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Abstract— As CMOS technology approaches its scaling limit,
emerging nonvolatile memory (NVM) technologies become
promising alternatives to DRAM due to their low leakage power
and better scalability. However, the nonvolatile main memory
system suffers from a new security vulnerability. An attacker
can readily access sensitive information on the memory, since
the nonvolatility allows information to be retained for a long
time even after the power is OFF. While real-time memory
encryption during memory accesses with dedicated Advanced
Encryption Standard (AES) engine is an effective solution for
this vulnerability, it incurs runtime performance and energy
overhead. Alternatively, in this paper, we propose a fast and
efficient AES in-memory (AIM) implementation, to encrypt the
whole/part of the memory only when it is necessary. Rather than
adding extra processing elements to the cost-sensitive memory,
we take advantage of NVM’s intrinsic logic operation capability
to implement the AES algorithm. We leverage the benefits (large
internal bandwidth and dramatic data movement reduction)
offered by the in-memory computing architecture to address
the challenges of the bandwidth intensive encryption applica-
tion. Embracing the massive parallelism inside the memory,
AIM outperforms existing mechanisms with higher throughput
yet lower energy consumption. The experimental results show
that compared with state-of-the-art AES engine running at
2.1 GHz, AIM speeds up the encryption process by 86 for
a 1-GB NVM.

Index Terms— Advanced Encryption Standard (AES), encryp-
tion, main memory, nonvolatile.

I. INTRODUCTION

D RAM has been employed as the main memory for com-
puters for decades. However, as technology scales down,
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DRAM will suffer from prohibitively high leakage power.
Consequently, researchers are actively developing promising
candidates such as phase change memory (PCM) [35], resistive
random access memory [30], and spin-transfer torque magnetic
random access memory (MRAM) [27] to be deployed as next-
generation nonvolatile main memory (NVMM). These non-
volatile memories (NVMs) have several significant advantages
over traditional DRAM main memory. They provide promising
features such as nonvolatility, high density, low leakage power,
and high scalability. The nature of nonvolatility avoids the
need of a frequent refresh for DRAM and allows the data in
NVM to be retained for a long time after power is OFF. Intel’s
recent announcement of 3-D Xpoint [2] and the JEDEC’s
NVDIMM-P specification [1] are the latest efforts toward the
goal of next-generation NVMM.

In spite of these advantages, NVMM suffers from a new
security vulnerability. Since the information in NVMM will
not lose data after the power is turned OFF, an attacker with
physical access to the system can readily scan the main mem-
ory content and extract all valuable information from the main
memory [7], [12]. In contrast, the security of DRAM memory
relies on its short retention time which varies from 500 ms
to 50 s [28]. To protect the data of the NVMM, the whole
memory should be provided with a security mechanism with
comparable security level to DRAM.

Real-time memory encryption with pad-based or stream
cipher is an effective solution for this vulnerability, in which
every cache line is encrypted or decrypted before being written
to or read from the main memory [15]. The real-time memory
encryption is a strong protection, and it can also prevent
other attacks such as memory bus snooping [9]. Unfortunately,
the strong protection is at the expense of runtime performance
loss, since the decryption latency (as an overhead of read
access) is on the critical path. In addition, encrypting and
decrypting every memory access also result in severe energy
overhead.

Strong real-time protection is, however, not always
necessary. For example, when a mobile device (e.g., smart
phone or laptop) is being used, the attack that requires physical
access to the NVMM can rarely happen. Only when the device
is shut down or put into sleep/screenlock mode, the mem-
ory encryption is required. i-NVMM [7] further proposes to
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encrypt the main memory incrementally while maintaining an
unencrypted working set which needs fast bulk encryption
when necessary. Instead of the real-time encryption with per-
formance loss and energy cost for every cache line, encrypting
the working set in bulk or the whole memory when necessary
is preferred in such mobile scenarios where strong protection
for this part of the memory is not required all the time.

Even though the bulk memory encryption approach results
in zero performance loss at runtime, reduces the encryption
tasks, and hence the energy consumption, two challenges still
persist: first, it should be fast in order to lower the vulnerability
window when locked and provide an instant response when
unlocked. This is even more critical under the development
of multicore processor and increasing demand of much larger
main memory. Second, it requires energy-efficient encryption
considering the limited battery life.

To address these two challenges, we propose AES In-
Memory (AIM), a novel AES in-memory encryption archi-
tecture for fast and energy efficient NVMM encryption.
Embracing the benefit of the processing-in-memory (PIM)
architecture, AIM takes advantage of large internal memory
bandwidth, vast bitline-level parallelism, and low in situ
computing latency, eliminating data movement between mem-
ory and host. Leveraging the nondestructive read in NVMs
for performing efficient XOR operations, we can perform
the entire Advanced Encryption Standard (AES) procedure in-
place by adding lightweight logic gates to the memory
peripheral circuitry. Specifically, we explore three levels (chip,
bank, and subarray) of parallelism to provide different design
choices under different performance and energy efficiency
requirements. We also propose a new combined cipher mode
for AIM in order to maintain high parallelism with the best
performance and reduced area overhead.

The remainder of this paper is organized as follows.
Section II describes the background on NVMM  organiza-
tion and AES encryption. Section III describes the moti-
vation of this paper. Section IV presents the complete in-
memory encryption architecture. Sections V and VI discuss
the proposed encryption mode and key storage, respectively.
Detailed experimental evaluation is provided in Section VII.
Section VIII presents the related works. Finally, Section IX
concludes this paper.

II. BACKGROUND
A. Nonvolatile Main Memory

Main memory is logically organized as a hierarchy of chan-
nels, ranks, and banks. Channels work in parallel and share the
same physical link to the processor. Each channel contains sev-
eral ranks and each rank has several physical chips. A physical
chip has several banks which contend for the same I/O in the
same channel. Banks from different channels can be accessed
completely independently of each other. A memory bank has
several subarrays which share the global data line and global
row buffer. Each subarray is a 2-D array of memory cells,
which has a local row buffer. A subarray can be further divided
into different mats, which has its private row buffers and
write driver. Row and column addresses are often decoded at
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Fig. 1. Pinatubo’s architecture computes vector bitwise operations inside
NVMs (left). SA modification in Pinatubo to perform in-memory xor
operations [18] (right).
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Fig. 2. AES flowchart.

mat level. Peripheral circuitry, such as sense amplifiers (SAs)
and write drivers are shared among several columns.

B. Pinatubo: PIM in NVM

In addition to the recent research that leverages 3-D-stacking
DRAM such as a hybrid memory cube to support PIM
architecture, Pinatubo [18] paves another way that leverages
the emerging NVM to support PIM while incurring negligible
area overheads. As shown in Fig. 1, Pinatubo modifies the SA
circuit of the normal emerging NVMM, so that the SA not
only can serve for reading but also carry out bitwise operations
such as AND, OR, and XOR. Instead of activating one row
and reading the data out, Pinatubo activates two rows at once
which correspond to the two operand vectors. The output of
the SA is then the result of the bitwise operation of these
two rows (vectors). To perform an XOR operation, Pinatubo
first opens the one operand row, and stores the data in the
capacitor inside the modified SA. Then, it opens the second
operand row, and the data from this row and the previous
data in the capacitor go through the simple XOR circuit inside
the modified SA, after which, the readout result of this SA
is the XOR result of these two rows. The AIM design takes
advantage of this fast in-memory XOR operation offered by
Pinatubo [18].

C. Advanced Encryption Standard

The AES [8] is a symmetric block cipher which consists
of four transformations as shown in Fig. 2. SubBytes is
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a nonlinear invertible byte substitution that replaces each byte
of the state matrix using a substitution table (S-box). Each
byte D; ;in the state matrix is replaced with a new byte
Si, j in SubBytes step. ShiftRows cyclically shifts all bytes
in each row by different offsets. The first row is unchanged;
each byte in the i th row is cyclically shifted left by i bytes,
respectively. MixColumns combines the 4 B of each column
of the state matrix using an invertible linear transformation.
This transformation can be written as a matrix multiplication
in the finite field of GF(2%) where the state matrix is multiplied
by a constant matrix composed of 1, 2, and 3. AddRoundKey
combines the state matrix with the round key by bitwise XOR
operations. Each byte in the state matrix is XORed with a byte
in the same row and column of the key matrix. These round
keys are generated from the key with a key schedule which
expands a short key into a number of separate round keys.

The four transformations of AES are comprised of XOR,
shift, and LUT operations. The intermediate results after each
transformation are maintained as a state matrix of bytes. At the
start of the algorithm, a round key is added to the input by
a bitwise XOR operation. Then, the state array is transformed
by implementing four basic transformations 10 times when
the key has 128 b, while the last round does not include
MixColumns.

III. MOTIVATION AND OVERVIEW
A. NVMM'’s Vulnerability Challenge

We take the case of smartphones as a motivating example.
We assume NVMM has been adapted as the replacement
of DRAM, due to its advantages of low leakage and high
density. The vulnerability challenge emerges that the content
in the memory is under risk if the attacker stoles the device.
Even though the device is locked, the attacker can remove
the memory, plug it in another machine, and read it. The
threat is more severe in the case of NVMM, since the
retention time of NVM cells is typically much longer (a few
years [24]) compared with 500 ms to 50 s [28] in the case of
DRAM. An effective solution is real-time memory encryption
with Pad-based or Stream cipher encryption, however, at an
expense of performance degradation and also energy overhead
(4% reported by previous work [33]). Instead of the real-
time encryption, a smarter approach is to encrypt the memory
only when necessary. For example, when the device is being
used (unlocked), the attacker can rarely take it away. Only
when the device is turned OFF or put into sleep/screenlock
mode should the bulk memory encryption be committed.

B. PIM: A Potential Solution

To address those challenges, we propose a PIM architec-
ture for memory encryption. The PIM offers the benefit of
high internal memory bandwidth, massive parallelism (chip,
bank, and subarray level), and most importantly, it eliminates
the data movement between the memory and processors.
Meanwhile, we observe that in the one-time memory encryp-
tion application, the memory bandwidth is a bottleneck since
a dedicated AES encryption engine (EE) provides a much
larger throughput (53 Gbps [22]) than the DDR throughput.
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Fig. 3. Memory encryption architecture. (a) Traditional encryption approach
implemented a cryptographic engine outside main memory. (b) Proposed AIM
design: in-memory computing with NVM’s intrinsic features.

Moreover, the energy for the fetching data from memory with
the DDR bus is also dominant. It is shown that 91.6% energy is
spent on fetching and writing this data from the experimental
results. Considering both advantages offered by PIM and
the workload characteristics of the target one-time memory
encryption application, we believe the PIM can effectively
address NVMM’s vulnerability challenge.

C. Design Overview

Based on the above-mentioned observations, we propose
AIM, an in-memory encryption mechanism for NVMM,
as shown in Fig. 3. Different from the coprocessor AES
engine [Fig. 3(a)], the proposed AIM avoids the narrow DDR
bus and embraces the large intramemory bandwidth. It also
benefits from multiple memory blocks parallel encryption by
leveraging the flexible parallelism inside the memory, marked
as chip-level, bank-level, and subarray-level parallelism in the
figure. To perform the AES algorithm, we build all its required
arithmetics (i.e., XOR, Shift, and LUT) inside each memory
subarray. Instead of implementing all those operations with
logic gates, we take the advantage of NVM’s unique feature
and implement the most time-consuming operation, XOR,
within the SAs themselves, as described in Section II-B [18].
The data buffer is added to store intermediate results, reduc-
ing expansive write operations to NVM cells. In addition,
an encryption controller is implemented in each chip to
provide control signals to direct the encryption process.
In Section IV, the details of the hardware implementation and
how the AES algorithm is mapped to the proposed AIM are
described.

IV. AES IN-MEMORY IMPLEMENTATION
A. Data Organization

AES in-memory implementation takes advantage of dif-
ferent levels of parallelism in the NVMM. In this paper, in-
memory encryption is performed directly on the mem- ory
cells. The data in memory cells are read out with SAs, each of
which is shared by several adjacent columns with a MUX
as shown in Fig. 4. Since the unit data matrix to be
encrypted needs to be organized in a certain fashion to
facilitate the encryption process, we distribute the 8 b of
each element in the data matrix into different mats and
different columns in the same mat so that they can be used
concurrently. In this way, the plaintext data block does not
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Fig. 4. Distributed data organization for AES encryption.

have to be pretransformed into matrix form before encryption
starts. For illustration purposes, we assume that there are M
mats Mat; i @, 1, ... , M), the size of each matis N x N,
and K columns share one SA.

Fig. 4 illustrates the memory distribution for one data
matrix. In the AES algorithm, the basic processing unit is 1 B
of the data matrix; therefore, the data matrix is distributed
into eight mats so that each mat has a 1-b level of the data
matrix. In order to encrypt each row of the data matrix in
parallel, four columns of the data matrix are distributed to
different columns of memory array connecting four adjacent
SAs separately. These four columns of the memory array are
of the same local column address. In this way, when one row
of the subarray is activated and a local column address is
selected for each MUX, every four adjacent SAs will sense
out a row of the data matrix. In total, every four rows of the
subarray contain MN /4K data blocks of 128 b.

To enable further processing of the data matrix, the interme-
diate results, which are the state matrices, need to be buffered.
To avoid extra hardware overhead and simplify the circuity,
we write the intermediate results back to the data matrix. In the
proposed encryption mechanism, AES encryption generates
less than 60 writes during 10 rounds of encryption to each
cell in the encrypted memory block. This amount of writes
has a negligible impact on the endurance of memory. NVMM
encryption is performed before the system is powered down.
Therefore, we assume that the main memory is encrypted
20 times every day. We also conservatively assume that the
deployed NVM has an endurance of 10° cycles. In 5 years,
AES encryption will generate 60 2Q 356 5— 1.1 4 10°
writes which is less than 0.2% of its total life cycles.

B. AddRoundKey

In this stage, the data matrix is combined with the key
matrix. Each byte of the data matrix is combined with the cor-
responding subkey of the key matrix using bitwise XOR oper-
ation. AddRoundKey is implemented with the modified SA
design of Pinatubo [18], which realizes bitwise XOR operation
with two microsteps inside SA.

Fig. 5 shows the process of AddRoundKey transformation
for one row of the data. First, the first row of the data in
the data matrix is read into the added capacitor in each SA by
activating the first wordline in red color and selecting a column
with MUX. Second, the first row of the data in the key matrix
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Fig. 5. Addroundkey stage with xor operation.

is read into the latch in each SA by activating the second
wordline in red color and selecting a column with MUX. After
these two steps, the bitwise XOR result of the first row is
latched in each SA. Suppose it takes txor to complete XOR
operation for one row of data matrix, it takes 4#xor to complete
AddRoundKey transformation for a data matrix since there are
four rows in each data matrix. This AddRoundKey transfor-
mation is parallelized because of multiple SAs. Since there
are M mats and N/K SAs in each mat, (N/4K)(M/8) data
matrices are transformed simultaneously. In our design, after
AddRoundKey transformation for one row of data, SubBytes
is performed immediately for this row of the data instead of
continuing performing AddRoundKey for all the four rows.

The initial AddRoundKey stage is performed with the initial
key. The other 10 rounds of AddRoundKey are performed
with the corresponding round key. As shown in Fig. 5,
the encryption key is maintained in the NVM array and round
keys overwrite the encryption key after finishing each round
of encryption.

C. SubBytes

In this step, each byte of the data matrix is replaced
with a new byte by doing the nonlinear transformation. This
transformation is realized with S-box which is used to obscure
the relationship between the key and the ciphertext. The S-box
can be realized with LUT by implementing combinational
logic which has 8-b input and 8-b output or ROM which
has 16 rows and 16 columns while each entry is a byte.
In this paper, S-box is realized with combinational logic since
it incurs lower overhead.

After the AddRoundKey stage of one row of state matrix,
the intermediate results are latched in the SAs. For SubBytes
transformation, each byte of the data matrix is decoded from
eight mats and input to the S-box as shown in Fig. 6. In this
figure, the Add Roundkey results of the second row of the
data matrix are latched in the SAs. SubBytes is performing
on the second byte C7. The output of S-box is the substituted
byte C6. In this figure, there is one S-box combinational logic
which has 8-b input and 8-b output. Since we can only input
1 B each time to the S-box, the SubBytes transformation can
only be done sequentially which takes a long time. To accel-
erate the SubBytes transformation, we can add more S-box
combinational logics to enable parallel SubBytes performing.
At the same time, we need to consider the hardware overhead
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Fig. 6. SubBytes transformation with LUT and ShiftRows transformation
with addressing logic.

introduced by multiple S-boxes. We have different designs
in terms of S-box considering both encryption speed and
overhead. The experimental section will show the performance
comparison of different designs.

After we obtain the 8-b output of S-box, it will not be
immediately written back. Instead, the next stage, ShifRow,
will be performed on the output.

D. ShifiRows

In this step, the bytes in each row of the data matrix are
cyclically shifted by a certain offset. Specifically, while the
top row remains unchanged, each bit in the second row of the
bit-level data matrix is cyclically shifted left by 1 b, each bit
in the third row of the bit-level data matrix is cyclically shifted
left by 2 b, and each bit in the third row of the bit-level data
matrix is cyclically shifted left by 3 b (right by 1 b).

The ShiftRows transformation is realized with control signal
and address decoding, as shown in Fig. 6 (bottom). Originally,
the 8-b output of S-box needs to be written back where each
input bit is located. This process needs address decoding
to write to the right position. The ShiftRows transformation
can leverage this address decoding process to do shifting by
address decoding. By combining an offset with the column
address, the output of S-box is shifted to another address
according to the ShiftRows algorithm. In Fig. 6, the second
byte C6 in the second row of state matrix after SubBytes needs
to be shifted to the left by 1 B. This means each bit needs
to shifted left by 1 b according to the data matrix distribution
in the memory. This shifting process is down by selecting the
first column with the control signal.

After ShiftRows transformation, each bit will be buffered
in the single-bit latch until SubBytes and ShiftRows are
performed on all the data in the SAs. Then, the values in the
row buffer are transmitted to the write driver and written back
to the memory array. This row buffer gathers the intermediate
results of one row and avoids writing to the NVM row multiple
times.
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E. MixColumns

In MixColumns stage, the 4 B of each column of the data
matrix are combined together using an invertible linear trans-
formation to provide diffusion in the cipher. The MixColumns
transformation multiplies the data matrix by a known matrix
as shown in Fig. 2.

Matrix multiplication is done in finite field GF(2®). S; ; and
S; ; are used to indicate the byte in row i, column ; of the
state matrix and the transformed state matrix, respec-

tively. The MixColumns transformation can be decomposed to
modular multiplication and XOR operations as follows:

S0 =28, @3-S, @S, ®Ss,;

Si,‘/ =8, ®2:51,,©3 8,08,

Sé,j =80,/ ®S81,;®2 5,383,

S5, =3 5,85,®85,82 S, (1)

Multiplication-by-2 (M-2) in the finite field can be realized
by shifting each bit of the operand left by 1 b, followed by a
XOR operation with 0 y 1 B if the most significant bit is 1.
A more efficient way is leveraging LUT. M-3 in the finite
field GF(2%) of MixColumn can be realized with M-2 and
XOR logic. This is because

3 Si_j=2 y Sj,jGBSi,j. (2)

Therefore, MixColumns stage is decomposed into M-2 LUT
and XOR operations. MixColumns needs several sub steps
and generates several intermediate values. To both accelerate
this transformation and maintain a low hardware overhead,
we leverage the vacant NVM rows as buffer rows for inter-

mediate results. The MixColumns stage is realized with LUT
and XORs as follows:

S(*),j =Ti®2 8,028,838,
Si,j= Ti®o2: 81,2 5,951,
$,=T®2 8,02 8,08,
S, =T®2 5,828,808, 3)

where
Ti = 80, ®S1,; ® 52,/ ® 83,;. 4)

The first step of MixColumns is M-2 transformation with
LUT. This process shares the same address decoding logic
of S-box with a MUX as shown in Fig. 7. Since we can
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only input 1 B each time to the LUT, this transformation
can only be done sequentially, which takes a long time.
To accelerate this transformation, we add multiple M-2 LUT
combinational logics to enable parallel performing. Like S-
box design, we have different multiplication-by-2 LUT
designs considering both encryption speed and overhead. After
M-2 transformation, outputs are latched in a row buffer until all
bytes of the activated row finishes M-2 transformation. Then,
data in this row buffer is written to a vacant memory row.
In total, four empty NVM rows are used for storing LUT
results.

The next step of MixColumns is calculating 7; follow-
ing (4). Fig. 8 shows the detailed process of calculating T;
for a specific column. Every time two rows are activated to
get the XOR result of two memory cells, then next step of this
result is written to an empty buffer row. From this figure, this
step costs three XOR operations and three writes. In this step,
since all SAs are working simultaneously, 7; for each column
is calculated in full parallel.

The final step of MixColumns is calculating the result of
MixColumns transformation following (3). In this step, with
M-2 LUT results stored in four rows and 7; values, we can
finish the MixColumns transformation for one row of selected
columns in six steps as shown in Fig. 9. This figure shows an
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example of how to calculate S ;j inrow 0. After three times
of activating two rows, four operands are XORed together to
get the final result of S ;, and then this result is written back
by replacing So, ; .

During MixColumns, several writes are generated.
In M-2 LUT step, M-2 results are written to four rows,
therefore a column of four memory cells takes four writes.
In the second step of calculating 7; , three writes are generated
as shown in the colored memory cells of Fig. 8. In the final
step, transforming one value takes three writes. Thus,
12 writes are generated for transforming four values. In total,
19 writes are generated for each column of four memory
cells which means five writes on average are generated for
each cell in the MixColumns transformation.

F. Discussion

The AES encryption process leverages innate parallelism of
main memory to accelerate encryption. To support in-memory
AES encryption, multiple S-box LUTs, M-2 LUT, MUX, and
DEMUX are implemented inside the memory system. For
decryption, inverse S-box LUT needs to be added except
for the available resources for encryption. When the memory
system receives an encryption signal, the original key shared
among all memory chips is transferred to different memory
chips. When each round of encryption finishes, the initial key
is expended to get the round key. The encryption controller
in each chip takes care of the detailed encryption and the
decryption process.

V. CIPHER MODES
A. Exploration of Different Cipher Modes

Encrypting two identical plaintext blocks with the same
key will generate two identical ciphertext blocks. An attacker
would be able to achieve useful information and discover
the original plaintext by analyzing the identical blocks of the
ciphertext. To allow block ciphers to work with a large number
of data blocks, different block cipher modes of operations are
devised to blur the ciphertext so that the ciphertext blocks of
two identical plaintexts are different. Common modes of block
cipher include electronic codebook (ECB), cipher block chain-
ing (CBC), cipher feedback (CFB), output feedback (OFB),
and counter (CTR) [5].

1) Electronic Codebook: ECB is the simplest mode that
encrypts each data block of the input plaintext sepa-
rately. Since there is no dependence in encrypting different
data blocks, this cipher mode allows different blocks to
be encrypted simultaneously and supports high parallelism.
However, if there are identical plaintext blocks in the NVMM,
encrypting bulk NVMM with the same key is vulnerable.

2) Cipher Block Chaining: In the CBC mode, the next
plaintext is always XORed with previously produced ciphertext
block before it is encrypted. Since there is no previous
ciphertext block, the first plaintext block is XORed with a
random initialization vector (IV) which has the same size as
a plaintext block. As a result, every subsequent ciphertext
block depends on the previous one. Since the CBC mode
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encrypts the plaintext sequentially, it will lead to high latency
in the AIM encryption process. Different from encryption,
decrypting different cipher blocks can be done simultaneously.

3) Cipher Feedback: In the CFB mode, the previous cipher-
text block is encrypted and then XORed with the next plaintext
block to generate the next ciphertext block. Since there is
no previous ciphertext block before the first plaintext block,
a random IV is encrypted and then XORed with the first
plaintext. Similar to the CBC mode, encryption in CFB mode
is performed sequentially while decryption can be performed
simultaneously. Therefore, it suffers a similar drawback to the
CBC mode. Compared with CBC mode, the CFB mode only
uses the encryption of the block cipher. Therefore, the CFB
mode gets rid of the required resource for implementing
decryption.

4) Output Feedback: The OFB mode creates keystream
blocks with the original key and a random IV, which are then
XORed with the plaintext blocks to get the ciphertext blocks.
Because of the continuous creation of keystream bits, both
encryption and decryption are done sequentially. Therefore,
this mode has poor parallelism. In addition, the usage of only
the encryption of the block cipher gets rid of the required
resource for implementing decryption.

5) Counter: The CTR mode creates keystream blocks by
encrypting a nonce value added by an increasing counter. The
plaintext blocks can be encrypted simultaneously with differ-
ent counters allowing high-level parallelism. However, CTR
mode becomes vulnerable if counters repeat. This mode also
gets rid of the required resource for implementing decryption.
In addition, the five cipher modes, Galois/counter mode
(GCM) [23] is also a very interesting and powerful cipher
mode. However, the implementation of GCM requires adding
more circuitry to the memory architecture than other modes
because of its authenticity and confidentiality ability. Mean-
while, GCM requires more steps to generate a tag for authen-
ticity and, thus, has much longer encryption time and energy
consumption compared with the other cipher modes. Because
of the much larger area overhead and the lower performance
and energy efficiency, GCM mode has inferior performance to
the other discussed cipher modes. Therefore, GCM mode is
not considered in this paper.

B. CTR-CFB Encryption

The cipher algorithm requirement and parallelism of
encryption direction and decryption direction are summarized
in Table I. Among them, CTR mode has the best parallelism
based on counters. CFB, OFB, and CTR only need encryption
direction implementation which saves hardware resource for
implementing decryption. Compared with OFB, CFB has a
better parallelism in decryption.

A direct solution to enhancing the security is deploying CTR
mode which allows high parallelism. However, CTR mode
fails catastrophically when a counter value is reused, because it
is a pure XOR stream cipher: XORing two ciphertext blocks that
were generated with the same key and counter values cancels
out the encryption. Therefore, in this paper, we propose to
combine CTR and CFB modes to enhance the AES security
while maintaining the parallelism level.
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TABLE I
COMPARISON OF DIFFERENT CIPHER MODES

Modes Cipher requirement Parallelism
Encryption | Decryption | Encryption | Decryption
ECB v v v
CBC v v v’
CFB v’ v’
OFB v
CTR v v v
Bitlines Bitlines Bitlines
Nonce+Counter Nonce+Counter Nonce+Counter
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Fig. 10. Encryption of CTR+CFB cipher mode.

The implementation is shown in Fig. 10. In the vertical
direction, the CFB mode can be implemented, since each
word row needs to be activated for encryption one by one
in sequential. In the horizontal direction, CTR mode can be
implemented to allow parallelism since several columns can
now be encrypted simultaneously. The introduction of the
CFB mode to CTR mode avoids the counters for the vertical
encryption direction.

The challenges in the implementation lie in generating
nonce which is a random number, and the design of coun-
ters (different value for different blocks). For generating a
nonce, there are two ways: first, the key generator can generate
a second key as the nonce and second, the original key can
be used to generate the nonce by hashing the original key.
To have different counters for different blocks, the bank id,
subarray id, mat id, and column id are concatenated together
to generate different counters for the first row of plaintext
blocks in NVMM as follows:

Counter
= Bankid| | Subia| |[Matiq| | Columniq| |[Muxi4| | Counter+; (5)

where Counter; is the increment-by-one counter, which
works by incrementing by one after finishing one time of bulk
encryption. Therefore, the encryption function for the first row
of data blocks is as follows:

C = P & Engy(Nonce + Counter). (6)

This design of Counter guarantees a unique sequence for
each plaintext so that different plaintext blocks are encrypted
with different key blocks. Meanwhile, the same counter
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Fig. 11. Decryption of CTR+CFB cipher mode.

sequence will not repeat for a long time so that the same
plaintext block will not be encrypted with the same keystream
twice for a long time, ensuring the security of the proposed
cipher mode.

C. CTR-CFB Decryption

The decryption process of CTR{CFB cipher mode is shown
in Fig. 11. From this figure, the decryption of different
columns of data blocks is decrypted simultaneously while the
data blocks for the same columns are decrypted sequentially.
This cipher mode only uses the encryption algorithm of
the block cipher as shown in the blue box, thus avoiding
the required resource for implementing decryption algorithm
especially the inverse S-box.

VI. KEY GENERATION AND STORAGE

The method of key generation, key storage, and key
handling significantly influences the security of the crypto-
systems. In this section, we will first describe three possible
master key generation schemes. Then, we will describe the
round key generation in AIM.

A. Master Key Generation and Storage

For the AIM encryption mechanism, there are three possible
ways of generating the master key: user input, randomizer,
and physical unclonable function (PUF). The user input
method allows the user of a device to input a key that the
user can remember or a biometric-based key before shutting
down or putting the device into sleep/screenlock mode. After
inputting a key, this key is then transferred to the NVMM
to start the AES in-memory encryption. After finishing bulk
encryption, this key is cleared. When the user wants to
use the device again, the same key is input to decrypt the
NVMM. In this way, there is no key storage overhead or key
leakage risk. The second way of creating the original key,
randomizer, is to use a pseudorandom number generator to
create a one-time random number. Since the device might
be powered down, this key should be stored in a protected
NVM for decryption. Therefore, this key should be placed far
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away from the NVMM, such as in the processor, to keep the
generated key away from the attackers.

Compared with a randomizer, PUF avoids the need of key
storage in NVM. The process of extracting a key from the
physical intrinsic properties due to different materials and
physical variations from the fabrication process of hardware is
described in [21]. PUF-based key generator avoids the need for
a pseudorandom number generator by harvesting the hardware
unique randomness and processes it into a cryptographic key.
Since the randomness is already intrinsically present in the
device, there is no need for a protected NVM. Since the ran-
domness is static throughout the lifetime of the device, it can
be harvested again to regenerate the same key for decryption.
This PUF-based key cannot be found by an attacker who opens
up the device because the key is not permanently stored and
not present when the device is not active. This way of deriving
a key has great security advantages compared to randomizer
which needs the key storage in NVM.

B. Round Key Generation—Rijndael Key Schedule

AES requires a separate round key for each round of
encryption to achieve a high level of confusion. Expanding
the original key into several rounds of keys in AES is known
as the Rijndael key schedule. AES key expansion consists
of RotWord, SubWord, XOR operations, all of which can
be realized with the previously introduced implementations
of AES encryption. Therefore, the round keys can also be
generated within NVMM instead of using a dedicated key
generator. In the proposed CTR{CFB cipher mode imple-
mentation, the key for each round is generated only once and
stored in the NVMM for each time of memory bulk encryption.
After completing the encryption, these round keys are cleared
to avoid key information leakage.

VII. EXPERIMENTAL EVALUATION
A. Experiment Setup

AIM is evaluated on both MRAM-based and PCM-based
main memory with a DDR3 interface and 65-nm technology.
The MRAM-based main memory has a 512-b page size.
We conservatively assume the MRAM has 256 Mb per chip
with a 34F 2 cell size. The PCM-based main memory’s page
size is 1024 b, and the capacity is 1 Gb per chip with
the cell size of 9F 2. We modified NVSim [10] and Cacti-
3DD [6] to achieve the parameters for the NVM-based main
memory. Table II lists the parameters of PCM and MRAM at
bit level for main memory implementation [25]. To evaluate
the circuitry, we added to support AIM, we synthesize these
circuits with Design Compiler with FreePDK.

We compare AIM with three different dedicated memory
EEs as follows.

1) EE-1 [13] designs an AES encryption hardware core
suited for devices with low power consumption. It has a
maximum frequency of 290 MHz, and takes 9.9 nJ and
160 cycles to encrypt a data block.

2) EE-2 [22] implements an AES CMOS application spec-
ified integrated circuit encryption core which has a
frequency of 2.13 GHz with a total power consumption
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TABLE II
PCM AND MRAM PARAMETERS AT BIT LEVEL
Features PCM | MRAM
Read Latency (ns) 27.17 31.97
Write Latency (ns) 146.39 41.52
Read Energy (pJ) 0.04 0.03
Write Energy (pJ) 0.1Z 0.06

E1DW-AES B PCM EMRAM

EE-1 EE-2 DW-AES

AIM

AIM-B AIM-S

Fig. 12.  Comparison of latency between different baselines and different
AIM designs.

at 125 mW, and takes five cycles to encrypt four data
blocks with an area of 4400 um?.

3) DW-AES [29] implements an AES encryption core
with domain-wall nanowires which has a frequency
of 30 MHz and takes 1022 cycles and 2.4 nJ to encrypt
one data block.

For the proposed design, we evaluate different configu-
rations described as follows.

4) AIM is the basic configuration, where only one bank
works on encryption at one time.

5) AIM-B has the encryption add-on circuit for each bank.
To perform a whole memory encryption, all banks in a
chip can work in parallel.

6) AIM-S has the add-on circuit for each subarray.
By leveraging the subarray-level parallelism [17], multi-
ple subarrays in the same bank work on the encryption/
decryption task simultaneously.

B. Performance and Energy Evaluation

1) Latency: Fig. 12 shows the encryption latency of 1-
GB memory. We have three observations. First, the encryp-
tion latency becomes quite large when the size of NVM
is large. For a low-frequency EE DW-AES, encrypting the
whole memory can take as long as many hours or days.
Second, for an EE of very high frequency, the encryption
latency is very small. If the writing latency is larger than
the encryption latency, the encryption latency will be counter-
vailed by the writing latency. EE-2 has very high encryption
speed; the time it takes to encrypt the whole memory turns to
the time of reading and writing to all memory blocks sequen-
tially. Therefore, the encryption time of EE-2 is different for
PCM and MRAM as shown in the corresponding two columns
of Fig. 12. On the contrary, EE-1 has very low encryption
speed and its encryption latency is much larger than the data
movement which is, thus, overlapped by the encryption time
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Fig. 13. Energy for encrypting 128-b block (left). Energy for accessing and
encrypting 1-GB main memory (right).

that dominates the overall latency. Therefore, the encryption
time of EE-1 is the same for both PCM and MRAM as shown
in the corresponding two columns of EE-1. Fourth, multiple
levels of parallelism in NVM accelerate the encryption process
of AIM mechanism. When only one bank works in a chip,
AIM can reach the encryption speed of 21 s and 1.2 s if the
memory is implemented with PCM and MRAM, respectively.
When we enable bank-level parallelism and let banks encrypt
independently, AIM-B is able to encrypt the whole memory
in 2.66 s and 0.15 s correspondingly. When the subarray
level parallelism is enabled, AIM-S is able to encrypt the
whole memory in 0.33 s and 0.018 s for PCM and MRAM,
respectively.

From Fig. 12, we can see that EE-2 has the fastest encryp-
tion speed. When the main memory is implemented with
PCM, the AIM-B design has similar encryption performance
for 1-GB main memory and AIM-S can encrypt 1 GB much
faster than EE-2. When the main memory is implemented with
MRAM, all three designs AIM, AIM-B, and AIM-S work
faster than EE-2. In addition, when the size of NVM scales
up, the latency of EE-2 will scale up accordingly. However,
for AIM-B, as long as main memory power budget allows,
it can continue to leverage the parallelism and maintain a short
encryption latency.

2) Power: All three designs AIM, AIM-B, and AIM-S work
within the power budget [14] of main memory. Among the
three designs, AIM has the smallest power which is around
1 and 13 mW for encrypting one chip of PCM-based main
memory and MRAM-based main memory, respectively. The
power of AIM-B is around 8 and 108 mW for encrypting
one chip of PCM-based main memory and MRAM-based
main memory, respectively. AIM-S has the largest power
consumption since it has the best performance among the
three designs and the power is 70 mW for encrypting each
chip of PCM-based main memory. When the main memory
is implemented with MRAM, the power of AIM-S exceeds
the budget since the parallelism of AIM-S is the highest.
Therefore, this design is not recommended if the power budget
is small. However, since AIM-S has the best performance,
if the system has the need for fast encryption and a large
power budget, this design can still be employed. In conclusion,
when we implement the AIM encryption schematic inside the
NVMM, both power budget and encryption latency should be
considered together to choose the most suitable design.

3) Energy Efficiency: Fig. 13 compares the energy effi-
ciency for encrypting a 128-b block and for encrypting 1-GB
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Fig. 14. Different AIM designs area overhead.
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Fig. 15. Breakdown of encryption overhead.

main memory sequentially. From Fig. 13(a), EE-2 incurs
the smallest energy, 0.265 nJ to encrypt 128-b block while
AIM ranks the third and costs 2.78 and 3.17 nJ for 128-b
PCM and MRAM blocks, respectively. Fig. 13(b) shows the
energy consumption for encrypting 1-GB nonvolatile PCM
and MRAM. In this figure, the lower parts of the first six
columns show the energy spent on accessing main memory and
the upper parts show the energy spent on encrypting process
with the EEs. From this figure, we have two observations.
First, EE-1, EE2, and DW-AES cost significant amount of
energy on memory access. This is because, for an encryption
operation outside of main memory like those of EE-1 and EE-
2, the encryption processor needs to read a memory block
from the main memory and then write this memory block back
to its original position after encryption is completed. During
the reading and writing periods, complex address decoding
and bus transfer costs a lot of energy which is much more
than the energy spent for encrypting this block. For DW-AES,
the large energy comes from a large number of shifting
operations required for write to perform the AES with domain-
wall memory (DWM). Second, AIM costs the lowest energy
compared with the three specific EEs. Since AIM encrypts
each memory block inside the main memory, it avoids a large
part of reading and writing energy consumption from outside
the main memory.

4) Overhead Evaluation: Fig. 14 shows the area overhead
results. As shown in this figure, AIM and AIM-B both
incur insignificant area overhead of only 0.06% and 0.45%
area overhead for PCM-based main memory, and 0.08% and
0.63% for MRAM-based main memory. Compared with AIM
and AIM-B, AIM-S incurs a relatively larger area overhead
0f 3.59% and 5.05%.

Fig. 15 shows the distribution of hardware overhead. Among
all added circuitry, forward S-box and inverse S-box have the
largest area overhead. Since we can only look up byte by
byte each time, more S-box LUTs mean more parallelism.
Therefore, this overhead is unavoidable.

In addition, the area overhead for added circuitry, buffer
rows are required for storing intermediate results generated in
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the encryption process. As shown in Fig. 8, six buffer rows
are required at most in the MixColumns step. For a normal
memory bank that has 512 rows, six buffer rows are only 1.2%
of the whole memory size. During the normal working time
of the main memory, these six buffer rows can also be used
for storing the working data.

5) Further Improvement: The breakdown of latency and
energy consumption of AIM implementations for different
encryption stages is shown in Fig. 16. Since SubBytes and
ShiftRows are combined together in the AIM design, we ana-
lyze the two stages together. From Fig. 16, AddRoundKey
consumes the minority of both total encryption latency and
energy. This is because AddRoundKey stage only consists of
parallel XOR operations based on Pinatubo design which is fast
and costs a little energy. MixColumns consumes the medium
latency and energy. This stage involves LUT operations of S-
box. The latency of this stage varies with the number of
S-box. MixColumns consumes the majority of both total
latency and energy. This is because MixColumns generates
several intermediate encryption state matrices from substeps.
These intermediate encryption state matrices are buffered in
the NVM cells in AIM design. This buffering process costs
considerable energy and latency, since write operations in
NVMM are usually expensive in terms of both energy and
latency.

Writing pulsewidth to NVM determines the retention time
of the written states. In AIM, the encryption latency and
energy can be further reduced by supporting short-latency
light writes, since the intermediate encryption states only need
to stay for a short while. In this way, buffering intermediate
encryption states with light writes will cost less energy and
latency.

C. Evaluation of Different Cipher Modes

In this section, we evaluate the proposed CTRCFB cipher
modes from three aspects including encryption latency, energy
efficiency, and area overhead. Among the evaluated cipher
modes, CBC mode and CTR mode are used as the baselines.
The other kinds of cipher modes are not evaluated since they
do not support parallel encryption.

1) Latency: Fig. 17 shows the encryption latency of 1-GB
memory with three different cipher modes under AIM design.
Among the three cipher modes, the CBC mode has the
shortest encryption latency. Compared with the CBC mode,
the CTR mode increases the encryption latency by 2.17%
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Fig. 19. Different AIM design area overhead with the CTR +CFB mode.

and 2.97% when the main memory is implemented with
PCM and MRAM, respectively. Compared with the CTR
mode, the proposed CTR{CFB cipher only slightly increases
the encryption latency by 0.25% and 1.00% when the main
memory is implemented with PCM and MRAM, respectively.

2) Energy Efficiency: Fig. 18 shows the encryption latency
of encrypting one memory block with three different cipher
modes under AIM design. Among the three cipher modes,
the CBC mode has the highest energy efficiency because it
generates the lowest energy overhead. Compared with the CBC
mode, the CTR mode increases the energy consumption by
2.96% and 2.68% when the main memory is implemented
with PCM and MRAM, respectively. Compared with the CTR
mode, the proposed CTR{CFB cipher only slightly increases
the energy consumption by 0.88% and 0.68% when the main
memory is implemented with PCM and MRAM, respectively.

3) Overhead: Fig. 19 shows the area overhead results
of implementing the proposed CTR 4CFB cipher mode.
As shown in this figure, AIM and AIM-B both incur
insignificant area overhead of only 0.03% and 0.26% for
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PCM-based main memory, and 0.05% and 0.37% area over-
head for MRAM-based main memory. Compared with AIM
and AIM-B, AIM-S incurs a relatively larger area overhead
of 2.10% and 2.95% for PCM-based main memory and
MRAM-based main memory. Compared with the CBC mode
as shown in Fig. 14, the proposed CTR+CFB mode further
reduces the area overhead by 40% on average by removing
the inverse S-box.

Fig. 20 shows the distribution of area overhead. Compared
with Fig. 15, the overhead from inverse S-box is removed.
Among all added circuitry, forward S-box has the largest area
overhead.

4) Discussion: The proposed CTR4+CFB cipher avoids the
complex management of a large amount of counter values and
the security problem of the repeated counter in a short time.
Meanwhile, the whole decryption process is based on the AES
encryption algorithm, saving the hardware resource for imple-
menting AES decryption algorithm. The above-mentioned
experimental results show that the proposed CTR-CFB cipher
mode achieves comparable or even lower latency and energy
consumption with small hardware overhead.

The high encryption performance of AIM is owing to the
high parallelism inside main memory architecture. As long
as the memory cells are resistance-based, the corresponding
memory technology will work with the proposed architecture.
Furthermore, from our experimental evaluation, the activation
latency of a memory row is much larger than the read/write
latency of a memory cell and thus dominates the overall
memory access latency. This activation latency mainly depends
on the length of a memory row and the circuit design instead
of the memory type. From our research, most NVMs have
the properties varying between MRAM and PCM. Therefore,
the proposed techniques are good for other NVM as well.

Although AIM requires memory architecture modification
for encryption, the modification is small, simple, and easy to
implement. The three levels of encryption parallelism AIM
supports with in-memory design bring benefits of significantly
improved encryption throughput and lowered energy overhead.

VIII. RELATED WORK
A. Memory Encryption

Encryption has been widely suggested as a solution
to secure both DRAM [15] and NVM-based main mem-
ory [7], [31]. These implementations perform encryption/
decryption when writing/reading a cache line to/from main
memory. Though encryption techniques base on Pad-based
or Stream cipher encryption where memory access could be
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overlapped with the Pad or Keystream generation reduces
the decryption overhead, the system still suffers, since that
overhead is on the critical path (memory read access). Differ-
ent from them, Colp et al. [9] proposes to perform one-time
encryption for smartphones and tablets only when the device
is screen locked. AIM performs a one-time encryption to
the main memory system before there is a possible attack
(e.g., before power OFF). Other than that it runs as a normal
main memory without any latency overhead. Furthermore,
existing encryption methods rely on a dedicated EE on the
processor or in the main memory. AIM takes advantage of in-
memory computing, hence achieves a better throughput with
less energy consumption.

B. NVM Encryption

There are several work that are particularly optimized for
encryption on NVM [7], [16], [19], [26], [31]. IZNVMM [7]
proposes to encrypt main memory incrementally. However,
our method taking advantage of the PIM architecture out-
performs i-NVMM, because i-NVMM relies on the dedicated
AES engine on the processor side and limited by its small
bandwidth and parallelism. DEUCE [31] and SECRET [26]
propose techniques to reduce the bit flips during data encryp-
tion, which helps NVM reliability since encryption involves
a significant amount of expensive writes. Silent Shredder [4]
proposes techniques to obviate the writing of zeros to memory
pages. Their techniques are orthogonal to AIM, and their
method can be applied to AIM to further reduce the encryption
energy.

C. In-Memory Encryption

In-memory encryption is a promising solution for NVM
encryption which has limited research. Reference [11] explores
different spintronic devices-based memory that could be lever-
aged to implement logic functions with the AES algorithm as
a case study. Angizi et al. [3] demonstrates the efficiency of
AES algorithm on a proposed in-memory processing platform
with novel spin Hall effect-driven domain-wall motion devices
that support both NVM cell and in-memory logic design.
A recent work, Recryptor [34], proposes a reconfig-
urable cryptographic processor using in-memory computing.
By replacing a standard SRAM bank with a custom bank
with in-memory and near-memory computing, Recryptor pro-
vides an IoT platform that accelerates primitive cryptographic
operations. DWM is also utilized to perform in-memory
encryption [20], [29], [32], where inherent DWM device
functions were used to perform the operations required for
encryption.

IX. CONCLUSION

In this paper, we propose a fast and energy-efficient AES
in-memory implementation, AIM, by taking advantage of
NVM’s resistive nature and utilizing existing memory periph-
eral circuits. With AIM, the memory blocks are encrypted
simultaneously within each memory bank and the entire
encryption process can be completed within the main memory
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without exposing the results to the memory bus. Compared
with state-of-the-art AES engine running at 2.1 GHz, AIM
can speed up the encryption process by 80X when encrypting
1-GB MRAM with 3% area overhead.
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