
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

T

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

L1-Norm Batch Normalization for Efficient

Training of Deep Neural Networks

Shuang Wu , Guoqi Li , Member, IEEE, Lei Deng, Member, IEEE, Liu Liu, Dong Wu,

Yuan Xie, Fellow, IEEE, and Luping Shi, Member, IEEE

Abstract— Batch normalization (BN) has recently become a
standard component for accelerating and improving the training
of deep neural networks (DNNs). However, BN brings in addi-
tional calculations, consumes more memory, and significantly
slows down the training iteration. Furthermore, the nonlinear
square and sqrt operations in the normalization process impede
low bit-width quantization techniques, which draw much atten-
tion to the deep learning hardware community. In this paper,
we propose an L1-norm BN (L1BN) with only linear operations
in both forward and backward propagations during training.
L1BN is approximately equivalent to the conventional L2-norm

BN (L2BN) by multiplying a scaling factor that equals (π/2)1/2.

Experiments on various convolutional neural networks and gen-
erative adversarial networks reveal that L1BN can maintain the
same performance and convergence rate as L2BN but with higher
computational efficiency. In real application-specified integrated
circuit synthesis with reduced resources, L1BN achieves 25%
speedup and 37% energy saving compared to the original
L2BN. Our hardware-friendly normalization method not only
surpasses L2BN in speed but also simplifies the design of deep
learning accelerators. Last but not least, L1BN promises a fully
quantized training of DNNs, which empowers future artificial
intelligence applications on mobile devices with transfer and
continual learning capability.

Index Terms— Batch normalization (BN), deep neural network
(DNN), discrete online learning, L1-norm, mobile intelligence.

I. INTRODUCTION

ODAY, deep neural networks (DNNs) [1] are rapidly per-

meating into various artificial intelligence applications,

for instance, computer vision [2], speech recognition [3],

Manuscript received March 2, 2018; revised June 27, 2018 and October 4,
2018; accepted October 4, 2018. This work was supported in part by the
National Natural Science Foundation of China under Grant 61327902, Grant
61603209, and Grant 61876215, in part by the Suzhou-Tsinghua Innovation
Leading Program under Grant 2016SZ0102, in part by the Brain-Science
Special Program of Beijing under Grant Z181100001518006, and in part by
the National Science Foundation under Grant 1730309 and Grant 1725447.
(Shuang Wu and Guoqi Li contribute equally to this work.) (Corresponding
author: Luping Shi.)

S. Wu, G. Li, and L. Shi are with the Center for Brain-Inspired Computing
Research, Tsinghua University, Beijing 100084, China, also with the Beijing
Innovation Center for Future Chip, Tsinghua University, Beijing 100084,
China, and also with the Optical Memory National Engineering Research
Center, Department of Precision Instrument, Tsinghua University, Beijing
100084, China (e-mail: lpshi@mail.tsinghua.edu.cn).

L. Deng, L. Liu, and Y. Xie are with the Department of Electrical and
Computer Engineering, University of California at Santa Barbara, Santa
Barbara, CA 93106 USA.

D. Wu is with the Institute of Microelectronics, Tsinghua University, Beijing
100084, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2876179

machine translation [4], Go game [5], and multimodel tasks

across them [6]. However, training DNNs is complicated and

needs elaborate tuning of hyperparameters, especially on large

data sets with diverse samples and thousands of categories.

Therefore, the distribution of minibatch samples shifts stochas-

tically during the training process, which will affect the subse-

quent layers successively, and eventually make the network’s

outputs and gradients vanish or explode. This internal covariate

shift phenomenon [7] leads to slower convergence, requires

careful adaption of learning rate, and appropriate initialization

of network parameters [8].

To address the problem, batch normalization (BN) [7] has

been proposed to facilitate training by explicitly normalizing

inputs of each layer to have zero mean and unit variance.

Under the guarantee of appropriate distribution, the difficulties

of annealing learning rate and initializing parameters are now

reduced. In addition, the inherent randomization incurred by

the minibatch statistics serves as a regularizer and approxi-

mates inference in Bayesian models [9]–[11], making BN a

better alternative to dropout [12]. Most generative adversarial

networks (GANs) also rely on BN in both the generator

and the discriminator [13]–[15]. With BN, a deep generator

can start with a normal training process, as well as avoid

mode collapse [14] that is a common failure observed in

GANs. BN is so helpful in training DNNs that it has almost

become a standard component together with the rectifier

nonlinearity (ReLU) [16], not only in most deep learning

models [17]–[19] but also in the neural network accelerator

community [20], [21].

Inspired by BN, weight normalization [22] reparame-

terizes the incoming weights by their L2-norm. Layer

normalization [23] replaces the statistics of a training batch

with a single training case, which does not reparameterize

the network. Both methods eliminate the dependencies among

samples in a minibatch and overcome the difficulties of

applying normalization in recurrent models [24]. In batch

renormalization [25], an affine transformation is proposed to

ensure that the training and inference models generate the

same outputs that depend on individual example rather than

entire minibatch.

However, BN usually causes considerable overheads in

both the forward and backward propagations. Recently, in the

field of convolutional neural networks (CNNs), there is a

trend toward replacing the standard convolution with bot-

tleneck pointwise convolution [26], group convolution [27],

or depthwise convolution [28]. Although the number of

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

http://ieeexplore.ieee.org/
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

m

[]

x √

[] []

totally N samples and
N
i=1 4(xi,©) is the empirical risk i

√
σ 2 + z

ˆ =

√

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

parameters and multiply–accumulate (MAC) operations has

been reduced in these models during inference, the fea-

ture maps (channels) in each convolution layer have been

gradient of m samples and update with the average value

© ← © − η ·
1 Σ ∂4(xi,©)

(2)

expanded. Therefore, the computation overheads of BN layers

are getting more expensive during training. In other words,

where η is the learning rate.

m ∂©
i=1

a compact model may require more training time to reach an

optimal convergence [19].

On the one hand, the additional calculations in BN are

costly, especially for resource-limited application-specified

integrated circuit (ASIC) devices. When it comes to online

learning, i.e., deploying the training process onto terminal

devices, the salient resource problem has challenged the

extensive application of DNNs in real scenarios. On the

other hand, the square and sqrt operations introduce strong

nonlinearity and make it difficult to employ low bit-width

quantization. Although many quantization methods have been

proposed to reduce the memory costs and accelerate the

computation [29]–[31], the BN layers are simply avoided [32]

or maintained in float32 precision.

In this paper, we introduce an L1-norm BN (L1BN), where

the L2-norm variance for minibatch samples is substituted by

an L1-norm “variance.” Then, the costly and nonlinear square

and sqrt operations can be replaced by hardware-friendly sign

and absolute operations. L1BN is approximately equivalent

to the L2-norm BN (L2BN) by multiplying a scaling factor

that equals (π/2). To evaluate the proposed method, var-

ious experiments have been conducted with CNNs on data

sets including Fashion-MNIST [33], Street View House Num-

bers Dataset (SVHN) [34], CIFAR [35], and ImageNet [36],

as well as GANs on CIFAR and LSUN-Bedroom [37]. Results

indicate that L1BN is able to achieve comparable performance

and convergence rate but with higher computational efficiency.

Cost comparisons of basic operations are estimated through

ASIC synthesis, L1BN is able to obtain 25% speedup and 37%

energy saving. Other hardware resources, e.g., silicon area and

cost, can be reduced as well. We believe that L1BN can be an

efficient alternative to speed up training on dedicated devices

and promises a hardware-friendly learning framework where

all the operations and operands are quantized to low bit-width

precision. In addition, L1-norm is an orthogonal method and

can be fruitfully combined with many other advances of the

network normalization [22]–[25].

II. PROBLEM FORMULATION

Stochastic gradient descent (SGD), known as the incremen-

tal gradient descent, is a stochastic and iterative approximation

of gradient descent optimization. SGD minimizes an objective

function with differentiable parameters ©
N

While SGD with minibatch is simple and effective,

it requires careful tuning of the model hyperparameters, espe-

cially the learning rate used in the optimizer, as well as the

initial values for the model parameters. Otherwise, the outputs

of neural networks will be stuck in an inappropriate interval for

the following activation (nonlinearity) functions, e.g., 8, 10

for sigmoid(x), where most values will be saturated. Then,

the gradients of these values are vanishing, resulting in slow

convergence and local minimum. Another issue is that the

inputs of each layer are affected by the parameters of all

preceding layers; small updates of the parameters will accu-

mulate and amplify once the network becomes deeper. This

leads to an opposite problem that the outputs and gradients

of network are prone to explode. Thus, SGD slows down the

training by requiring lower learning rate and careful parameter

initialization, and makes it notoriously hard to train deep

models with saturating nonlinearities, e.g., sigmoid(x) and

tanh(x), which affect the networks’ robustness and challenges

its extensive applications.
Ioffe and Szegedy [7] refer to this phenomenon as internal

covariate shift and address this problem by explicitly nor-

malizing inputs. This method draws its strength from making

normalization a part of the model architecture and performing

the normalization across each minibatch, which is termed as

“BN.” BN ensures that the distribution of preactivations (val-

ues fed into activation) remains stable as the values propagate

across layers in deep network. Then, the SGD optimizer will

be less likely to get stuck in the saturated regime or explode

to nonconvergence, allowing us to use higher learning rates

and be less careful about parameter initialization.

III. CONVENTIONAL L2BN

Specifically, BN transforms each dimension in scalar

feature independently by making it have zero mean and

unit variance. For a layer with c-dimensional inputs x =

{x(1), ... , x(k), ... , x(c)}, each dimension is normalized before

fed into the following nonlinearity function:

(k) x(k) − E[x(k)]

Var[x (k)]

where the expectation E x(k) and variance Var x(k) are

computed over all training samples.
Usually, for a minibatch B containing m samples, we use

1 Σ © = arg min 4(xi,©) (1)

μB and σ 2 + z to estimate E[x (k)] and Var[x (k)], respectively,

© N
i=1 which giv

B
es that

(k)

where xi for i = 1, 2, .Σ. . , N is the training set containing
x̂ (k) =

xi − μB

(4)

summarized by the risk at each sample 4(xi,©). Considering

SGD with a minibatch of m samples, then the gradient of the

loss function 4 can be simply approximated by processing the

where z is a sufficiently small positive parameter, e.g., 1e − 5,

for keeping numerical stability. The minibatch mean μB and

B

(3)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

B

Σ
= i

m
i=1

2

=

+
=

=

∂σ 2
B

∂ x̂ i 2 B σe 2σ 2 + μ −

∂μB
i=1

∂ x̂ i σ 2 z
B

∂ x̂ i

∂σ 2
B

m

∂μB m =
2

. (14)

∂β
i=1

∂yi
 σL2 =

2
· σL1 . (15)

1 Σ

B B

=
Σ

· ̂ i

WU et al.: L1BN FOR EFFICIENT TRAINING OF DNNs 3

TABLE I

TRAINING TIME (MILLISECOND) PER IMAGE WITH OR

WITHOUT BN, AND THE RATIO OF EXTRA TIME

we apply the widely used built-in version: fused BN [39] that

combines multiple required operations into a single kernel on

GPU and can accelerate the normalization process. Even so,

BN brings in about 30%–50% extra training time. Note that

 L2-norm is applied to estimate σ , we term this method as

the L2BN. To address this issue, we propose an L1BN in this

paper.

variance σ 2 are given as

B
m

IV. PROPOSED L1BN

Our idea is simple but effective, which applies the L1-norm

to estimate σB. The L1BN is formulated as

and

μ
1

x (5)
B

m
i=1

and

yi = γ · x̂ i + β (9)

xi − μB

σ 2 =

(xi − μB)2. (6)
xˆi = (10)

σB + z
B m

i=1 where γ , β, μB, and z are identical to that in L2BN, and σB

It is easy to see that σ 2 is calculated based on the L2-norm
B

is a term calculated by the L1-norm of minibatch statistics
m

of the statistics.

Note that this forced normalization may change and hurt

the representation capability of a layer. To guarantee that the

transformation inserted into the network can represent the

identity function, a trainable linear layer that scales and shifts

the normalized values is introduced

y(k) = γ (k) x̂ (k) + β (k) (7)

where γ and β are the parameters to be trained along with the

other model parameters.

σ =
1 Σ

|xi − μ |. (11)

The motivation of using the L1-norm is that the L1-norm

“variance” is linearly correlated with the L2-norm variance

if the inputs have a normal distribution, which is commonly

satisfied and observed in conventional networks [8].

Theorem 1: For a normally distributed random variable X

with variance σ 2, define a random variable Y such that Y =
|X − E(X)|, we have

During training, we need to backpropagate the gradient of

loss 4 through this transformation, as well as compute the
gradients with respect to the parameters γ and β, the chain

σ

E(|X − E(X)|) =

∫
π

. (12)

rule is derived as follows: Proof: Note that X −E(X) belongs to a normal distribution
with zero mean μ and variance σ 2. Then, Y = |X − E(X)|

∂4

∂ x̂ i

∂4
=

∂yi
· γ

m

has a folded normal distribution [40]. Denote μY as the mean

of Y , we have
∂4

=
Σ ∂4

· (xi − μ

) ·
−1 .

σ 2 + z
Σ−3/2 ∫

2 −μ2 Σ

. μ ΣΣ

∂4
=

Σ ∂4
· √

−1 based on the statistical property of folded normal distribution.

∂4 ∂4 1
= · √

+
∂4

·
2(xi − μB)

+
∂4

·
1

σ
∫

π

 m Remark 1: If the inputs of the BN layer obey a normal
∂4 ∂4

x

∂γ
i 1

∂yi
m

distribution, by denoting the standard derivation of the inputs

as σL2 , and the L1-norm term in (11) as σL1 , we have
∂4

=
Σ ∂4

. (8)
∫

π

Although BN accelerates the convergence of training DNNs,

it requires additional calculations and generally slows down

the iteration process by a large margin. Table I shows the time

overheads when training with or without BN on conventional

CNNs. All models are built on Tensorflow [38] and trained

with one or two Titan-Xp GPUs. Section V-A will detail the

Y μ σ

Y μ + z
B

α is the normal cumulative distribution function. As μ 0,

we can obtain that

σ π

σ π i 1

m

m

B
μY = 1 − 2α (13)

∂xi 2

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 2 1

implementation and training hyperparameters. For BN,
Let γL2 and γL1 be the scale parameters in (7) and (9) for

L2BN and L1BN, respectively. To keep the outputs of the two
methods identical, ideally we have

γL =

∫
π

· γL . (16)

Q

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

{ }

⎩ ⎭

∂γ

∂β

. Σ
Σ1
=

=

Σ
=

.

· ̂ i

1 m i=1

m

3: x̂i ← xi −μB

Σ

√

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The above-mentioned remark is validated in Section V-C.

To implement backpropagation when L1-norm is involved,

the chain rule is derived as follows:

Algorithm 1 Training a L1BN Layer With Statistics μ, σ ,

Moving-Average Momentum α, Trainable Linear Layer Para-

meters {γ, β}, Learning Rate η, Inference With One Sample

∂4 ∂4

∂ xˆi
=

∂yi
· γ

Require: a mini-batch of pre-activation samples for training

B = {x1, ..., xm}, one pre-activation sample for inference

∂4
∂σ

=

∂4

∂ x̂i
· (xi − μB) ·

(σ

−1
+ z)2

I = {xinf}
Ensure: updated parameters {μ, σ, γ, β}, normalized B

i=1
B pre-activations BN = {x N , . . . , x N}, IN

 = {x N }

m
tr 1 m inf inf

∂4
=

Σ ∂4
·

−1 1. Training with mini-batch B:

∂μB

i=1
∂ xˆi

σB + z
⎧
⎨ Σ

1.1 Forward:

⎬
⎫

1: μB ← 1
Σm

xi //mini-batch mean

∂x
=

∂σ
·

m
sgn(xi − μB) −

m
 sgn(x j − μB)

2: σB ← 1

Σm
1 |xi − μB| //mini-batch L1 variance

∂4 1 ∂4 + · +

1 · . (17)

 N
σB+z

∂ xˆi σB + z ∂μB m 4: xi ← γ x̂ i + β ≡ L1BNtr(xi) //scale and shift

(∂4/∂γ) and (∂4/∂β) have exactly the same form as in (8).

It is obvious that

1.2 Backward:

5: γ ← γ − η ∂4

//update parameters

Let

sgn(x̂i) = sgn(xi − μB). (18) 6: β ← β − η ∂4

1.3 Update statistics:

//update parameters

∂4
μ

∂ x̂ i

m
∂4

m ∂ x̂ i

7: μ ← αμ + (1 − α)μB //moving-average

8: σ ← ασ + (1 − α)σB //moving-average
i 1

. Σ m . Σ

2. Inference with sample I:

∂4
μ

∂ x̂i
· x̂i

1

m
i=1

∂4

∂ x̂i
· x̂i . (19)

N
inf ← σ +z · xinf + (β − σ +z) ≡ L1BNinf(xinf)

Then, by substituting (10) and (11) into (17), we can obtain

that

in MLPs, each channel is normalized based on m samples

∂4 1 =

.
∂4

− μ

.
∂4

Σ

in a training minibatch. While for the convolution layer in

∂xi σB + z ∂ xˆi

−μ

∂ x̂ i

∂4
x

∂ xˆi

Σ

· [sgn(x̂i) − μ(sgn(x̂i))]

Σ

.

CNNs, elements at different spatial locations of individual

feature map (channel) are normalized with the same mean

and variance. Let B be the set of all values across both the

(20)

Note that square and sqrt operations can be avoided in

both the forward and backward propagations when L1BN is

involved. As shown in Section V, L1BN is approximately

equivalent to L2BN in convergence rate and final performance

but with better computational efficiency.

A. L1BN in MLP and CNN

As with L2BN, L1BN can be applied before nonlinearities

in deep networks including but not limited to multilayer

perceptrons (MLPs) and CNNs. The only difference is that the

L1-norm is applied to calculate σ . As shown in (15), in order

to compensate the difference between two deviations, we use

the strategy as follows.

1) When the scale factor γ is not applied in BN, we mul-

tiply σL1 by (π/2) in (11) to approximate σL2 .

2) When the scale factor γ is applied in BN, we just

use σL1 and let the trainable parameter γL1 “learn” to

compensate the difference automatically through back-

propagation training.

Other normalization processes of L1BN are just exactly the

same as that in L2BN. For the fully connected layer

γμ γ
9: x

j =1

i=
j =1

B

1 ∂4

i

∂4

m

m

//normalize

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

|B|=

√

minibatch and spatial locations, so for a minibatch containing

m samples with height h and width w, the effective number of

data points for each channel is mhw. Then,

parameters γ and β can be learned for each feature map

rather than each spatial location. The algorithm for L1BN is

presented in Algorithm 1.

V. EXPERIMENTS

A. L1BN on Classification Tasks

In order to verify the equivalence between L1BN and its

original L2-norm version, we test both methods in various

image classification tasks. In these tasks, we parameterize

model complexity and task complexity, and then apply 2-D

demonstrations with different CNN architectures on multiple

data sets. For each demonstration, all the hyperparameters in

L2BN and L1BN remain the same, the only difference is

the use of L2-norm σL2 or L1-norm σL1 . In the following
experiments, the SGD optimizer with momentum 0.9 is the

default configuration. As suggested in [7], the trainable linear

layer is applied in each BN since it introduces very few

computation and parameters (γ, β) but can improve the final

performance. Therefore, according to the strategy mentioned

in Section IV-A, we do not multiply (π/2) in the calculation

of σL1 .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

×

×

×

= =

[− +]

−
−

−
−

× ˆ

±

{ }

×
×

ˆ

√

WU et al.: L1BN FOR EFFICIENT TRAINING OF DNNs 5

1) Simple Tasks With Shallow Models: Fashion-

MNIST [33] is a MNIST-like fashion product database

TABLE II

TEST OR VALIDATION ERROR RATES (%) FOR L1BN AND L2BN

that contains 70k grayscale 28 28 images and preferably

represents modern computer vision tasks. We use LeNet-

5 [41] network and train for totally 90 epochs with minibatch

size of 128. The learning rate η is set to 0.1 and divided by

10 at epoch 30 and epoch 60. As for SVHN [34] data set,

we use a Visual Geometry Group-like network with totally

seven layers [32]. Input images are scaled and biased to the

range of 1, 1 , and the total number of training epochs is

reduced to 40. The learning rate η is set to 0.1 and divided

by 10 at epoch 20 and epoch 30.

2) Moderate Tasks With Very Deep Models: Identity

connections [17] and densely concatenations [18] are proven

to be quite efficient in very deep CNNs with much fewer

parameters. We test the effects brought by L1-norm in these

structures on CIFAR [35] data sets. A DensetNet-100 [18]

network is trained on CIFAR-100, as for the bottleneck

architecture [26], a ResNet-110 [17], and a Wide-DenseNet

(L 40 and K 48) [18] are trained on CIFAR-10. We

follow the data augmentation in [42] for training: 4 pixels are

padded on each side, and a 32 32 patch is randomly cropped

from the padded image or its horizontal flip. For testing, only

single view of the original 32 32 image is evaluated. Learning

rates and annealing methods are the same as that in [17].

3) Complicated Tasks With Deep Wide Models: For

ImageNet data set with 1000 categories [36], we adopt

AlexNet [2] model but remove dropout and replace the local

response normalization layers with L1BN or L2BN. Images

are first rescaled such that the shorter sides are of length 256,

and then cropped out centrally to 256 256. For training,

images are then randomly cropped to 224 224 and hor-

izontally flipped. For testing, the single center crop in the

validation set is evaluated. The model is trained with minibatch

size of 256 and totally 80 epochs. Weight decay is set to 5e 4,

learning rate η is set to 1e 2, and divided by 10 at epoch

40 and epoch 60.

4) Complicated Task With Deep Slim Model: Recently,

compact convolutions such as group convolution [27] and

depthwise convolution [28] draw extensive attention with

equal performance but much fewer parameters and MACs.

Therefore, we further reproduce MobileNet [19] and evaluate

L1BN on ImageNet data set. At this time, weight decay

decreases to 4e 5, learning rate η is set to 0.1 initially,

and linearly annealed to 1e 3 after 60 epochs. We apply

the Inception data argumentation defined in TensorFlow-Slim

image classification model library [43]. The training is per-

formed on two Titan-Xp GPUs and the population statistics

Fig. 1. Training curves of ResNet-110 network on CIFAR-10 data set using
L2BN or L1BN. Training losses contain the sum of weight decay losses.

enlarged normalized statistics xi : according to (15), σL1 is

smaller than σL2 , which results in a 1.25 amplification of xi .

As mentioned earlier, the inherent randomization incurred by
the minibatch statistics can serve as a regularizer. Although the
following linear layer of BN may “learn” to alleviate the

scaling by adjusting parameter γ during training, the L1-norm

intuitively enhances this randomization and may further reg-

ularize large model. As for the MobileNet result, there are

very few parameters in its depthwise filters, so this compact

model has less trouble with overfitting. On this occasion,

the enhanced regularization may hurt the accuracy by a small

margin.

From the perspective of training curves, the test error of

L1BN is a bit more unstable at the beginning. Although this

can be improved by more accurate initialization: initialize γ

from 1.0 (L2-norm) to (2/π) ≈ 0.8 (L1-norm), or fol-
μ, σ for BN are updated according to the calculations from

single GPU, so the actual batchsize for BN is 128.

The main results are summarized in Table II, and we run

each model for five times and show mean std of the error

rates. In addition, the training curves of two methods using the

ResNet-110 model on CIFAR-10 data set are shown in Fig. 1.

We have two major observations.

From the perspective of the final results, L1BN is approxi-

mately equivalent to the original L2BN with only marginal

performance distinctions, which might be caused by the

lowing the first strategy mentioned in Section IV-A, the two

loss curves almost overlap completely. Therefore, we directly

embrace this instability and let networks find their way out. No

other regular distinctions between two optimization processes

are noticed in our CNN experiments.

B. L1BN on Generative Tasks

Since the training of GAN is a zero-sum game between

two neural networks without guarantee of convergence, most

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

×

×

×

×

{ }

√

√
≈

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Bedroom images (128 128) generated by a DCGAN generator using L2BN (left) or L1BN (right), the hyperparameters and training techniques are
the same as described in WGAN-GP.

TABLE III

UNSUPERVISED ISS ON CIFAR-10 (LARGER VALUES

REPRESENT FOR BETTER GENERATION QUALITY)

Second, we perform experiments on LSUN-Bedroom [37]

high-resolution image generation task. The original DCGAN

only deals with image size 64 64, so an additional upsample

deconvolution and downsample convolution layer is applied

to DCGAN’s generator and discriminator, respectively, to pro-

duce higher resolution 128 128 images. In order to stabi-

lize training and avoid mode collapse, we combine DCGAN

architecture with WGAN-GP training methods. Since the

 LSUN-Bedroom data set only has single class (bedroom) of

images, the generated images cannot be evaluated by IS that

requires multiple categories of samples. Fig. 2 just intuitively

shows generated images after 300 000 generator iterations.

Still, both methods generate comparable samples containing

detailed textures, and we observe no significant difference in

artistic style.

C. Layerwise and Channelwise Comparison

We further offer a layerwise and channelwise perspective

GAN implementations rely on BN in both the generator and

the discriminator to help stabilize training and prevent the

generator from collapsing all generated images to certain

failure patterns. In this case, the qualities of generated results

will be more sensitive to any numerical differences. Therefore,

we apply L1BN to two GAN tests to prove its effectiveness.

First, we generate 32 32 CIFAR-10 images using deep

convolutional generative adversarial network (DCGAN) [13]

and wasserstein generative adversarial network with gradient

penalty (WGAN-GP) [44]. In the reproduction of DCGAN,

we use the nonsaturating loss function proposed in [45]. As

for WGAN-GP, the network remains the same except that

no BN is applied to discriminators as suggested in [44]. In

addition, other training techniques, e.g., Wasserstein distance

and gradient penalty, are adopted to improve the training

process. Generated images are evaluated by the widely used

metric inception score (IS) introduced in [14]. Since IS results

fluctuate during training, we evaluate sampled images after

every 10 000 generator iterations and report both the average

score of the last 20 evaluations (AVG) and the overall best

score (BEST). Table III shows that L1BN is still equivalent to

L2BN in such hyperparameter-sensitive adversarial occasion.

Note that in our implementations, some training techniques,

hyperparameters, and network structures are not the same as

described in the referred results. Incorporating these tech-

niques might further bridge the performance gaps.

to demonstrate the equivalence between the L1-norm and L2-

norm. After training a ResNet-110 network on CIFAR-10 for

100 epochs, we fix all the network parameters and trainable

linear-layer parameters γ, β , then feed the model with a

batch of test images. Since the numerical difference between

L1BN and L2BN will accumulate among layers, we guarantee

that the inputs of each layer for both normalization methods

are the same. However, within that layer, the standard devia-

tion (L2-norm) σL2 and the L1-norm deviation σL1 of channel

outputs are calculated simultaneously.

In Remark 1, it is pointed out that, when the inputs obey

a normal distribution, ideally L1BN and L2BN are identical

if we multiply (π/2) in (11) for L1BN. In other words,

if all the other conditions are the same, the standard derivation

σL2 is (π/2) multiple of σL1 in each layer. In Fig. 3,

the average ratios σL2 /σL1 confirm this hypothesis. As shown

in the colormap of Fig. 3, the ratios of intermediate layers
(from layer 38 to layer 73, totally 1152 channels) are very
close to the value of (π/2) 1.25. Also, the histograms

of σL2 and σL1 are similar except for a phase shift in the

logarithmic axis x , which is consistent with Theorem 1 and
Remark 1.

D. Computational Efficiency of L1BN

Via replacing the L2-norm variance with the L1-norm “vari-

ance,” L1BN improves the computational efficiency, especially

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

|B|

√

WU et al.: L1BN FOR EFFICIENT TRAINING OF DNNs 7

TABLE IV

TOTAL NUMBERS AND COMPUTATIONAL OVERHEADS OF BASIC ARITHMETIC OPERATIONS IN ASIC SYNTHESIS. HERE, m DENOTES THE TOTAL

NUMBER OF INTRACHANNEL DATA POINTS WITHIN ONE BATCH FOR SIMPLICITY, AND c DENOTES THE NUMBER OF CHANNELS

Fig. 4. Estimated time and power consumption for L1-norm and L2-norm.

Fig. 3. Colormap of layerwise and channelwise ratios σL2 /σL1 averaged

across 100 minibatches (top). Probability histograms of σL2 and σL1 , the axis
x is on a logarithmic scale (bottom).

on ASIC devices with reduced resources. In Section IV-A,

we have pointed out that the effective number of data points

for normalization equals to m and mhw for a fully connected

layer and a convolution layer, respectively. Since spatial

statistics are always coupled with minibatch statistics, we use

m to denote the total number of intrachannel data points within

one batch for simplicity, and c denotes the number

the total numbers of basic arithmetic operations according to

(4), (8), (11), and (17). The major improvements come from

the reductions of multiplication, square, and sqrt operations.

Next, the computational overheads of basic arithmetic oper-

ations are estimated on the SMIC LOGIC013 RVT process

with datatype float32, int32, float16, int16, float8, and int8.

We only show the results of float32 and int8 in Table IV.

Compared to square and sqrt operations, sign and absolute

operations are quite efficient in speed and power and save

silicon area and cost. In Fig. 4, the time and power consump-

tion of L1BN and L2BN are estimated with CNN models

in Table I. L1BN can averagely achieve 25% speedup and 37%

power saving in practice. We can conclude that by reducing

the costly multiplication, square, and sqrt operations in the

L2BN layer, L1BN is able to improve the training efficiency

regarding hardware resources, time and power consumption,

especially for resource-limited mobile devices where digital

signal processor and floating-point unit are not available.

VI. DISCUSSION AND CONCLUSION

To reduce the overheads of L2-norm based BN, we pro-

pose the L1-norm-based BN. L1BN is equivalent to L2BN

by multiplying a scaling factor (π/2) on condition that

of channels. In the first two rows of Table IV, we count the inputs obey a normal distribution, which is commonly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

satisfied and observed in conventional networks. Experiments

on various CNNs and GANs reveal that L1BN presents com-

parable classification accuracies, generation qualities, and con-

vergence rates. By replacing the costly and nonlinear square

and sqrt operations with absolute and sign operations during

training, L1BN enables higher computational efficiency. Cost

comparisons of basic operations are estimated through the

ASIC synthesis, L1BN is able to obtain 25% speedup and

37% energy saving, as well as the reduction of hardware

resources, e.g., silicon area and cost. Other than feed-forward

models, L1-norm might be applied into recurrent BN [24]

and decreases much more overheads. Inspired by L1BN,

the exploration and interpretation of the intrinsic probabilistic

principle behind the normalization statistics [11], [46] remain

as intriguing directions for future research.

Previous deep learning hardware mainly target at accelerat-

ing the offline inference, i.e., the deployment of a well-trained

compressed network. Wherein MACs usually occupy much

attention and BN can be regarded as a linear layer once

training is done. However, the capability of continual learning

in real-life and on-site occasions is essential for the future

artificial general intelligence. Thus, the online training is very

important to both the datacenter equipped with thousands of

CPUs and GPUs, as well as edge devices with resource-limited

FPGAs and ASICs, wherein BN should not be bypassed.

L1BN with less resource overheads and faster speed can

benefit most of the current deep learning models.

Moreover, transferring both training and inference processes

to low-precision representation is an effective leverage to

alleviate the complexity of hardware design. Regretfully, most

of the existing quantization methods remain the BN layer

in full-precision (float32) because of the strongly nonlinear

square and sqrt operations. By replacing them with absolute

and sign operations, L1BN greatly promises a fully quantized

neural network with low-precision dataflow for efficient online

training, which is crucial to future adaptive terminal devices.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[3] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
English and mandarin,” in Proc. 33rd Int. Conf. Mach. Learn., 2016,
pp. 173–182.

[4] Y. Wu et al. (2016). “Google’s neural machine translation system:
Bridging the gap between human and machine translation.” [Online].
Available: https://arxiv.org/abs/1609.08144

[5] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[6] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment embeddings
for bidirectional image sentence mapping,” in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 1889–1897.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. 32nd
Int. Conf. Mach. Learn., 2015, pp. 448–456.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[9] D. J. C. MacKay, “Bayesian methods for adaptive models,” Ph.D.
dissertation, Dept. Comput. Neural Syst., California Inst. Technol.,
Pasadena, CA, USA, 1992.

[10] R. M. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation,
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 1995.

[11] M. Teye, H. Azizpour, and K. Smith. (2018). “Bayesian uncertainty
estimation for batch normalized deep networks.” [Online]. Available:
https://arxiv.org/abs/1802.06455

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[13] A. Radford, L. Metz, and S. Chintala. (2015). “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks.”
[Online]. Available: https://arxiv.org/abs/1511.06434

[14] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 2234–2242.

[15] X. Huang, Y. Li, O. Poursaeed, J. E. Hopcroft, and S. J. Belongie,
“Stacked generative adversarial networks,” in Proc. CVPR, vol. 2, 2017,
p. 3.

[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML),
2010, pp. 807–814.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2017, pp. 1–4.

[19] A. G. Howard et al. (2017). “MobileNets: Efficient convolutional
neural networks for mobile vision applications.” [Online]. Available:
https://arxiv.org/abs/1704.04861

[20] R. Zhao et al., “Accelerating binarized convolutional neural net-
works with software-programmable FPGAs,” in Proc. FPGA, 2017,
pp. 15–24.

[21] L. Jiang, M. Kim, W. Wen, and D. Wang, “XNOR-POP: A processing-
in-memory architecture for binary convolutional neural networks in
wide-IO2 drams,” in Proc. IEEE/ACM Int. Symp. Low Power Electron.
Design (ISLPED), Jul. 2017, pp. 1–6.

[22] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 901–909.

[23] J. L. Ba, J. R. Kiros, and G. E. Hinton. (2016). “Layer normalization.”
[Online]. Available: https://arxiv.org/abs/1607.06450

[24] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville.
(2016). “Recurrent batch normalization,” [Online]. Available:
http://arxiv.org/abs/1603.09025

[25] S. Ioffe, “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models,” in Proc. Adv. Neural Inf. Process.
Syst., 2017, pp. 1945–1953.

[26] M. Lin, Q. Chen, and S. Yan. (2013). “Network in network.” [Online].
Available: https://arxiv.org/abs/1312.4400

[27] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

[28] F. Chollet. (2016). “Xception: Deep learning with depthwise separable
convolutions.” [Online]. Available: https://arxiv.org/abs/1610.02357

[29] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 4107–4115.

[30] Q. He et al. (2016). “Effective quantization methods for recurrent neural
networks.” [Online]. Available: https://arxiv.org/abs/1611.10176

[31] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “GXNOR-Net: Training
deep neural networks with ternary weights and activations without full-
precision memory under a unified discretization framework,” Neural
Netw., vol. 100, pp. 49–58, Apr. 2018.

[32] S. Wu, G. Li, F. Chen, and L. Shi. (2018). “Training and infer-
ence with integers in deep neural networks.” [Online]. Available:
https://arxiv.org/abs/1802.04680

[33] H. Xiao, K. Rasul, and R. Vollgraf. (2017). “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms.” [Online].
Available: https://arxiv.org/abs/1708.07747

[34] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn.,
vol. 2011, no. 2, 2011, p. 5.

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
Tech. Rep., 2009, p. 7, vol. 1.

http://arxiv.org/abs/1603.09025

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: L1BN FOR EFFICIENT TRAINING OF DNNs 9

[36] O. Russakovsky et al., “ImageNet large scale visual recognition chal-

lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.
[37] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao.

(2015). “LSUN: Construction of a large-scale image dataset using
deep learning with humans in the loop.” [Online]. Available:
https://arxiv.org/abs/1506.03365

[38] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[39] Tensorflow Performance Guide. Accessed: 2018. [Online]. Available:
https://www.tensorflow.org/performance/performance_guide

[40] F. S. Leone, L. S. Nelson, and R. B. Nottingham, “The folded normal
distribution,” Technometrics, vol. 3, no. 4, pp. 543–550, 1961.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[42] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” in Proc. 18th Int. Conf. Artif. Intell. Statist., 2015, pp. 562–570.

[43] N. Silberman and S. Guadarrama. TensorFlow-Slim Image Clas-
sification Model Library. Accessed: 2016. [Online]. Available:
https://github.com/tensorflow/models/tree/master/research/slim

[44] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANs,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5767–5777.

[45] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[46] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger.
(2018). “Understanding batch normalization.” [Online]. Available:
https://arxiv.org/abs/1806.02375

Shuang Wu received the B.E. degree in mechan-
ical engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2015.
He is currently pursuing the Ph.D. degree with
the Department of Precision Instrument, Tsinghua
University, Beijing, China.

His current research interests include deep learn-
ing, neuromorphic chip architecture, and reinforce-
ment learning.

Guoqi Li (M’12) received the B.Eng. degree from
the Xi’an University of Technology, Xi’an, China,
in 2004, the M.Eng. degree from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2007, and the Ph.D. degree
from Nanyang Technological University, Singapore,
in 2011.

From 2011 to 2014, he was a Scientist with the
Data Storage Institute and the Institute of High
Performance Computing, Agency for Science, Tech-
nology and Research, Singapore. Since 2014, he has
been with the Department of Precision Instrument,

Tsinghua University, Beijing, China, where he is currently an Associate
Professor. He has authored or co-authored more than 80 journal and confer-
ence papers. His current research interests include brain-inspired computing,
complex systems, machine learning, neuromorphic computing, and system
identification.

Dr. Li has been actively involved in professional services such as serving
as an International Technical Program Committee Member and a Track Chair
for international conferences. He is an Editorial-Board Member and a Guest
Associate Editor for Frontiers in Neuroscience (Neuromorphic Engineering
section). He serves as a reviewer for a number of international journals.

Lei Deng (M’18) received the B.E. degree from
the University of Science and Technology of China,
Hefei, China, in 2012, and the Ph.D. degree from
Tsinghua University, Beijing, China, in 2017.

He is currently a Post-Doctoral Researcher with
the Department of Electrical and Computer Engi-
neering, University of California at Santa Barbara,
Santa Barbara, CA, USA. His current research inter-
ests include computer architecture, machine learn-
ing, computational neuroscience, tensor analysis,
and complex systems.

Dr. Deng is a Guest Associate Editor for Frontiers in Neuroscience.

Liu Liu received the B.S. degree from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2013, and the Ph.D. degree from
the University of California at Santa Barbara, Santa
Barbara, CA, USA, in 2015, where he is currently
pursuing the Ph.D. degree with the Department of
Computer Science.

His current research interests include deep learn-
ing, computer architecture, and emerging nonvolatile
memory.

Dong Wu received the B.S. degree in electronic
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2011, and the Ph.D. degree in microelec-
tronics from Tsinghua University, Beijing, China,
in 2006.

He is currently an Associate Professor with the
Institute of Microelectronics, Tsinghua University.
His current research interests include circuit design
for sensors and memories.

Yuan Xie (F’15) received the B.S. degree from
the Electrical Engineering Department, Tsinghua
University, Beijing, China, in 1997, and the M.S.
and Ph.D. degrees from the Electrical Engineering
Department, Princeton University, Princeton, NJ,
USA, in 1999 and 2002, respectively.

From 2002 to 2003, he was with IBM, Armonk,
NY, USA. From 2012 to 2013, he was with the
AMD Research China Laboratory, Beijing, China.
From 2003 to 2014, he was a Professor with Penn-
sylvania State University, State College, PA, USA.

He is currently a Professor with the Electrical and Computer Engineering
Department, University of California at Santa Barbara, Santa Barbara, CA,
USA. His current research interests include computer architecture, electronic
design automation, and very large scale integration design.

Dr. Xie is an Expert in computer architecture who has been inducted
to ISCA/MICRO/HPCA Hall of Fame. He served as the TPC Chair for
HPCA 2018. He is the Editor-in-Chief for the ACM Journal on Emerging
Technologies in Computing Systems, a Senior Associate Editor for ACM
Transactions on Design Automation for Electronics Systems, and an Associate
Editor for the IEEE TRANSACTIONS ON COMPUTERS.

Luping Shi (M’02) received the Ph.D. degree in
physics from the University of Cologne, Cologne,
Germany, in 1992.

In 1993, he was a Post-Doctoral Fellow with the
Fraunhofer Institute for Applied Optics and Pre-
cision Instrument, Jena, Germany. From 1994 to
1996, he was a Research Fellow with the Depart-
ment of Electronic Engineering, City University
of Hong Kong, Hong Kong. From 1996 to 2013,
he was with the Data Storage Institute, Singapore,
as a Senior Scientist and a Division Manager, and

led nonvolatile solid-state memory, artificial cognitive memory, and optical
storage researches. In 2013, he joined Tsinghua University, Beijing, China,
as a National Distinguished Professor. By integrating seven departments,
he established the Center for Brain Inspired Computing Research, Tsinghua
University, in 2014, and served as the Director. He has authored or co-authored
more than 200 papers in prestigious journals including Science, Nature
Photonics, Advanced Materials, and Physical Review Letters. His current
research interests include brain-inspired computing, neuromorphic chip, mem-
ory devices, and so on.

Dr. Shi is an SPIE Fellow. He was a recipient of the National Technology
Award 2004 Singapore.

http://www.tensorflow.org/performance/performance_guide
http://www.tensorflow.org/performance/performance_guide

