
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018 197

Exploring Core and Cache Hierarchy
Bottlenecks in Graph Processing Workloads

Abanti Basak , Xing Hu, Shuangchen Li,

Sang Min Oh , and Yuan Xie

Abstract—Graph processing is an important analysis technique for a wide

range of big data problems. The ability to explicitly represent relationships

between entities gives graph analytics significant performance advantage over

traditional relational databases. In this paper, we perform an in-depth data-aware

characterization of graph processing workloads on a simulated multi-core

architecture, find bottlenecks in the core and the cache hierarchy that are not

highlighted by previous characterization work, and analyze the behavior of the

specific application data type causing the corresponding bottleneck. We find that

load-load dependency chains involving different application data types form the

primary bottleneck in achieving a high memory-level parallelism in graph

processing workloads. We also observe that the private L2 cache has a negligible

contribution to performance, whereas the shared L3 cache has higher

performance sensitivity. In addition, we present a study on the effectiveness of

several replacement policies. Finally, we study the relationship between different

graph algorithms and the access volumes to the different data types. Overall,

we provide useful insights and guidelines toward developing a more optimized

CPU-based architecture for high performance graph processing.

Index Terms—Graph Processing, Memory-Level Parallelism, Cache Hierarchy

Ç

1 INTRODUCTION

GRAPH processing is widely used to solve big data problems in multi-
ple domains such as social networks, webgraph hierarchies, protein
interactions in bioinformatics, and transportation. The ubiquitous-
ness of graph processing is due to its rich, expressive, and widely
applicable data representation consisting of a set of entities (vertices)
connected to each other by relational links (edges).

Existing work in graph processing spans a variety of hardware
platforms. Numerous software frameworks propose programming
abstractions to parallelize graph processing in clusters [1]. Another
category of work proposes external storage based graph processing in
a single machine [2]. The goal of this paper is to improve the CPU plat-
form where the entire graph data fits in the RAM of a single high-end
server. In such a platform, the primary bottleneck is the latency gap
between the on-chip caches and the DRAM, which leads to stalling as
the cores wait for data to be fetched from the memory. We focus on
single machine in-memory graph analytics because it has been shown
to provide excellent performance while significantly reducing the
programming efforts compared to distributed systems [3]. Moreover,
a wide range of industry and academic graphs have been reported
to fit comfortably in the memory of a single machine [3], [4].

To understand the memory subsystem bottlenecks in single-
machine in-memory graph analytics, we characterize 1) the memory-
level parallelism (MLP) in an out-of-order (OoO) core and 2) the cache
hierarchy. Our characterization fills the gaps in prior profiling
work [5], [6] in two aspects. First, we perform a data structure aware
profiling which provides clearer guidelines on the management of
different data types for performance optimization. Second, with the
flexibility of a simulated platform, we vary the instruction window

The authors are with the University of California, Santa Barbara, CA 93106.
E-mail: {abasak, sangminoh}@umail.ucsb.edu, {xinghu.cs, yuanxie}@gmail.com,
shuangchenli@ece.ucsb.edu.

Manuscript received 19 June 2018; revised 10 July 2018; accepted 29 July 2018. Date of
publication 23 Aug. 2018; date of current version 10 Sept. 2018.
(Corresponding author: Abanti Basak.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2018.2864964

and the cache configuration design parameters to explicitly explore
their performance sensitivity. Prior work does not provide this level
of detail. Based on our observations from the analysis, we provide
possible guidelines for a better memory hierarchy architecture.
Beyond previous profiling work, our key observations and insights
toward architecture design are summarized below:

● Load-load dependency chain involving specific application
data types, rather than the instruction window size limita-
tion, is the key bottleneck in achieving a high MLP.

● Different graph data types exhibit heterogeneous reuse
distances. The architectural consequences are 1) the private
L2 cache shows negligible impact on improving system per-
formance, 2) the shared L3 cache shows higher performance
sensitivity, 3) the data type representing the graph property
benefits the most from a larger shared L3 cache, and 4) any
cacheline in the recency stack other than the most recently
used (MRU) cacheline is a viable candidate for eviction.

● Graph algorithms can be classified into two categories on
the basis of the memory access volumes to different data
types. This helps identify the target data type for perfor-
mance optimization in different algorithms.

2 METHODOLOGY

In this section, we describe the experiment setup and the bench-
marks used. Since graph data layout is an important factor in deter-
mining memory access patterns, we also discuss the layout used
by our benchmark.

2.1 Profiling Platform

The experiments have been done using SNIPER simulator [7]. Cache
access timings for different cache capacities were extracted using
CACTI [8]. The baseline architecture is described in Table 1. We used
fewer cores than typically present in a server node because previous
profiling work [5] has shown that resource utilization for parallel and
single-core executions is similar. Hence, we do not expect the number
of cores to change our observations. We marked the region of interest
(ROI) in the application code. We ran the graph reading portion
in the cache warm-up mode and, upon entering the ROI, collected
statistics for 600 million instructions across all the cores.

2.2 Benchmark

We used the GAP benchmark [9] which consists of a set of opti-
mized multi-threaded implementations of some of the most widely
used algorithms in graph analytics. We selected GAP because it is
not a framework. Hence, it allows us to rule out any framework-
related overheads and extract true hardware bottlenecks. The five
graph algorithms we used are Betweenness Centrality (BC),
Breadth First Search (BFS), PageRank (PR), Single Source Shortest
Path (SSSP), and Connected Components (CC).

A summary of the datasets used for our characterization is
shown in Table 2. The datasets have been chosen such that we
achieve a good coverage of input graph types both in terms of their
application domains and generation methods (real/synthetic).
In addition, the memory footprint of the datasets has been chosen
to be small enough to achieve manageable simulation times but
large enough to stress the memory system sufficiently.1 The size on
the left is that of the unweighted graph whereas that on the right is
that of the weighted graph (required for SSSP).

1. Our conclusions still hold for larger graphs because we explain the
observed architecture bottlenecks in terms of inherent data type features and
algorithm characteristics which are independent of the data size.

1556-6056 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

●

mailto:shuangchenli@ece.ucsb.edu
http://www.ieee.org/publications_standards/publications/rights/index.html

198 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018

TABLE 1
Baseline Architecture

core 4 cores, ROB = 128-entry, load queue = 48-entry,
store queue = 32-entry, reservation station entries =
36, dispatch width = issue width = commit width =
4, frequency = 2.66 GHz

caches 3-level hierarchy, inclusive at all levels, writeback,
LRU (Least Recently Used) replacement policy, data
and tags parallel access, 64B cacheline, separate L1
data and instruction caches

L1D cache private, 32 KB, 8-way set-associative, data access
time = 4 cycles, tag access time = 1 cycle

L2 cache private, 256 KB, 8-way set-associative, data access
time = 8 cycles, tag access time = 3 cycles

L3 cache (LLC) shared, 8 MB, 16-way set-associative, data access
time = 30 cycles, tag access time = 10 cycles

DRAM DDR3, device access latency = 45 ns, queue delay
modeled

TABLE 2
Datasets

Dataset vertices edges Memory Footprint Description

kron [9] 16.8M 260M 2.1 GB/2 GB* synthetic
urand [9] 8.4M 134M 1.1 GB/2.1 GB synthetic
orkut [10] 3M 117M 941 MB/1.8 GB social network
livejournal [10] 4.8M 68.5M 597 MB/1.1 GB social network
road [9] 23.9M 57.7M 806 MB/1.3 GB mesh network

*Weighted graph is generated from a smaller degree (hence smaller size) for a
manageable simulation time.

2.3 Graph Data Layout in the Benchmark

GAP uses the Compressed Sparse Row (CSR) representation which is

the most widely used data layout for graphs because of its efficient

memory space usage. As shown in Fig. 1, CSR has three main compo-
nents: the offset pointer, the neighbor IDs, and the vertex data. Each
entry in the offset pointer array belongs to a unique vertex V and
points to the start of the list of V’s neighbors in the neighbor ID array.
The vertex data array stores the property of each vertex and is
indexed by the vertex ID. In the rest of the paper, we use the follow-
ing terminology: 1) Structure data: the neighbor IDs array 2) Property
data: the vertex data array 3) Intermediate data: any other data.

3 OBSERVATIONS AND ANALYSIS

In this section, we begin by analyzing the effectiveness of a larger
instruction window in an OoO core in increasing the MLP. Next,
we analyze the cache hierarchy to 1) find the relative usefulness of
each cache level and 2) study the impact of different replacement
policies. Finally, we observe how different algorithms interact dif-
ferently with structure, property, and intermediate data.

3.1 Analysis of the Core and MLP

Instruction window size is not the factor impeding MLP: Previous pro-
filing work on a real machine [5] concludes that the reorder buffer
(ROB) size is the bottleneck in achieving a high MLP and a high
memory bandwidth utilization for graph analytics workloads.
However, by changing the design parameters in our simulator-
based profiling, we observe that even a 4x larger instruction win-
dow fails to expose more MLP. As shown in Fig. 2a, for a 4x
instruction window, the average increase in memory bandwidth
utilization is only 2.7 percent. Fig. 2b shows the corresponding
speedups. The mean speedup is only 1.44 percent, which is very
small compared to the large allotted hardware resources.

Load-load dependency chains prevent achieving high MLP: To under-
stand why a larger ROB does not improve MLP, we track

Fig. 1. CSR data layout for graphs.

Fig. 2. (a) change in DRAM bandwidth utilization and (b) overall speedup from
a 4x larger ROB.

Fig. 3. Load-load dependency in ROB.

Fig. 4. Breakdown of producer and consumer loads by application data type.

dependencies of the load instructions in the ROB and find that MLP
is bounded by an inherent application-level dependency characteris-
tic. For every load, we track its dependency backward in the ROB
until we reach an older load instruction. We call the older load a pro-
ducer load and the younger load a consumer load. We find that these
producer-consumer load dependency chains are inherent in graph
processing and can be a serious bottleneck in achieving a high MLP
even for a larger ROB. The two loads cannot be parallelized as they
are constrained by true data dependencies and have to be executed in
program order. Fig. 3 shows that, on average, 43.2 percent of the loads
are part of a load-load dependency chain with an average chain

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018 199

Fig. 5. (a) Sensitivity of i) L3 misses per kilo instructions (MPKI) and ii) system performance to shared L3 cache size (access times for (tags/data) in cycles); (b) Sensitivity
of (i) L2 hit rate and (ii) system performance to private L2 configurations (average across all benchmarks); (c) Effect of larger L3 cache on off-chip access of different data
types (average across all benchmarks).

length of 2.5, where we define the chain length as the number of
instructions in the dependency chain.

Graph property data is the consumer in a dependency chain: To identify
the position of each application data type in the observed load-load
dependency chains, we show the breakdown of producer and con-
sumer loads by data type in Fig. 4. We find that the graph property
data is mostly the consumer in such a chain (average 53.6 percent con-
sumers in contrast to only 5.9 percent producers). The issuing of a
graph property data load is delayed and cannot be parallelized
because it has to depend on a producer load for its address calcula-
tion. Fig. 4 also shows that structure data is mostly the producer (aver-
age 41.4 percent producers as opposed to only 6 percent consumers).

3.2 Analysis of the Cache Hierarchy

3.2.1 Performance Sensitivity of L2 and L3 Caches

Private L2 cache shows negligible performance sensitivity, whereas shared
LLC shows higher performance sensitivity: As shown in Fig. 5a, we vary
the LLC size from 8 to 64 MB and find the optimal point of 17.4

Fig. 6. Breakdown of cache and memory usage by application data type.

percent (max 3.25x) performance improvement for a 4x increase in
the LLC capacity. This optimal point is a balance between a reduced
miss rate and a larger LLC access latency. For the private L2 cache,
Fig. 5b shows that the L2 hit rate (which is already very low at 10.6
percent in the baseline) and the speedup show little sensitivity to the
different L2 configurations (both capacity and set associativity).
The leftmost bar in Fig. 5b(ii) represents an architecture with no
private L2 caches and no slowdown compared to a 256 KB cache.
Therefore, an architecture without private L2 caches is just as fine for
graph processing.

Property data is the primary beneficiary of LLC capacity: To under-
stand which data type benefits from a larger LLC, Fig. 5c shows,
for each data type, the percentage of memory references that ends
up getting data from the DRAM. We observe that the most reduc-
tion in off-chip accesses comes from the property data. Structure
and intermediate data do not benefit from a higher capacity. Inter-
mediate data is already mostly accessed in on-chip caches since
only 1.9 percent of the accesses to this data type are DRAM-bound
in the baseline. Structure data, on the other hand, has a higher per-
centage of off-chip accesses (7.5 percent) which remains mostly
irresponsive to a larger LLC capacity.

Graph structure cacheline has the largest reuse distance among all the
data types. Graph property cacheline has a larger reuse distance than
that serviced by the L2 cache: To further understand the different per-
formance sensitivities of L2 and L3, we break down the memory
hierarchy usage by application data type in Fig. 6. In most bench-
marks,2 accesses to the structure data are serviced by the L1 cache
and the DRAM, which indicates that a cacheline missed in L1 is
one that was referenced in the distant past such that it has been
evicted from both the L2 and the L3 caches. The fact that the reuse
distance is beyond the servicing capability of the LLC explains
why a larger LLC fails to significantly reduce the proportion of off-
chip structure accesses in Fig. 5c. On the other hand, most of the
property data loads missed in the L1 cache cannot be serviced by
the L2 cache but can be serviced by the LLC and the DRAM. Overall,
the LLC is more useful in servicing property accesses than structure
accesses. Thus, the property cacheline has a comparatively smaller
reuse distance that is still larger than that captured by the L2 cache.
Finally, Fig. 6 provides evidence that the accesses to intermediate

2. The road dataset with a very large diameter [9] results in an extreme case or

an exception in some experiments.

200 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018

Fig. 7. LLC performance for different replacement policies (average across all
benchmarks). NMRU=not most recently used, SRRIP_[2,3]=static re-reference
interval prediction [11].

Fig. 8. Memory reference breakdown by data type.

data are mostly on-chip cache hits in the L1 and the LLC. The reuse
distances of the three data types explain why the private L2 cache
fails to service memory requests and shows negligible benefit for
performance.

3.2.2 Effect of Replacement Policies on LLC

We further investigate whether there is opportunity for improve-
ment through alternative replacement policies in the LLC. Fig. 7
reveals a skewness in the victim selection policy in the recency
stack. Any cacheline other than the MRU is a viable candidate for
eviction. Compared to the baseline LRU, MRU shows a significantly
worse cache performance (higher MPKI), whereas the other
policies show performance similar to LRU. This implies that a
MRU cacheline has short re-reference intervals. On the other hand,
the cachelines in any other recency position are not likely to be re-
referenced soon. Hence, their eviction minimally affects the MPKI.

3.3 Relation Between Algorithms and Data Types

To understand how each algorithm interacts with different data
types, Fig. 8 shows the breakdown of the memory reference (loads
and stores) volume by structure, property, and intermediate data.
We find that for PR and CC, the data types with the largest access vol-
umes are structure and property data. On the other hand, in BC, BFS,
and SSSP, intermediate data occupies the largest share of the access
volume. This variation can be explained by how each algorithm
schedules vertices for processing. In PR and CC style algorithms,
vertices are scheduled sequentially. For each selected vertex, the
access pattern is to first access the structure data which is then
used to index the property data. In BC/BFS/SSSP, on the other
hand, vertices are scheduled selectively according to multiple
bookkeeping data structures such as queues, bins, or worklists,
explaining their large access volume to intermediate data.2

4 CONCLUSIONS AND ARCHITECTURAL GUIDELINES

This paper performs a data-aware characterization on a simulated
multi-core architecture in order to study the bottlenecks in the
core and the cache hierarchy in graph analytics. Our analysis
provides opportunities and guidelines for architecture optimiza-
tions. First, to resolve dependency chain bottlenecks, techniques

such as dependence graph based prefetching [12] or near-memory
acceleration of dependency chains [13] could be utilized. Second,
different impacts of the L2 and the L3 caches on the system perfor-
mance provide multiple directions for improving the overall cache
hierarchy. Private L2 caches could be reconfigured to be part of the
LLC. The L2 cache could also be used as the perfect cache level for
prefetching without risk of cache pollution. Third, an optimization
technique targeting a specific data type should be aware of the
relative importance of the data type in the spectrum of graph algo-
rithms. A technique targeting structure or property data may bene-
fit CC and PR significantly, whereas benefits could be reduced
for BC, BFS, and SSSP-style algorithms where intermediate data
absorbs the majority of the access volume.

ACKNOWLEDGMENTS

This work was supported in part by US National Science Founda-
tion 1730309/1719160/1500848 and by CRISP, one of six centers in
JUMP, a Semiconductor Research Corporation program sponsored
by DARPA.

REFERENCES

[1] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Hassaan,
S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze of graph analytics
frameworks using massive graph datasets,” in Proc. Int. Conf. Manag. Data,
2014, pp. 979–990.

[2] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proc. USENIX Conf. Operating Syst.
Des. Implementation, 2012, pp. 31–46.

[3] Y. Perez, R. Sosič, A. Banerjee, R. Puttagunta, M. Raison, P. Shah, and
J. Leskovec, “Ringo: Interactive graph analytics on big-memory machines,”
in Proc. Int. Conf. Manage. Data, 2015, pp. 1105–1110.

[4] Z. Shang, F. Li, J. X. Yu, Z. Zhang, and H. Cheng, “Graph analytics through
fine-grained parallelism,” in Proc. Int. Conf. Manage. Data, 2016, pp. 463–
478.

[5] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph process-
ing: Workload characterization on an Ivy bridge server,” in Proc. Int. Symp.
Workload Characterization, 2015, pp. 56–65.

[6] A. Eisenman, L. Cherkasova, G. Magalhaes, Q. Cai, and S. Katti, “Parallel
graph processing on modern multi-core servers: New findings and remain-
ing challenges,” in Proc. Int. Symp. Model. Anal. Simul. Comput. Telecommun.
Syst., 2016, pp. 49–58.

[7] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2011, pp. 52:1–
52:12.

[8] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0,”
HP Laboratories, Palo Alto, CA, USA, Tech. Rep. HPL-2009-85, 2009.

[9] S. Beamer, K. Asanović, and D. Patterson, “The GAP benchmark suite,”
CoRR, vol. abs/1508.03619, 2015, http://arxiv.org/abs/1508.03619

[10] J. Leskovec and A. Krevl, “SNAP datasets: Stanford large network dataset
collection,” Jun. 2014. [Online]. Available: http://snap.stanford.edu/data

[11] A. Jaleel, K. B. Theobald, S. C. Steely Jr , and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” in Proc.
Int. Symp. Comput. Archit., 2010, pp. 60–71.

[12] M. Annavaram, J. M. Patel, and E. S. Davidson, “Data prefetching by
dependence graph precomputation,” in Proc. Int. Symp. Comput. Archit.,
2001, pp. 52–61.

[13] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Accelerating
dependent cache misses with an enhanced memory controller,” in Proc. Int.
Symp. Comput. Archit., 2016, pp. 444–455.

http://arxiv.org/abs/1508.03619
http://snap.stanford.edu/data

