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Abstract— Batch normalization (BN) has recently become a
standard component for accelerating and improving the training
of deep neural networks (DNNs). However, BN brings in addi-
tional calculations, consumes more memory, and significantly
slows down the training iteration. Furthermore, the nonlinear
square and sqrt operations in the normalization process impede
low bit-width quantization techniques, which draw much atten-
tion to the deep learning hardware community. In this paper,
we propose an L1-norm BN (L1BN) with only linear operations
in both forward and backward propagations during training.
L1BN is approximately equivalent to the conventional L2-norm
BN (L2BN) by multiplying a scaling factor that equals (17/2)1/2.
Experiments on various convolutional neural networks and gen-
erative adversarial networks reveal that LIBN can maintain the
same performance and convergence rate as L2ZBN but with higher
computational efficiency. In real application-specified integrated
circuit synthesis with reduced resources, LIBN achieves 25%
speedup and 37% energy saving compared to the original
L2BN. Our hardware-friendly normalization method not only
surpasses L2BN in speed but also simplifies the design of deep
learning accelerators. Last but not least, LIBN promises a fully
quantized training of DNNs, which empowers future artificial
intelligence applications on mobile devices with transfer and
continual learning capability.

Index Terms— Batch normalization (BN), deep neural network
(DNN), discrete online learning, L1-norm, mobile intelligence.

I. INTRODUCTION

ODAY, deep neural networks (DNNs) [1] are rapidly per-
meating into various artificial intelligence applications,
for instance, computer vision [2], speech recognition [3],
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machine translation [4], Go game [5], and multimodel tasks
across them [6]. However, training DNNs is complicated and
needs elaborate tuning of hyperparameters, especially on large
data sets with diverse samples and thousands of categories.
Therefore, the distribution of minibatch samples shifts stochas-
tically during the training process, which will affect the subse-
quent layers successively, and eventually make the network’s
outputs and gradients vanish or explode. This internal covariate
shift phenomenon [7] leads to slower convergence, requires
careful adaption of learning rate, and appropriate initialization
of network parameters [8].

To address the problem, batch normalization (BN) [7] has
been proposed to facilitate training by explicitly normalizing
inputs of each layer to have zero mean and unit variance.
Under the guarantee of appropriate distribution, the difficulties
of annealing learning rate and initializing parameters are now
reduced. In addition, the inherent randomization incurred by
the minibatch statistics serves as a regularizer and approxi-
mates inference in Bayesian models [9]-[11], making BN a
better alternative to dropout [12]. Most generative adversarial
networks (GANs) also rely on BN in both the generator
and the discriminator [13]-[15]. With BN, a deep generator
can start with a normal training process, as well as avoid
mode collapse [14] that is a common failure observed in
GANSs. BN is so helpful in training DNNs that it has almost
become a standard component together with the rectifier
nonlinearity (ReLU) [16], not only in most deep learning
models [17]-[19] but also in the neural network accelerator
community [20], [21].

Inspired by BN, weight normalization [22] reparame-
terizes the incoming weights by their L2-norm. Layer
normalization [23] replaces the statistics of a training batch
with a single training case, which does not reparameterize
the network. Both methods eliminate the dependencies among
samples in a minibatch and overcome the difficulties of
applying normalization in recurrent models [24]. In batch
renormalization [25], an affine transformation is proposed to
ensure that the training and inference models generate the
same outputs that depend on individual example rather than
entire minibatch.

However, BN usually causes considerable overheads in
both the forward and backward propagations. Recently, in the
field of convolutional neural networks (CNNs), there is a
trend toward replacing the standard convolution with bot-
tleneck pointwise convolution [26], group convolution [27],
or depthwise convolution [28]. Although the number of
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parameters and multiply—accumulate (MAC) operations has
been reduced in these models during inference, the fea-
ture maps (channels) in each convolution layer have been
expanded. Therefore, the computation overheads of BN layers
are getting more expensive during training. In other words,

a compact model may require more training time to reach an
optimal convergence [19].

On the one hand, the additional calculations in BN are
costly, especially for resource-limited application-specified
integrated circuit (ASIC) devices. When it comes to online
learning, i.e., deploying the training process onto terminal
devices, the salient resource problem has challenged the
extensive application of DNNs in real scenarios. On the
other hand, the square and sqrt operations introduce strong
nonlinearity and make it difficult to employ low bit-width
quantization. Although many quantization methods have been
proposed to reduce the memory costs and accelerate the
computation [29]-[31], the BN layers are simply avoided [32]
or maintained in float32 precision.

In this paper, we introduce an L1-norm BN (L1BN), where
the L2-norm variance for minibatch samples is substituted by
an L1-norm “variance.” Then, the costly and nonlinear square
and sqrt operations can be replaced by hardware-friendly sign
and absolute operations. LIBN is approximately equivalent
to the L2-no\rm BN (L2BN) by multiplying a scaling factor
that equals (1r/2). To evaluate the proposed method, var-
ious experiments have been conducted with CNNs on data
sets including Fashion-MNIST [33], Street View House Num-
bers Dataset (SVHN) [34], CIFAR [35], and ImageNet [36],
as well as GANs on CIFAR and LSUN-Bedroom [37]. Results
indicate that LIBN is able to achieve comparable performance
and convergence rate but with higher computational efficiency.
Cost comparisons of basic operations are estimated through
ASIC synthesis, LIBN is able to obtain 25% speedup and 37%
energy saving. Other hardware resources, e.g., silicon area and
cost, can be reduced as well. We believe that LIBN can be an
efficient alternative to speed up training on dedicated devices
and promises a hardware-friendly learning framework where
all the operations and operands are quantized to low bit-width
precision. In addition, L1-norm is an orthogonal method and
can be fruitfully combined with many other advances of the
network normalization [22]-[25].

II. PROBLEM FORMULATION

Stochastic gradient descent (SGD), known as the incremen-
tal gradient descent, is a stochastic and iterative approximation
of gradient descent optimization. SGD minimizes an objective

function with differentiable parameters ©
N

© =argmin 1 > 4(x,0) )
©N
i=1
where x; fori = 1,2, 'E’NN is the training set containing
totally N samples and ;=1 4(x;,©) is the empirical risk

summarized by the risk at each sample 4(x; ©). Considering
SGD with a minibatch of m samples, then the gradient of the
loss function 4 can be simply approximated by processing the
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gradient of m samples and update with the average value

1% 04(x,0) )

O« ©O—-n P . —90 (2)
i=

where n is the learning rate.

While SGD with minibatch is simple and effective,
it requires careful tuning of the model hyperparameters, espe-
cially the learning rate used in the optimizer, as well as the
initial values for the model parameters. Otherwise, the outputs
of neural networks will be stuck in an inappropriate interval for
the following activation (nonlinearity) functions, e.g., 8,[10 ]
for sigmoid(x ), where most values will be saturated. Then,
the gradients of these values are vanishing, resulting in slow
convergence and local minimum. Another issue is that the
inputs of each layer are affected by the parameters of all
preceding layers; small updates of the parameters will accu-
mulate and amplify once the network becomes deeper. This
leads to an opposite problem that the outputs and gradients
of network are prone to explode. Thus, SGD slows down the
training by requiring lower learning rate and careful parameter
initialization, and makes it notoriously hard to train deep
models with saturating nonlinearities, e.g., sigmoid(x ) and
tanh(x), which affect the networks’ robustness and challenges
its extensive applications.

Ioffe and Szegedy [7] refer to this phenomenon as internal
covariate shift and address this problem by explicitly nor-
malizing inputs. This method draws its strength from making
normalization a part of the model architecture and performing
the normalization across each minibatch, which is termed as
“BN.” BN ensures that the distribution of preactivations (val-
ues fed into activation) remains stable as the values propagate
across layers in deep network. Then, the SGD optimizer will
be less likely to get stuck in the saturated regime or explode
to nonconvergence, allowing us to use higher learning rates
and be less careful about parameter initialization.

III. CONVENTIONAL L2BN

Specifically, BN transforms each dimension in scalar
feature independently by making it have zero mean and
unit variance. For a layer with c-dimensional inputs x =
{x(V, ..., x(® ..., x(<)} each dimension is normalized before
fed into the following nonlinearity function:

) XM —E[xM]
= e )
Var[x (]

where the expectation H x(¥] and variance Vaf x(¥] are
computed over all training samples.

Usually, for a minibatch B containing m samples, we use
up and o> + z to estimate E[x ()] and Var[x(#)], respectively,

B
which gives that %)

)ei(k) I ) 4)

2
GB+z

where z is a sufficiently small positive parameter, e.g., le — 5,
for keeping numerical stability. The minibatch mean ug and
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TABLE 1

TRAINING TIME (MILLISECOND) PER IMAGE WITH OR
‘WiTHOUT BN, AND THE RATIO OF EXTRA TIME

Model no BN with BN +time(%)
ResNet-110 0.46 0.68 47.8
DenseNet-100 1.08 1.58 46.3
MobileNet 1.55 1.95 25.8
variance o é are given as
1 m
pg > x (5)
=
i=1
and
m
or= 1% (x.—upl. (©)
m

i=1
It is easy to see that o 2 J calculated based on the L2-norm

of the statistics.

Note that this forced normalization may change and hurt
the representation capability of a layer. To guarantee that the
transformation inserted into the network can represent the
identity function, a trainable linear layer that scales and shifts
the normalized values is introduced

pl) = ()3(0) 4 (k) )
where y and 8 are the parameters to be trained along with the

other model parameters.

During training, we need to backpropagate the gradient of

loss 4 through this transformation, as well as compute the
gradients with respect to the parameters y and 8, the chain

rule is derived as follows:

04 04

o g

X d}{,‘

04 2 094 -1. 3
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04 2 04, -1
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y iéﬁ yl
04 204 ®
08 dy;
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Although BN accelerates the convergence of training DNNs,
it requires additional calculations and generally slows down
the iteration process by a large margin. Table I shows the time

we apply the widely used built-in version: fused BN [39] that
combines multiple required operations into a single kernel on
GPU and can accelerate the normalization process. Even so,
BN brings in about 30%—-50% extra training time. Note that
L2-norm is applied to estimate og we term this method as
the L2BN. To address this issue, we propose an L1BN in this

paper.

IV. PROPOSED L1BN

Our idea is simple but effective, which applies the L1-norm
to estimate og. The L1BN is formulated as

yi=y xi+8 ©)
and
Xi — UB
xti= (10)
o+ z

where y, 8, up, and z are identical to that in L2BN, and oB
is a term calculated by the L1-norm of minibatch statistics
1 b4

Op IX,‘ _#Bl' (11)

i=1

The motivation of using the L1-norm is that the Ll-norm
“variance” is linearly correlated with the L2-norm variance
if the inputs have a normal distribution, which is commonly
satisfied and observed in conventional networks [8].

Theorem 1: For a normally distributed random variable X
with variance o2, define a random variable Y such that ¥ =
|X — E(X)|, we have

o J_
B(X-EX)) = 2. (12)
Proof: Note that X —E(X) belongs to a normal distribution

with zero mean p and variance o %. Then, ¥ = |X — E(X)|

has a folded normal distribution [40]. Denote uy as the mean
of Y, we have

J— )
_2 z -
wr= ZoedT+pu 1-2a _“E (13)
T o

based on the statistical property of folded normal distribution.
o is the normal cumulative distribution function. As u = 0,
we can obtain that

= . (14)
2
Remark 1: 1f the inpﬁtlg of the BN layer obey a normal

distribution, by denoting the standard derivation of the inputs
as o1, , and the L1-norm term in (11) as oz, , we have

T
O, = Bl 0Ly

(15)

overheads when training with or without BN on conventional
CNNs. All models are built on Tensorflow [38] and trained
with one or two Titan-Xp GPUs. Section V-A will detail the
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implementation and training hyperparameters. For BN,

Let yi, and y;, be the scale parameters in (7) and (9) for
L2BN and L1BN, respectively. To keep the outputs of the two
methods identical, ideally Wj.have

7 (16)

Ve, = !

2

vl A

Q
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The above-mentioned remark is validated in Section V-C.

To implement backpropagation when L1-norm is involved,
the chain rule is derived as follows:
04 04
E’\, B dy,‘
04 =" 04 -1
dog . IS (xi — uB) (0—54-—;92
04 X oos -1
oug ,_,0x" ‘rB +z }
04 04 1 1 =
i B \ i=1
o 0o m sgn(x; — up) — m sgn(x ; — up)
j=1
+ 04 . 1 +d4-1. (17)

0x” oug m

(04/0y) and (04/08) have exactly the same form as in (8).
It is obvious that

otz

sgn(x;) = sgn(x; — uUg). (18)
Let
- 94% = " o4
o T m ox
b o b
04 1 04 (19)
H d)e, Xi m A Xi

=1 0%

Then, by substituting (10) and (11) into (17), we can obtain
that

- - >
=1 "oa_ oa
ov  op+z 0x M oox
- z
04 .~ A )
—u gx, X [sgn(x;) — p(sgn(xi))] .
(20)

Note that square and sqrt operations can be avoided in
both the forward and backward propagations when L1BN is
involved. As shown in Section V, LIBN is approximately
equivalent to L2BN in convergence rate and final performance
but with better computational efficiency.

A. LIBN in MLP and CNN

As with L2BN, L1BN can be applied before nonlinearities
in deep networks including but not limited to multilayer
perceptrons (MLPs) and CNNs. The only difference is that the
L1-norm is applied to calculate o . As shown in (15), in order
to compensate the difference between two deviations, we use
the strategy as follows.
1) When the scale factor y is not applied in BN, we mul-
tiply oz, by (/2] in (11) to approximate oy, .

2) When the scale factor y is applied in BN, we just
use oz, and let the trainable parameter y;, “learn” to
compensate the difference automatically through back-
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Algorithm 1 Training a L1BN Layer With Statistics{u, o},
Moving-Average Momentum «, Trainable Linear Layer Para-
meters {y, 8}, Learning Rate n, Inference With One Sample

Require: a mini-batch of pre-activation samples for training

B = {xi, ..., xu}, one pre-activation sample for inference
I= {xmf}
Ensure: u dated

pre- activations BR]a ralzleltjers ﬂ‘T/} IM' 6}

1. Training with mini-batch B:
1.1 Forward:

ﬂormahzed

1 m

1: g «— — g i //mini-batch mean
m i=

3: )AC,' “HB
oz, N ‘

2: 0B «— L lxi —usl //mini-batch L1 variance
op+z //normalize

N
4:x; < yx i+ 8= LIBNy(x;)
1.2 Backward:
sye—v=n%
6:86«—68—n d%
1.3 Update statistics:

//scale and shift

/lupdate parameters

//update parameters

7. u<—au+ (1 - a)ug //moving-average

8: 0 «— ao+ (1 —a)op //moving-average
2. Inference with sample I:

9: x ¥ Y

N * Xinf + (8 — o+z) = L1BNing(Xing)

inf o+z

in MLPs, each channel is normalized based on m samples

in a training minibatch. While for the convolution layer in
CNNs, elements at different spatial locations of individual
feature map (channel) are normalized with the same mean

and variance. Let B be the set of all values across both the

propagation training.
Other normalization processes of LIBN are just exactly the

same as that in L2BN. For the fully connected layer
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minibatch and spatial locations, so for a minibatch containing

m samples with height 4 and width w, the effective number of

data points for each channel is mhw. Then, |B|=
parameters y and 8 can be learned for each feature map

rather than each spatial location. The algorithm for L1BN is

presented in Algorithm 1.

V. EXPERIMENTS
A. LIBN on Classification Tasks

In order to verify the equivalence between L1BN and its
original L2-norm version, we test both methods in various
image classification tasks. In these tasks, we parameterize
model complexity and task complexity, and then apply 2-D
demonstrations with different CNN architectures on multiple
data sets. For each demonstration, all the hyperparameters in
L2BN and L1BN remain the same, the only difference is
the use of L2-norm o, or L1-norm oy, . In the following
experiments, the SGD optimizer with momentum 0.9 is the
default configuration. As suggested in [7], the trainable linear
layer is applied in each BN since it introduces very few
computation and parameters (y, 8) but can improve the final
performance. Therefore, according to the strategy mentioned
in Section IV-A, we do not multiply (r/2) in the calculation
of o Ly-
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1) Simple Tasks With Shallow Models:  Fashion-

MNIST [33] is a MNIST-like fashion product database
that contains 70k grayscale 28 X 28 images and preferably
represents modern computer vision tasks. Weuse LeNet-
5 [41] network and train for totally 90 epochs with minibatch
size of 128. The learning rate n is set to 0.1 and divided by
10 at epoch 30 and epoch 60. As for SVHN [34] data set,
we use a Visual Geometry Group-like network with totally
seven layers [32]. Input images are scaled and biased to the
range of [l; 4 ] and the total number of training epochs is
reduced to 40. The learning rate n is set to 0.1 and divided
by 10 at epoch 20 and epoch 30.

2) Moderate Tasks With Very Deep Models: 1dentity
connections [17] and densely concatenations [18] are proven
to be quite efficient in very deep CNNs with much fewer
parameters. We test the effects brought by L1-norm in these
structures on CIFAR [35] data sets. A DensetNet-100 [18]
network is trained on CIFAR-100, as for the bottleneck
architecture [26], a ResNet-110 [17], and a Wide-DenseNet
(L 40 and K 48&) [18] are trained on CIFAR-10. We
follow the data augmentation in [42] for training: 4 pixels are
padded on each side, and a 32<32 patch is randomly cropped
from the padded image or its horizontal flip. For testing, only
single view of the original 32X32 image is evaluated. Learning
rates and annealing methods are the same as that in [17].

3) Complicated Tasks With Deep Wide Models: For
ImageNet data set with 1000 categories [36], we adopt
AlexNet [2] model but remove dropout and replace the local
response normalization layers with LIBN or L2BN. Images
are first rescaled such that the shorter sides are of length 256,
and then cropped out centrally to 256<256. For training,
images are then randomly cropped to 224x224 and hor-
izontally flipped. For testing, the single center crop in the
validation set is evaluated. The model is trained with minibatch
size of 256 and totally 80 epochs. Weight decay is set to 5e4,
learning rate n is set to le- 2, and divided by 10 at epoch
40 and epoch 60.

4) Complicated Task With Deep Slim Model: Recently,
compact convolutions such as group convolution [27] and
depthwise convolution [28] draw extensive attention with
equal performance but much fewer parameters and MACs.
Therefore, we further reproduce MobileNet [19] and evaluate
L1BN on ImageNet data set. At this time, weight decay
decreases to 4¢ 5;- learning rate n is set to 0.1 initially,
and linearly annealed to le 3 after 60 epochs. We apply
the Inception data argumentation defined in TensorFlow-Slim
image classification model library [43]. The training is per-
formed on two Titan-Xp GPUs and the population statistics
{u, o for BN are updated according to the calculations from
single GPU, so the actual batchsize for BN is 128.

The main results are summarized in Table II, and we run
each model for five times and show meaststd of the error
rates. In addition, the training curves of two methods using the
ResNet-110 model on CIFAR-10 data set are shown in Fig. 1.
We have two major observations.

From the perspective of the final results, LIBN is approxi-
mately equivalent to the original L2BN with only marginal
performance distinctions, which might be caused by the

TABLE II
TEST OR VALIDATION ERROR RATES (%) FOR LIBN anD L2BN

Dataset Model L2BN L1BN
Fashion LeNet-5 7.66+0.24 7.62+0.21
SVHN VGG-7 1.934+0.03  1.9240.03
CIFAR-10 ResNet-110 6.2440.09 6.124+0.15
CIFAR-10 Wide-DenseNet  4,09+0.12  4.13+0.10
CIFAR-100 DenseNet-100 22.5+0.39 22.440.36
ImageNet AlexNet 42.540.62 42.1+0.52
ImageNet MobileNet 29.5+0.46 29.7£0.59
0.20 : le-0
—Test error: L2ZBN
—Test error: LIBN
""" Train loss: L2BN
------ Train loss: LIBN
S0.15 Se-1
g £
=] 5
o £
£0.10 e
0.05 ! L : le-1
0 40 80 120 160

Epoch

Fig. 1. Training curves of ResNet-110 network on CIFAR-10 data set using
L2BN or L1BN. Training losses contain the sum of weight decay losses.

enlarged normalized statistics x; : according to (15), or, is
smaller than o7, , which results in a 1.25%amplification of x; .
As mentioned earlier, the inherent randomization incurred by
the minibatch statistics can serve as a regularizer. Although the
following linear layer of BN may “learn” to alleviate the
scaling by adjusting parameter y during training, the L1-norm
intuitively enhances this randomization and may further reg-
ularize large model. As for the MobileNet result, there are
very few parameters in its depthwise filters, so this compact
model has less trouble with overfitting. On this occasion,
the enhanced regularization may hurt the accuracy by a small
margin.

From the perspective of training curves, the test error of
LIBN is a bit more unstable at the beginning. Although this
can be improved by morg/accurate initialization: initialize y
from 1.0 (L2-norm) to (2/n) & 0.8 (L1-norm), or fol-
lowing the first strategy mentioned in Section IV-A, the two
loss curves almost overlap completely. Therefore, we directly
embrace this instability and let networks find their way out. No
other regular distinctions between two optimization processes
are noticed in our CNN experiments.

B. LIBN on Generative Tasks

Since the training of GAN is a zero-sum game between
two neural networks without guarantee of convergence, most
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the same as described in WGAN-GP.

TABLE III

UNSUPERVISED ISs ON CIFAR-10 (LARGER VALUES
REPRESENT FOR BETTER GENERATION QUALITY)

Method BN AVG BEST
DCGAN (in [15]) L2 6.16 + 0.07
Improved GAN [14] L2 6.86 £ 0.06
WGAN-GP [44] L2 7.86 + 0.07
L2  7.07 £ 0.08 7.39 + 0.08
DCGAN (ours)
L1 7.18 £0.09 7.70 = 0.08
L2 689 +0.12 7.02+0.14
WGAN-GP (ours)
L1 686011 697 £0.11

GAN implementations rely on BN in both the generator and
the discriminator to help stabilize training and prevent the
generator from collapsing all generated images to certain
failure patterns. In this case, the qualities of generated results
will be more sensitive to any numerical differences. Therefore,
we apply L1BN to two GAN tests to prove its effectiveness.
First, we generate 32X 32 CIFAR-10 images using deep
convolutional generative adversarial network (DCGAN) [13]
and wasserstein generative adversarial network with gradient
penalty (WGAN-GP) [44]. In the reproduction of DCGAN,
we use the nonsaturating loss function proposed in [45]. As
for WGAN-GP, the network remains the same except that
no BN is applied to discriminators as suggested in [44]. In
addition, other training techniques, e.g., Wasserstein distance
and gradient penalty, are adopted to improve the training
process. Generated images are evaluated by the widely used
metric inception score (IS) introduced in [14]. Since IS results
fluctuate during training, we evaluate sampled images after
every 10 000 generator iterations and report both the average
score of the last 20 evaluations (AVG) and the overall best
score (BEST). Table III shows that L1BN is still equivalent to
L2BN in such hyperparameter-sensitive adversarial occasion.
Note that in our implementations, some training techniques,
hyperparameters, and network structures are not the same as
described in the referred results. Incorporating these tech-
niques might further bridge the performance gaps.

Second, we perform experiments on LSUN-Bedroom [37]
high-resolution image generation task. The original DCGAN
only deals with image size 64X64, so an additional upsample
deconvolution and downsample convolution layer is applied
to DCGAN’s generator and discriminator, respectively, to pro-
duce higher resolution 128 X128 images. In order to stabi-
lize training and avoid mode collapse, we combine DCGAN
architecture with WGAN-GP training methods. Since the
LSUN-Bedroom data set only has single class (bedroom) of
images, the generated images cannot be evaluated by IS that
requires multiple categories of samples. Fig. 2 just intuitively
shows generated images after 300 000 generator iterations.
Still, both methods generate comparable samples containing
detailed textures, and we observe no significant difference in
artistic style.

C. Layerwise and Channelwise Comparison

We further offer a layerwise and channelwise perspective
to demonstrate the equivalence between the L1-norm and L2-
norm. After training a ResNet-110 network on CIFAR-10 for
100 epochs, we fix all the network parameters and trainable
linear-layer parameters i, 8 } then feed the model with a
batch of test images. Since the numerical difference between
L1BN and L2BN will accumulate among layers, we guarantee
that the inputs of each layer for both normalization methods
are the same. However, within that layer, the standard devia-
tion (L2-norm) oz, and the L1-norm deviation oz, of channel
outputs are calculated simultaneously.

In Remark 1, it is pointed out that, when the inputs obey
a normal distribution, ideally LIBN and L2BN are identical
if we multiply (/2] in (11) for LIBN. In other words,
if all the other conditions are the same, the standard derivation
01, 18 (n/2) multiple of o7, in each layer. In Fig. 3,
the average ratios oz, /oz, confirm this hypothesis. As shown
in the colormap of Fig. 3, the ratios of intermediate layers
(from layer 38 to laygr 73, totally 1152 channels) are very
close to the value of (m/2] = 1.25. Also, the histograms
of o1, and oy, are similar except for a phase shift in the
logarithmic axis x , which is consistent with Theorem | and
Remark 1.

D. Computational Efficiency of LIBN

Via replacing the L2-norm variance with the Z1-norm “vari-
ance,” L1BN improves the computational efficiency, especially
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TABLE IV

ToTAL NUMBERS AND COMPUTATIONAL OVERHEADS OF BASIC ARITHMETIC OPERATIONS IN ASIC SYNTHESIS. HERE, m DENOTES THE TOTAL
NUMBER OF INTRACHANNEL DATA POINTS WITHIN ONE BATCH FOR SIMPLICITY, AND ¢ DENOTES THE NUMBER OF CHANNELS

type overhead SIGN ABS ADD SUB MUL DIV SQUARE SQRT
L2BN 0 0 Smc+c 2mc 4dmc+2c 2c mc c
Quantity
LI1BN mc mc Smc+c 2me 3mc+2c 2c 0 0
time(ns) 0.00 0.71 43.00 43.00 35.83 99.49 27.23 99.50
float32  power(uW) 0.00 0.01 29.50 29.60 97.20 254.00 39.10 59.00
area(um?) 0.00 3.39 8095 8097 19625 36387 11539 11280
time(ns) 0.00 3.47 5.25 5.45 11.46 2490 8.54 7.60
int8 power(uW)  0.00 0.59 0.77 0.87 9.55 5.90 3.64 0.82
area(pum?) 0.00 256 272 306 2319 1762 1241 277

Ratio

Channel index

38 45 52 59 66
Layer index

x107?

1.0

Probability
(=]
th

-3.5 -2.0 -0.5 1.0
In(er)

Fig. 3. Colormap of layerwise and channelwise ratios oz, /oL, averaged
across 100 minibatches (top). Probability histograms of oz, and or,, , the axis
x is on a logarithmic scale (bottom).

on ASIC devices with reduced resources. In Section TV-A,
we have pointed out that the effective number of data points

| Blor normalization equals to m and mhw for a fully connected
layer and a convolution layer, respectively. Since spatial
statistics are always coupled with minibatch statistics, we use
m to denote the total number of intrachannel data points within
one batch for simplicity, and ¢ denotes the number

of channels. In the first two rows of Table IV, we count

33 5
2 Z
w4 o
8 =
S 8
F3 =
£ £
b4 4

(&}

—_

ints

float32 int32 tloatle intlé tloats

Fig. 4. Estimated time and power consumption for L1-norm and L2-norm.

the total numbers of basic arithmetic operations according to
(4), (8), (11), and (17). The major improvements come from
the reductions of multiplication, square, and sqrt operations.
Next, the computational overheads of basic arithmetic oper-
ations are estimated on the SMIC LOGIC013 RVT process
with datatype float32, int32, floatl6, intl6, float8, and int8.
We only show the results of float32 and int8 in Table IV.
Compared to square and sqrt operations, sign and absolute
operations are quite efficient in speed and power and save
silicon area and cost. In Fig. 4, the time and power consump-
tion of LIBN and L2BN are estimated with CNN models
in Table I. LIBN can averagely achieve 25% speedup and 37%
power saving in practice. We can conclude that by reducing
the costly multiplication, square, and sqrt operations in the
L2BN layer, L1BN is able to improve the training efficiency
regarding hardware resources, time and power consumption,
especially for resource-limited mobile devices where digital
signal processor and floating-point unit are not available.

VI. DISCUSSION AND CONCLUSION

To reduce the overheads of L2-norm based BN, we pro-
pose the L1-norm-based BN. L1BN is equivalent to L2BN
by multiplying a scaling factor (1/2) on condition that
the inputs obey a normal distribution, which is commonly
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satisfied and observed in conventional networks. Experiments
on various CNNs and GANs reveal that LIBN presents com-
parable classification accuracies, generation qualities, and con-
vergence rates. By replacing the costly and nonlinear square
and sqrt operations with absolute and sign operations during
training, L1BN enables higher computational efficiency. Cost
comparisons of basic operations are estimated through the
ASIC synthesis, LIBN is able to obtain 25% speedup and
37% energy saving, as well as the reduction of hardware
resources, €.g., silicon area and cost. Other than feed-forward
models, L1-norm might be applied into recurrent BN [24]
and decreases much more overheads. Inspired by LI1BN,
the exploration and interpretation of the intrinsic probabilistic
principle behind the normalization statistics [11], [46] remain
as intriguing directions for future research.

Previous deep learning hardware mainly target at accelerat-
ing the offline inference, i.c., the deployment of a well-trained
compressed network. Wherein MACs usually occupy much
attention and BN can be regarded as a linear layer once
training is done. However, the capability of continual learning
in real-life and on-site occasions is essential for the future
artificial general intelligence. Thus, the online training is very
important to both the datacenter equipped with thousands of
CPUs and GPUs, as well as edge devices with resource-limited
FPGAs and ASICs, wherein BN should not be bypassed.
L1BN with less resource overheads and faster speed can
benefit most of the current deep learning models.

Moreover, transferring both training and inference processes
to low-precision representation is an effective leverage to
alleviate the complexity of hardware design. Regretfully, most
of the existing quantization methods remain the BN layer
in full-precision (float32) because of the strongly nonlinear
square and sqrt operations. By replacing them with absolute
and sign operations, LIBN greatly promises a fully quantized
neural network with low-precision dataflow for efficient online
training, which is crucial to future adaptive terminal devices.
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