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Abstract— Batch normalization (BN) has recently become a 
standard component for accelerating and improving the training 
of deep neural networks (DNNs). However, BN brings in addi- 
tional calculations, consumes more memory, and significantly 
slows down the training iteration. Furthermore, the nonlinear 
square and sqrt operations in the normalization process impede 
low bit-width quantization techniques, which draw much atten- 
tion to the deep learning hardware community.  In this  paper,  
we propose an L1-norm BN (L1BN) with only linear operations 
in both forward and backward propagations during training. 
L1BN is approximately equivalent to the conventional L2-norm 

BN (L2BN) by multiplying a scaling factor that equals (π/2)1/2. 

Experiments on various convolutional neural networks and gen- 
erative adversarial networks reveal that L1BN can maintain the 
same performance and convergence rate as L2BN but with higher 
computational efficiency. In real application-specified integrated 
circuit synthesis with reduced resources, L1BN achieves 25% 
speedup and 37% energy saving compared to  the  original 
L2BN. Our hardware-friendly normalization method not only 
surpasses L2BN in speed but also simplifies the design of deep 
learning accelerators. Last but not least, L1BN promises a fully 
quantized training of DNNs, which empowers future artificial 
intelligence applications on mobile devices with transfer and 
continual learning capability. 

Index Terms— Batch normalization (BN), deep neural network 
(DNN), discrete online learning, L1-norm, mobile intelligence. 

 
I. INTRODUCTION 

ODAY, deep neural networks (DNNs) [1] are rapidly per- 

meating  into  various  artificial  intelligence applications, 

for   instance,   computer  vision [2],   speech   recognition [3], 
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machine translation [4], Go game [5], and multimodel tasks 

across them [6]. However, training DNNs is complicated and 

needs elaborate tuning of hyperparameters, especially on large 

data sets with diverse samples and thousands of categories. 

Therefore, the distribution of minibatch samples shifts stochas- 

tically during the training process, which will affect the subse- 

quent layers successively, and eventually make the network’s 

outputs and gradients vanish or explode. This internal covariate 

shift phenomenon [7] leads to slower convergence, requires 

careful adaption of learning rate, and appropriate initialization 

of network parameters [8]. 

To address the problem, batch normalization (BN) [7] has 

been proposed to facilitate training by explicitly normalizing 

inputs of each layer to have zero mean and unit variance. 

Under the guarantee of appropriate distribution, the difficulties 

of annealing learning rate and initializing parameters are now 

reduced. In addition, the inherent randomization incurred by 

the minibatch statistics serves as a regularizer and approxi- 

mates inference in Bayesian models [9]–[11], making BN a 

better alternative to dropout [12]. Most generative adversarial 

networks (GANs) also rely on BN  in  both  the  generator  

and the discriminator [13]–[15]. With BN, a deep generator 

can start with a normal training process, as well as  avoid 

mode collapse [14] that is a common failure observed in 

GANs. BN is so helpful in training DNNs that it has almost 

become a standard component together with the rectifier 

nonlinearity (ReLU) [16], not only in most deep learning 

models [17]–[19] but also in the neural network accelerator 

community [20], [21]. 

Inspired by BN, weight normalization [22] reparame- 

terizes the incoming weights by their L2-norm. Layer 

normalization [23] replaces the statistics of a training batch 

with a single training case, which does not  reparameterize  

the network. Both methods eliminate the dependencies among 

samples in a minibatch and overcome the difficulties of 

applying normalization in recurrent models [24]. In batch 

renormalization [25], an affine transformation is proposed to 

ensure that the training and inference models generate the 

same outputs that depend on individual example rather than 

entire minibatch. 

However, BN usually causes considerable overheads  in 

both the forward and backward propagations. Recently, in the 

field of convolutional neural networks (CNNs), there is a 

trend toward replacing the standard convolution with bot- 

tleneck pointwise convolution [26], group  convolution [27], 

or depthwise convolution [28]. Although the number of 
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parameters and multiply–accumulate (MAC) operations has 

been reduced in these models  during  inference,  the  fea-  

ture maps (channels) in each convolution layer have been 

gradient of m samples and update with the average value 

© ← © − η · 
1 Σ ∂4(xi,©) 

 

 
(2) 

expanded. Therefore, the computation overheads of BN layers 

are getting more expensive during training. In other words, 
 

where η is the learning rate. 

m ∂©  
i=1 

a compact model may require more training time to reach an 

optimal convergence [19]. 

On the one hand, the additional calculations in BN are 

costly, especially for resource-limited application-specified 

integrated circuit (ASIC) devices. When it comes to online 

learning, i.e., deploying the training process onto terminal 

devices, the salient resource problem has challenged the 

extensive application of DNNs in real scenarios.  On  the  

other hand, the square and sqrt operations introduce strong 

nonlinearity and make it difficult to employ low bit-width 

quantization. Although many quantization methods have been 

proposed to reduce the memory costs and accelerate the 

computation [29]–[31], the BN layers are simply avoided [32] 

or maintained in float32 precision. 

In this paper, we introduce an L1-norm BN (L1BN), where 

the L2-norm variance for minibatch samples is substituted by 

an L1-norm “variance.” Then, the costly and nonlinear square 

and sqrt operations can be replaced by hardware-friendly sign 

and absolute operations. L1BN  is  approximately equivalent 

to the L2-norm BN (L2BN) by multiplying a scaling factor 

that equals (π/2). To evaluate  the  proposed  method,  var- 

ious experiments have been conducted with CNNs on  data 

sets including Fashion-MNIST [33], Street View House Num- 

bers Dataset (SVHN) [34], CIFAR [35],  and ImageNet [36], 

as well as GANs on CIFAR and LSUN-Bedroom [37]. Results 

indicate that L1BN is able to achieve comparable performance 

and convergence rate but with higher computational efficiency. 

Cost comparisons of basic operations are estimated through 

ASIC synthesis, L1BN is able to obtain 25% speedup and 37% 

energy saving. Other hardware resources, e.g., silicon area and 

cost, can be reduced as well. We believe that L1BN can be an 

efficient alternative to speed up training on dedicated devices 

and promises a hardware-friendly learning framework where 

all the operations and operands are quantized to low bit-width 

precision. In addition, L1-norm is an orthogonal method and 

can be fruitfully combined with many other advances of the 

network normalization [22]–[25]. 

 

II. PROBLEM FORMULATION 

Stochastic gradient descent (SGD), known as the incremen- 

tal gradient descent, is a stochastic and iterative approximation 

of gradient descent optimization. SGD minimizes an objective 

function with differentiable parameters © 
N 

While  SGD  with   minibatch   is   simple   and   effective, 

it requires careful tuning of the model hyperparameters, espe- 

cially the learning rate used in the optimizer, as well as the 

initial values for the model parameters. Otherwise, the outputs 

of neural networks will be stuck in an inappropriate interval for 

the following activation (nonlinearity) functions, e.g., 8, 10  

for sigmoid(x ), where most values will be saturated.  Then, 

the gradients of these values are vanishing, resulting in slow 

convergence and local minimum. Another issue is that the 

inputs of each layer are affected by the parameters of all 

preceding layers; small updates of the parameters will accu- 

mulate and amplify once the network becomes deeper. This 

leads to an opposite problem that the  outputs and  gradients  

of network are prone to explode. Thus, SGD slows down the 

training by requiring lower learning rate and careful parameter 

initialization, and makes it notoriously hard to train deep 

models with saturating nonlinearities, e.g., sigmoid(x ) and 

tanh(x), which affect the networks’ robustness and challenges 

its extensive applications. 
Ioffe and Szegedy [7] refer to this phenomenon as internal 

covariate shift and address this problem by explicitly nor- 

malizing inputs. This method draws its strength from making 

normalization a part of the model architecture and performing 

the normalization across each minibatch, which is termed as 

“BN.” BN ensures that the distribution of preactivations (val- 

ues fed into activation) remains stable as the values propagate 

across layers in deep network. Then, the SGD optimizer will 

be less likely to get stuck in the saturated regime or explode  

to nonconvergence, allowing us to use higher learning rates 

and be less careful about parameter initialization. 

 

III. CONVENTIONAL L2BN 

Specifically, BN transforms each dimension in scalar 

feature independently by making it  have  zero  mean  and  

unit variance. For a layer with c-dimensional inputs x = 

{x(1), ... , x(k), ... , x(c)}, each dimension is normalized before 

fed into the following nonlinearity function: 

(k) x(k) − E[x(k)] 
 

Var[x (k)] 

where the expectation E x(k) and variance Var x(k) are 

computed over all training samples. 
Usually, for a minibatch B containing m samples, we use 

1 Σ © = arg min 4(xi,©) (1) 
 

 

μB and σ 2 + z to estimate E[x (k) ] and Var[x (k) ], respectively, 

© N 
i=1 which giv

B
es that 

 
 

(k) 

where  xi  for  i  =  1, 2, .Σ. . , N  is  the  training  set  containing 
x̂ (k) = 

xi    − μB 

 

 

(4) 

summarized by the risk at each sample 4(xi,©). Considering 

SGD with a minibatch of m samples, then the gradient of the 

loss function 4 can be simply approximated by processing the 

 
where z is a sufficiently small positive parameter, e.g., 1e − 5, 

for keeping numerical stability. The minibatch mean μB and 

B 

(3) 
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 σL2 = 

2  
· σL1 . (15) 
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TABLE I 

TRAINING TIME (MILLISECOND) PER IMAGE WITH OR 

WITHOUT BN, AND THE RATIO OF EXTRA TIME 

 

we apply the widely used built-in version: fused BN [39] that 

combines multiple required operations into a single kernel on 

GPU and can accelerate the normalization process. Even so, 

BN brings in about 30%–50% extra training time. Note that 

   L2-norm is applied to estimate σ , we term this method as 

the L2BN. To address this issue, we propose an L1BN in this 

paper. 
 

 
variance σ 2 are given as 

B 
m 

IV. PROPOSED L1BN 

Our idea is simple but effective, which applies the L1-norm 

to estimate σB. The L1BN is formulated as 

 

 
and 

μ 
1 

x (5) 
B 

m 
i=1 

 
 

 
 

and 

yi = γ · x̂ i + β (9) 

 
xi − μB 

 
 

σ 2 = 
 

(xi − μB)2. (6) 
xˆi = (10) 

σB + z 
B m 

i=1 where γ , β, μB, and z are identical to that in L2BN, and σB 

It is easy to see that σ 2 is calculated based on the L2-norm 
B 

is a term calculated by the L1-norm of minibatch statistics 
m 

of the statistics. 

Note that this forced normalization may change and hurt  

the representation capability of a layer. To guarantee that the 

transformation inserted into the network can represent the 

identity function, a trainable linear layer that scales and shifts 

the normalized values is introduced 

y(k) = γ (k) x̂ (k) + β (k) (7) 

where γ and β are the parameters to be trained along with the 

other model parameters. 

σ   = 
1 Σ 

|xi − μ  |. (11) 

The motivation of using the L1-norm is that the L1-norm 

“variance” is linearly correlated with  the  L2-norm  variance 

if the inputs have a normal distribution, which is commonly 

satisfied and observed in conventional networks [8]. 

Theorem 1: For a  normally distributed random  variable  X 

with variance σ 2, define a random variable Y such that Y = 
|X − E(X)|, we have 

 

During training, we need to backpropagate the gradient of 

loss  4  through  this  transformation,  as  well  as  compute the 
gradients with  respect  to  the  parameters  γ  and  β, the chain 

σ 
 

 

E(|X − E(X)|) = 

∫ 
π 

. (12) 

rule is derived as follows: Proof: Note that X −E(X) belongs to a normal distribution 
with  zero  mean  μ  and  variance σ 2. Then, Y  = |X − E(X)| 

∂4  
 

 

∂ x̂ i 

∂4 
= 

∂yi 
· γ 

m 

has a folded normal distribution [40]. Denote μY as the mean 

of Y , we have 
∂4 

= 
Σ ∂4 

· (xi − μ 
 

 

) · 
−1 .

σ 2 + z
Σ−3/2 ∫ 

2 −μ2 Σ 
 

 

. μ ΣΣ 
 

 
 

 
 

  

∂4 
= 

Σ ∂4 
· √ 

−1 based on the statistical property of folded normal distribution. 

 
 

 

 

∂4 ∂4 1 
= · √ 

 

 

+ 
∂4 

· 
2(xi − μB) 

+ 
∂4 

· 
1 

 

σ 
∫ 

π 
 

  

 

 

  m Remark 1: If the inputs of the BN layer obey a normal 
∂4 ∂4 

x
 

∂γ 
i 1 

∂yi 
m 

distribution, by denoting the standard derivation of the inputs 

as σL2 , and the L1-norm term in (11) as σL1 , we have 
∂4  

= 
Σ ∂4 

. (8) 
∫ 

π 
 

 

Although BN accelerates the convergence of training DNNs, 

it requires additional calculations and generally slows down 

the iteration process by a large margin. Table I shows the time 

overheads when training with or without BN on conventional 

CNNs. All models are built on Tensorflow [38] and trained 

with one or two Titan-Xp  GPUs.  Section  V-A will detail the 

Y μ σ 

Y μ + z 
B 

α is the normal cumulative distribution function. As μ 0, 

we can obtain that 

σ π 

σ π i 1 

m 

m 

B 
μY = 1 − 2α (13) 

∂xi 2 
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2 2 1 

implementation and training hyperparameters. For BN, 
Let γL2 and γL1 be the scale parameters in (7) and (9) for 

L2BN and L1BN, respectively. To keep the outputs of the two 
methods identical, ideally we have 

γL  = 

∫ 
π 

· γL . (16) 

Q 
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The above-mentioned remark is validated in Section V-C. 

To implement backpropagation when L1-norm is  involved, 

the chain rule is derived as follows: 

 
 

Algorithm 1 Training a L1BN Layer With Statistics μ, σ , 

Moving-Average Momentum α, Trainable Linear Layer Para- 

meters {γ, β}, Learning Rate η, Inference With One Sample 
 

 

∂4 ∂4  

∂ xˆi 
= 

∂yi 
· γ

 
Require: a mini-batch of pre-activation samples for training 

B = {x1, ..., xm}, one pre-activation sample for inference 

∂4 
∂σ 

=
 

∂4 

∂ x̂i  
· (xi − μB) · 

(σ
 

−1 
+ z)2 

I = {xinf} 
Ensure: updated parameters {μ, σ, γ, β}, normalized B 

i=1 
B pre-activations BN = {x N , . . .  , x N}, IN

 = {x N } 

m 
tr 1 m inf inf 

∂4   
= 

Σ ∂4 
· 

−1 1. Training with mini-batch B: 

∂μB 

 

 
 

 

 

 

i=1 
∂ xˆi 

 

  
 

  

 

 

σB + z 
⎧
⎨ Σ

 

 
 

 

 

1.1 Forward: 

⎬
⎫ 

1:  μB ←  1  
Σm

 

 
 

 
 

 

 
xi //mini-batch mean 

∂x 
= 

∂σ 
· 

m 
sgn(xi − μB) − 

m
 sgn(x j − μB) 

 

 
2: σB ← 1 

Σm 
1 |xi  − μB| //mini-batch L1 variance 

∂4 1 ∂4  + · + 
 

   

1 · . (17) 
 

 N 
σB+z 

∂ xˆi σB + z ∂μB m 4: xi   ← γ x̂ i  + β ≡ L1BNtr(xi) //scale and shift 

(∂4/∂γ) and (∂4/∂β) have exactly the same form as in (8). 

It is obvious that 

1.2 Backward: 

5: γ ← γ − η ∂4 

 
//update parameters 

 

 
Let 

sgn(x̂i) = sgn(xi − μB ). (18) 6: β ← β − η ∂4 

1.3 Update statistics: 

//update parameters 

∂4  
μ 

∂ x̂ i 

m   
∂4  

 
  

m ∂ x̂ i 

7:  μ ← αμ + (1 − α)μB //moving-average 

8:  σ  ← ασ + (1 − α)σB //moving-average 
i 1 

. Σ m . Σ 
 

   

2. Inference with sample I: 
 

 
 

 
 

 

∂4 
μ    

∂ x̂i  
· x̂i 

1 

m 
i=1 

∂4 

∂ x̂i  
· x̂i . (19) 

N 
inf ← σ +z · xinf + (β − σ +z ) ≡ L1BNinf(xinf) 

Then, by substituting (10) and (11) into (17), we can obtain 

that 

 
in MLPs, each channel is normalized based on m samples 

∂4 1 = 
 

  

. 
∂4 

− μ 

. 
∂4 

Σ
 

  

in a training minibatch. While for the convolution layer in 

∂xi σB + z ∂ xˆi 

−μ 

∂ x̂ i 

∂4 
x
 

∂ xˆi 

Σ 

· [sgn(x̂i) − μ(sgn(x̂i))]

Σ

. 

CNNs,  elements  at  different  spatial  locations  of individual 

feature map (channel) are normalized with the same mean  

and variance. Let B be the set of all values across both the 

(20) 

Note that square and sqrt operations can be  avoided  in 

both the forward and backward propagations when L1BN is 

involved. As shown in Section V, L1BN is approximately 

equivalent to L2BN in convergence rate and final performance 

but with better computational efficiency. 

 
A. L1BN in MLP and CNN 

As with L2BN, L1BN can be applied before nonlinearities 

in deep networks including but not limited to multilayer 

perceptrons (MLPs) and CNNs. The only difference is that the 

L1-norm is applied to calculate σ . As shown in (15), in order 

to compensate the difference between two deviations, we use 

the strategy as follows. 

1) When the scale factor γ is not applied in BN, we mul- 

tiply σL1 by (π/2) in (11) to approximate σL2 . 

2) When the scale factor γ is applied in BN, we just 

use σL1 and let the trainable parameter γL1 “learn” to 

compensate the difference automatically through back- 

propagation training. 

Other normalization processes of L1BN are  just  exactly the 

same as that in L2BN. For the fully connected layer 

γμ  γ 
9: x 

j =1 

i= 
j =1 

B 

1 ∂4 

i 

∂4 

m 

m 

//normalize 
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|B|=  

√ 

minibatch and spatial locations, so for a minibatch containing 

m samples with height h and width w, the effective number of 

data points for each  channel is mhw. Then, 

parameters γ and β can be learned for  each  feature  map  

rather  than each spatial location. The  algorithm for  L1BN is  

presented in Algorithm 1. 

V. EXPERIMENTS 

A. L1BN on Classification Tasks 

In order to verify the equivalence between L1BN and its 

original L2-norm version, we test both methods in various 

image classification tasks. In these tasks, we parameterize 

model complexity and task complexity, and then apply 2-D 

demonstrations with different CNN architectures on multiple 

data sets. For each demonstration, all the hyperparameters in 

L2BN and L1BN remain the same,  the  only  difference  is 

the use of L2-norm σL2 or L1-norm σL1 . In the following 
experiments, the SGD optimizer with momentum 0.9 is the 

default configuration. As suggested in [7], the trainable linear 

layer is applied in each BN since it introduces very few 

computation and parameters (γ, β) but can improve the final 

performance. Therefore, according to the strategy mentioned 

in Section IV-A, we do not multiply  (π/2) in the calculation  

of σL1 . 
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1) Simple Tasks With Shallow Models: Fashion- 

MNIST [33] is a MNIST-like fashion product database 

TABLE II 

TEST OR VALIDATION ERROR RATES (%) FOR L1BN AND L2BN 

that  contains  70k grayscale 28 28 images and preferably    

represents modern computer vision tasks. We use LeNet- 

5 [41] network and train for totally 90 epochs with minibatch 

size of 128. The learning rate η  is set to 0.1 and divided by  

10 at epoch 30 and epoch 60. As  for  SVHN [34] data  set,  

we use a Visual Geometry Group-like network with totally 

seven layers [32]. Input images are scaled and biased to the 

range of 1, 1 , and the total number of training epochs is 

reduced to 40. The learning rate  η  is  set  to  0.1 and  divided 

by 10 at epoch 20 and epoch 30.  

2) Moderate Tasks With Very Deep Models: Identity 

connections [17] and densely concatenations [18] are proven    

to be quite efficient in very deep CNNs with much fewer 

parameters. We test the effects brought by L1-norm in these 

structures on CIFAR [35] data sets. A DensetNet-100 [18] 

network is trained on CIFAR-100, as for the bottleneck 

architecture [26], a ResNet-110 [17], and a  Wide-DenseNet 

(L 40 and K 48) [18] are trained on CIFAR-10. We 

follow the data augmentation in [42] for training: 4 pixels are 

padded on each side, and a 32 32 patch is randomly cropped 

from the padded image or its horizontal flip. For testing, only 

single view of the original 32 32 image is evaluated. Learning 

rates and annealing methods are the same as that in [17]. 

3) Complicated Tasks With Deep Wide Models: For 

ImageNet data set with 1000 categories [36], we adopt 

AlexNet [2] model but remove dropout and replace the local 

response normalization layers with L1BN or L2BN. Images 

are first rescaled such that the shorter sides are of length 256, 

and then cropped out centrally to 256 256. For training, 

images are then randomly cropped to 224 224 and hor- 

izontally flipped. For testing, the single center crop in the 

validation set is evaluated. The model is trained with minibatch 

size of 256 and totally 80 epochs. Weight decay is set to 5e 4, 

learning rate η  is set  to 1e   2, and divided by 10 at epoch    

40 and epoch 60. 

4) Complicated Task With Deep Slim Model: Recently, 

compact convolutions such as group convolution [27] and 

depthwise convolution [28] draw extensive attention with 

equal performance but much fewer parameters and MACs. 

Therefore, we further reproduce MobileNet [19] and evaluate 

L1BN on ImageNet data set. At this time, weight decay 

decreases to 4e 5,  learning  rate  η  is  set  to  0.1  initially, 

and linearly annealed to  1e  3  after  60  epochs.  We  apply 

the Inception data argumentation defined in TensorFlow-Slim 

image classification model library [43]. The training is per- 

formed on two Titan-Xp GPUs and the population statistics 

Fig. 1. Training curves of ResNet-110 network on CIFAR-10 data set using 
L2BN or L1BN. Training losses contain the sum of weight decay losses. 

 

enlarged normalized statistics xi : according to (15), σL1 is 

smaller than σL2 , which results in a 1.25 amplification of xi . 

As mentioned earlier, the inherent randomization incurred by 
the minibatch statistics can serve as a regularizer. Although the 
following linear layer of BN may “learn” to alleviate the 

scaling by adjusting parameter γ during training, the L1-norm 

intuitively enhances this randomization and may further reg- 

ularize large model. As for the MobileNet result, there are 

very few parameters in its depthwise filters, so this compact 

model has less trouble with  overfitting.  On  this  occasion, 

the enhanced regularization may hurt the accuracy by a small 

margin. 

From the perspective of training curves, the test error of 

L1BN is a bit more unstable at the beginning. Although this 

can be improved by more accurate initialization: initialize γ 

from 1.0 (L2-norm) to (2/π) ≈ 0.8 (L1-norm), or fol- 
μ, σ for BN are updated according to the calculations from 

single GPU, so the actual batchsize for BN is 128. 

The main results are summarized in Table II, and we run 

each model for five times and show mean std of the error 

rates. In addition, the training curves of two methods using the 

ResNet-110 model on CIFAR-10 data set are shown in Fig. 1. 

We have two major observations. 

From the perspective of the final results, L1BN is approxi- 

mately equivalent to the original L2BN with only marginal 

performance distinctions, which might be caused by the 

lowing the first strategy mentioned in Section IV-A, the two 

loss curves almost overlap completely. Therefore, we directly 

embrace this instability and let networks find their way out. No 

other regular distinctions between two optimization processes 

are noticed in our CNN experiments. 

 
B. L1BN on Generative Tasks 

Since the training of GAN is  a zero-sum game between  

two neural networks without guarantee of convergence, most 
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Fig. 2.  Bedroom images (128  128) generated by a DCGAN generator using L2BN (left) or L1BN (right), the hyperparameters  and training techniques  are   
the same as described in WGAN-GP. 

 

TABLE III 

UNSUPERVISED ISS ON CIFAR-10 (LARGER VALUES 

REPRESENT FOR BETTER GENERATION QUALITY) 

 
 

 

 

Second, we perform experiments on LSUN-Bedroom [37] 

high-resolution image generation task. The original DCGAN 

only deals with image size 64 64, so an additional upsample 

deconvolution and downsample convolution layer is  applied 

to DCGAN’s generator and discriminator, respectively, to pro- 

duce higher resolution 128  128 images. In order to stabi-   

lize training and avoid mode collapse, we combine DCGAN 

architecture with WGAN-GP training methods. Since the 

   LSUN-Bedroom data set only has single class (bedroom) of 

images, the generated images cannot be evaluated by IS that 

requires multiple categories of samples. Fig. 2 just intuitively 

shows generated images after 300 000 generator iterations. 

Still, both methods generate comparable samples containing 

detailed textures, and we observe no significant difference in 

artistic style. 

C. Layerwise and Channelwise Comparison 

We further offer a layerwise and channelwise perspective 

GAN implementations rely on BN in both the generator and 

the discriminator to help stabilize training and prevent the 

generator from collapsing all generated images to certain 

failure patterns. In this case, the qualities of generated results 

will be more sensitive to any numerical differences. Therefore, 

we apply L1BN to two GAN tests to prove its effectiveness. 

First,  we generate 32 32 CIFAR-10 images using deep 

convolutional generative adversarial network (DCGAN) [13] 

and wasserstein generative adversarial network with gradient 

penalty (WGAN-GP) [44]. In the reproduction of DCGAN, 

we use the nonsaturating loss function proposed in [45]. As 

for WGAN-GP, the network remains  the  same  except that 

no BN is applied to discriminators as suggested in [44]. In 

addition, other training techniques, e.g., Wasserstein distance 

and gradient penalty, are adopted to improve the training 

process. Generated images are evaluated by the widely used 

metric inception score (IS) introduced in [14]. Since IS results 

fluctuate during training, we evaluate sampled images after 

every 10 000 generator iterations and report both the average 

score of the last 20 evaluations (AVG) and the overall best 

score (BEST). Table III shows that L1BN is still equivalent to 

L2BN in such hyperparameter-sensitive adversarial occasion. 

Note that in our implementations, some training techniques, 

hyperparameters, and network structures are not the same as 

described in the referred results. Incorporating these tech- 

niques might further bridge the performance gaps. 

to demonstrate the equivalence between the L1-norm and L2-

norm. After training a ResNet-110 network on CIFAR-10 for 

100 epochs, we fix all the network parameters and trainable 

linear-layer parameters γ, β , then feed the model  with  a 

batch of test images. Since the numerical difference between 

L1BN and L2BN will accumulate among layers, we guarantee 

that the inputs of each layer for both normalization methods 

are the same. However, within that layer, the standard devia- 

tion (L2-norm) σL2 and the L1-norm deviation σL1 of channel 

outputs are calculated simultaneously. 

In Remark 1, it is pointed out that, when the inputs obey     

a normal distribution, ideally L1BN and  L2BN are identical  

if  we  multiply   (π/2)  in  (11)  for  L1BN.  In  other  words, 

if all the other conditions are the same, the standard derivation 

σL2  is     (π/2)   multiple  of  σL1  in  each  layer.  In  Fig.  3,  

the average ratios σL2 /σL1 confirm this hypothesis. As shown 

in the colormap of Fig. 3, the ratios of intermediate layers 
(from layer 38 to layer 73, totally 1152 channels) are very 
close  to  the  value of    (π/2)     1.25. Also,  the  histograms  

of σL2 and σL1 are similar except for a phase shift in the 

logarithmic axis x , which is consistent with Theorem 1 and 
Remark 1. 

D. Computational Efficiency of L1BN 

Via replacing the L2-norm variance with the L1-norm “vari- 

ance,” L1BN improves the computational efficiency, especially 
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TABLE IV 

TOTAL NUMBERS AND COMPUTATIONAL OVERHEADS OF BASIC ARITHMETIC OPERATIONS IN ASIC SYNTHESIS. HERE, m DENOTES THE TOTAL 

NUMBER OF INTRACHANNEL DATA POINTS WITHIN ONE BATCH FOR SIMPLICITY, AND c DENOTES THE NUMBER OF CHANNELS 

 
 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

 

 

 

Fig. 4. Estimated time and power consumption for L1-norm and L2-norm. 

 

 

 

 
 

 
 

 

 
Fig. 3. Colormap of layerwise and channelwise ratios σL2 /σL1 averaged 

across 100 minibatches (top). Probability histograms of σL2 and σL1 , the axis 
x is on a logarithmic scale (bottom). 

 

 
on ASIC devices with reduced  resources.  In Section IV-A, 

we have pointed out that the effective number of data points 

for normalization equals to m and mhw for a fully connected 

layer and a convolution layer, respectively. Since spatial 

statistics are always coupled with minibatch statistics, we use 

m to denote the total number of intrachannel data points within 

one batch for simplicity, and c denotes the number 

 
the total numbers of basic arithmetic operations according to 

(4), (8), (11), and (17). The major improvements come from 

the reductions of multiplication, square, and sqrt operations. 

Next, the computational overheads of basic arithmetic oper- 

ations are estimated on the SMIC LOGIC013 RVT process 

with datatype float32, int32, float16, int16, float8, and int8. 

We only show the results of float32 and int8 in Table IV. 

Compared to square and sqrt operations, sign and absolute 

operations are quite efficient in speed and power and save 

silicon area and cost. In Fig. 4, the time and power consump- 

tion of L1BN and L2BN are estimated  with CNN  models    

in Table I. L1BN can averagely achieve 25% speedup and 37% 

power saving in practice. We can conclude that by reducing 

the costly multiplication, square, and sqrt operations in the 

L2BN layer, L1BN is able to improve the training efficiency 

regarding hardware resources, time and power consumption, 

especially for resource-limited mobile devices where digital 

signal processor and floating-point unit are not available. 

 
VI. DISCUSSION AND CONCLUSION 

To reduce the overheads of L2-norm based BN, we pro- 

pose the L1-norm-based BN. L1BN is  equivalent to  L2BN 

by multiplying a scaling factor (π/2) on condition that 

of  channels.  In  the  first  two  rows  of  Table  IV,  we  count the inputs obey a normal distribution, which is commonly 
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satisfied and observed in conventional networks. Experiments 

on various CNNs and GANs reveal that L1BN presents com- 

parable classification accuracies, generation qualities, and con- 

vergence rates. By replacing the costly and nonlinear square 

and sqrt operations with absolute and sign operations during 

training, L1BN enables higher computational efficiency. Cost 

comparisons of basic operations are estimated through the 

ASIC synthesis, L1BN is able to obtain 25% speedup and 

37% energy saving, as well as the reduction of hardware 

resources, e.g., silicon area and cost. Other than feed-forward 

models, L1-norm might be applied into  recurrent  BN [24] 

and decreases much more  overheads.  Inspired  by  L1BN,  

the exploration and interpretation of the intrinsic probabilistic 

principle behind the normalization statistics [11], [46] remain 

as intriguing directions for future research. 

Previous deep learning hardware mainly target at accelerat- 

ing the offline inference, i.e., the deployment of a well-trained 

compressed network. Wherein MACs usually occupy much 

attention and BN can be regarded as a linear layer once 

training is done. However, the capability of continual learning 

in real-life and on-site occasions is essential for the future 

artificial general intelligence. Thus, the online training is very 

important to both the datacenter equipped with thousands of 

CPUs and GPUs, as well as edge devices with resource-limited 

FPGAs and ASICs, wherein BN should not be bypassed. 

L1BN with less resource overheads and faster speed can 

benefit most of the current deep learning models. 

Moreover, transferring both training and inference processes 

to low-precision representation is an effective leverage to 

alleviate the complexity of hardware design. Regretfully, most 

of the existing quantization  methods  remain  the  BN  layer 

in full-precision (float32) because of the strongly nonlinear 

square and sqrt operations. By replacing them with absolute 

and sign operations, L1BN greatly promises a fully quantized 

neural network with low-precision dataflow for efficient online 

training, which is crucial to future adaptive terminal devices. 
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