
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018 2443

×

Securing Emerging Nonvolatile Main Memory

With Fast and Energy-Efficient AES

In-Memory Implementation

Mimi Xie , Student Member, IEEE, Shuangchen Li, Student Member, IEEE,

Alvin Oliver Glova, Student Member, IEEE, Jingtong Hu , Member, IEEE,

and Yuan Xie , Fellow, IEEE

Abstract— As CMOS technology approaches its scaling limit,

emerging nonvolatile memory (NVM) technologies become
promising alternatives to DRAM due to their low leakage power
and better scalability. However, the nonvolatile main memory
system suffers from a new security vulnerability. An attacker
can readily access sensitive information on the memory, since
the nonvolatility allows information to be retained for a long
time even after the power is OFF. While real-time memory
encryption during memory accesses with dedicated Advanced
Encryption Standard (AES) engine is an effective solution for
this vulnerability, it incurs runtime performance and energy
overhead. Alternatively, in this paper, we propose a fast and
efficient AES in-memory (AIM) implementation, to encrypt the
whole/part of the memory only when it is necessary. Rather than
adding extra processing elements to the cost-sensitive memory,
we take advantage of NVM’s intrinsic logic operation capability
to implement the AES algorithm. We leverage the benefits (large
internal bandwidth and dramatic data movement reduction)
offered by the in-memory computing architecture to address
the challenges of the bandwidth intensive encryption applica-
tion. Embracing the massive parallelism inside the memory,
AIM outperforms existing mechanisms with higher throughput
yet lower energy consumption. The experimental results show
that compared with state-of-the-art AES engine running at

2.1 GHz, AIM speeds up the encryption process by 80 for
a 1-GB NVM.

Index Terms— Advanced Encryption Standard (AES), encryp-
tion, main memory, nonvolatile.

I. INTRODUCTION

RAM has been employed as the main memory for com-

puters for decades. However, as technology scales down,

Manuscript received March 25, 2018; revised June 21, 2018; accepted
July 28, 2018. Date of publication September 10, 2018; date of current
version October 23, 2018. The work of M. Xie and J. Hu was supported
by NSF under Grant CNS-1830891 and Grant CCF-1820537. The work of
S. Li, A. O. Glova, and Y. Xie was supported in part by NSF under Grant
1730309/1719160/1500848, in part by CRISP, one of the six centers in JUMP,
and in part by DARPA through the Semiconductor Research Corporation
Program. (Corresponding author: Mimi Xie.)

M. Xie and J. Hu are with the Department of Electrical and Com-
puter Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA (e-
mail: mm.xie@pitt.edu; jthu@pitt.edu).

S. Li, A. O. Glova, and Y. Xie are with the Department of Electri-
cal and Computer Engineering, University of California at Santa Barbara,
Santa Barbara, CA 93106 USA (e-mail: shuangchenli@ece.ucsb.edu;
aomglova@ece.ucsb.edu; yuanxie@ece.ucsb.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2865133

DRAM will suffer from prohibitively high leakage power.

Consequently, researchers are actively developing promising

candidates such as phase change memory (PCM) [35], resistive

random access memory [30], and spin-transfer torque magnetic

random access memory (MRAM) [27] to be deployed as next-

generation nonvolatile main memory (NVMM). These non-

volatile memories (NVMs) have several significant advantages

over traditional DRAM main memory. They provide promising

features such as nonvolatility, high density, low leakage power,

and high scalability. The nature of nonvolatility avoids the

need of a frequent refresh for DRAM and allows the data in

NVM to be retained for a long time after power is OFF. Intel’s

recent announcement of 3-D Xpoint [2] and the JEDEC’s

NVDIMM-P specification [1] are the latest efforts toward the

goal of next-generation NVMM.

In spite of these advantages, NVMM suffers from a new

security vulnerability. Since the information in NVMM will

not lose data after the power is turned OFF, an attacker with

physical access to the system can readily scan the main mem-

ory content and extract all valuable information from the main

memory [7], [12]. In contrast, the security of DRAM memory

relies on its short retention time which varies from 500 ms

to 50 s [28]. To protect the data of the NVMM, the whole

memory should be provided with a security mechanism with

comparable security level to DRAM.

Real-time memory encryption with pad-based or stream

cipher is an effective solution for this vulnerability, in which

every cache line is encrypted or decrypted before being written

to or read from the main memory [15]. The real-time memory

encryption is a strong protection, and it can also prevent

other attacks such as memory bus snooping [9]. Unfortunately,

the strong protection is at the expense of runtime performance

loss, since the decryption latency (as an overhead of read

access) is on the critical path. In addition, encrypting and

decrypting every memory access also result in severe energy

overhead.

Strong real-time protection is, however, not always

necessary. For example, when a mobile device (e.g., smart

phone or laptop) is being used, the attack that requires physical

access to the NVMM can rarely happen. Only when the device

is shut down or put into sleep/screenlock mode, the mem-

ory encryption is required. i-NVMM [7] further proposes to

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

D

http://ieeexplore.ieee.org/
http://www.ieee.org/publications_standards/publications/rights/index.html

2444 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

encrypt the main memory incrementally while maintaining an

unencrypted working set which needs fast bulk encryption

when necessary. Instead of the real-time encryption with per-

formance loss and energy cost for every cache line, encrypting

the working set in bulk or the whole memory when necessary

is preferred in such mobile scenarios where strong protection

for this part of the memory is not required all the time.

Even though the bulk memory encryption approach results

in zero performance loss at runtime, reduces the encryption

tasks, and hence the energy consumption, two challenges still

persist: first, it should be fast in order to lower the vulnerability

window when locked and provide an instant response when

unlocked. This is even more critical under the development

of multicore processor and increasing demand of much larger

main memory. Second, it requires energy-efficient encryption

considering the limited battery life.

To address these two challenges, we propose AES In-

Memory (AIM), a novel AES in-memory encryption archi-

tecture for fast and energy efficient NVMM encryption.

Embracing the benefit of the processing-in-memory (PIM)

architecture, AIM takes advantage of large internal memory

bandwidth, vast bitline-level parallelism, and low in situ

computing latency, eliminating data movement between mem-

ory and host. Leveraging the nondestructive read in NVMs

for performing efficient XOR operations, we can perform

the entire Advanced Encryption Standard (AES) procedure in-

place by adding lightweight logic gates to the memory

peripheral circuitry. Specifically, we explore three levels (chip,

bank, and subarray) of parallelism to provide different design

choices under different performance and energy efficiency

requirements. We also propose a new combined cipher mode

for AIM in order to maintain high parallelism with the best

performance and reduced area overhead.

The remainder of this paper is organized as follows.

Section II describes the background on NVMM organiza-

tion and AES encryption. Section III describes the moti-

vation of this paper. Section IV presents the complete in-

memory encryption architecture. Sections V and VI discuss

the proposed encryption mode and key storage, respectively.

Detailed experimental evaluation is provided in Section VII.

Section VIII presents the related works. Finally, Section IX

concludes this paper.

II. BACKGROUND

A. Nonvolatile Main Memory

Main memory is logically organized as a hierarchy of chan-

nels, ranks, and banks. Channels work in parallel and share the

same physical link to the processor. Each channel contains sev-

eral ranks and each rank has several physical chips. A physical

chip has several banks which contend for the same I/O in the

same channel. Banks from different channels can be accessed

completely independently of each other. A memory bank has

several subarrays which share the global data line and global

row buffer. Each subarray is a 2-D array of memory cells,

which has a local row buffer. A subarray can be further divided

into different mats, which has its private row buffers and

write driver. Row and column addresses are often decoded at

Fig. 1. Pinatubo’s architecture computes vector bitwise operations inside
NVMs (left). SA modification in Pinatubo to perform in-memory XOR
operations [18] (right).

Fig. 2. AES flowchart.

mat level. Peripheral circuitry, such as sense amplifiers (SAs)

and write drivers are shared among several columns.

B. Pinatubo: PIM in NVM

In addition to the recent research that leverages 3-D-stacking

DRAM such as a hybrid memory cube to support PIM

architecture, Pinatubo [18] paves another way that leverages

the emerging NVM to support PIM while incurring negligible

area overheads. As shown in Fig. 1, Pinatubo modifies the SA

circuit of the normal emerging NVMM, so that the SA not

only can serve for reading but also carry out bitwise operations

such as AND, OR, and XOR. Instead of activating one row

and reading the data out, Pinatubo activates two rows at once

which correspond to the two operand vectors. The output of

the SA is then the result of the bitwise operation of these

two rows (vectors). To perform an XOR operation, Pinatubo

first opens the one operand row, and stores the data in the

capacitor inside the modified SA. Then, it opens the second

operand row, and the data from this row and the previous

data in the capacitor go through the simple XOR circuit inside

the modified SA, after which, the readout result of this SA

is the XOR result of these two rows. The AIM design takes

advantage of this fast in-memory XOR operation offered by

Pinatubo [18].

C. Advanced Encryption Standard

The AES [8] is a symmetric block cipher which consists

of four transformations as shown in Fig. 2. SubBytes is

XIE et al.: SECURING EMERGING NVMM WITH FAST AND ENERGY-EFFICIENT AES IN-MEMORY IMPLEMENTATION 2445

a nonlinear invertible byte substitution that replaces each byte

of the state matrix using a substitution table (S-box). Each

byte Di, j in the state matrix is replaced with a new byte

Si, j in SubBytes step. ShiftRows cyclically shifts all bytes

in each row by different offsets. The first row is unchanged;

each byte in the i th row is cyclically shifted left by i bytes,

respectively. MixColumns combines the 4 B of each column

of the state matrix using an invertible linear transformation.

This transformation can be written as a matrix multiplication

in the finite field of GF(28) where the state matrix is multiplied

by a constant matrix composed of 1, 2, and 3. AddRoundKey

combines the state matrix with the round key by bitwise XOR

operations. Each byte in the state matrix is XORed with a byte

in the same row and column of the key matrix. These round

keys are generated from the key with a key schedule which

expands a short key into a number of separate round keys.

The four transformations of AES are comprised of XOR,

shift, and LUT operations. The intermediate results after each

transformation are maintained as a state matrix of bytes. At the

start of the algorithm, a round key is added to the input by

a bitwise XOR operation. Then, the state array is transformed

by implementing four basic transformations 10 times when

the key has 128 b, while the last round does not include

MixColumns.

III. MOTIVATION AND OVERVIEW

A. NVMM’s Vulnerability Challenge

We take the case of smartphones as a motivating example.

We assume NVMM has been adapted as the replacement

of DRAM, due to its advantages of low leakage and high

density. The vulnerability challenge emerges that the content

in the memory is under risk if the attacker stoles the device.

Even though the device is locked, the attacker can remove

the memory, plug it in another machine, and read it. The

threat is more severe in the case of NVMM, since the

retention time of NVM cells is typically much longer (a few

years [24]) compared with 500 ms to 50 s [28] in the case of

DRAM. An effective solution is real-time memory encryption

with Pad-based or Stream cipher encryption, however, at an

expense of performance degradation and also energy overhead

(4% reported by previous work [33]). Instead of the real-

time encryption, a smarter approach is to encrypt the memory

only when necessary. For example, when the device is being

used (unlocked), the attacker can rarely take it away. Only

when the device is turned OFF or put into sleep/screenlock

mode should the bulk memory encryption be committed.

B. PIM: A Potential Solution

To address those challenges, we propose a PIM architec-

ture for memory encryption. The PIM offers the benefit of

high internal memory bandwidth, massive parallelism (chip,

bank, and subarray level), and most importantly, it eliminates

the data movement between the memory and processors.

Meanwhile, we observe that in the one-time memory encryp-

tion application, the memory bandwidth is a bottleneck since

a dedicated AES encryption engine (EE) provides a much

larger throughput (53 Gbps [22]) than the DDR throughput.

Fig. 3. Memory encryption architecture. (a) Traditional encryption approach
implemented a cryptographic engine outside main memory. (b) Proposed AIM
design: in-memory computing with NVM’s intrinsic features.

Moreover, the energy for the fetching data from memory with

the DDR bus is also dominant. It is shown that 91.6% energy is

spent on fetching and writing this data from the experimental

results. Considering both advantages offered by PIM and

the workload characteristics of the target one-time memory

encryption application, we believe the PIM can effectively

address NVMM’s vulnerability challenge.

C. Design Overview

Based on the above-mentioned observations, we propose

AIM, an in-memory encryption mechanism for NVMM,

as shown in Fig. 3. Different from the coprocessor AES

engine [Fig. 3(a)], the proposed AIM avoids the narrow DDR

bus and embraces the large intramemory bandwidth. It also

benefits from multiple memory blocks parallel encryption by

leveraging the flexible parallelism inside the memory, marked

as chip-level, bank-level, and subarray-level parallelism in the

figure. To perform the AES algorithm, we build all its required

arithmetics (i.e., XOR, Shift, and LUT) inside each memory

subarray. Instead of implementing all those operations with

logic gates, we take the advantage of NVM’s unique feature

and implement the most time-consuming operation, XOR,

within the SAs themselves, as described in Section II-B [18].

The data buffer is added to store intermediate results, reduc-

ing expansive write operations to NVM cells. In addition,

an encryption controller is implemented in each chip to

provide control signals to direct the encryption process.

In Section IV, the details of the hardware implementation and

how the AES algorithm is mapped to the proposed AIM are

described.

IV. AES IN-MEMORY IMPLEMENTATION

A. Data Organization

AES in-memory implementation takes advantage of dif-

ferent levels of parallelism in the NVMM. In this paper, in-

memory encryption is performed directly on the mem- ory

cells. The data in memory cells are read out with SAs, each of

which is shared by several adjacent columns with a MUX

as shown in Fig. 4. Since the unit data matrix to be

encrypted needs to be organized in a certain fashion to

facilitate the encryption process, we distribute the 8 b of

each element in the data matrix into different mats and

different columns in the same mat so that they can be used

concurrently. In this way, the plaintext data block does not

2446 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

= ∗

∗ ∗ ∗ = ∗

Fig. 4. Distributed data organization for AES encryption.

have to be pretransformed into matrix form before encryption

starts. For illustration purposes, we assume that there are M

mats Mati (i 0, 1, . . . , M), the size of each mat is N N ,

and K columns share one SA.

Fig. 4 illustrates the memory distribution for one data

matrix. In the AES algorithm, the basic processing unit is 1 B

of the data matrix; therefore, the data matrix is distributed

into eight mats so that each mat has a 1-b level of the data

matrix. In order to encrypt each row of the data matrix in

parallel, four columns of the data matrix are distributed to

different columns of memory array connecting four adjacent

SAs separately. These four columns of the memory array are

of the same local column address. In this way, when one row

of the subarray is activated and a local column address is

selected for each MUX, every four adjacent SAs will sense

out a row of the data matrix. In total, every four rows of the

subarray contain MN/4K data blocks of 128 b.

To enable further processing of the data matrix, the interme-

diate results, which are the state matrices, need to be buffered.

To avoid extra hardware overhead and simplify the circuity,

we write the intermediate results back to the data matrix. In the

proposed encryption mechanism, AES encryption generates

less than 60 writes during 10 rounds of encryption to each

cell in the encrypted memory block. This amount of writes

has a negligible impact on the endurance of memory. NVMM

encryption is performed before the system is powered down.

Therefore, we assume that the main memory is encrypted

20 times every day. We also conservatively assume that the

deployed NVM has an endurance of 109 cycles. In 5 years,

AES encryption will generate 60 20 356 5 1.1 105

writes which is less than 0.2% of its total life cycles.

B. AddRoundKey

In this stage, the data matrix is combined with the key

matrix. Each byte of the data matrix is combined with the cor-

responding subkey of the key matrix using bitwise XOR oper-

ation. AddRoundKey is implemented with the modified SA

design of Pinatubo [18], which realizes bitwise XOR operation

with two microsteps inside SA.

Fig. 5 shows the process of AddRoundKey transformation

for one row of the data. First, the first row of the data in

the data matrix is read into the added capacitor in each SA by

activating the first wordline in red color and selecting a column

with MUX. Second, the first row of the data in the key matrix

Fig. 5. Addroundkey stage with XOR operation.

is read into the latch in each SA by activating the second

wordline in red color and selecting a column with MUX. After

these two steps, the bitwise XOR result of the first row is

latched in each SA. Suppose it takes tXOR to complete XOR

operation for one row of data matrix, it takes 4tXOR to complete

AddRoundKey transformation for a data matrix since there are

four rows in each data matrix. This AddRoundKey transfor-

mation is parallelized because of multiple SAs. Since there

are M mats and N/K SAs in each mat, (N/4K)(M/8) data

matrices are transformed simultaneously. In our design, after

AddRoundKey transformation for one row of data, SubBytes

is performed immediately for this row of the data instead of

continuing performing AddRoundKey for all the four rows.

The initial AddRoundKey stage is performed with the initial

key. The other 10 rounds of AddRoundKey are performed

with the corresponding round key. As shown in Fig. 5,

the encryption key is maintained in the NVM array and round

keys overwrite the encryption key after finishing each round

of encryption.

C. SubBytes

In this step, each byte of the data matrix is replaced

with a new byte by doing the nonlinear transformation. This

transformation is realized with S-box which is used to obscure

the relationship between the key and the ciphertext. The S-box

can be realized with LUT by implementing combinational

logic which has 8-b input and 8-b output or ROM which

has 16 rows and 16 columns while each entry is a byte.

In this paper, S-box is realized with combinational logic since

it incurs lower overhead.

After the AddRoundKey stage of one row of state matrix,

the intermediate results are latched in the SAs. For SubBytes

transformation, each byte of the data matrix is decoded from

eight mats and input to the S-box as shown in Fig. 6. In this

figure, the Add Roundkey results of the second row of the

data matrix are latched in the SAs. SubBytes is performing

on the second byte C7. The output of S-box is the substituted

byte C6. In this figure, there is one S-box combinational logic

which has 8-b input and 8-b output. Since we can only input

1 B each time to the S-box, the SubBytes transformation can

only be done sequentially which takes a long time. To accel-

erate the SubBytes transformation, we can add more S-box

combinational logics to enable parallel SubBytes performing.

At the same time, we need to consider the hardware overhead

XIE et al.: SECURING EMERGING NVMM WITH FAST AND ENERGY-EFFICIENT AES IN-MEMORY IMPLEMENTATION 2447

×

Fig. 7. MixColumn substep: M-2 LUT.

Fig. 6. SubBytes transformation with LUT and ShiftRows transformation
with addressing logic.

introduced by multiple S-boxes. We have different designs

in terms of S-box considering both encryption speed and

overhead. The experimental section will show the performance

comparison of different designs.

After we obtain the 8-b output of S-box, it will not be

E. MixColumns

In MixColumns stage, the 4 B of each column of the data

matrix are combined together using an invertible linear trans-

formation to provide diffusion in the cipher. The MixColumns

transformation multiplies the data matrix by a known matrix

as shown in Fig. 2.

Matrix multiplication is done in finite field GF(28). Si, j and

Si
∗
, j are used to indicate the byte in row i , column j of the

state matrix and the transformed state matrix, respec-
tively. The MixColumns transformation can be decomposed to
modular multiplication and XOR operations as follows:

immediately written back. Instead, the next stage, ShifRow,

will be performed on the output.
S0

∗
, j = 2 · S0, j ⊕ 3 · S1, j ⊕ S2, j ⊕ S3, j

D. ShiftRows

In this step, the bytes in each row of the data matrix are

cyclically shifted by a certain offset. Specifically, while the

top row remains unchanged, each bit in the second row of the

bit-level data matrix is cyclically shifted left by 1 b, each bit

in the third row of the bit-level data matrix is cyclically shifted

left by 2 b, and each bit in the third row of the bit-level data

matrix is cyclically shifted left by 3 b (right by 1 b).

The ShiftRows transformation is realized with control signal

and address decoding, as shown in Fig. 6 (bottom). Originally,

the 8-b output of S-box needs to be written back where each

input bit is located. This process needs address decoding

to write to the right position. The ShiftRows transformation

can leverage this address decoding process to do shifting by

address decoding. By combining an offset with the column

address, the output of S-box is shifted to another address

according to the ShiftRows algorithm. In Fig. 6, the second

S1
∗
, j = S0, j ⊕ 2 · S1, j ⊕ 3 · S2, j ⊕ S3, j

S2
∗
, j = S0, j ⊕ S1, j ⊕ 2 · S2, j ⊕ 3 · S3, j

S3
∗
, j = 3 · S0, j ⊕ S1, j ⊕ S2, j ⊕ 2 · S3, j . (1)

Multiplication-by-2 (M-2) in the finite field can be realized

by shifting each bit of the operand left by 1 b, followed by a

XOR operation with 0 1 B if the most significant bit is 1.

A more efficient way is leveraging LUT. M-3 in the finite

field GF(28) of MixColumn can be realized with M-2 and

XOR logic. This is because

3 · Si, j = 2 · Si, j ⊕ Si, j . (2)

Therefore, MixColumns stage is decomposed into M-2 LUT

and XOR operations. MixColumns needs several sub steps

and generates several intermediate values. To both accelerate

this transformation and maintain a low hardware overhead,

we leverage the vacant NVM rows as buffer rows for inter-

mediate results. The MixColumns stage is realized with LUT
and XORs as follows:

byte C6 in the second row of state matrix after SubBytes needs
to be shifted to the left by 1 B. This means each bit needs S0

∗
, j = Tj ⊕ 2 · S0, j ⊕ 2 · S1, j ⊕ S0, j

to shifted left by 1 b according to the data matrix distribution

in the memory. This shifting process is down by selecting the

first column with the control signal.

After ShiftRows transformation, each bit will be buffered

in the single-bit latch until SubBytes and ShiftRows are

performed on all the data in the SAs. Then, the values in the

row buffer are transmitted to the write driver and written back

where

S1
∗
, j = T j ⊕ 2 · S1, j ⊕ 2 · S2, j ⊕ S1, j

S2
∗
, j = T j ⊕ 2 · S2, j ⊕ 2 · S3, j ⊕ S2, j

S3
∗
, j = T j ⊕ 2 · S0, j ⊕ 2 · S3, j ⊕ S3, j (3)

Tj = S0, j ⊕ S1, j ⊕ S2, j ⊕ S3, j . (4)

to the memory array. This row buffer gathers the intermediate

results of one row and avoids writing to the NVM row multiple

times.

The first step of MixColumns is M-2 transformation with

LUT. This process shares the same address decoding logic

of S-box with a MUX as shown in Fig. 7. Since we can

2448 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

Fig. 8. Example of MixColumns substep: calculate Tj for each column (4).

Fig. 9. Example of MixColumns substep: calculate S0
∗
. j .

only input 1 B each time to the LUT, this transformation

can only be done sequentially, which takes a long time.

To accelerate this transformation, we add multiple M-2 LUT

combinational logics to enable parallel performing. Like S-

box design, we have different multiplication-by-2 LUT

designs considering both encryption speed and overhead. After

M-2 transformation, outputs are latched in a row buffer until all

bytes of the activated row finishes M-2 transformation. Then,

data in this row buffer is written to a vacant memory row.

In total, four empty NVM rows are used for storing LUT

results.

The next step of MixColumns is calculating Tj follow-

ing (4). Fig. 8 shows the detailed process of calculating Tj

for a specific column. Every time two rows are activated to

get the XOR result of two memory cells, then next step of this

result is written to an empty buffer row. From this figure, this

step costs three XOR operations and three writes. In this step,

since all SAs are working simultaneously, Tj for each column

is calculated in full parallel.

The final step of MixColumns is calculating the result of

MixColumns transformation following (3). In this step, with

M-2 LUT results stored in four rows and Tj values, we can

finish the MixColumns transformation for one row of selected

columns in six steps as shown in Fig. 9. This figure shows an

example of how to calculate S0
∗
, j in row 0. After three times

of activating two rows, four operands are XORed together to

get the final result of S0
∗
, j , and then this result is written back

by replacing S0, j .

During MixColumns, several writes are generated.

In M-2 LUT step, M-2 results are written to four rows,

therefore a column of four memory cells takes four writes.

In the second step of calculating Tj , three writes are generated

as shown in the colored memory cells of Fig. 8. In the final

step, transforming one value takes three writes. Thus,

12 writes are generated for transforming four values. In total,

19 writes are generated for each column of four memory

cells which means five writes on average are generated for

each cell in the MixColumns transformation.

F. Discussion

The AES encryption process leverages innate parallelism of

main memory to accelerate encryption. To support in-memory

AES encryption, multiple S-box LUTs, M-2 LUT, MUX, and

DEMUX are implemented inside the memory system. For

decryption, inverse S-box LUT needs to be added except

for the available resources for encryption. When the memory

system receives an encryption signal, the original key shared

among all memory chips is transferred to different memory

chips. When each round of encryption finishes, the initial key

is expended to get the round key. The encryption controller

in each chip takes care of the detailed encryption and the

decryption process.

V. CIPHER MODES

A. Exploration of Different Cipher Modes

Encrypting two identical plaintext blocks with the same

key will generate two identical ciphertext blocks. An attacker

would be able to achieve useful information and discover

the original plaintext by analyzing the identical blocks of the

ciphertext. To allow block ciphers to work with a large number

of data blocks, different block cipher modes of operations are

devised to blur the ciphertext so that the ciphertext blocks of

two identical plaintexts are different. Common modes of block

cipher include electronic codebook (ECB), cipher block chain-

ing (CBC), cipher feedback (CFB), output feedback (OFB),

and counter (CTR) [5].

1) Electronic Codebook: ECB is the simplest mode that

encrypts each data block of the input plaintext sepa-

rately. Since there is no dependence in encrypting different

data blocks, this cipher mode allows different blocks to

be encrypted simultaneously and supports high parallelism.

However, if there are identical plaintext blocks in the NVMM,

encrypting bulk NVMM with the same key is vulnerable.

2) Cipher Block Chaining: In the CBC mode, the next

plaintext is always XORed with previously produced ciphertext

block before it is encrypted. Since there is no previous

ciphertext block, the first plaintext block is XORed with a

random initialization vector (IV) which has the same size as

a plaintext block. As a result, every subsequent ciphertext

block depends on the previous one. Since the CBC mode

XIE et al.: SECURING EMERGING NVMM WITH FAST AND ENERGY-EFFICIENT AES IN-MEMORY IMPLEMENTATION 2449

+

encrypts the plaintext sequentially, it will lead to high latency

in the AIM encryption process. Different from encryption,

decrypting different cipher blocks can be done simultaneously.

3) Cipher Feedback: In the CFB mode, the previous cipher-

text block is encrypted and then XORed with the next plaintext

block to generate the next ciphertext block. Since there is

no previous ciphertext block before the first plaintext block,

a random IV is encrypted and then XORed with the first

plaintext. Similar to the CBC mode, encryption in CFB mode

is performed sequentially while decryption can be performed

simultaneously. Therefore, it suffers a similar drawback to the

CBC mode. Compared with CBC mode, the CFB mode only

uses the encryption of the block cipher. Therefore, the CFB

mode gets rid of the required resource for implementing

decryption.

4) Output Feedback: The OFB mode creates keystream

blocks with the original key and a random IV, which are then

XORed with the plaintext blocks to get the ciphertext blocks.

Because of the continuous creation of keystream bits, both

encryption and decryption are done sequentially. Therefore,

this mode has poor parallelism. In addition, the usage of only

the encryption of the block cipher gets rid of the required

resource for implementing decryption.

5) Counter: The CTR mode creates keystream blocks by

encrypting a nonce value added by an increasing counter. The

plaintext blocks can be encrypted simultaneously with differ-

ent counters allowing high-level parallelism. However, CTR

mode becomes vulnerable if counters repeat. This mode also

gets rid of the required resource for implementing decryption.

In addition, the five cipher modes, Galois/counter mode

(GCM) [23] is also a very interesting and powerful cipher

mode. However, the implementation of GCM requires adding

more circuitry to the memory architecture than other modes

because of its authenticity and confidentiality ability. Mean-

while, GCM requires more steps to generate a tag for authen-

ticity and, thus, has much longer encryption time and energy

consumption compared with the other cipher modes. Because

of the much larger area overhead and the lower performance

and energy efficiency, GCM mode has inferior performance to

the other discussed cipher modes. Therefore, GCM mode is

not considered in this paper.

B. CTR-CFB Encryption

The cipher algorithm requirement and parallelism of

encryption direction and decryption direction are summarized

in Table I. Among them, CTR mode has the best parallelism

based on counters. CFB, OFB, and CTR only need encryption

direction implementation which saves hardware resource for

implementing decryption. Compared with OFB, CFB has a

better parallelism in decryption.

A direct solution to enhancing the security is deploying CTR

mode which allows high parallelism. However, CTR mode

fails catastrophically when a counter value is reused, because it

is a pure XOR stream cipher: XORing two ciphertext blocks that

were generated with the same key and counter values cancels

out the encryption. Therefore, in this paper, we propose to

combine CTR and CFB modes to enhance the AES security

while maintaining the parallelism level.

TABLE I

COMPARISON OF DIFFERENT CIPHER MODES

Fig. 10. Encryption of CTR+CFB cipher mode.

The implementation is shown in Fig. 10. In the vertical

direction, the CFB mode can be implemented, since each

word row needs to be activated for encryption one by one

in sequential. In the horizontal direction, CTR mode can be

implemented to allow parallelism since several columns can

now be encrypted simultaneously. The introduction of the

CFB mode to CTR mode avoids the counters for the vertical

encryption direction.

The challenges in the implementation lie in generating

nonce which is a random number, and the design of coun-

ters (different value for different blocks). For generating a

nonce, there are two ways: first, the key generator can generate

a second key as the nonce and second, the original key can

be used to generate the nonce by hashing the original key.

To have different counters for different blocks, the bank id,

subarray id, mat id, and column id are concatenated together

to generate different counters for the first row of plaintext

blocks in NVMM as follows:

Counter

= Bankid||Subid||Matid||Columnid||Muxid||Counter+1 (5)

where Counter 1 is the increment-by-one counter, which

works by incrementing by one after finishing one time of bulk

encryption. Therefore, the encryption function for the first row

of data blocks is as follows:

C = P ⊕ Enkey(Nonce + Counter). (6)

This design of Counter guarantees a unique sequence for

each plaintext so that different plaintext blocks are encrypted

with different key blocks. Meanwhile, the same counter

2450 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

+

+

Fig. 11. Decryption of CTR+CFB cipher mode.

sequence will not repeat for a long time so that the same

plaintext block will not be encrypted with the same keystream

twice for a long time, ensuring the security of the proposed

cipher mode.

C. CTR-CFB Decryption

The decryption process of CTR CFB cipher mode is shown

in Fig. 11. From this figure, the decryption of different

columns of data blocks is decrypted simultaneously while the

data blocks for the same columns are decrypted sequentially.

This cipher mode only uses the encryption algorithm of

the block cipher as shown in the blue box, thus avoiding

the required resource for implementing decryption algorithm

especially the inverse S-box.

VI. KEY GENERATION AND STORAGE

The method of key generation, key storage, and key

handling significantly influences the security of the crypto-

systems. In this section, we will first describe three possible

master key generation schemes. Then, we will describe the

round key generation in AIM.

A. Master Key Generation and Storage

For the AIM encryption mechanism, there are three possible

ways of generating the master key: user input, randomizer,

and physical unclonable function (PUF). The user input

method allows the user of a device to input a key that the

user can remember or a biometric-based key before shutting

down or putting the device into sleep/screenlock mode. After

inputting a key, this key is then transferred to the NVMM

to start the AES in-memory encryption. After finishing bulk

encryption, this key is cleared. When the user wants to

use the device again, the same key is input to decrypt the

NVMM. In this way, there is no key storage overhead or key

leakage risk. The second way of creating the original key,

randomizer, is to use a pseudorandom number generator to

create a one-time random number. Since the device might

be powered down, this key should be stored in a protected

NVM for decryption. Therefore, this key should be placed far

away from the NVMM, such as in the processor, to keep the

generated key away from the attackers.

Compared with a randomizer, PUF avoids the need of key

storage in NVM. The process of extracting a key from the

physical intrinsic properties due to different materials and

physical variations from the fabrication process of hardware is

described in [21]. PUF-based key generator avoids the need for

a pseudorandom number generator by harvesting the hardware

unique randomness and processes it into a cryptographic key.

Since the randomness is already intrinsically present in the

device, there is no need for a protected NVM. Since the ran-

domness is static throughout the lifetime of the device, it can

be harvested again to regenerate the same key for decryption.

This PUF-based key cannot be found by an attacker who opens

up the device because the key is not permanently stored and

not present when the device is not active. This way of deriving

a key has great security advantages compared to randomizer

which needs the key storage in NVM.

B. Round Key Generation—Rijndael Key Schedule

AES requires a separate round key for each round of

encryption to achieve a high level of confusion. Expanding

the original key into several rounds of keys in AES is known

as the Rijndael key schedule. AES key expansion consists

of RotWord, SubWord, XOR operations, all of which can

be realized with the previously introduced implementations

of AES encryption. Therefore, the round keys can also be

generated within NVMM instead of using a dedicated key

generator. In the proposed CTR CFB cipher mode imple-

mentation, the key for each round is generated only once and

stored in the NVMM for each time of memory bulk encryption.

After completing the encryption, these round keys are cleared

to avoid key information leakage.

VII. EXPERIMENTAL EVALUATION

A. Experiment Setup

AIM is evaluated on both MRAM-based and PCM-based

main memory with a DDR3 interface and 65-nm technology.

The MRAM-based main memory has a 512-b page size.

We conservatively assume the MRAM has 256 Mb per chip

with a 34F 2 cell size. The PCM-based main memory’s page

size is 1024 b, and the capacity is 1 Gb per chip with

the cell size of 9F 2. We modified NVSim [10] and Cacti-

3DD [6] to achieve the parameters for the NVM-based main

memory. Table II lists the parameters of PCM and MRAM at

bit level for main memory implementation [25]. To evaluate

the circuitry, we added to support AIM, we synthesize these

circuits with Design Compiler with FreePDK.

We compare AIM with three different dedicated memory

EEs as follows.

1) EE-1 [13] designs an AES encryption hardware core

suited for devices with low power consumption. It has a

maximum frequency of 290 MHz, and takes 9.9 nJ and

160 cycles to encrypt a data block.

2) EE-2 [22] implements an AES CMOS application spec-

ified integrated circuit encryption core which has a

frequency of 2.13 GHz with a total power consumption

XIE et al.: SECURING EMERGING NVMM WITH FAST AND ENERGY-EFFICIENT AES IN-MEMORY IMPLEMENTATION 2451

TABLE II

PCM AND MRAM PARAMETERS AT BIT LEVEL

Fig. 12. Comparison of latency between different baselines and different
AIM designs.

at 125 mW, and takes five cycles to encrypt four data

blocks with an area of 4400 um2.

3) DW-AES [29] implements an AES encryption core

with domain-wall nanowires which has a frequency

of 30 MHz and takes 1022 cycles and 2.4 nJ to encrypt

one data block.

For the proposed design, we evaluate different configu-

rations described as follows.

4) AIM is the basic configuration, where only one bank

works on encryption at one time.

5) AIM-B has the encryption add-on circuit for each bank.

To perform a whole memory encryption, all banks in a

chip can work in parallel.

6) AIM-S has the add-on circuit for each subarray.

By leveraging the subarray-level parallelism [17], multi-

ple subarrays in the same bank work on the encryption/

decryption task simultaneously.

B. Performance and Energy Evaluation

1) Latency: Fig. 12 shows the encryption latency of 1-

GB memory. We have three observations. First, the encryp-

tion latency becomes quite large when the size of NVM

is large. For a low-frequency EE DW-AES, encrypting the

whole memory can take as long as many hours or days.

Second, for an EE of very high frequency, the encryption

latency is very small. If the writing latency is larger than

the encryption latency, the encryption latency will be counter-

vailed by the writing latency. EE-2 has very high encryption

speed; the time it takes to encrypt the whole memory turns to

the time of reading and writing to all memory blocks sequen-

tially. Therefore, the encryption time of EE-2 is different for

PCM and MRAM as shown in the corresponding two columns

of Fig. 12. On the contrary, EE-1 has very low encryption

speed and its encryption latency is much larger than the data

movement which is, thus, overlapped by the encryption time

Fig. 13. Energy for encrypting 128-b block (left). Energy for accessing and
encrypting 1-GB main memory (right).

that dominates the overall latency. Therefore, the encryption

time of EE-1 is the same for both PCM and MRAM as shown

in the corresponding two columns of EE-1. Fourth, multiple

levels of parallelism in NVM accelerate the encryption process

of AIM mechanism. When only one bank works in a chip,

AIM can reach the encryption speed of 21 s and 1.2 s if the

memory is implemented with PCM and MRAM, respectively.

When we enable bank-level parallelism and let banks encrypt

independently, AIM-B is able to encrypt the whole memory

in 2.66 s and 0.15 s correspondingly. When the subarray

level parallelism is enabled, AIM-S is able to encrypt the

whole memory in 0.33 s and 0.018 s for PCM and MRAM,

respectively.

From Fig. 12, we can see that EE-2 has the fastest encryp-

tion speed. When the main memory is implemented with

PCM, the AIM-B design has similar encryption performance

for 1-GB main memory and AIM-S can encrypt 1 GB much

faster than EE-2. When the main memory is implemented with

MRAM, all three designs AIM, AIM-B, and AIM-S work

faster than EE-2. In addition, when the size of NVM scales

up, the latency of EE-2 will scale up accordingly. However,

for AIM-B, as long as main memory power budget allows,

it can continue to leverage the parallelism and maintain a short

encryption latency.

2) Power: All three designs AIM, AIM-B, and AIM-S work

within the power budget [14] of main memory. Among the

three designs, AIM has the smallest power which is around

1 and 13 mW for encrypting one chip of PCM-based main

memory and MRAM-based main memory, respectively. The

power of AIM-B is around 8 and 108 mW for encrypting

one chip of PCM-based main memory and MRAM-based

main memory, respectively. AIM-S has the largest power

consumption since it has the best performance among the

three designs and the power is 70 mW for encrypting each

chip of PCM-based main memory. When the main memory

is implemented with MRAM, the power of AIM-S exceeds

the budget since the parallelism of AIM-S is the highest.

Therefore, this design is not recommended if the power budget

is small. However, since AIM-S has the best performance,

if the system has the need for fast encryption and a large

power budget, this design can still be employed. In conclusion,

when we implement the AIM encryption schematic inside the

NVMM, both power budget and encryption latency should be

considered together to choose the most suitable design.

3) Energy Efficiency: Fig. 13 compares the energy effi-

ciency for encrypting a 128-b block and for encrypting 1-GB

2452 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

+

Fig. 14. Different AIM designs area overhead.

Fig. 16. Breakdown of latency and energy consumption.

Fig. 15. Breakdown of encryption overhead.

main memory sequentially. From Fig. 13(a), EE-2 incurs

the smallest energy, 0.265 nJ to encrypt 128-b block while

AIM ranks the third and costs 2.78 and 3.17 nJ for 128-b

PCM and MRAM blocks, respectively. Fig. 13(b) shows the

energy consumption for encrypting 1-GB nonvolatile PCM

and MRAM. In this figure, the lower parts of the first six

columns show the energy spent on accessing main memory and

the upper parts show the energy spent on encrypting process

with the EEs. From this figure, we have two observations.

First, EE-1, EE2, and DW-AES cost significant amount of

energy on memory access. This is because, for an encryption

operation outside of main memory like those of EE-1 and EE-

2, the encryption processor needs to read a memory block

from the main memory and then write this memory block back

to its original position after encryption is completed. During

the reading and writing periods, complex address decoding

and bus transfer costs a lot of energy which is much more

than the energy spent for encrypting this block. For DW-AES,

the large energy comes from a large number of shifting

operations required for write to perform the AES with domain-

wall memory (DWM). Second, AIM costs the lowest energy

compared with the three specific EEs. Since AIM encrypts

each memory block inside the main memory, it avoids a large

part of reading and writing energy consumption from outside

the main memory.

4) Overhead Evaluation: Fig. 14 shows the area overhead

results. As shown in this figure, AIM and AIM-B both

incur insignificant area overhead of only 0.06% and 0.45%

area overhead for PCM-based main memory, and 0.08% and

0.63% for MRAM-based main memory. Compared with AIM

and AIM-B, AIM-S incurs a relatively larger area overhead

of 3.59% and 5.05%.

Fig. 15 shows the distribution of hardware overhead. Among

all added circuitry, forward S-box and inverse S-box have the

largest area overhead. Since we can only look up byte by

byte each time, more S-box LUTs mean more parallelism.

Therefore, this overhead is unavoidable.

In addition, the area overhead for added circuitry, buffer

rows are required for storing intermediate results generated in

the encryption process. As shown in Fig. 8, six buffer rows

are required at most in the MixColumns step. For a normal

memory bank that has 512 rows, six buffer rows are only 1.2%

of the whole memory size. During the normal working time

of the main memory, these six buffer rows can also be used

for storing the working data.

5) Further Improvement: The breakdown of latency and

energy consumption of AIM implementations for different

encryption stages is shown in Fig. 16. Since SubBytes and

ShiftRows are combined together in the AIM design, we ana-

lyze the two stages together. From Fig. 16, AddRoundKey

consumes the minority of both total encryption latency and

energy. This is because AddRoundKey stage only consists of

parallel XOR operations based on Pinatubo design which is fast

and costs a little energy. MixColumns consumes the medium

latency and energy. This stage involves LUT operations of S-

box. The latency of this stage varies with the number of

S-box. MixColumns consumes the majority of both total

latency and energy. This is because MixColumns generates

several intermediate encryption state matrices from substeps.

These intermediate encryption state matrices are buffered in

the NVM cells in AIM design. This buffering process costs

considerable energy and latency, since write operations in

NVMM are usually expensive in terms of both energy and

latency.

Writing pulsewidth to NVM determines the retention time

of the written states. In AIM, the encryption latency and

energy can be further reduced by supporting short-latency

light writes, since the intermediate encryption states only need

to stay for a short while. In this way, buffering intermediate

encryption states with light writes will cost less energy and

latency.

C. Evaluation of Different Cipher Modes

In this section, we evaluate the proposed CTR CFB cipher

modes from three aspects including encryption latency, energy

efficiency, and area overhead. Among the evaluated cipher

modes, CBC mode and CTR mode are used as the baselines.

The other kinds of cipher modes are not evaluated since they

do not support parallel encryption.

1) Latency: Fig. 17 shows the encryption latency of 1-GB

memory with three different cipher modes under AIM design.

Among the three cipher modes, the CBC mode has the

shortest encryption latency. Compared with the CBC mode,

the CTR mode increases the encryption latency by 2.17%

XIE et al.: SECURING EMERGING NVMM WITH FAST AND ENERGY-EFFICIENT AES IN-MEMORY IMPLEMENTATION 2453

+

+

+

+

+

+

Fig. 20. Breakdown of encryption overhead with the CTR+CFB mode.

Fig. 17. Comparison of latency among different cipher modes.

Fig. 18. Comparison of energy for encrypting 128-b block among different
cipher modes.

Fig. 19. Different AIM design area overhead with the CTR+CFB mode.

and 2.97% when the main memory is implemented with

PCM and MRAM, respectively. Compared with the CTR

mode, the proposed CTR CFB cipher only slightly increases

the encryption latency by 0.25% and 1.00% when the main

memory is implemented with PCM and MRAM, respectively.

2) Energy Efficiency: Fig. 18 shows the encryption latency

of encrypting one memory block with three different cipher

modes under AIM design. Among the three cipher modes,

the CBC mode has the highest energy efficiency because it

generates the lowest energy overhead. Compared with the CBC

mode, the CTR mode increases the energy consumption by

2.96% and 2.68% when the main memory is implemented

with PCM and MRAM, respectively. Compared with the CTR

mode, the proposed CTR CFB cipher only slightly increases

the energy consumption by 0.88% and 0.68% when the main

memory is implemented with PCM and MRAM, respectively.

3) Overhead: Fig. 19 shows the area overhead results

of implementing the proposed CTR CFB cipher mode.

As shown in this figure, AIM and AIM-B both incur

insignificant area overhead of only 0.03% and 0.26% for

PCM-based main memory, and 0.05% and 0.37% area over-

head for MRAM-based main memory. Compared with AIM

and AIM-B, AIM-S incurs a relatively larger area overhead

of 2.10% and 2.95% for PCM-based main memory and

MRAM-based main memory. Compared with the CBC mode

as shown in Fig. 14, the proposed CTR CFB mode further

reduces the area overhead by 40% on average by removing

the inverse S-box.

Fig. 20 shows the distribution of area overhead. Compared

with Fig. 15, the overhead from inverse S-box is removed.

Among all added circuitry, forward S-box has the largest area

overhead.

4) Discussion: The proposed CTR CFB cipher avoids the

complex management of a large amount of counter values and

the security problem of the repeated counter in a short time.

Meanwhile, the whole decryption process is based on the AES

encryption algorithm, saving the hardware resource for imple-

menting AES decryption algorithm. The above-mentioned

experimental results show that the proposed CTR CFB cipher

mode achieves comparable or even lower latency and energy

consumption with small hardware overhead.

The high encryption performance of AIM is owing to the

high parallelism inside main memory architecture. As long

as the memory cells are resistance-based, the corresponding

memory technology will work with the proposed architecture.

Furthermore, from our experimental evaluation, the activation

latency of a memory row is much larger than the read/write

latency of a memory cell and thus dominates the overall

memory access latency. This activation latency mainly depends

on the length of a memory row and the circuit design instead

of the memory type. From our research, most NVMs have

the properties varying between MRAM and PCM. Therefore,

the proposed techniques are good for other NVM as well.

Although AIM requires memory architecture modification

for encryption, the modification is small, simple, and easy to

implement. The three levels of encryption parallelism AIM

supports with in-memory design bring benefits of significantly

improved encryption throughput and lowered energy overhead.

VIII. RELATED WORK

A. Memory Encryption

Encryption has been widely suggested as a solution

to secure both DRAM [15] and NVM-based main mem-

ory [7], [31]. These implementations perform encryption/

decryption when writing/reading a cache line to/from main

memory. Though encryption techniques base on Pad-based

or Stream cipher encryption where memory access could be

2454 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2018

overlapped with the Pad or Keystream generation reduces

the decryption overhead, the system still suffers, since that

overhead is on the critical path (memory read access). Differ-

ent from them, Colp et al. [9] proposes to perform one-time

encryption for smartphones and tablets only when the device

is screen locked. AIM performs a one-time encryption to

the main memory system before there is a possible attack

(e.g., before power OFF). Other than that it runs as a normal

main memory without any latency overhead. Furthermore,

existing encryption methods rely on a dedicated EE on the

processor or in the main memory. AIM takes advantage of in-

memory computing, hence achieves a better throughput with

less energy consumption.

B. NVM Encryption

There are several work that are particularly optimized for

encryption on NVM [7], [16], [19], [26], [31]. I-NVMM [7]

proposes to encrypt main memory incrementally. However,

our method taking advantage of the PIM architecture out-

performs i-NVMM, because i-NVMM relies on the dedicated

AES engine on the processor side and limited by its small

bandwidth and parallelism. DEUCE [31] and SECRET [26]

propose techniques to reduce the bit flips during data encryp-

tion, which helps NVM reliability since encryption involves

a significant amount of expensive writes. Silent Shredder [4]

proposes techniques to obviate the writing of zeros to memory

pages. Their techniques are orthogonal to AIM, and their

method can be applied to AIM to further reduce the encryption

energy.

C. In-Memory Encryption

In-memory encryption is a promising solution for NVM

encryption which has limited research. Reference [11] explores

different spintronic devices-based memory that could be lever-

aged to implement logic functions with the AES algorithm as

a case study. Angizi et al. [3] demonstrates the efficiency of

AES algorithm on a proposed in-memory processing platform

with novel spin Hall effect-driven domain-wall motion devices

that support both NVM cell and in-memory logic design.

A recent work, Recryptor [34], proposes a reconfig-

urable cryptographic processor using in-memory computing.

By replacing a standard SRAM bank with a custom bank

with in-memory and near-memory computing, Recryptor pro-

vides an IoT platform that accelerates primitive cryptographic

operations. DWM is also utilized to perform in-memory

encryption [20], [29], [32], where inherent DWM device

functions were used to perform the operations required for

encryption.

IX. CONCLUSION

In this paper, we propose a fast and energy-efficient AES

in-memory implementation, AIM, by taking advantage of

NVM’s resistive nature and utilizing existing memory periph-

eral circuits. With AIM, the memory blocks are encrypted

simultaneously within each memory bank and the entire

encryption process can be completed within the main memory

without exposing the results to the memory bus. Compared

with state-of-the-art AES engine running at 2.1 GHz, AIM

can speed up the encryption process by 80X when encrypting

1-GB MRAM with 3% area overhead.

REFERENCES

[1] JEDEC DDR5 & NVDIMM-P Standards Under Develop-
ment. Accessed: 2017. [Online]. Available: https://www.jedec.
org/news/pressreleases/jedec-ddr5-nvdimm-p-standards-under-
development

[2] (2015). Intel: First 3D XPoint SSDs Will Feature up to
6GB/s of Bandwidth. [Online]. Available: http://www:kitguru:net/
components/memory/anton-shilov/intelfirst-3d-xpoint-ssds-will-feature- up-
to-6gbs-of-bandwidth

[3] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan, “Design and
evaluation of a spintronic in-memory processing platform for non-
volatile data encryption,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8113549/

[4] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” ACM SIGPLAN Notices, vol. 15, no. 4, pp. 263–276, 2016.

[5] E. B. Barker et al., “Guideline for using cryptographic stan-
dards in the federal government: Directives, mandates and policies,”
Tech. Rep. Special Publication (NIST SP)-800-175A, Aug. 2016.
[Online]. Available: https://www.nist.gov/publications/guideline-using-
cryptographic-standards-federal-government-directives-mandates-and

[6] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and

N. P. Jouppi, “CACTI-3DD: Architecture-level modeling for 3D die-
stacked DRAM main memory,” in Proc. Design, Automat. Test Eur.
Conf. Exhib. (DATE), Mar. 2012, pp. 33–38.

[7] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main
memory system with incremental encryption,” in Proc. 38th Annu. Int.
Symp. Comput. Archit. (ISCA), pp. 177–188, 2011.

[8] P. Chown, Advanced Encryption Standard (AES) Ciphersuites for Trans-
port Layer Security (TLS), document RFC 3268, 2002. [Online]. Avail-
able: http://www.rfc-editor.org/info/rfc3268

[9] P. Colp et al., “Protecting data on smartphones and tablets from memory
attacks,” in Proc. 20th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2015, pp. 177–189.

[10] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 7, no. 31,
pp. 994–1007, Jul. 2012.

[11] D. Fan, S. Angizi, and Z. He, “In-memory computing with spintronic
devices,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2017, pp. 683–688.

[12] J. A. Halderman et al., “Lest we remember: Cold-boot attacks on
encryption keys,” Commun. ACM, vol. 52, no. 5, pp. 91–98, 2009,
pp. 45–60.

[13] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen,
“Design and implementation of low-area and low-power aes encryption
hardware core,” in Proc. 9th EUROMICRO Conf. Digit. Syst. Design,
Aug./Sep. 2006, pp. 577–583.

[14] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Pre-
venting PCM banks from seizing too much power,” in Proc. 44th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2011,
pp. 186–195.

[15] M. Henson and S. Taylor, “Memory encryption: A survey of existing
techniques,” ACM Comput. Surv., vol. 46, no. 4, pp. 1–26, Mar. 2014.

[16] F. Huang, D. Feng, Y. Hua, and W. Zhou, “A wear-leveling-aware
counter mode for data encryption in non-volatile memories,” in Proc.
Design, Automat. Test Eur. Conf. Exhib., Mar. 2017, pp. 910–913.

[17] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting
subarray-level parallelism (SALP) in DRAM,” in Proc. 39th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2012, pp. 368–379.

[18] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo:
A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” in Proc. ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2016, pp. 1–6.

[19] D. Liu, X. Luo, Y. Li, Z. Shao, and Y. Guan, “An energy-efficient encryp-
tion mechanism for NVM-based main memory in mobile systems,”
J. Syst. Archit., vol. 76, pp. 47–57, May 2017.

http://www.nist.gov/publications/guideline-using-
http://www.nist.gov/publications/guideline-using-
http://www.nist.gov/publications/guideline-using-
http://www.rfc-editor.org/info/rfc3268

XIE et al.: SECURING EMERGING NVMM WITH FAST AND ENERGY-EFFICIENT AES IN-MEMORY IMPLEMENTATION 2455

[20] T. Luo, W. Zhang, B. He, and D. Maskell, “A racetrack memory based
in-memory booth multiplier for cryptography application,” in Proc.
ASP-DAC, Jan. 2016, pp. 286–291.

[21] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY:
A fully functional PUF-based cryptographic key generator,” in Proc. Int.
Workshop Cryptograph. Hardw. Embedded Syst., 2012, pp. 302–319.

[22] S. Mathew et al., “53Gbps native GF(24)2composite-field AES-
encrypt/decrypt accelerator for content-protection in 45 nm
high-performance microprocessors,” in Proc. IEEE Symp. VLSI
Circuits (VLSIC), Jun. 2010, pp. 169–170.

[23] D. McGrew and J. Viega, “The Galois/counter mode of
operation (GCM),” NIST Modes Oper. Process, vol. 20,
2004. [Online]. Available: https://scholar.google.com/scholar?hl=
en&as_sdt=0%2C39&q=The+Galois%2FCounter+Mode+of+Operation+
%28GCM%29+&btnG=

[24] U. Russo, D. Ielmini, and A. L. Lacaita, “Analytical modeling of
chalcogenide crystallization for PCM data-retention extrapolation,” IEEE
Trans. Electron Devices, vol. 54, no. 10, pp. 2769–2777, Oct. 2007.

[25] K. Suzuki et al., “The non-volatile memory technology data-
base (NVMDB),” Dept. Comput. Sci. Eng., Univ. California, San Diego,
San Diego, CA, USA, 2015.

[26] S. Swami, J. Rakshit, and K. Mohanram, “SECRET: Smartly
EnCRypted Energy efficienT non-volatile memories,” in Proc. 53nd
ACM/EDAC/IEEE Design Automat. Conf. (DAC), Jun. 2016, pp. 1–6.

[27] K. Tsuchida et al., “A 64Mb MRAM with clamped-reference and
adequate-reference schemes,” in Proc. ISSCC, Feb. 2010, pp. 258–259.

[28] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware
placement in DRAM (RAPID): Software methods for quasi-non-
volatile DRAM,” in Proc. 12th Int. Symp. High-Perform. Comput.
Archit. (HPCA), Feb. 2006, pp. 155–165.

[29] Y. Wang, L. Ni, C.-H. Chang, and H. Yu, “DW-AES: A domain-
wall nanowire-based AES for high throughput and energy-efficient data
encryption in non-volatile memory,” IEEE Trans. Inf. Forensics Security,
vol. 11, no. 11, pp. 2426–2440, Nov. 2016.

[30] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6,
pp. 1951–1970, Jun. 2012.

[31] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” in Proc. 20th Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), 2015, pp. 33–44.

[32] H. Zhang, C. Zhang, X. Zhang, G. Sun, and J. Shu, “Pin tumbler lock:
A shift based encryption mechanism for racetrack memory,” in Proc.
21st Asia South Pacific Design Automat. Conf. (ASP-DAC), Jan. 2016,
pp. 354–359.

[33] X. Zhang, C. Zhang, G. Sun, J. Di, and T. Zhang, “An efficient run-time
encryption scheme for non-volatile main memory,” in Proc. Int. Conf.
Compil., Archit. Synth. Embedded Syst., Sep./Oct. 2013, pp. 1–10.

[34] Y. Zhang et al., “Recryptor: A reconfigurable in-memory cryptographic
cortex-m0 processor for IoT,” in Proc. IEEE Symp. VLSI Circuits,
Jun. 2017, pp. C264–C265.

[35] P. Zhoum, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,” in Proc.
36th Annu. Int. Symp. Comput. Archit. (ISCA), 2009, pp. 14–23.

Shuangchen Li (S’15) received the B.S. and
M.S. degrees from the Department of Electrical
Engineering, Tsinghua University, Beijing, China,
in 2011 and 2014, respectively, and the Ph.D. degree
from the University of California at Santa Barbara,
Santa Barbara, CA, USA, in 2018.

He currently holds a postdoctoral position at the
University of California at Santa Barbara. His cur-
rent research interests include memory-centric archi-
tectures, emerging nonvolatile memory, and non-von
Neumann architecture for emerging applications.

Alvin Oliver Glova (S’17) received the B.S. degree
in computer engineering from the University of
the Philippines Diliman, Quezon City, Philippines,
in 2009 and the M.S. degree in electrical engineering
from the Korea Advanced Institute of Science and
Technology, Daejeon, South Korea, in 2012. He is
currently working toward the Ph.D. degree at the
Department of Electrical and Computer Engineering,
University of California at Santa Barbara, Santa
Barbara, CA, USA.

He was a Research Engineer at the New Memory
Device Technology Group, Research and Development Division, SK Hynix,
Icheon, South Korea, where he was involved in STT-MRAM development.
His current research interests include emerging memory technologies, secure
computation and machine learning.

Jingtong Hu (S’09–M’13) received the B.E. degree
from the School of Computer Science and Tech-
nology, Shandong University, Jinan, China, in 2007,
and the M.S. and Ph.D. degrees in computer science
from The University of Texas at Dallas, Richardson,
TX, USA, in 2010 and 2013, respectively.

He is currently an Assistant Professor at the
Department of Electrical and Computer Engineering,
University of Pittsburgh, Pittsburgh, PA, USA. His
current research interests include embedded sys-
tems, field-programmable gate array, and nonvolatile
memory.

Mimi Xie (S’13) received the B.E. and M.S. degrees
from the College of Computer Science, Chongqing
University, Chongqing, China, in 2010 and 2013,
respectively. She is currently working toward the
Ph.D. degree at the School of Electrical and
Computer Engineering, University of Pittsburgh,
Pittsburgh, PA, USA.

Her current research interests include compiler
optimization, nonvolatile memory, and embedded
systems.

Yuan Xie (F’15) received the B.S. degree from
the Electronic Engineering Department, Tsinghua
University, Beijing, China, and the M.S. and Ph.D.
degrees from the Electrical Engineering Department,
Princeton University, Princeton, NJ, USA.

Since 2003, he has been a Professor at Pennsylva-
nia State University, State College, PA, USA. From
2012 to 2013, he was at the AMD Research China
Laboratory, Beijing, China. From 2002 to 2003, he
was at IBM, Armonk, NY, USA. He is currently a
Professor at the Electrical and Computer Engineer-

ing Department, University of California at Santa Barbara, Santa Barbara, CA,
USA. His current research interests include computer architecture, electronic
design automation, and VLSI design.

