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Abstract— As CMOS technology approaches its scaling limit, 

emerging nonvolatile memory (NVM) technologies become 
promising alternatives to DRAM due to their low leakage power 
and better scalability. However, the nonvolatile main memory 
system suffers from a new security vulnerability. An attacker  
can readily access sensitive information on the memory,  since  
the nonvolatility allows information to be retained for a  long 
time even after the power is OFF. While real-time memory 
encryption during memory accesses with dedicated Advanced 
Encryption Standard (AES) engine is an effective solution for 
this vulnerability, it incurs runtime performance and energy 
overhead. Alternatively, in this paper, we propose a fast and 
efficient AES in-memory (AIM) implementation, to encrypt the 
whole/part of the memory only when it is necessary. Rather than 
adding extra processing elements to the cost-sensitive memory, 
we take advantage of NVM’s intrinsic logic operation capability 
to implement the AES algorithm. We leverage the benefits (large 
internal bandwidth and dramatic data movement reduction) 
offered by the in-memory computing  architecture  to  address 
the challenges of the bandwidth intensive encryption applica- 
tion. Embracing the massive parallelism inside the  memory,  
AIM outperforms existing mechanisms with higher throughput 
yet lower energy consumption. The experimental results show 
that compared with state-of-the-art AES engine running at 

2.1 GHz,  AIM  speeds  up  the  encryption  process  by  80   for 
a 1-GB NVM. 

Index Terms— Advanced Encryption Standard (AES), encryp- 
tion, main memory, nonvolatile. 

I. INTRODUCTION 

RAM has been employed as the main memory for com- 

puters for decades. However, as technology scales down, 

Manuscript  received  March  25,  2018;  revised  June  21,  2018;  accepted 
July 28, 2018. Date of publication September 10, 2018; date of current 
version  October  23, 2018. The work of M. Xie and J. Hu was supported     
by NSF under Grant CNS-1830891 and Grant CCF-1820537. The work of 
S. Li, A. O. Glova, and Y. Xie was supported in part by NSF under Grant 
1730309/1719160/1500848, in part by CRISP, one of the six centers in JUMP, 
and in part by DARPA through the Semiconductor Research Corporation 
Program. (Corresponding author: Mimi Xie.) 

M. Xie and J. Hu  are  with  the  Department  of  Electrical  and  Com-  
puter Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA (e-
mail: mm.xie@pitt.edu; jthu@pitt.edu). 

S. Li, A.  O.  Glova,  and  Y. Xie are with the Department of Electri- 
cal and Computer Engineering, University of California at Santa Barbara, 
Santa Barbara, CA 93106 USA (e-mail: shuangchenli@ece.ucsb.edu; 
aomglova@ece.ucsb.edu; yuanxie@ece.ucsb.edu). 

Color versions of one or more of the figures in this paper are available 
online at http://ieeexplore.ieee.org. 

Digital Object Identifier 10.1109/TVLSI.2018.2865133 

 

DRAM will suffer from prohibitively high leakage power. 

Consequently, researchers are actively developing promising 

candidates such as phase change memory (PCM) [35], resistive 

random access memory [30], and spin-transfer torque magnetic 

random access memory (MRAM) [27] to be deployed as next- 

generation nonvolatile main memory (NVMM). These non- 

volatile memories (NVMs) have several significant advantages 

over traditional DRAM main memory. They provide promising 

features such as nonvolatility, high density, low leakage power, 

and high scalability. The nature of nonvolatility avoids the 

need of a frequent refresh for DRAM and allows the data in 

NVM to be retained for a long time after power is OFF. Intel’s 

recent announcement of 3-D Xpoint [2] and the JEDEC’s 

NVDIMM-P specification [1] are the latest efforts toward the 

goal of next-generation NVMM. 

In spite of these advantages, NVMM suffers from a new 

security vulnerability. Since the information in NVMM will 

not lose data after the power is turned OFF, an attacker with 

physical access to the system can readily scan the main mem- 

ory content and extract all valuable information from the main 

memory [7], [12]. In contrast, the security of DRAM memory 

relies on its short retention time  which varies from 500 ms   

to 50 s [28]. To protect the data of the NVMM, the whole 

memory should be provided with a security mechanism with 

comparable security level to DRAM. 

Real-time memory encryption with pad-based or stream 

cipher is an effective solution for this vulnerability, in which 

every cache line is encrypted or decrypted before being written 

to or read from the main memory [15]. The real-time memory 

encryption is a strong protection, and it can also  prevent  

other attacks such as memory bus snooping [9]. Unfortunately, 

the strong protection is at the expense of runtime performance 

loss, since the decryption latency (as an overhead of read 

access) is on the critical path. In addition, encrypting and 

decrypting every memory access also result in severe energy 

overhead. 

Strong real-time protection is, however, not always 

necessary. For example, when a mobile device (e.g., smart 

phone or laptop) is being used, the attack that requires physical 

access to the NVMM can rarely happen. Only when the device 

is shut down or put into sleep/screenlock mode,  the  mem- 

ory encryption is required. i-NVMM [7] further proposes to 
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encrypt the main memory incrementally while maintaining an 

unencrypted working set which needs fast bulk encryption 

when necessary. Instead of the real-time encryption with per- 

formance loss and energy cost for every cache line, encrypting 

the working set in bulk or the whole memory when necessary 

is preferred in such mobile scenarios where strong protection 

for this part of the memory is not required all the time. 

Even though the bulk memory encryption approach results 

in zero performance loss at runtime, reduces the encryption 

tasks, and hence the energy consumption, two challenges still 

persist: first, it should be fast in order to lower the vulnerability 

window when locked and provide an instant response when 

unlocked. This is even more critical under the  development  

of multicore processor and increasing demand of much larger 

main memory. Second, it requires energy-efficient encryption 

considering the limited battery life. 

To address these two challenges, we propose AES In- 

Memory (AIM), a novel AES in-memory encryption archi- 

tecture for fast and energy efficient NVMM encryption. 

Embracing the benefit of the processing-in-memory (PIM) 

architecture, AIM takes advantage of large internal memory 

bandwidth, vast bitline-level parallelism, and low in situ 

computing latency, eliminating data movement between mem- 

ory and host. Leveraging the nondestructive read in  NVMs 

for performing efficient  XOR  operations,  we  can  perform 

the entire Advanced Encryption Standard (AES) procedure in-

place by adding lightweight logic gates to the memory 

peripheral circuitry. Specifically, we explore three levels (chip, 

bank, and subarray) of parallelism to provide different design 

choices under different performance and energy efficiency 

requirements. We also propose a new combined cipher mode 

for AIM in order to maintain high parallelism with the best 

performance and reduced area overhead. 

The remainder of this paper is organized as follows.  

Section II describes the background on  NVMM  organiza- 

tion and AES encryption. Section III describes the moti- 

vation of this paper. Section IV presents the complete in-

memory encryption architecture. Sections V and VI discuss 

the proposed encryption mode and key storage, respectively. 

Detailed experimental evaluation is provided in Section VII. 

Section VIII presents the related works. Finally, Section IX 

concludes this paper. 

 
II. BACKGROUND 

A. Nonvolatile Main Memory 

Main memory is logically organized as a hierarchy of chan- 

nels, ranks, and banks. Channels work in parallel and share the 

same physical link to the processor. Each channel contains sev- 

eral ranks and each rank has several physical chips. A physical 

chip has several banks which contend for the same I/O in the 

same channel. Banks from different channels can be accessed 

completely independently of each other. A memory bank has 

several subarrays which share the global data line and global 

row buffer. Each subarray is a 2-D array of memory cells, 

which has a local row buffer. A subarray can be further divided 

into different mats, which has its private row buffers  and 

write driver. Row and column addresses are often decoded at 

 

  

Fig. 1. Pinatubo’s architecture computes vector bitwise operations inside 
NVMs (left). SA modification in Pinatubo to perform in-memory XOR 
operations [18] (right). 

 

Fig. 2. AES flowchart. 

 
mat level. Peripheral circuitry, such as sense amplifiers (SAs) 

and write drivers are shared among several columns. 

B. Pinatubo: PIM in NVM 

In addition to the recent research that leverages 3-D-stacking 

DRAM such as a hybrid memory cube to support PIM 

architecture, Pinatubo [18] paves another way that leverages 

the emerging NVM to support PIM while incurring negligible 

area overheads. As shown in Fig. 1, Pinatubo modifies the SA 

circuit of the normal emerging NVMM, so that the SA not 

only can serve for reading but also carry out bitwise operations 

such as AND, OR, and XOR. Instead of activating one row 

and reading the data out, Pinatubo activates two rows at once 

which correspond to the two operand vectors. The output of 

the SA is  then the  result of the bitwise operation of these  

two rows (vectors). To perform an XOR operation, Pinatubo 

first opens the one operand row, and stores the data in the 

capacitor inside the modified SA. Then, it opens the second 

operand row, and the data from this row and  the  previous 

data in the capacitor go through the simple XOR circuit inside 

the modified SA, after which, the  readout result  of  this SA  

is the XOR result of these two rows. The AIM design takes 

advantage of this fast in-memory XOR operation offered by 

Pinatubo [18]. 

 
C. Advanced Encryption Standard 

The AES [8] is  a  symmetric block cipher which consists  

of four transformations as shown in Fig. 2. SubBytes is 
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a nonlinear invertible byte substitution that replaces each byte 

of the state matrix using a substitution table (S-box). Each 

byte Di, j in  the  state  matrix  is  replaced  with  a  new  byte 

Si, j in SubBytes step. ShiftRows  cyclically  shifts  all  bytes 

in each row by different offsets. The first row is unchanged; 

each byte in the i th row is cyclically shifted left by i bytes, 

respectively. MixColumns combines the 4 B of each column 

of the state matrix using an invertible linear transformation. 

This transformation can be written as a matrix multiplication 

in the finite field of GF(28) where the state matrix is multiplied 

by a constant matrix composed of 1, 2, and 3. AddRoundKey 

combines the state matrix with the round key by bitwise XOR 

operations. Each byte in the state matrix is XORed with a byte 

in the same row and column of the key matrix. These round 

keys are generated from the key with a key schedule which 

expands a short key into a number of separate round keys. 

The four transformations of AES are comprised of XOR, 

shift, and LUT operations. The intermediate results after each 

transformation are maintained as a state matrix of bytes. At the 

start of the algorithm, a round key is added to the input by      

a bitwise XOR operation. Then, the state array is transformed 

by implementing four basic transformations 10 times  when 

the key has 128 b, while the last round does not include 

MixColumns. 

 

III. MOTIVATION AND OVERVIEW 

A. NVMM’s Vulnerability Challenge 

We take the case of smartphones as a motivating example. 

We assume NVMM  has  been  adapted  as  the  replacement 

of DRAM, due to its advantages of low leakage and high 

density. The vulnerability challenge emerges that the content 

in the memory is under risk if the attacker stoles the device. 

Even though the device is locked, the attacker can  remove  

the memory, plug it in another machine, and read it.  The 

threat is more severe in the case of NVMM, since  the 

retention time of NVM cells is typically much longer (a few 

years [24]) compared with 500 ms to 50 s [28] in the case of 

DRAM. An effective solution is real-time memory encryption 

with Pad-based or Stream cipher encryption, however, at an 

expense of performance degradation and also energy overhead 

(4% reported by previous work [33]). Instead of  the  real- 

time encryption, a smarter approach is to encrypt the memory 

only when necessary. For example, when the device is being 

used (unlocked), the attacker can rarely take it away. Only 

when the device is turned OFF or put into sleep/screenlock 

mode should the bulk memory encryption be committed. 

 
B. PIM: A Potential Solution 

To address those challenges, we propose a PIM architec- 

ture for memory encryption. The PIM offers the benefit of 

high internal memory bandwidth, massive parallelism (chip, 

bank, and subarray level), and most importantly, it eliminates 

the data movement between the memory and processors. 

Meanwhile, we observe that in the one-time memory encryp- 

tion application, the memory bandwidth is a bottleneck since  

a dedicated AES encryption engine (EE) provides a much 

larger throughput (53 Gbps [22]) than the DDR throughput. 

 

 
 

Fig. 3. Memory encryption architecture. (a) Traditional encryption approach 
implemented a cryptographic engine outside main memory. (b) Proposed AIM 
design: in-memory computing with NVM’s intrinsic features. 

 

Moreover, the energy for the fetching data from memory with 

the DDR bus is also dominant. It is shown that 91.6% energy is 

spent on fetching and writing this data from the experimental 

results. Considering both advantages offered  by  PIM  and  

the workload characteristics of the target one-time memory 

encryption application, we believe the PIM can effectively 

address NVMM’s vulnerability challenge. 

 
C. Design Overview 

Based on the above-mentioned observations, we propose 

AIM,  an  in-memory  encryption  mechanism  for  NVMM,  

as shown in Fig. 3. Different from the coprocessor AES 

engine [Fig. 3(a)], the proposed AIM avoids the narrow DDR 

bus and embraces the large intramemory bandwidth. It also 

benefits from multiple memory blocks parallel encryption by 

leveraging the flexible parallelism inside the memory, marked 

as chip-level, bank-level, and subarray-level parallelism in the 

figure. To perform the AES algorithm, we build all its required 

arithmetics (i.e., XOR, Shift, and LUT) inside each memory 

subarray. Instead of implementing all those operations with 

logic gates, we take the advantage of NVM’s unique feature 

and implement the most time-consuming operation, XOR, 

within the SAs themselves, as described in Section II-B [18]. 

The data buffer is added to store intermediate results, reduc- 

ing expansive write operations to  NVM  cells.  In  addition, 

an encryption controller is implemented in each chip to 

provide  control  signals  to  direct  the   encryption  process. 

In Section IV, the details of the hardware implementation and 

how the AES algorithm is mapped to the proposed AIM are 

described. 

 

IV. AES IN-MEMORY IMPLEMENTATION 

A. Data Organization 

AES in-memory implementation takes advantage of dif- 

ferent levels of parallelism in the NVMM. In this paper, in-

memory encryption is performed directly on  the  mem-  ory 

cells. The data in memory cells are read out with SAs, each of 

which  is  shared  by  several  adjacent columns with  a  MUX  

as  shown  in  Fig.  4.  Since  the  unit  data  matrix  to be 

encrypted needs to  be  organized in  a  certain  fashion to 

facilitate the encryption  process,  we  distribute  the  8  b  of 

each element in the data matrix into different mats and 

different columns in the same mat so that they can be used 

concurrently. In this way, the plaintext data block does not 
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Fig. 4. Distributed data organization for AES encryption. 

 
 

have to be pretransformed into matrix form before encryption 

starts. For illustration purposes, we assume that there are M 

mats Mati (i  0, 1, . . .  , M), the size of each mat is  N   N , 

and K columns share one SA. 

Fig. 4 illustrates the memory distribution for one data 

matrix. In the AES algorithm, the basic processing unit is 1 B 

of the data matrix; therefore, the data matrix is distributed  

into eight mats so that each mat has a 1-b level of the data 

matrix. In order to encrypt each row of the data matrix in 

parallel, four columns of the data matrix are distributed to 

different columns of memory array connecting four adjacent 

SAs separately. These four columns of the memory array are 

of the same local column address. In this way, when one row 

of the subarray is activated and a local column address is 

selected for each MUX, every four adjacent SAs will sense 

out a row of the data matrix. In total, every four rows of the 

subarray contain MN/4K data blocks of 128 b. 

To enable further processing of the data matrix, the interme- 

diate results, which are the state matrices, need to be buffered. 

To avoid extra hardware overhead and simplify the circuity, 

we write the intermediate results back to the data matrix. In the 

proposed encryption mechanism, AES encryption generates 

less than 60 writes during 10 rounds of encryption to  each  

cell in the encrypted memory block. This amount of writes  

has a negligible impact on the endurance of memory. NVMM 

encryption is performed before the system is powered down. 

Therefore, we assume that the  main  memory  is  encrypted 

20 times every day. We also conservatively assume that the 

deployed NVM has an endurance of 109 cycles. In 5 years, 

AES  encryption will  generate  60  20  356  5   1.1   105 

writes which is less than 0.2% of its total life cycles. 

 
B. AddRoundKey 

In this stage, the data matrix is combined with the key 

matrix. Each byte of the data matrix is combined with the cor- 

responding subkey of the key matrix using bitwise XOR oper- 

ation. AddRoundKey is implemented with the modified SA 

design of Pinatubo [18], which realizes bitwise XOR operation 

with two microsteps inside SA. 

Fig. 5 shows the process of AddRoundKey transformation 

for one row of the data. First, the  first row of the data in      

the data matrix is read into the added capacitor in each SA by 

activating the first wordline in red color and selecting a column 

with MUX. Second, the first row of the data in the key matrix 

Fig. 5. Addroundkey stage with XOR operation. 

 
 

is read into the latch in each SA by activating the second 

wordline in red color and selecting a column with MUX. After 

these two steps, the bitwise XOR result of the first row is 

latched in each SA. Suppose it takes tXOR to complete XOR 

operation for one row of data matrix, it takes 4tXOR to complete 

AddRoundKey transformation for a data matrix since there are 

four rows in each data matrix. This AddRoundKey transfor- 

mation is parallelized because of multiple SAs. Since there  

are M mats and N/K SAs in each mat, (N/4K)(M/8) data 

matrices are transformed simultaneously. In our design, after 

AddRoundKey transformation for one row of data, SubBytes 

is performed immediately for this row of the data instead of 

continuing performing AddRoundKey for all the four rows. 

The initial AddRoundKey stage is performed with the initial 

key. The other 10 rounds of AddRoundKey are performed 

with the corresponding  round  key.  As  shown  in  Fig.  5,  

the encryption key is maintained in the NVM array and round 

keys overwrite the encryption key after finishing each round 

of encryption. 

 
C. SubBytes 

In this step, each byte  of  the  data  matrix  is  replaced  

with a new byte by doing the nonlinear transformation. This 

transformation is realized with S-box which is used to obscure 

the relationship between the key and the ciphertext. The S-box 

can be realized with LUT by implementing combinational 

logic which has 8-b input and  8-b  output  or  ROM  which 

has 16 rows  and  16  columns  while  each  entry  is  a  byte. 

In this paper, S-box is realized with combinational logic since 

it incurs lower overhead. 

After the AddRoundKey stage of one row of state matrix, 

the intermediate results are latched in the SAs. For SubBytes 

transformation, each byte of the data matrix is decoded from 

eight mats and input to the S-box as shown in Fig. 6. In this 

figure, the Add Roundkey results of the second row of the 

data matrix are latched in the SAs.  SubBytes is performing  

on the second byte C7. The output of S-box is the substituted 

byte C6. In this figure, there is one S-box combinational logic 

which has 8-b input and 8-b output. Since we can only input   

1 B each time to the S-box, the SubBytes transformation can 

only be done sequentially which takes a long time. To accel- 

erate the SubBytes transformation, we can add more S-box 

combinational logics to enable parallel SubBytes performing. 

At the same time, we need to consider the hardware overhead 
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Fig. 7. MixColumn substep: M-2 LUT. 

 

 

 

 

Fig. 6. SubBytes transformation with LUT and ShiftRows transformation  
with addressing logic. 

 
 

introduced by multiple S-boxes.  We  have  different  designs 

in terms of S-box considering both encryption speed and 

overhead. The experimental section will show the performance 

comparison of different designs. 

After we obtain the 8-b output of S-box, it will not be 

E. MixColumns 

In MixColumns stage, the 4 B of each column of the data 

matrix are combined together using an invertible linear trans- 

formation to provide diffusion in the cipher. The MixColumns 

transformation multiplies the data matrix by a known matrix 

as shown in Fig. 2. 

Matrix multiplication is done in finite field GF(28). Si, j and  

Si
∗
, j  are used to indicate the byte in row i , column  j of the  

state  matrix and the  transformed state  matrix, respec- 
tively. The MixColumns transformation can be decomposed to 
modular multiplication and XOR operations as follows: 

immediately written back. Instead, the next stage, ShifRow, 

will be performed on the output. 
S0

∗ 
, j = 2 · S0, j ⊕ 3 · S1, j ⊕ S2, j ⊕ S3, j 

 
D. ShiftRows 

In this step, the bytes in each row of the data matrix are 

cyclically shifted by a certain offset. Specifically, while the 

top row remains unchanged, each bit in the second row of the 

bit-level data matrix is cyclically shifted left by 1 b, each bit  

in the third row of the bit-level data matrix is cyclically shifted 

left by 2 b, and each bit in the third row of the bit-level data 

matrix is cyclically shifted left by 3 b (right by 1 b). 

The ShiftRows transformation is realized with control signal 

and address decoding, as shown in Fig. 6 (bottom). Originally, 

the 8-b output of S-box needs to be written back where each 

input bit is located.  This  process  needs  address  decoding  

to write to the right position. The ShiftRows transformation 

can leverage this address decoding process to do shifting by 

address decoding. By combining an offset with the column 

address, the output of S-box is shifted to another address 

according to the ShiftRows algorithm. In Fig. 6, the second 

S1
∗ 
, j  = S0, j ⊕ 2 · S1, j ⊕ 3 · S2, j ⊕ S3, j 

S2
∗ 
, j  = S0, j ⊕ S1, j ⊕ 2 · S2, j ⊕ 3 · S3, j 

S3
∗ 
, j  = 3 · S0, j ⊕ S1, j ⊕ S2, j ⊕ 2 · S3, j . (1) 

Multiplication-by-2 (M-2) in the finite field can be realized 

by shifting each bit of the operand left by 1 b, followed by a 

XOR operation with 0    1 B if the most significant bit is 1.     

A more efficient way is leveraging LUT. M-3 in the  finite 

field GF(28) of MixColumn can be realized with M-2 and  

XOR logic. This is because 

3 · Si, j = 2 · Si, j ⊕ Si, j . (2) 

Therefore, MixColumns stage is decomposed into M-2 LUT 

and XOR operations. MixColumns needs several  sub  steps 

and generates several intermediate values. To both accelerate 

this transformation and maintain a low hardware  overhead, 

we leverage the vacant NVM rows as buffer rows for inter- 

mediate results. The MixColumns stage is realized with LUT 
and XORs as follows: 

byte C6 in the second row of state matrix after SubBytes needs 
to be shifted to the left by 1 B. This means each bit needs S0

∗ 
, j = Tj ⊕ 2 · S0, j ⊕ 2 · S1, j ⊕ S0, j 

  

to shifted left by 1 b according to the data matrix distribution 

in the memory. This shifting process is down by selecting the 

first column with the control signal. 

After ShiftRows transformation, each bit will be buffered  

in the single-bit latch until SubBytes and ShiftRows are 

performed on all the data in the SAs. Then, the values in the 

row buffer are transmitted to the write driver and written back 

 

 

 

 
where 

S1
∗ 
, j  = T j ⊕ 2 · S1, j ⊕ 2 · S2, j ⊕ S1, j 

S2
∗ 
, j  = T j ⊕ 2 · S2, j ⊕ 2 · S3, j ⊕ S2, j 

S3
∗ 
, j  = T j ⊕ 2 · S0, j ⊕ 2 · S3, j ⊕ S3, j (3) 

  

 
Tj = S0, j ⊕ S1, j ⊕ S2, j ⊕ S3, j . (4) 

to the memory array. This row buffer gathers the intermediate 

results of one row and avoids writing to the NVM row multiple 

times. 

The first step of MixColumns is M-2 transformation with 

LUT. This process shares the  same  address decoding logic  

of S-box with a MUX as shown in Fig. 7. Since we can 
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Fig. 8. Example of MixColumns substep: calculate Tj for each column (4). 

 

 

Fig. 9.    Example of MixColumns  substep: calculate  S0
∗ 
. j . 

 
only input 1 B each time  to  the  LUT,  this  transformation 

can only be  done  sequentially,  which  takes  a  long  time.  

To accelerate this transformation, we add multiple M-2 LUT 

combinational logics to enable parallel performing. Like S-

box design, we have different multiplication-by-2 LUT 

designs considering both encryption speed and overhead. After 

M-2 transformation, outputs are latched in a row buffer until all 

bytes of the activated row finishes M-2 transformation. Then, 

data in this row buffer is  written  to  a  vacant memory row.  

In total, four empty NVM rows are used for storing LUT 

results. 

The next step of MixColumns is  calculating  Tj  follow- 

ing (4). Fig. 8 shows the detailed process of calculating  Tj 

for a specific column. Every time two rows are activated to 

get the XOR result of two memory cells, then next step of this 

result is written to an empty buffer row. From this figure, this 

step costs three XOR operations and three writes. In this step, 

since all SAs are working simultaneously, Tj for each column 

is calculated in full parallel. 

The final step of MixColumns is calculating the result of 

MixColumns transformation following (3). In this step, with 

M-2 LUT results stored in four rows and Tj values, we can 

finish the MixColumns transformation for one row of selected 

columns in six steps as shown in Fig. 9. This figure shows an 

example of how to calculate  S0
∗ 
, j  in row 0. After three times 

of activating two rows, four operands are XORed together to 

get the final result of S0
∗ 
, j , and then this result is written back 

by replacing S0, j . 

During   MixColumns,   several   writes    are    generated. 

In M-2 LUT step, M-2 results are written to four rows, 

therefore a column of four memory cells  takes  four  writes. 

In the second step of calculating Tj , three writes are generated 

as shown in the colored memory cells of Fig. 8. In the final 

step,  transforming  one  value   takes   three   writes.   Thus, 

12 writes are generated for transforming four values. In total, 

19 writes are generated for each column of  four  memory 

cells which means five writes on average are generated for 

each cell in the MixColumns transformation. 

 
F. Discussion 

The AES encryption process leverages innate parallelism of 

main memory to accelerate encryption. To support in-memory 

AES encryption, multiple S-box LUTs, M-2 LUT, MUX, and 

DEMUX are implemented inside the memory system. For 

decryption, inverse S-box LUT needs  to  be  added  except 

for the available resources for encryption. When the memory 

system receives an encryption signal, the original key shared 

among all memory chips is transferred to different memory 

chips. When each round of encryption finishes, the initial key 

is expended to get the  round key.  The  encryption controller 

in each chip takes care of the detailed encryption and the 

decryption process. 

 
V. CIPHER MODES 

A. Exploration of Different Cipher Modes 

Encrypting two identical plaintext blocks with the  same 

key will generate two identical ciphertext blocks. An attacker 

would be able to achieve useful  information  and  discover 

the original plaintext by analyzing the identical blocks of the 

ciphertext. To allow block ciphers to work with a large number 

of data blocks, different block cipher modes of operations are 

devised to blur the ciphertext so that the ciphertext blocks of 

two identical plaintexts are different. Common modes of block 

cipher include electronic codebook (ECB), cipher block chain- 

ing (CBC), cipher feedback (CFB), output feedback (OFB), 

and counter (CTR) [5]. 

1) Electronic Codebook: ECB is the simplest mode that 

encrypts each  data  block  of  the  input  plaintext  sepa- 

rately. Since there is no dependence in encrypting different 

data blocks,  this  cipher  mode  allows  different  blocks  to  

be encrypted simultaneously and supports high parallelism. 

However, if there are identical plaintext blocks in the NVMM, 

encrypting bulk NVMM with the same key is vulnerable. 

2) Cipher Block Chaining: In the CBC mode, the next 

plaintext is always XORed with previously produced ciphertext 

block before it is encrypted. Since there is no previous 

ciphertext block, the first plaintext block is XORed with a 

random initialization vector (IV) which has the  same size  as 

a plaintext block. As a result, every subsequent ciphertext 

block depends on the previous one. Since the CBC mode 
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encrypts the plaintext sequentially, it will lead to high latency 

in the AIM encryption process. Different from encryption, 

decrypting different cipher blocks can be done simultaneously. 

3) Cipher Feedback: In the CFB mode, the previous cipher- 

text block is encrypted and then XORed with the next plaintext 

block to generate the next  ciphertext block.  Since  there  is 

no previous ciphertext block before the first  plaintext block,  

a random IV is encrypted and then XORed with the first 

plaintext. Similar to the CBC mode, encryption in CFB mode 

is performed sequentially while decryption can be performed 

simultaneously. Therefore, it suffers a similar drawback to the 

CBC mode. Compared with CBC mode, the CFB mode only 

uses the encryption of the block cipher. Therefore, the CFB 

mode gets rid of the required resource for implementing 

decryption. 

4) Output Feedback: The OFB mode creates keystream 

blocks with the original key and a random IV, which are then 

XORed with the plaintext blocks to get the ciphertext blocks. 

Because of the continuous creation of keystream bits, both 

encryption and decryption are done sequentially. Therefore, 

this mode has poor parallelism. In addition, the usage of only 

the encryption of the block cipher gets rid of the required 

resource for implementing decryption. 

5) Counter: The CTR mode creates keystream blocks by 

encrypting a nonce value added by an increasing counter. The 

plaintext blocks can be encrypted simultaneously with differ- 

ent counters allowing high-level parallelism. However, CTR 

mode becomes vulnerable if counters repeat. This mode also 

gets rid of the required resource for implementing decryption. 

In addition, the five cipher modes, Galois/counter mode 

(GCM) [23] is also a very interesting and powerful cipher 

mode. However, the implementation of GCM requires adding 

more circuitry to the memory architecture than other modes 

because of its authenticity and confidentiality ability. Mean- 

while, GCM requires more steps to generate a tag for authen- 

ticity and, thus, has much longer encryption time and energy 

consumption compared with the other cipher modes. Because 

of the much larger area overhead and the lower performance 

and energy efficiency, GCM mode has inferior performance to 

the other discussed cipher modes. Therefore, GCM mode is 

not considered in this paper. 

B. CTR-CFB Encryption 

The cipher algorithm requirement and parallelism of 

encryption direction and decryption direction are summarized 

in Table I. Among them, CTR mode has the best parallelism 

based on counters. CFB, OFB, and CTR only need encryption 

direction implementation which saves hardware resource for 

implementing decryption. Compared with OFB, CFB has a 

better parallelism in decryption. 

A direct solution to enhancing the security is deploying CTR 

mode which allows high parallelism. However, CTR mode 

fails catastrophically when a counter value is reused, because it 

is a pure XOR stream cipher: XORing two ciphertext blocks that 

were generated with the same key and counter values cancels 

out the encryption. Therefore, in this paper, we propose to 

combine CTR and CFB modes to enhance the AES security 

while maintaining the parallelism level. 

TABLE I 

COMPARISON OF DIFFERENT CIPHER MODES 

 
 

 
  

    
 

     
 

     
 

     
 

     
 

     

 

Fig. 10. Encryption of CTR+CFB cipher mode. 

 
The implementation is shown in Fig. 10. In the vertical 

direction, the CFB mode can be implemented, since  each 

word row needs to be  activated for encryption one by one     

in sequential. In the horizontal direction, CTR mode can be 

implemented to allow parallelism since several columns can 

now be encrypted simultaneously. The introduction of the 

CFB mode to CTR mode avoids the counters for the vertical 

encryption direction. 

The challenges in the implementation lie in generating 

nonce which is a random number, and the design of  coun-  

ters (different value for different blocks). For generating a 

nonce, there are two ways: first, the key generator can generate 

a second key as the nonce and second, the original key can   

be used  to generate the nonce by hashing the original key.   

To have different counters for different blocks, the bank id, 

subarray id, mat id, and column id are concatenated together 

to generate different counters for the first row of plaintext 

blocks in NVMM as follows: 

Counter 

= Bankid||Subid||Matid||Columnid||Muxid||Counter+1 (5) 

where Counter 1 is the increment-by-one counter,  which 

works by incrementing by one after finishing one time of bulk 

encryption. Therefore, the encryption function for the first row 

of data blocks is as follows: 

C = P ⊕ Enkey(Nonce + Counter). (6) 

This design of Counter guarantees a unique sequence for 

each plaintext so that different plaintext blocks are encrypted 

with   different  key  blocks.  Meanwhile,  the   same   counter 
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Fig. 11. Decryption of CTR+CFB cipher mode. 

 
sequence will not repeat for a long time so that the same 

plaintext block will not be encrypted with the same keystream 

twice for a long time, ensuring the security of the proposed 

cipher mode. 

 
C. CTR-CFB Decryption 

The decryption process of CTR CFB cipher mode is shown 

in Fig. 11. From this figure, the decryption of different 

columns of data blocks is decrypted simultaneously while the 

data blocks for the same columns are decrypted sequentially. 

This cipher mode only  uses  the  encryption  algorithm  of  

the block cipher as shown in  the  blue  box,  thus  avoiding 

the required resource for implementing decryption algorithm 

especially the inverse S-box. 

 
VI. KEY GENERATION AND STORAGE 

The method of key generation, key storage, and key 

handling significantly influences the security of the crypto- 

systems. In this section, we will first describe three possible 

master key generation schemes. Then, we will describe the 

round key generation in AIM. 

 
A. Master Key Generation and Storage 

For the AIM encryption mechanism, there are three possible 

ways of generating the master key: user input, randomizer, 

and physical unclonable function (PUF). The user input 

method allows the user of a device to input a key that  the  

user can remember or a biometric-based key before shutting 

down or putting the device into sleep/screenlock mode. After 

inputting a key,  this key is  then transferred to  the  NVMM  

to start the AES in-memory encryption. After finishing bulk 

encryption, this key is  cleared.  When  the  user  wants  to  

use the device again, the same key is input to decrypt the 

NVMM. In this way, there is no key storage overhead or key 

leakage risk. The second way of creating the original key, 

randomizer, is to use a pseudorandom number generator to 

create a one-time random number.  Since  the  device  might 

be powered down, this key should be stored in a protected 

NVM for decryption. Therefore, this key should be placed far 

away from the NVMM, such as in the processor, to keep the 

generated key away from the attackers. 

Compared with a randomizer, PUF avoids the need of key 

storage in NVM. The process of extracting a key from the 

physical intrinsic properties due to different materials and 

physical variations from the fabrication process of hardware is 

described in [21]. PUF-based key generator avoids the need for 

a pseudorandom number generator by harvesting the hardware 

unique randomness and processes it into a cryptographic key. 

Since the randomness is already intrinsically present in the 

device, there is no need for a protected NVM. Since the ran- 

domness is static throughout the lifetime of the device, it can 

be harvested again to regenerate the same key for decryption. 

This PUF-based key cannot be found by an attacker who opens 

up the device because the key is not permanently stored and 

not present when the device is not active. This way of deriving 

a key has great security advantages compared to randomizer 

which needs the key storage in NVM. 

 
B. Round Key Generation—Rijndael Key Schedule 

AES requires a separate round key for each round of 

encryption to achieve a high level of  confusion. Expanding 

the original key into several rounds of keys in AES is known 

as the Rijndael key  schedule. AES  key  expansion consists  

of RotWord, SubWord,  XOR  operations,  all  of  which  can 

be realized with the  previously  introduced implementations 

of AES encryption. Therefore, the round keys can also be 

generated within NVMM instead of using a dedicated key 

generator. In the proposed CTR CFB cipher mode imple- 

mentation, the key for each round is generated only once and 

stored in the NVMM for each time of memory bulk encryption. 

After completing the encryption, these round keys are cleared 

to avoid key information leakage. 

VII. EXPERIMENTAL EVALUATION 

A. Experiment Setup 

AIM is evaluated on both MRAM-based and PCM-based 

main memory with a DDR3 interface and 65-nm technology. 

The MRAM-based main memory has  a  512-b  page  size.  

We conservatively assume the MRAM has 256 Mb per chip 

with a 34F 2 cell size. The PCM-based main memory’s page 

size is 1024  b,  and  the  capacity  is  1  Gb  per  chip  with  

the cell size of 9F 2. We modified NVSim [10] and Cacti- 

3DD [6] to achieve the parameters for the NVM-based main 

memory. Table II lists the parameters of PCM and MRAM at 

bit level for main memory implementation [25]. To evaluate 

the circuitry, we added to support AIM, we synthesize these 

circuits with Design Compiler with FreePDK. 

We compare AIM with three different dedicated memory 

EEs as follows. 

1) EE-1 [13] designs an AES encryption hardware core 

suited for devices with low power consumption. It has a 

maximum frequency of 290 MHz, and takes 9.9 nJ and 

160 cycles to encrypt a data block. 

2) EE-2 [22] implements an AES CMOS application spec- 

ified integrated circuit encryption core which has a 

frequency of 2.13 GHz with a total power consumption 
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PCM AND MRAM PARAMETERS AT BIT LEVEL 

 

   

 

 
 

 
 

 

   

   

   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12. Comparison of latency between different baselines and different 
AIM designs. 

 

 
at 125 mW, and takes five cycles to encrypt four data 

blocks with an area of 4400 um2. 

3) DW-AES [29] implements an AES  encryption  core 

with domain-wall nanowires which  has  a  frequency  

of 30 MHz and takes 1022 cycles and 2.4 nJ to encrypt 

one data block. 

For the proposed design, we evaluate different configu- 

rations described as follows. 

4) AIM is the basic configuration, where only one bank 

works on encryption at one time. 

5) AIM-B has the encryption add-on circuit for each bank. 

To perform a whole memory encryption, all banks in a 

chip can work in parallel. 

6) AIM-S  has  the  add-on  circuit  for   each   subarray. 

By leveraging the subarray-level parallelism [17], multi- 

ple subarrays in the same bank work on the encryption/ 

decryption task simultaneously. 

 
B. Performance and Energy Evaluation 

1) Latency: Fig. 12 shows the  encryption  latency  of  1-

GB memory. We have three observations. First, the encryp- 

tion latency becomes  quite  large  when  the  size  of  NVM  

is large. For a low-frequency EE DW-AES, encrypting the 

whole memory can take as long as many hours or days. 

Second, for an EE of very high frequency, the encryption 

latency is very small. If the  writing  latency  is  larger  than 

the encryption latency, the encryption latency will be counter- 

vailed by the writing latency. EE-2 has very high encryption 

speed; the time it takes to encrypt the whole memory turns to 

the time of reading and writing to all memory blocks sequen- 

tially. Therefore, the encryption time of EE-2 is different for 

PCM and MRAM as shown in the corresponding two columns 

of Fig. 12. On the contrary, EE-1 has very low encryption 

speed and its encryption latency is much larger than the data 

movement which is, thus, overlapped by the encryption time 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13. Energy for encrypting 128-b block (left). Energy for accessing and 
encrypting 1-GB main memory (right). 

 

that dominates the overall latency. Therefore, the encryption 

time of EE-1 is the same for both PCM and MRAM as shown 

in the corresponding two columns of EE-1. Fourth, multiple 

levels of parallelism in NVM accelerate the encryption process 

of AIM mechanism. When only one bank works in a chip, 

AIM can reach the encryption speed of 21 s and 1.2 s if the 

memory is implemented with PCM and MRAM, respectively. 

When we enable bank-level parallelism and let banks encrypt 

independently, AIM-B is able to encrypt the whole memory  

in 2.66 s and 0.15 s correspondingly. When  the  subarray 

level parallelism is enabled, AIM-S is able to encrypt the 

whole memory in 0.33 s and 0.018 s for PCM and MRAM, 

respectively. 

From Fig. 12, we can see that EE-2 has the fastest encryp- 

tion speed. When the main memory is implemented with 

PCM, the AIM-B design has similar encryption performance 

for 1-GB main memory and AIM-S can encrypt 1 GB much 

faster than EE-2. When the main memory is implemented with 

MRAM, all three designs AIM, AIM-B, and AIM-S work 

faster than EE-2. In addition, when the size of NVM scales  

up, the latency of EE-2 will scale up accordingly. However, 

for AIM-B, as  long as  main memory power budget allows,   

it can continue to leverage the parallelism and maintain a short 

encryption latency. 

2) Power: All three designs AIM, AIM-B, and AIM-S work 

within the power budget [14] of main memory. Among the 

three designs, AIM has the  smallest  power which is  around  

1 and 13 mW for encrypting one chip of PCM-based main 

memory and MRAM-based main memory, respectively. The 

power of AIM-B is around 8 and 108  mW  for  encrypting 

one chip of PCM-based main memory and MRAM-based 

main memory, respectively. AIM-S has the largest power 

consumption since it has the best performance among the 

three designs and the power is 70 mW for encrypting each 

chip of PCM-based main memory. When the main memory   

is implemented with MRAM, the power of AIM-S exceeds  

the budget since the parallelism of AIM-S is the highest. 

Therefore, this design is not recommended if the power budget 

is small. However,  since  AIM-S has  the  best  performance, 

if the system has the need for fast encryption and a large 

power budget, this design can still be employed. In conclusion, 

when we implement the AIM encryption schematic inside the 

NVMM, both power budget and encryption latency should be 

considered together to choose the most suitable design. 

3) Energy Efficiency: Fig. 13 compares the energy effi- 

ciency for encrypting a 128-b block and for encrypting 1-GB 
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Fig. 14. Different AIM designs area overhead. 
 

Fig. 16. Breakdown of latency and energy consumption. 

 
 

 

 

 

 

 
Fig. 15. Breakdown of encryption overhead. 

 
main memory sequentially. From  Fig.  13(a),  EE-2  incurs 

the smallest energy, 0.265 nJ to encrypt 128-b block while 

AIM ranks the third and costs 2.78 and 3.17 nJ for 128-b  

PCM and MRAM blocks, respectively. Fig. 13(b) shows the 

energy consumption for encrypting 1-GB nonvolatile PCM 

and MRAM. In this figure, the lower parts of the first six 

columns show the energy spent on accessing main memory and 

the upper parts show the energy spent on encrypting process 

with the EEs. From this figure, we have two observations. 

First, EE-1, EE2, and DW-AES cost significant amount of 

energy on memory access. This is because, for an encryption 

operation outside of main memory like those of EE-1 and EE-

2, the encryption processor needs to read a memory block 

from the main memory and then write this memory block back 

to its original position after encryption is completed. During 

the reading and writing periods, complex address decoding 

and bus transfer costs a lot of energy which is much more  

than the energy spent for encrypting this block. For DW-AES, 

the large energy comes from a large number of shifting 

operations required for write to perform the AES with domain- 

wall memory (DWM). Second, AIM costs the lowest energy 

compared with the three specific EEs. Since AIM encrypts 

each memory block inside the main memory, it avoids a large 

part of reading and writing energy consumption from outside 

the main memory. 

4) Overhead Evaluation: Fig. 14 shows the area overhead 

results. As shown in this figure,  AIM  and  AIM-B  both  

incur insignificant area overhead of only 0.06% and 0.45% 

area overhead for PCM-based main memory, and 0.08% and 

0.63% for MRAM-based main memory. Compared with AIM 

and AIM-B, AIM-S incurs a relatively larger area overhead   

of 3.59% and 5.05%. 

Fig. 15 shows the distribution of hardware overhead. Among 

all added circuitry, forward S-box and inverse S-box have the 

largest area overhead. Since we can only look up  byte  by 

byte each time, more S-box LUTs mean more parallelism. 

Therefore, this overhead is unavoidable. 

In addition, the area overhead for added circuitry, buffer 

rows are required for storing intermediate results generated in 

 

the encryption process. As shown in Fig. 8, six buffer rows  

are required at most in the MixColumns step. For a normal 

memory bank that has 512 rows, six buffer rows are only 1.2% 

of the whole memory size. During the normal working time  

of the main memory, these six buffer rows can also be used 

for storing the working data. 

5) Further Improvement: The breakdown of latency and 

energy consumption of AIM implementations for different 

encryption stages is shown in Fig. 16. Since SubBytes and 

ShiftRows are combined together in the AIM design, we ana- 

lyze the two stages together. From Fig. 16, AddRoundKey 

consumes the minority of both total encryption latency and 

energy. This is because AddRoundKey stage only consists of 

parallel XOR operations based on Pinatubo design which is fast 

and costs a little energy. MixColumns consumes the medium 

latency and energy. This stage involves LUT operations of S-

box. The latency  of  this  stage  varies  with  the  number  of 

S-box. MixColumns consumes the majority of both total 

latency and energy. This is because MixColumns generates 

several intermediate encryption state matrices from substeps. 

These intermediate encryption state matrices are buffered in 

the NVM cells in AIM design. This buffering process costs 

considerable energy and latency, since write operations in 

NVMM are usually expensive in terms of both energy and 

latency. 

Writing pulsewidth to NVM determines the retention time 

of the written states. In AIM, the encryption latency and 

energy can be further reduced by supporting short-latency 

light writes, since the intermediate encryption states only need 

to stay for a short while. In this way, buffering intermediate 

encryption states with light writes will cost less energy and 

latency. 

 
C. Evaluation of Different Cipher Modes 

In this section, we evaluate the proposed CTR CFB cipher 

modes from three aspects including encryption latency, energy 

efficiency, and area overhead. Among the evaluated cipher 

modes, CBC mode and CTR mode are used as the baselines. 

The other kinds of cipher modes are not evaluated since they 

do not support parallel encryption. 

1) Latency: Fig. 17 shows the encryption latency of 1-GB 

memory with three different cipher modes under AIM design. 

Among the three cipher modes, the CBC mode has the 

shortest encryption latency. Compared with the CBC mode, 

the CTR mode increases the encryption latency by 2.17% 
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Fig. 20. Breakdown of encryption overhead with the CTR+CFB mode. 

 

  

 
Fig. 17. Comparison of latency among different cipher modes. 

 

 

 

 

 

 

 

 

 

 
 

  

 
Fig. 18. Comparison of energy for encrypting 128-b block among different 
cipher modes. 

 

Fig. 19. Different AIM design area overhead with the CTR+CFB mode. 

 
and 2.97% when the main memory is implemented  with  

PCM and MRAM, respectively. Compared with the CTR 

mode, the proposed CTR CFB cipher only slightly increases 

the encryption latency by 0.25% and 1.00% when the main 

memory is implemented with PCM and MRAM, respectively. 

2) Energy Efficiency: Fig. 18 shows the encryption latency 

of encrypting one memory block with three different cipher 

modes under AIM design. Among the three cipher  modes,  

the CBC mode has the highest energy efficiency because it 

generates the lowest energy overhead. Compared with the CBC 

mode, the CTR mode increases the energy consumption by 

2.96% and 2.68% when the main memory is implemented 

with PCM and MRAM, respectively. Compared with the CTR 

mode, the proposed CTR CFB cipher only slightly increases 

the energy consumption by 0.88% and 0.68% when the main 

memory is implemented with PCM and MRAM, respectively. 

3) Overhead: Fig.  19  shows  the  area  overhead  results  

of  implementing  the  proposed  CTR  CFB  cipher   mode. 

As shown in this figure, AIM and AIM-B both incur 

insignificant  area  overhead  of  only  0.03%  and  0.26%  for 

PCM-based main memory, and 0.05% and 0.37% area over- 

head for MRAM-based main memory. Compared with AIM 

and AIM-B, AIM-S incurs a relatively larger area overhead   

of 2.10% and 2.95% for PCM-based main memory and 

MRAM-based main memory. Compared with the CBC mode 

as shown in Fig. 14, the proposed CTR CFB mode further 

reduces the area overhead by 40% on average by  removing 

the inverse S-box. 

Fig. 20 shows the distribution of area overhead. Compared 

with Fig. 15, the overhead from inverse S-box is removed. 

Among all added circuitry, forward S-box has the largest area 

overhead. 

4) Discussion: The proposed CTR CFB cipher avoids the 

complex management of a large amount of counter values and 

the security problem of the repeated counter in a short time. 

Meanwhile, the whole decryption process is based on the AES 

encryption algorithm, saving the hardware resource for imple- 

menting AES decryption algorithm. The above-mentioned 

experimental results show that the proposed CTR CFB cipher 

mode achieves comparable or even lower latency and energy 

consumption with small hardware overhead. 

The high encryption performance of AIM is owing to the 

high parallelism inside  main  memory architecture. As  long 

as the memory cells are resistance-based, the corresponding 

memory technology will work with the proposed architecture. 

Furthermore, from our experimental evaluation, the activation 

latency of a memory row is much larger than the read/write 

latency of a memory cell and thus dominates the overall 

memory access latency. This activation latency mainly depends 

on the length of a memory row and the circuit design instead 

of the memory type. From our research, most  NVMs have  

the properties varying between MRAM and PCM. Therefore, 

the proposed techniques are good for other NVM as well. 

Although AIM requires memory architecture modification 

for encryption, the modification is small, simple, and easy to 

implement. The three levels of encryption parallelism AIM 

supports with in-memory design bring benefits of significantly 

improved encryption throughput and lowered energy overhead. 

 
VIII. RELATED WORK 

A. Memory Encryption 

Encryption  has  been  widely   suggested   as   a   solution 

to secure both DRAM [15]  and  NVM-based  main  mem-  

ory [7], [31]. These implementations perform encryption/ 

decryption when writing/reading a cache line to/from main 

memory. Though encryption techniques base  on  Pad-based 

or Stream cipher encryption where memory access could be 
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overlapped with the Pad or  Keystream  generation  reduces 

the decryption overhead, the system still suffers, since that 

overhead is on the critical path (memory read access). Differ- 

ent from them, Colp et al. [9] proposes to perform one-time 

encryption for smartphones and tablets only when the device 

is screen locked. AIM performs  a  one-time  encryption  to 

the main memory system before there is a possible attack 

(e.g., before power OFF). Other than that it runs as a normal 

main memory without any latency overhead. Furthermore, 

existing encryption methods rely on a dedicated EE on the 

processor or in the main memory. AIM takes advantage of in-

memory computing, hence achieves a better throughput with 

less energy consumption. 

 
B. NVM Encryption 

There are several work that are particularly optimized for 

encryption on NVM [7], [16], [19], [26], [31]. I-NVMM [7] 

proposes to encrypt main memory incrementally. However, 

our method taking advantage of the PIM architecture out- 

performs i-NVMM, because i-NVMM relies on the dedicated 

AES engine on the processor side and limited by its small 

bandwidth and parallelism. DEUCE [31] and SECRET [26] 

propose techniques to reduce the bit flips during data encryp- 

tion, which helps NVM reliability since encryption involves   

a significant amount of expensive writes. Silent Shredder [4] 

proposes techniques to obviate the writing of zeros to memory 

pages. Their techniques are orthogonal to AIM, and their 

method can be applied to AIM to further reduce the encryption 

energy. 

 
C. In-Memory Encryption 

In-memory encryption is a promising solution for NVM 

encryption which has limited research. Reference [11] explores 

different spintronic devices-based memory that could be lever- 

aged to implement logic functions with the AES algorithm as 

a case study. Angizi et al. [3] demonstrates the efficiency of 

AES algorithm on a proposed in-memory processing platform 

with novel spin Hall effect-driven domain-wall motion devices 

that support both  NVM  cell  and  in-memory  logic  design. 

A recent  work,  Recryptor  [34],  proposes  a  reconfig-  

urable cryptographic processor using in-memory computing. 

By replacing a standard SRAM bank with a  custom  bank 

with in-memory and near-memory computing, Recryptor pro- 

vides an IoT platform that accelerates primitive cryptographic 

operations. DWM is also utilized to perform in-memory 

encryption [20], [29], [32], where inherent DWM device 

functions were used to perform the operations required for 

encryption. 

 
IX. CONCLUSION 

In this paper, we propose a fast and energy-efficient AES 

in-memory implementation, AIM, by taking advantage of 

NVM’s resistive nature and utilizing existing memory periph- 

eral circuits. With AIM, the memory blocks are encrypted 

simultaneously within each memory bank and the entire 

encryption process can be completed within the main memory 

without exposing the results to the memory bus. Compared 

with state-of-the-art AES engine running at 2.1 GHz,  AIM 

can speed up the encryption process by 80X when encrypting 

1-GB MRAM with 3% area overhead. 
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