video tiger2. The center error and 

overlap are curves having nothing to do  with  the  threshold, 

and they usually fluctuate along the temporal dimension (i.e., 

frame). While every point on the precision or success plot 

corresponds to an overall accuracy obtained from the center 

errors or overlaps across all frames under a pre-given comparison 

threshold, respectively. Note that the precision, overlap and 

success rate are all in [0, 1]. Because the success rate and AUC 

score provide number within [0, 1] (including both accuracy  

and threshold) and does not fluctuate, we mainly use them for 

evaluating our model in the following sections. 

5.2.2. Tracking Accuracy 
To analyze the tracking accuracy comprehensively, we adopt 

the tests of one-pass evaluation (OPE), temporal robustness 

evaluation (TRE), and spatial robustness evaluation (SRE). 

Specifically, OPE is to run trackers throughout the whole 

sequence using ground truth of the first frame as initialization. 

This is a simple but useful way to evaluate trackers. For the 

robustness evaluation, TRE and SRE can be applied. In TRE, the 

whole sequence is split into several segments, then the influence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11 | Influence of the model hyper-parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 10 | AUC score of CANN on several videos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12 | Influence of the connection area: (A) CF clipping; (B) AUC score 

as R size increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 13 | The constant-scaling restriction for the data quantization of 

recurrent networks. 
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TABLE 4 | Parameter configuration. 

 

Video β/k Network size CF size 

Sylvester 300 
  

Jogging-1 600   

Jogging-2 900 96 × 128 15 × 15 

Tiger1 200   

Tiger2 100   

 
 
 
 
 
 
 
 
 
 
 
 

 

of initialization location can be analyzed (the first frame of each 

segment can calibrate the initialization). SRE is to sample the 

initial bounding box in the first frame by shifting or scaling the 

 

ground truth, which focuses on the spatial robustness. Please 
refer to Wu et al. (2013) for more detailed information. Table 4 

provides our parameter configuration for all the model analysis 

experiments. The reason why we only give the β/k value rather 

than individual β and k will be explained latter. 

Figure 9 presents the success rate compared to existing 

trackers under OPE, TRE, and SRE tests. For figure clarity, only 

8 trackers on three videos (sylvester, tiger1, tiger2) are shown. 

We can see that the CANN model performs quite well, which 

can approach or surpass other trackers. The overall success 

scores on all five videos are further shown in Figure 10. CANN 

presents advanced success scores across all these videos. Recalling 

Table 3, the sylvester video is in a simpler environment (e.g., 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 14 | Influence of the data quantization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 17 | Resource overhead before and after adding the local-connection 

restriction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 15 | Speed comparison with existing tracking algorithms (Danelljan et 

al., 2014a,b, 2015; Zhang et al., 2014; Galoogahi et al., 2015, 2017b; 

Henriques et al., 2015; Ma et al., 2015; Wang L. et al., 2015; Bertinetto et al., 

2016a,b; Nam and Han, 2016; Qi et al., 2016). The data marked with “(GPU)” 

are tested on GPU while others are on CPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 16 | Trade-off between tracking accuracy and resource overhead as 

the network size increases. 
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TABLE 5 | Mapping details and resource overhead at every step for a 30 × 56 CANN example. 

 

Step Functionality Implementation Operation No. FunC 

 

 
1 

 

 
Recurrent input 

8 column-wise slices 

3 FunCs for each column-wise slice 

 

 
VMM 

 
 

3 × 8 

  30 × 7 fan-ins and 10 × 21 fan-outs for each FunC   

2 Membrane potential 

(2 copies) 

Integrate 3 partial potentials and external stimulus 

240 × 4 fan-ins and 240 fan-outs for each FunC 

VVA 7 × 2 

3 Potential squared 240 × 2 fan-ins and 240 fan-outs for each FunC VVM 7 × 2 

 (2 copies)    

4-1 Inhibition factor 30 × 56 fan-ins and 1 fan-out for each FunC VVA + Lat_Acc 1 × 7 

 (7 copies)  nonlinear LUT_Fun  

4-2 Potential delay 240 fan-ins and 240 fan-outs for each FunC VB 7 

5 Firing rate 241 fan-ins and 240 fan-outs for each FunC VS 7 

    
Total: 73 

 

with less occlusion, deformation, and motion blur), so all trackers 

(including CANN) perform the best on it. 

Figure 11 analyzes the influence of the model hyper- 

parameters, k and β in Equation (5). Here we test on video tiger2. 

The X axis represents the ratio between β and k, i.e., β/k, and the 

Y axis is k. The color indicates different AUC score. We can see 

that the individual value of k (also reflecting the β value under the 

same β/k condition) has little impact on the tracking accuracy. 

In contrast, the ratio β/k heavily affects the AUC score. The 

underlying mechanism lies in Equation (5), in which we can find 

that the state of membrane potential V(x, t) is only determined 

by the ratio of β/k if we substitute the firing rate r(x, t) into the 

difference equation of V(x, t). When β/k is fixed, V(x, t) keeps 

unchanged under the same external stimulus. In this case, the 

bump pattern of firing rate remains the same or with an overall 

scaling effect under different k value, which will not affect the 

object prediction because it is only determined by the location 

of central neuron with the maximum firing rate. 
 

5.3. System Analysis 
5.3.1. Influence of Hardware Constraints 
Mapping the original CANN model onto the many-core NN 

hardware, two major constraints must be considered: connection 

and precision. The former one is caused by the limited wiring 

resources resulting in limited fan-in and fan-out connectors on a 

single FunC. This restricts the connection number of each neuron 

and the overall network size as well. The latter one is caused   

by the limited compute and memory resources which makes it 

impractical for high-precision floating-point operations. In our 

design, we just take 8 bits as a case study, but it is easy to extend 

to other precisions. 

First, Figure 12 shows the influence of CF size (i.e., R) in the 

local-connection restriction (on video tiger1). We can see that 

larger R usually generates higher AUC score. However, the AUC 

score gradually saturates when R is sufficiently large. From the 

guidance of this result, we configure the CF size to be 15 ×  15 

in our experiments to achieve both the best accuracy and fewest 

connections. 

Then, we investigate the precision influence. By using our 

quantization method proposed in section 4.3, the overall firing 

rate curve is equivalent to scale the original floating-point curve 

by a constant factor of ρr, which is shown in Figure 13 (on 

video sylvester). The constant-scaling restriction for recurrent 

networks is critical to address the state explosion or vanishing 

issue. The slight fluctuation of the scaling ratio is caused by   

the aforementioned rounding noise in Equation (7). Figure 14 

further shows the comparison of tracking accuracy before and 

after data quantization on all videos. The AUC scores are  

shown in the legend for  each  sub-figure.  We  can  see  that  

the “feedforward linear scaling chain rule & feedback constant 

scaling” quantization method proposed in Figure 6 is effective 

and causes little accuracy loss. The object in jogging-2 video has 

the similar color with the backgrounds, so the tracking accuracy 

presents a slightly larger degradation. 

 
 

5.3.2. System Performance 

Here we take a  CANN  model  with  30  ×  56  network  size 

as an example to show the hardware implementation. Table 5 

illustrates the mapping details and the resource overhead in all 

the execution steps mentioned in section 4.2. Step 1 for the 

integration of recurrent inputs consumes the most resources due 

to the heavy VMM operation. By leveraging the slicing scheme 

proposed in section 4.2, it generates the partial membrane 

potential using 24 FunCs as shown in Figure 5. Each 3 FunCs 

for one column-wise slice share the same inputs through AMC 

routing. The following steps only involve vector operations, such 

as VVA, VVM, VB, and VS. In these operations, the output data 

from previous step is dynamically buffered in synapse, different 

from the static weights in VMM operation at Step 1. To provide 

enough inputs for the next step, the outputs from Step 2, Step 3, 

and Step 4-1 have to be copied through configuring FunCs that 

have the same parameters and modes and share packets through 
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AMC routing. On the contrary, the inter-step communication 

still uses P2P routing, since the bulky AMC routing is invalid in 

these cases for routing to the next step due to the requirements 

for different input data or addresses in post-FunCs. In Step 4-1, 

the nonlinear LUT should be configured to calculate the division 

for producing the inhibition factor. The potential delay is used 

for timing alignment that guarantees the correct dataflow step by 

step. Totally, 73 FunCs are enough for this CANN model, which 

indicates that we can finish object tracking task on one single chip 

with 156 FunCs shown in Figure 7 and Table 2. 

Figure 15 compares the throughput of the CANN object 

tracking on our many-core chip with those on conventional 

CPU and GPU. By using the modified CANN model and our 

mapping framework, the many-core NN architecture holds great 

potential for fast object tracking. Specifically, we implement the 

CANN model with 5 execution steps and one time phase for 

each step. According to the chip performance of 16.8µs phase 

latency (Table 2) and 15 iterations for each difference frame,     

a throughput of 794 frames-per-second (FPS) can be achieved. 

This is significantly faster than the advanced trackers (4.7x- 

305x) on CPU or GPU. Note that the throughput in Figure 15 

means the speed based on pre-stored resized video, which doesn’t 

count the time for video resizing itself. In this paper, we focus 

on the efficient execution of tracking model rather than the 

video pre-processing which can be completed by anterior camera 

circuits. In fact, previous work (Carey et al., 2012) reported 

ultra-fast speed 100,000 FPS for closed-shape detection on vision 

chip with analog-digital mixed signals. However, the application 

scenario is very different, so we don’t include it into our 

comparison. 

Regarding the scalability of network size, it is a software- 

hardware trade-off. As shown in Figure 16 (on video tiger1), it 

is possible to achieve better tracking accuracy if we deploy larger 

network (remaining R  =15). However, larger network causes 

exponentially  increasing  resource  consumption.  In real-world 
applications, it is better to determine the network size according 

to the requirement for tracking accuracy. From Figure 16 we 

can see that, with 156 FunCs per chip, we still have space for 

scale  increasing  (e.g.,  up  to  50  × 70  network  size). Smaller 

than this threshold, one single chip is enough; otherwise, we 

should consider multi-chip interconnection. In fact, our many- 

core architecture is fully scalable, as shown in Figure 3B, which 

makes it easy to be extended to a multiple-chip system mentioned 

in section 5.1. The similar 2D mesh network-on-chip with the 

inter-FunC/intra-chip communication is also compatible with 

the inter-chip communication. The only difference is that a 

merge-split technique is needed for the inter-chip interface due 

to the limited chip I/O. 

Figure 17 shows the comparison of resource overhead before 

and after adding the local-connection restriction proposed in 

Section 2. For small networks, the resource saving is not 

significant since each input slice with CF size of 15 × 15 probably 

has impacts on the states of all slices, which degrades to the 

fully-connected case. For larger networks, the local-connection 

restriction gradually helps reduce the resources since each input 

slice only affects its neighboring slices. With this adaption, a 

single chip can accommodate a network of up to 50 × 70 size 

(consuming 154 FunCs); while without it, a smaller network (e.g., 

40 × 60 size consuming 170 FunCs) already exceeds the resources 

of one single chip. 
 

6. CONCLUSION AND DISCUSSION 

In this  paper,  we  adapt  and  map  the  CANN  model  onto  

the many-core NN architecture for fast object tracking. By 

adding a restriction for distance-aware local connection, we 

remove most remote connections to make the model hardware- 

friendly. Then we design a many-core NN architecture with five 

vector/matrix operations in dendrite and three transformation 

operations in soma to cover all the  computations  in  the  

CANN model. A mapping framework is further built for 

deploying the model onto the NN hardware, which includes 

three stages: dynamics discretization, topology mapping, and 

data quantization. Based on the five discrete execution steps, a 

slicing scheme for efficient topology mapping and a constant- 

restricted scaling chain rule for lossless data quantization are 

elaborated. Comprehensive tracking analysis is demonstrated 

and a real chip is fabricated for performance evaluation. Putting 

the tracking model onto one single chip, we achieve comparable 

tracking accuracy and fast tracking speed (nearly 800 FPS). 

This work enables high speed for tracking applications in 

scenarios with limited resources and energy, such as in embedded 

systems. 

Besides the emphasized compact  end-to-end  model  and  

fast tracking speed, next we discuss more on the advantage- 

disadvantage trade-off of the proposed solution. First, the 

continuous dynamics makes the CANN model suitable for 

continuous tracking with smooth trajectory.  However,  it  is  

still challenging for it to tackle well in the complex scenarios 

with strong disturbance from other close objects or variable 

backgrounds. In those cases, the CANN  model  performs  

worse than the detection-recognition combined methods (Wang 

and Yeung, 2013; Hong et al., 2015). Second,  CANN  is  

driven by difference signal that makes  it  more  sensitive  to  

the object edge rather than  the  center.  This  will  add  noise  

on the recognized bounding box and degrade the tracking 

accuracy based on current evaluation  metrics.  In  any  case,  

our framework indeed provides an efficient solution for fast 

tracking on the widely used  many-core  NN  architecture.  In 

the scenarios with simpler environment but strong dependency 

on  high  speed,  this  solution  presents  a   great   potential.  

The single-chip accommodation also makes it suitable for 

various embedded systems with constraints on resources and 

power. 
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